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Real-life problems present several kinds of preferences. We focus on problems
with both positive and negative preferences, which we call bipolar preference
problems. Although seemingly specular notions, these two kinds of preferences
should be dealt with differently to obtain the desired natural behaviour.
We technically address this by generalising the soft constraint formalism, which
is able to model problems with one kind of preference. We show that soft
constraints model only negative preferences, and we add to them a new
mathematical structure which allows to handle positive preferences as well. We
also address the issue of the compensation between positive and negative
preferences, studying the properties of this operation. Finally, we extend the
notion of arc consistency to bipolar problems, and we show how branch and
bound (with or without constraint propagation) can be easily adapted to solve
such problems.

Keywords: soft constraints; preferences; negative and positive judgements

1. Introduction

Many real-life problems contain statements which can be expressed as preferences.

The problem of representing preferences of agents has been deeply investigated in

Artificial Intelligence (AI) community in recent past years (Doyle, Shoham and Wellman

1991; Wellman and Doyle 1991; Lang 1996; Bacchus and Grove 1996; Boutilier, Brafman,

Hoos and Poole 1999; Benferhat, Dubois, Kaci and Prade 2001; Benferhat, Dubois and

Prade 2002). Preference representation is an important issue when we have to represent the

desires of users or to reason about them, for example, in recommender systems.

Our long-term goal is to define a general and flexible framework where many kinds of

preferences can be naturally modelled and efficiently dealt with. In this article, we focus

on problems that present positive and negative preferences, which we call bipolar

preference problems.

Bipolarity is an important topic in several domains, for example psychology (Osgood

and Tannenbaum 1957; Tversky and Kahneman 1992; Cacioppo and Berntson 1997),

multi-criteria decision making (Grabisch and Labreuche 2005), and more recently in AI

(argumentation (Amgoud and Prade 2005) and qualitative reasoning (Benferhat et al.

2002, 2006; Dubois and Fargier 2005, 2006)). Preferences on a set of possible choices are
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often expressed in two forms: positive and negative statements. In fact, in many real-life

situations, agents express what they like and what they dislike, thus often preferences are

bipolar.

Let us consider a real-life situation where positive and negative preferences are useful

to model the problem (Benferhat et al. 2006). Consider a 3-day summer school, for which

each lecturer is asked to express a preferred time slot for scheduling his talk. We assume

that talks can be given either on Monday, on Tuesday or on Wednesday, and for each day

the talk can be either scheduled in the morning or in the afternoon. A lecturer may provide

two kinds of preferences. He may specify negative preferences, which describe

unacceptable slots with levels of tolerance. For instance, he may strongly object to

lecturing on Monday, while he may weakly refuse to speak on Wednesday. Moreover,

a lecturer may also specify positive preferences. For instance, he may state that giving

a talk in the morning is preferred to giving it in the afternoon, and scheduling it early in the

morning is even better.

The aim of this article is to propose a tool to represent these two types of preferences in

a single framework and to provide algorithms that, taken in input a problem with these

two kinds of preferences, return its best solutions.

Positive and negative preferences can be thought as two symmetric concepts, and thus

one can think that they can be dealt with via the same operators. However, this would not

model what one usually expects in real scenarios. In fact, usually combination of positive

preferences should produce a higher (positive) preference, while combination of negative

preferences should produce a lower (negative) preference.

For example, if Paul likes (resp., dislikes) meat and if he likes (resp., dislikes) tomatoes,

then, if he does not say explicitly that he dislikes (resp., likes) a meal with meat and

tomatoes, then certainly he will like (resp., dislikes) more to eat both meat and tomatoes.

As another example, consider a decision d that is obtained by combining two decisions d1
and d2, that both produce advantages, i.e. they are both associated to positive preferences.

Then, the global decision d will produce a higher advantage than d1 and d2 and thus,

as expected, a higher positive preference.

On the other hand, if d1 and d2 produce only disadvantages, i.e. if they are both

associated with negative preferences, it is clear that decision d will produce a higher

disadvantage; thus it will be associated with a more negative preference than those of d1
and d2.

Note that, even if positive and negative preferences could be seen as symmetric

concepts, we will show that it is not sufficient to use a single structure to model, for

example, the negative preferences and to transform every positive preference into

a negative one. Moreover, the representation of positive and negative preferences in

a separate way is motivated by recent studies in psychology showing that the distinction

between positive and negative preferences make sense. In fact, they are processed

separately in the brain and they are felt as different dimensions by people (Cacioppo and

Berntson 1997, 1999).

When dealing with both kinds of preferences, it is also natural to express indifference,

which means that we express neither a positive nor a negative preference over an object.

Then, a desired behaviour of indifference is that, when combined with any preference

(either positive or negative it should not influence the overall preference.

Finally, besides combining preferences of the same type, we also want to combine

positive with negative preferences. We strongly believe that the most natural and intuitive

way to do so is to allow for compensation. Comparing positive against negative aspects

2 S. Bistarelli et al.
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and compensating them w.r.t. their strength is one of the core features of decision-making

processes, and it is, undoubtedly, a tactic universally applied to solve many real-life

problems.

This approach follows the same idea proposed in chapter IV of Bentham (1789) for

evaluating the tendency of an act. Such an idea consists of summing up all the values of all

the pleasures produced by the considered act on one side, and those of all the pains

produced by it on the other, and then balancing these two resulting values in a value which

can be on the side of pleasure or on the side of pain. If this value is on the side of pleasure,

then the tendency of the act is good, otherwise the tendency is bad.

For example, assume to have to choose among two decisions, say d1 and d2. Assume

also to know that decision d1 has 10 argumentations in favour and 5 argumentations

against, and that decision d2 has 15 argumentations in favour and 6 argumentations

against. If all the argumentations have the same importance, as in this case, in order to

choose the best decision, a classical approach (Bentham 1789) requires to compensate

(via the subtraction operator) the positive and the negative argumentations for every

decision and then to choose the one with the highest compensation value. In this example,

the best solution is therefore decision d2, since globally it produces more advantages than

d1. In fact, globally d1 has 10ÿ 5¼ 5 argumentation in favour, while d2 has 15ÿ 6¼ 9

argumentations in favour. In general, compensation may be less simple than this, since, for

example, we may have qualitative considerations over the argumentations, rather than just

quantitative ones.

Positive and negative preferences might seem as just two different criteria to reason

with, and thus techniques such as those usually adopted by multi-criteria optimisation

(Ehrgott and Gandibleux 2002) could appear suitable for dealing with them. However, this

interpretation would hide the fundamental nature of bipolar preferences, that is, that

positive preferences are naturally opposite of negative preferences.

For example, pros and cons of a decision, that can be seen as positive and negative

preferences, are opposite elements, thus it would not be reasonable to consider them

separately as done usually in a multi-criteria approach. Moreover, in multi-criteria

optimisation it is often reasonable to use a Pareto-like approach, thus associating tuples of

values to each solution, and comparing solutions according to tuple dominance. Instead,

in bipolar problems, it would be very unnatural to force such an approach in all contexts,

or to associate to a solution a preference which can be neither a positive nor a negative one

as done in Fargier and Wilson (2007).

Soft constraints (Bistarelli, Montanari and Rossi 1997; Bistarelli 2004) are a useful

formalism to model problems with quantitative preferences. However, they can only model

negative preferences, since in this framework preference combination returns lower

preferences. In this article we adopt the soft constraint formalism based on semirings to

model negative preferences. We then define a new algebraic structure to model positive

preferences. To model bipolar problems, we link these two structures and we set

the highest negative preference to coincide with the lowest positive preference to model

indifference. We then define a combination operator between positive and negative

preferences to model preference compensation, and we study its properties.

Notice that we generalise soft constraint formalism to model bipolar preferences to be

able to exploit the generality of the semiring-based soft constraint framework, that allows

us to represent several kinds of preferences and also partially ordered preferences, and to

exploit and adapt the existing solving machinery for soft constraint problems to obtain

optimal solutions for bipolar preference problems.

Journal of Experimental & Theoretical Artificial Intelligence 3
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Non-associativity of preference compensation occurs in many contexts, thus we think it

is too restrictive to focus just on associative environments. For example, non-associativity

of compensation arises when either positive or negative preferences are aggregated with an

idempotent operator (such as min or max), while compensation is instead non-idempotent

(such as sum). Our framework allows for non-associativity, since we want to give complete

freedom to choose the positive and negative algebraic structures. However, we also

describe a technique that, given a negative structure, builds a corresponding positive

structure and an associative compensation operator.

Finally, we consider the problem of finding optimal solutions of bipolar problems, by

suggesting a possible adaptation of constraint propagation and branch-and-bound (BB)

to the generalised scenario.

Summarising, the main results of this article are:

. a formal definition of an algebraic structure to model bipolar preferences;

. the study of the notion of compensation and of its properties (such as

associativity);

. a technique to build a bipolar preference structure with an associative compen-

sation operator;

. the adaptation of BB to solve bipolar problems;

. the definition of bipolar preference propagation and its use within a BB solver.

This article is organised as follows. Section 2 recalls the main notions of semiring-based

soft constraints. Section 3 describes how to model negative preferences using usual soft

constraints and Section 4 shows how to model positive preferences. Section 5 shows how

to model both positive and negative preferences and Section 6 defines constraint problems

with both positive and negative preferences. Section 7 shows how to modify the bipolar

framework to handle also negative preferences that cannot be compensated. Section 8 shows

that it is important to have a bipolar structure for expressing both positive and negative

preferences, since expressing all the problems’ requirements in a positive (or negative) form

might lead to different optimal solutions. Section 9 shows that very often the compensation

operator is not associative and it describes a technique to build a bipolar preference

structure with an associative compensation operator. Section 10 shows how to adapt

BB to solve bipolar problems, how to define bipolar propagation and its use within

a BB solver. Finally, Section 11 describes the existing related work and gives some hints

for future work.

Earlier versions of parts of this article have appeared in Bistarelli, Pini, Rossi and

Venable (2006, 2007a).

2. Semiring-based soft constraints

A soft constraint (Bistarelli et al. 1997; Bistarelli 2004) is just a classical constraint

(Dechter 2003) where each instantiation of its variables has an associated value from

a (totally or partially ordered) set. Combining constraints will then have to take into

account such additional values, and thus the formalism has also to provide suit-

able operations for combination (�) and comparison (þ) of tuples of values and

constraints. This is why this formalisation is based on the concept of c-semiring, which

is just a set plus two operations. More precisely, a c-semiring is a tuple

(A,þ,�, 0, 1) (when þ (respectively �) is applied to a two-element set we will use

4 S. Bistarelli et al.
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symbol þ (respectively �) in infix notation, while in general we will use the symbolP
(respectively

Q
) in prefix notation.) such that:

. A is a set and 0, 12A;

. þ is commutative, associative, idempotent, 0 is its unit element and 1 is its

absorbing element;

. � is associative, commutative, distributes over þ, 1 is its unit element and 0 is

its absorbing element.

Given the relation �S over A such that a�S b iff aþ b¼ b, it is possible to prove that:

. �S is a partial order;

. þ and� are monotone on �S;

. 0 is its minimum and 1 is its maximum;

. hA, �Si is a lattice and, for all a, b2A, aþ b¼ lub(a, b).

Moreover, if � is idempotent, then hA, �Si is a distributive lattice and� is its greatest

lower bound. Informally, the relation �S gives us a way to compare (some of the) tuples of

values and constraints. In fact, when we have a� S b, we will say that b is better than a.

Given a c-semiring S¼ (A,þ,�, 0, 1), a finite set D (the domain of the variables), and

an ordered set of variables V, a constraint is a pair hdef, coni where con�V and def :

Djconj!A. Therefore, a constraint specifies a set of variables (the ones in con), and assigns

to each tuple of values of D of these variables an element of the semiring set A.

Given a subset of variables I�V, and a soft constraint c¼hdef, coni, the projection of c

over I, written c +I, is a new soft constraint hdef 0, con0i, where con0 ¼ con\ I and

def(t0)¼
P

{tjt#con
0¼t0} def(t). The scope, con0 of the projection constraint contains the

variables that con and I have in common, and thus con0 � con. Moreover, the preference

associated to each assignment to the variables in con0 denoted with t0 is the highest (
P

is

the additive operator of the c-semiring) among the preferences associated by def to any

completion of t0 t, to an assignment to con.

A soft constraint satisfaction problem (SCSP) is a set of soft constraints over a set

of variables.

Choosing a specific semiring means selecting a class of preferences. For example,

. the semiring SFCSP¼ ([0, 1],max,min, 0, 1) allows one to model fuzzy CSPs

(Schiex 1992; Ruttkay 1994), which associate to each element allowed by

a constraint a preference between 0 and 1 (with 0 being the worst and 1 being the

best preference), and gives to each complete assignment a preference that is the

minimal among all preferences selected in the constraints. The optimal solutions

are then those solutions with the maximal preference;

. the semiring SCSP¼ ({false, true}, �,6, false, true) allows one to model classical

CSPs (Rossi et al. 2006), without preferences. The only two preferences that can

be given are true, indicating that the tuple is allowed and false, indicating that the

tuple is forbidden. The optimal solutions are those solutions with preference true

on all constraints;

. the semiring SWCSP¼ (Rþ, min,þ,þ1, 0), allows one to model weighted SCSPs

(Schiex, Fargier and Verfaillie 1995). Preferences are interpreted as costs from 0

to þ1, and each complete assignment is associated to a cost that is obtained

by summing all costs selected in the constraints. The optimal solutions are those

solutions with the minimal cost and

Journal of Experimental & Theoretical Artificial Intelligence 5
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. the semiring SPCSP¼ ([0, 1],max,�, 0, 1), allows one to model probabilistic SCSPs

(Fargier and Lang 1993). Preferences are interpreted as probabilities ranging from

0 to 1. Every solution is associated to a probability, that is, the joint probability,

which is obtained by multiplying the probabilities selected in the constraints.

Given an assignment s to all the variables of an SCSP, we can compute its preference value

pref(s) by combining the preferences associated by each constraint to the subtuples of the

assignments referring to the variables of the constraint. More precisely, given an SCSP P

defined by a set of constraints C over a c-semiring S and by a set of variables V, the

preference of an assignment s to all the variables of P is pref(s)¼
Q

hdef,coni2C,con�V

def(s# con), where
Q

is the combination operator of the c-semiring S. An optimal solution

of an SCSP is then a complete assignment t such that there is no other complete

assignment t0 with pref(t)5S pref(t0).

3. Negative preferences

The structure we use to model negative preferences is exactly a c-semiring, as defined in

Section 2. In fact, in a c-semiring the element which acts as indifference is 1, since 8a2A,

a� 1¼ a. This element is the best in the ordering, which is consistent with the fact that

indifference is the best preference when using only negative preferences. Moreover, in a

c-semiring, combination goes down in the ordering, since a� b� a, b. This can be naturally

interpreted as the fact that combining negative preferences worsens the overall preference.

Example 1: The above interpretation is very natural when considering, for example, the

weighted semiring (Rþ, min,þ,þ1, 0). In fact, in this case the real numbers are costs and

thus negative preferences. The sum of two costs is never better than the two costs w.r.t. the

ordering induced by the additive operator (that is,min) of the semiring.

Example 2: If, instead, we consider the fuzzy semiring, that is, ([0, 1],max,min, 0, 1),

according to this interpretation, giving preference 1 to a tuple means that there is nothing

negative about such a tuple. Instead, giving a preference strictly less than 1 (e.g. 0.6) means

that there is at least a constraint which such tuple does not satisfy at the best. Moreover,

combining two fuzzy preferences means taking the minimum and thus the worst among

them.

Example 3: When considering classical constraints via the c-semiring SCSP¼ ({false,

true}, �,6, false, true), we just have two elements to model preferences: true and false. True

is here the indifference, while falsemeans that we do not like the object. This interpretation

is consistent with the fact that, when we do not want to say anything about the relation

between two variables, we just omit the constraint, which is equivalent to having

a constraint where all instantiations are allowed (thus they are given value true).

From now on, we use (N,þn,�n,?n,>n) and call it a negative preference structure, the

c-semiring to model negative preferences.

4. Positive preferences

When dealing with positive preferences, we want two main properties to hold:

combination should bring to better preferences, and indifference should be lower than

all the other positive preferences. These properties can be found in the following structure.

6 S. Bistarelli et al.
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Definition 1: A positive preference structure is a tuple (P,þp,�p,?p,>p) such that

. P is a set and >p, ?p2P;

. þp, the additive operator, is commutative, associative, idempotent, with ?p as its

unit element (8a2P, aþp ?p¼ a) and >p as its absorbing element (8a2P, aþp

>p¼>p);

. �p, the multiplicative operator, is associative, commutative and distributes over

þp (a�p (bþp c)¼ (a�p b)þp(a�p c)), with ?p as its unit element and >p as its

absorbing element. (The absorbing nature of >p can be derived from the other

properties.)

Notice that the additive operator of this structure has the same properties as the

corresponding one in c-semirings, and thus it induces a partial order over P in the usual

way: a�p b iff aþp b¼ b. This allows to prove that þp is monotone over �p and that it

computes the least upper bound in the lattice (P,�p). On the other hand, the multiplicative

operator has different properties. More precisely, the best element in the ordering (>p) is

now its absorbing element, while the worst element (?p) is its unit element. This reflects the

desired behaviour of the combination of positive preferences.

Theorem 1: Given a positive preference structure (P,þp,�p,?p,>p), consider the relation

�p over P. Then:

. �p is monotone over �p (i.e. for any a, b2P such that a�p b, then a�pd�p b�p d,

8d2P) and

. 8a, b2P, a�p b�p aþp b�p a, b.

Proof: Since a�p b iff aþp b¼ b, then b�p d¼ (aþp b)�p d¼ (a�p d)þp (b�p d). Thus

a�p d�p b�p d. Also, a�p b¼ a�p (bþp ?p)¼ (a�p b)þp (a�p ?p)¼ (a�p b)þp a. Thus

a�p b�p a (the same for b). Finally: a�p b� a, b. Thus a�p b� lub(a, b)¼ aþp b.

In a positive preference structure, ?p is the element modelling indifference. In fact, it is the

worst one in the ordering and it is the unit element for the combination operator �p. These

are exactly the desired properties for indifference w.r.t. positive preferences. The role of >p

is to model a very high preference, much higher than all the others. In fact, since it is the

absorbing element of the combination operator, when we combine any positive preference

a with >p, we get >p.

Example 4: An example of a positive preference structure is P1¼ (Rþ, max,þ, 0,þ1),

where preferences are positive reals. The smallest preference that can be assigned is 0.

It represents the lack of any positive aspect and can thus be regarded as indifference.

Preferences are aggregated taking the sum and are compared taking the max.

Example 5: Another example is P2¼ ([0, 1],max,max, 0, 1). In this case preferences are

reals between 0 and 1, as in the fuzzy semiring for negative preferences. However, the

combination operator is max, which gives, as a resulting preference, the highest one among

all those combined.

Example 6: As an example of a partially ordered positive preference structure, consider

the Cartesian product of the two structures described above: (Rþ�[0, 1], (max,max),

(þ, max), (0, 0), (þ1, 1)). Positive preferences, here, are ordered pairs where the first

element is a positive preference of type P1 and the second one is a positive preference of

type P2. Consider, for example, the (incomparable) pairs (8, 0.1) and (3, 0.8). Applying the

Journal of Experimental & Theoretical Artificial Intelligence 7
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aggregation operator (þ, max) gives the pair (11, 0.8) which, as expected, is better than

both pairs, since max(8, 3, 11)¼ 11 and max(0.1, 0.8, 0.8)¼ 0.8.

5. Bipolar preference structures

Once we are given a positive and a negative preference structure, a naive way to combine

them would be in performing the Cartesian product of the two structures. For example, if

we have a positive structure P and a negative structure N, taking their Cartesian product

would mean that, given a solution, it will be associated with a pair ( p, n), where p2P is the

overall positive preference and n2N is the overall negative preference. Such a pair is in

general neither an element of P nor of N, so it is neither positive nor negative, unless one or

both of p and n are the indifference element. Moreover, the ordering induced over these

pairs is the well-known Pareto ordering, which may induce a lot of incomparability among

the solutions. These two features imply that compensation is not allowed at all. Instead, we

believe that it should be allowed, if desired. We will therefore now describe a way to

combine these two preference structures that allows for it.

Definition 2: A bipolar preference structure is a tuple (N,P,þ,�,?,h,>), where

. (N,þjN
,�jN

,?,h) is a negative preference structure;

. (P,þjP
,�jP

,h,>) is a positive preference structure;

. þ : (N[P)2! (N[P) is such that anþ ap¼ ap for any an2N and ap2P; this

operator induces as partial ordering on N[P: 8a, b2P[N, a� b iff aþ b¼ b and

. � : (N[P)2! (N[P) is an operator (called the compensation operator) that, for

all a, b, c2N[P, satisfies the following properties:

. commutativity: a� b¼ b� a;

. monotonicity: if a� b, then a� c� b� c.

In the following, we will write þn instead of þjN
and þp instead of þjP

. Similarly for �n and

�p. Moreover, we will sometimes write �np when operator�will be applied to a pair

in (N�P).

Notice that bipolar preference structures generalise both negative preference structures

and positive preference structures via a bipolar structure. In fact, a negative preference

structure is just a bipolar preference structure with a single positive preference: the

indifference element, which, in such a case, is also the top element of the structure.

Similarly, positive preference structures are just bipolar preference structures with a single

negative preference: the indifference element. By symmetry, in such cases the indifference

element coincides with the bottom element of the structure.

Given the ordering induced byþ on N[P, we have ?�h�>. Thus, there is a unique

maximum element (>) and a unique minimum element (i.e. ?); the element h is smaller

than any positive preference and greater than any negative preference, and it is used to

model indifference. The shape of a bipolar preference structure is shown in Figure 1.

�p and þp are the combination and the additive operators of the positive preference

structure, while �n and þn are the combination and the additive operators of the negative

preference structure.

8 S. Bistarelli et al.
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Notice that, although all positive preferences are strictly above negative preferences,

our framework does not prevent from using the same scale, or partially overlapping scales,

to represent positive and negative preferences. In fact, if we have the same scale L for both

the positive preferences and the negative ones, then we can map, via an isomorphism, the

positive preference scale into another scale L0 such that the bottom element of L0 coincides

with the top element of L. A similar procedure can be used also when one wishes to use

partially overlapping scales. So our framework is not restrictive and it can also handle

these cases.

A bipolar preference structure allows us to have different ways to model and reason

about positive and negative preferences. In fact, we can have different lattices (P,�p) and

(N,�n). This is common in real-life problems, where negative and positive statements are

not necessarily expressed using the same granularity. For example, we could be satisfied

with just two levels of negative preferences, while requiring several levels of positive

preferences. Our framework allows us also to model cases in which the two structures are

isomorphic (Section 9).

Notice that the combination of a positive and a negative preference is a preference which

is higher than, or equal to, the negative one and lower than, or equal to, the positive one.

Theorem 2: Given a bipolar preference structure (N,P,þ,�,?,h,>), for all p2P and

n2N, n� p� n� p.

Proof: For any n2N and p2P, h� p and n�h. By monotonicity of �, we have:

n�h� n� p and n� p�h� p. Hence: n¼ n�h� n� p�h� p¼ p.

This means that the compensation of positive and negative preferences lies in one of the

chains between the two combined preferences. Notice that all such chains pass through the

indifference element h. Possible choices for combining strictly positive with strictly

negative preferences are thus the average or the median operator, or also the minimum or

the maximum.

Moreover, by monotonicity, we can show that if >�?¼?, then the result of the

compensation between any positive preference and the bottom element is the bottom

element. Also, if >�?¼>, then the compensation between any negative preference and

the top element is the top element.

P

N

×n , +n

×p , +p

Figure 1. The shape of a bipolar preference structure.

Journal of Experimental & Theoretical Artificial Intelligence 9
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Theorem 3: Given a bipolar preference structure (N,P,þ,�,?,h,>), we have that:

. if >�?¼?, then 8p2P, p�?¼?,

. if >�?¼>, then 8n2N, n�>¼>.

Proof: Assume >�?¼?. Since for all p2P, p�>, then, by monotonicity of �,

p�?�>�?¼?, hence p�?¼?.

Assume >�?¼>. Since for all n2N, ?� n, then, by monotonicity of �,

>¼>�?�>� n, hence >� n¼>.

Example 7: In Table 1 we give three examples of bipolar preference structures.

The structure described in the first row uses real numbers as positive and negative

preferences. Compensation is obtained by summing the preferences, while the ordering is

given by the max operator. In the second structure we have positive preferences between 0

and 1 and negative preferences between ÿ1 and 0. Aggregation of positive preferences is

max and of negative preferences is min, while compensation between positive and negative

preferences is sum, and the order is given by max. In the third structure we use positive

preferences between 1 and þ1 and negative preferences between 0 and 1. Compensation

is obtained by multiplying the preferences and ordering is again obtained via max. Notice

that, if >�?2 {>,?}, then compensation in the first and in the third structure is

associative.

6. Bipolar preference problems

A bipolar constraint is just a constraint where each assignment of values to its variables is

associated to one of the elements in a bipolar preference structure. A bipolar CSP (V,C)

is then just a set of variables V and a set of bipolar constraints C over V. There could be

many ways of defining the optimal solutions of a bipolar CSP. Here we propose one which

avoids problems due to the possible non-associativity of the compensation operator, since

compensation never involves more than two preference values.

Definition 3: Given a bipolar preference structure (N,P,þ,�,?,h,>), a solution of

a bipolar CSP (V,C) over this structure is a complete assignment to all variables in V,

say s, and an associated preference which is computed as follows: pref(s)¼ ( p1�p � � � �p

pk)� (n1�n � � � �n nl), where kþ l¼ jCj, pi2P for i¼ 1, . . . , k and nj2N for j¼ 1, . . . , l,

and where 9 hdefi, conii 2C such that pi¼ defi(s #con), 9 hdefj, conji 2C such that nj¼

defj(s #con). A solution s is an optimal solution if there is no other solution s0 with

pref(s0)4 pref(s).

In this definition, the preference of a solution s is obtained by combining all the positive

preferences associated to its projections over the constraints via operator �p, by combining

Table 1. Examples of bipolar preference structures.

N, P þ � ?, h, >

Rÿ, Rþ þn¼þp¼þnp¼ max �n¼�p¼�np¼ sum ÿ1, 0, þ1
[ÿ1, 0], [0, 1] þn¼þp¼þnp¼max �n¼max, �p¼min, �np¼ sum ÿ1, 0, 1
[0, 1], [1,þ1] þn¼þp¼þnp¼max �n¼�p¼�np¼ prod 0, 1, þ1

10 S. Bistarelli et al.
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all the negative preferences associated to its projections over the constraints via operator

�n and then by combining the two preferences obtained so far (one positive and

one negative) via operator �np. Such a definition follows the same idea proposed in

chapter IV of Bentham (1789), however many others can be defined according to several

principles.

For example, we may avoid aggregation of positive and negative preferences via the

two operators �p and �n, since it may lead to poor discrimination among solutions. In

fact, if we have a finite preference scale with few elements, then aggregating means

obtaining one of the preferences in the scale to associate to a solution. Thus, if there are k

elements in the scale, we can have at most k different evaluations for a solution. Thus,

if the number of solutions is much higher than k, many solutions will end up with the same

evaluation and will thus result to be indistinguishable. A possible solution to this problem

is thus to avoid aggregation, and rather to maintain, for each solution, the tuple of all

preferences given by the single constraints to the solution. In this way, if we have c

constraints, then the number of different evaluations passes from k to kc. Thus a greater

discriminating power is achieved. Assuming no aggregation, a solution is associated to

a tuple of positive preferences and a tuple of negative preferences. Different solutions

can then be compared by ordering the elements of the two tuples (according to þp and þn)

for each solution, and then by comparing the ordered tuples by a lexicographic order.

Notice that in this article we have not followed this last approach, but we have applied

preference aggregation in order to be able to exploit the machinery to solve soft constraint

problems (Bistarelli et al. 1997; Bistarelli 2004; Rossi, Van Beek and Walsh 2006) (i.e.

bipolar preference problems where only negative preferences are present), that just relays

on preference aggregation.

Example 8: Consider the scenario in which we want to buy a car and we have preferences

over some features. In terms of colour, we like red, we are indifferent to white and we

hate black. Also, we like convertible cars a lot and we do not care much for big cars

(for example, SUVs). In terms of engines, we like diesel. However, we do not want a diesel

convertible.

We represent positive preferences via positive integers, negative preferences via

negative integers and we maximise the sum of all kinds of preferences. This can be

modelled by a bipolar preference structure where N¼ [ÿ1, 0], P¼ [0,þ1], þ¼max,

�¼ sum, ?¼ÿ1, h¼ 0, >¼þ1. Figure 2 shows the structure (variables, domains,

constraints and preferences) of such a bipolar CSP, where preferences have been chosen

consistently with the above informal specification, and 0 is used to model indifference (also

when tuples are not shown). Consider solution s1¼ (C¼ red,T¼ convertible,E¼ diesel).

Its preference is pref(s1)¼ (def1(red)� def2(convertible)� def3(diesel))� def4(convertible,

diesel)¼ (10þ 20þ 10)þ (ÿ20)¼ 20. We can see that the optimal solution is

(C¼ red,T¼ convertible,E¼ gasoline) with global preference of 30.

Consider now a different bipolar preference structure, which differs from the previous

one only for �p, which is now max. We want to see if, using a bipolar preference structure

where the compensation operator is not associative as in the previous case and where the

positive combination operator is idempotent, the optimal solution remains the same or it

changes. Now solution s1 has preference pref(s1)¼ (def1(red)� def2(convertible)�

def3(diesel))� def4(convertible, diesel)¼max(10, 20, 10)þ (ÿ20)¼ 0. It is easy to see that

now an optimal solution has preference 20. There are two of such solutions: one is the same

as the above optimal solution and the other one is (C¼white,T¼ convertible,E¼ gasoline).

Journal of Experimental & Theoretical Artificial Intelligence 11
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The two cars have the same features except for the colour. Awhite convertible is just as good

as a red convertible because we decided to aggregate positive preference by taking the

maximum element rather than by summing them.

7. Strong bipolar preference structure

In some real-life problems there are situations where some strong negative statements are

so negative that we would not like them to be compensated even by the best positive

statements. For example, if we are allergic to the ingredients of a medication, then, even if

it would solve some other health problem, we do not want to use it. Moreover, there are

also statements that need to be expressed as hard constraints, which have to be satisfied for

a scenario to be feasible. For example, if a classroom cannot fit more than 100 students,

then, no matter the other features of the room, we cannot choose it for a class of 150

students.

In these situations we need to have not only positive and negative preferences, possibly

compensating each other, but also negative preferences that cannot be compensated.

To provide a framework where such situations can be expressed, it is useful to consider

an extension of the bipolar preference structure defined in Section 5, where it presents an

additional set of preferences, which represents negative statements that cannot be

compensated by any positive preference. Since such preferences are negative, it is

reasonable that they are aggregated as it is usual for negative preferences, that is, like in

a negative preference structure. However, the compensation operator is not defined on

pairs including one of such strong negative preferences. We call this new structure a strong

bipolar preference structure.

We build the strong bipolar structure by linking a bipolar preference structure with

a negative preference structure, which models strong negative preferences, and by setting

the highest strong negative preference to coincide with the lowest negative preference.

In this structure the compensation operator is not defined on pairs including one of such

strong negative preferences.

Definition 4 (strong bipolar preference structure): A strong bipolar preference structure is

a tuple hR, N, P, þ, �, ?r, ?, h, >i where

. hR, þjR
, �jR

, ?r, ?i is a negative preference structure;

red      +10

black   −10

white       0

C

convertible  +20

SUV             −3

E

T (convertible,diesel)  −20

diesel     +10

gasoline     0

Figure 2. The bipolar CSP of the car’s preferences.

12 S. Bistarelli et al.
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. hN, P, þj(P[N)
, �j(P[N)

, ?, h, >i is a bipolar preference structure;

. þ : (N[P[R)2! (N[P[R) is such that arþ apn¼ apn for any apn2P[N and

ar2R; this operator induces as partial ordering on R[N[P: 8a, b2P[N[R,

a� b if and only if aþ b¼ b;

. � : (N[P[R)2! (N[P[R) is an operator that satisfies the following

properties:

. apn� r� r, 8apn2N[P, ar2R;

. commutativity: a� b¼ b� a, 8a, b, c2N[P[R;

. monotonicity: if a� b, then a� c� b� c, 8a, b, c2N[P[R.

In the following, we will write þr instead of þjR
and �r instead of �jR

. R is the set of

negative preferences that cannot be compensated and we call them strong negative

preferences. Every element of R is worse than any element of N (and thus also of P). As P

and N have in common the indifference element h, N and R have in common element ?,

which is the worst negative preference that can participate in a compensation. In fact, the

compensation operator, just as in a bipolar preference structure, is defined only on pairs

involving positive and negative preferences but not pairs including strong negative

preferences. The ordering among the elements of a strong bipolar preference structure, as

well as the operators in each part of the structure, can be seen in Figure 3.

8. Positive versus negative preferences

Positive and negative preferences look so similar that, even though we know they need

different combination operators, we could wonder why we need two different structures to

P

r

N

R

×n , +n

×r , +r

×p , +p

Figure 3. The shape of a strong bipolar preference structure.
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handle them. Why cannot we just have one structure, for example the negative one, and

transform each positive preference into a negative one? For example, if there are only two

colours for cars, (i.e. red and blue), and we like only blue, instead of saying this using

positive preferences (i.e. we like blue with a certain positive preference), we could phrase

it using negative preferences (i.e. we do not like red with a certain negative preference).

In other words, instead of associating a positive preference to blue and indifference to red,

we could give a negative preference to red and indifference to blue.

In this section we will show that, by doing this, we could modify the solution ordering,

thus representing a different optimisation problem. Thus the two preference structures are

needed to model the problems under consideration: using just one of them would not

suffice.

It is easy to show that, by moving from a positive to a negative modelling of the same

information, as we have done in the example above, all solutions get a lower preference

value. In fact, in this transformation, a positive preference is replaced by indifference, or

indifference is replaced by a negative preference. So, in any case, some preference is

replaced by a lower one, and by monotonicity of the aggregation operators (�n,�p and �),

the overall preference of the solutions is lower as well.

However, it is worth noting that this preference lowering might not preserve the

ordering among solutions. That is, solutions that were ordered in a certain way before

the modification can be ordered in the opposite way after it. This is due to the fact that

aggregation of positive and negative preferences may behave differently. The following

example shows this.

Example 9: Consider the bipolar preference structure (Rÿ,Rþ, max,�,ÿ1, 0,þ1),

where� is such that �p¼�np¼ sum and �n¼min. This means that we want to maximise

the sum of positive preferences and to maximise the minimal negative preference (thus

negative preferences are handled as fuzzy constraints). Also, positive preferences

are between 0 and þ1 and negative preferences are between 0 and ÿ1. Compensation

is via algebraic sum, thus values v and ÿv are compensated completely (i.e. the result of

the compensation is 0), while the compensation of values v and ÿv0 is vÿ v0.

Consider now a bipolar CSP over this structure with four variables, say X, Y, Z, W,

where each variable has a Boolean domain as follows: D(X)¼ {a, �a}, DðYÞ ¼ fb, �bg,

DðZÞ ¼ fc, �cg and DðWÞ ¼ fd, �dg. Assume now that the preference of a is 2, of b is 1,

of c is 2.4 and of d is 0.5, while the preference of the other elements is indifference

(i.e. 0 in this example). This means that we have expressed all our statements in

a positive form.

Consider now two solutions s and s0 as follows: s ¼ ða, b, �c, �dÞ and s0 ¼ ð �a, �b, c, dÞ.

By computing the preference of s, we get (2þ 1)þmin(0, 0)¼ 3, while for s0 we get

min(0, 0)þ (2.4þ 0.5)¼ 2.9. Thus s is better than s0.

Assume now to express the same statements in negative terms that if we like an

assignment t at level p, then we dislike �t at the same level p. Hence, the preference of �a is

ÿ2, of �b is ÿ1, of �c is ÿ2.4 and of �d is ÿ0.5, while the preference of the other elements is 0.

Now the preference of s is (0þ 0)þmin(ÿ2.4,ÿ0.5)¼ÿ2.4, while the preference of s0 is

min(ÿ2,ÿ1)þ (0þ 0)¼ÿ2. Thus s0 is better than s.

It is, however, possible to prove that, under some assumptions, moving from a positive

to a negative modelling of the same information, or vice versa, does not change the

ranking of the solutions.

14 S. Bistarelli et al.
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Theorem 4: Consider three bipolar CSPs Q,Q1 and Q2 over the bipolar preference structure

hN, P, þ, �, ?, h, >i, with variables with Boolean domains of the form fd, �dg. Assume that

Q, Q1 and Q2 differ only in the preference values associated to domain values as follows:

. Q associates to all domain values di ¼ �d a negative preference ni and to all domain

values di¼ d a positive preference pi¼ f(ni), where f is bijection from N to P, which

reverses the ordering, and which associates to every value ni2N a value f(ni)¼ pi in P;

. Q1 is like Q, except that it associates the indifference element to all the domain

values �d, i.e. Q1 is the problem obtained from Q if we express all the things in

positive terms;

. Q2 is like Q, except that it associates the indifference element to all the domain

values d, i.e. Q2 is the problem obtained from Q if we express all the things in

negative terms.

Consider now two different solutions of Q1 and Q2, say s¼ (d1, . . . , dn) and

s0 ¼ (d 0
1, � � � , d

0
n), and let us call pref1(s) (resp., pref1(s

0)) and pref2(s) (resp., pref2(s
0)) the

preference of solution s (resp., s0) in Q1 and Q2.

If

. 8a, b2N, f(a�n b)¼ f(a)�p f(b) and

. �p and �n are strictly monotonic,

then pref1(s)4 pref1(s
0) if and only if pref2(s)4 pref2(s

0), i.e. s is better than s0 in the positive

modelling iff s is better than s0 in the negative modelling.

Proof: Without loss of generality, we order the assignments of s and s0 such that the first

k (k¼ 1, . . . , n) assignments are equal in both s and s0. Then,

. pref1ðsÞ ¼ �
k
i¼0pi �p �

n
i¼kþ1pi;

. pref1(s
0)¼�

k
i¼0p

0
i �p �

n
i¼kþ1p

0
i;

. pref2ðsÞ ¼ �
k
i¼0ni �n �

n
i¼kþ1ni and

. pref2ðs
0Þ ¼ �

k
i¼0n

0
i �n �

n
i¼kþ1n

0
i.

By construction, �k
i¼0pi ¼ �

k
i¼0p

0
i and �

k
i¼0ni ¼ �

k
i¼0n

0
i. We will denote the first value with

Kp, and the second one with Kn.

Moreover, 8i¼ kþ 1, . . . , n, if di has preference ni in Q2, then it has preference h in Q1

and pi¼ f(ni) in Q. Then, since di is different from di
0 and domains are Boolean, we have

that d 0
1 has preference h in Q2 and preference pi¼ f(ni) in Q1. Thus,

. pref1ðsÞ ¼ Kp �p �
n
i¼kþ1f ðn

0
iÞ and

. pre f1(s
0)¼Kp �p �

n
i¼kþ1f ðniÞ.

We will show that, if pref2(s)4 pref2(s
0), then pref1(s)4 pref1(s

0). The other case can be

shown similarly.

If pref2(s)4 pref2(s
0), then Kn �n �

n
i¼kþ1ni 4Kn �n �

n
i¼kþ1n

0
i. This implies that

�
n
i¼kþ1ni 4�

n
i¼kþ1n

0
i. In fact, if we assume that �n

i¼kþ1ni � �
n
i¼kþ1n

0
i then, by monotonicity

of the operator �n, we obtain Kn �n �
n
i¼kþ1ni � Kn �n �

n
i¼kþ1ni, which is a contradiction.

Since f is an order reversing map, we have that f ð�n
i¼kþ1niÞ5 f ð�n

i¼kþ1n
0
iÞ. Since, by

hypothesis, f(a�n b)¼ f(a)�p f(b) 8a, b2N, then we have that �n
i¼kþ1f ðniÞ5�

n
i¼kþ1f ðn

0
iÞ.

By strict monotonicity of the operator �p, and since Kp is a positive preference, then

Kp �p �
n
i¼kþ1f ðniÞ5Kp �p �

n
i¼kþ1f ðn

0
iÞ, i.e. pref1(s

0)5 pref1(s).
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Notice that in Example 9 the ranking of the solutions changes when we move from the

positive to the negative modelling, since the two assumptions of Theorem 4 do not hold.

The first condition of Theorem 4 is not satisfied since, if we take two different negative

preferences a and b which are not the indifference element, we have that f(a�n b)¼

ÿmin(a, b)4ÿ(aþ b)¼ (ÿa)þ (ÿb)¼ f(a)�pf(b), and so f(a�nb) 6¼ f(a)�pf(b). Moreover,

the second condition of Theorem 4 does not hold since �n, that is the minimum operator,

is not strictly monotone.

9. Associativity of preference compensation

In many cases, the compensation operator�may be not associative. Here, we list some

sufficient conditions for the non-associativity of the�operator.

Theorem 5: Given a bipolar preference structure (P,N,þ,�,?,h,>), operator� is not

associative if at least one of the following two conditions is satisfied:

(1) >�?¼ c2 (N[P)ÿ {>,?};

(2) 9p2Pÿ {>,h} and n2Nÿ {?,h} such that p� n¼h and at least one of the

following conditions holds:

(a) �p or �n is idempotent;

(b) 9p0 2Pÿ {p,>} such that p0 � n¼h or 9n0 2Nÿ {n,?} such that p� n0 ¼h;

(c) >�?¼? and 9n0 2Nÿ {?} such that n� n0 ¼?;

(d) >�?¼> and 9p0 2Pÿ {>} such that p� p0 ¼>;

(e) 9a, c2N[P such that a� p¼ c iff c� n 6¼ a (or 9a, c2N[P such that a� n¼ c

iff c� p 6¼ a).

Proof:

(1) If c2Pÿ {>}, then >� (>�?)¼>� c¼>, while (>�>)�?¼>�?¼ c. If

c2Nÿ {?}, then ?� (?�>)¼?� c¼?, while (?�?)�>¼?�>¼ c.

(2) Assume that 9p2Pÿ {>,h} and n2Nÿ {?,h} such that p� n¼h.

(a) If �p is idempotent, then p� ( p� n)¼ p�h¼ p, while ( p� p)� n¼

p� n¼h. Similarly if �n is idempotent.

(b) If 9p0 2Pÿ {p,>} such that p0 � n¼h, then ( p� n)� p0 ¼ p0 while

p� (n� p0)¼ p. Analogously, if 9n0 2Nÿ {n,?} such that p� n0 ¼h.

(c) If >�?¼?, then, by Theorem 3, p�?¼?. If 9n0 2Nÿ {?} such that

n� n0 ¼?, then ( p� n)� n0 ¼h� n0 ¼ n0 while p� (n� n0)¼ p�?¼? 6¼ n0.

(d) If >�?¼>, then, by Theorem 3, n�>¼>. If 9p0 2Pÿ{>} such that

p� p0 ¼>, then (n� p)� p0 ¼h� p0 ¼ p0 while n� ( p� p0)¼n�>¼> 6¼ p0.

(e) If c� n 6¼ a, then (a� p)� n¼ c� n 6¼ a, but a� ( p� n)¼ a�h¼ a.

Analogously if c� p 6¼ a.

Notice that the above sufficient conditions refer to various aspects of a bipolar preference

structure: the properties of its operators, the shape of P and N orderings, the relation

between� and the other operators. Since some of these conditions often occur in practice,

it is not reasonable to always require associativity of �.

Sometimes, it could be desirable to be able to build bipolar preference structures where

compensation is associative to have a less complex bipolar preference structure to handle.

16 S. Bistarelli et al.
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Moreover, the associativity of the compensation operator could be useful to

exploit solving techniques similar to the ones used for classical soft constraint

problems, that are based on the associativity of the combination operator of the

considered semiring.

It is obvious that, if we are free to choose any positive and any negative preference

structure when building the bipolar framework, we will never be able to assure

associativity of the compensation operator. Thus, if we want to assure this, we must

pose some restrictions on the way a bipolar preference structure is built.

9.1. One way to assure associativity of \

We now describe a procedure to build positive preferences as inverses of negative

preferences, which assures that the resulting bipolar preference structure has an associative

compensation operator. To do that, �n must be non-idempotent. The methodology is

called localisation and represents a standard systematic technique for adding multiplicative

inverses to a (semi)ring (Bruns and Herzog 1998).

Given a (semi)ring with carrier set N (representing, in our context, a negative

preference structure), and a subset S�N, we can construct another structure with carrier

set P (representing, for us, a positive preference structure) and a mapping from N to P

which makes all elements in the image of S invertible in P. The localisation of N by S is

also denoted by Sÿ1N.

We can select any subset S of N. However, it is usual to select a subset S of N which

is closed under �n, such that 12S (1 is the unit for �n, which represents indifference),

and 0 =2S.

Given N and S, let us consider the quotient field of N w.r.t. S. This is denoted by

Quot(N,S ), and will represent the carrier set of our bipolar structure. One can construct

Quot(N,S ) by just taking the set of equivalence classes of pairs (n, d), where n and d are

elements of N and S, respectively, and the equivalence relation is: (n, d)� (m, b), n�n

b¼m�n d. We can think of the class of (n, d) as the fraction n
d
.

The embedding of N in Quot(N,S ) is given by the mapping f(n)¼ (n, 1), thus the

(semi)ring N is a subring of Sÿ1N via the identification f ðaÞ ¼ a
1
.

The next step is to define theþ and�operator in Quot(N,S ), as function of the

operators þn and �n of N. We define (n, d)þ (m, b)¼ ((n�nb)þn(m�n d), d�n b) and

(n, d)� (m, b)¼ (m�n n, d�n b). By using the fraction representation we obtain the usual

form where the addition and the multiplication of the formal fractions are defined

according to the natural rules: a
s
þ b

t
¼ ða�ntÞþnðb�nsÞ

s�nt
and a

s
� b

t
¼ a�nb

s�nt
.

It can be shown that the structure ðP, þp , �p ,
1
1
, 1
0
Þ, where P ¼ f1

a
such

that a 2 ðS [ f0gÞg, þp and �p are the operatorsþ and� restricted over 1
S
� 1

S
, 1

1
is the

bottom element in the induced order (notice that the element coincide with 1), and 1
0
is the

top element of the structure (this element is introduced ad hoc because 0 is not an unit and

cannot be used to build its inverse) is a positive preference structure. Moreover,

Quot(N,S )¼P[N, and it is the carrier of a bipolar preference structure hP,N, þ,

�, 0, 1
1
, 1
0
i where� is an associative compensation operator by construction.

Notice that the first example of Table 1 in Section 5, as well as the third example

restricted to rational numbers, can be obtained via the localisation procedure.
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10. Solving bipolar preference problems

Bipolar problems are NP-complete since they generalise both classical and soft constraints,

which are already known to be difficult problems (Bistarelli et al. 1997; Bistarelli 2004).

In this section we will consider how to adapt some usual techniques for solving soft

constraints to bipolar problems.

10.1. Branch and bound

Preference problems based on c-semirings can be solved via a BB technique, possibly

augmented via soft constraint propagation, which may lower the preferences and thus

allow for the computation of better bounds (Bistarelli et al. 1997; Bistarelli 2004).

In bipolar CSPs, we have both positive and negative preferences. However, if the

compensation operator is associative, standard BB can be applied. Thus bipolar

preferences can be handled without additional effort.

However, if compensation is not associative, the upper bound computation has to be

slightly changed to avoid performing compensation before all the positive and the negative

preferences have been collected. More precisely, each node of the search tree is associated

to a positive and a negative preference, say p and n, which are obtained by aggregating all

preferences of the same type obtained in the instantiated part of the problem. Next, all the

best preferences (which may be positive or negative) in the uninstantiated part of the

problem are considered. By aggregating those of the same type, we get a positive and

a negative preference, say p0 and n0 which can be combined with the ones associated to

the current node. This produces the upper bound ub¼ ( p�p p
0)� (n�n n

0), where

p0 ¼ p1�p � � � �p pw, n
0 ¼ n1�n � � � �n ns, with wþ s¼ r, where r is the number of unin-

stantiated variables/constraints. Notice that ub is computed via rÿ 1 aggregation steps and

one compensation step.

On the other hand, when compensation is associative, we do not need to postpone

compensation until all constraints have been considered. Thus, ub can be computed as

ub¼ a1�� � ��apþr, where ai2N[P is the best preference found in a constraint of either the

instantiated part of the problem (first p elements) or the uninstantiated part of the problem

(last r elements). Thus ub can be computed via at most pþ rÿ 1 steps among which there

can be many compensation steps. This is useful since the compensation steps can reduce

the total number of steps. In fact, a compensation can generate the indifference elementh,

which is the unit element for the compensation operator, and thus, when h is generated,

the successive computation step can be avoided.

10.2. Bipolar preference propagation

When looking for an optimal solution in a soft constraint problem, BB can be helped by

some form of partial or full constraint propagation. To see whether this can be done when

solving bipolar problems as well, we must first understand what constraint propagation

means in such problems. For sake of simplicity, we will focus here on arc-consistency

(Bistarelli et al. 1997; Bistarelli 2004; Rossi et al. 2006).

Given any bipolar constraint, let us first define its negative version neg(c), which is

obtained by just replacing the positive preferences with indifference. Similarly, the positive

version pos(c) is obtained by replacing negative preferences with indifference.

18 S. Bistarelli et al.
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A binary bipolar constraint c is then said negatively arc-consistent (NAC) iff neg(c) is

soft arc-consistent. More precisely,

Definition 5 (NAC): Consider a binary constraint that connects variables X and Y, let

us call it cXY, and let us call cX the soft domain of X and cY the soft domain of Y.

The constraint cXY is NAC iff neg(cX)¼ (neg(cX)�n neg(cY)�n neg(cXY)) +X and

neg(cY)¼ (neg(cX)�n neg(cY)�n neg(cXY)) +Y.

If a binary bipolar constraint is not NAC, we can make it NAC by modifying the soft

domains of its two variables such that the two equations above hold. The modifications

required can only decrease some preference values. Thus some negative preferences can

become more negative than before. If operator �n is idempotent, then such modifications

generate a new constraint which is equivalent to the given one.

Let us now consider the positive version of a constraint. Let us also define an operation

*X, which, taken any constraint cS over variables S such that X2S, computes a new

constraint over X as follows: for every value a in the domain of X, its preference is

computed by taking the greatest lower bound of all preferences given by cS to tuples

containing X¼ a. Then we say that a binary bipolar constraint is positively arc-consistent

(PAC) iff the following holds.

Definition 6 (PAC): Consider a binary constraint that connects variables X and Y, let us

call it cXY, and let us call cX the soft domain of X and cY the soft domain of Y. The

constraint cXY is PAC iff pos(cX)¼ ( pos(cX)�p pos(cY)�p pos(cXY)) *X and

pos(cY)¼ ( pos(cX)�p pos(cY)�p pos(cXY)) *Y.

As in the NAC case, if a binary bipolar constraint is not PAC, we can make it PAC by

modifying opportunely the soft domains of its two variables. However, while for NAC the

needed modifications can decrease some preference values, for PAC these modifications

can only increase such values. This is due to the different behaviour of the combination

operator of the positive preferences. Moreover, as in the NAC case, if the combination

operator (that is,�p in the PAC case) is idempotent, then these modifications generate

a new constraint which is equivalent to the given one.

Finally, we define when a binary bipolar constraint is bipolar arc-consistent (BAC).

Definition 7 (BAC): A binary bipolar constraint is BAC iff it is both NAC and PAC.

A bipolar constraint problem is BAC iff all its constraints are BAC.

If a bipolar constraint problem is not BAC, we can consider its negative and positive

versions and achieve PAC and NAC on them. If both �n and �p are idempotent, this can

be seen as the application of functions which are monotone, inflationary and idempotent

on a suitable partial order. Thus usual algorithms based on chaotic iterations (Apt 2003)

can be used, with the assurance of terminating and having a unique equivalent result which

is independent of the order in which constraints are considered. However, this can generate

two versions of the problem (of which one is NAC and the other one is PAC) which could

be impossible to reconcile into a single bipolar problem. In fact, the two new problems

could associate both a positive preference and a negative one to the same domain element.

Consider, for example, a domain value that has a positive preference p in the given bipolar

problem. Then, the positive version will consider p, and the negative version will consider

h. Then, the two PAC and NAC algorithms could transform, respectively, p into p0

(higher than p) and h into n (smaller than h). So this domain value will have both p0 and

n, while by definition each domain value has just one preference. Taking their

Journal of Experimental & Theoretical Artificial Intelligence 19
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compensation would return a problem which is not equivalent to the given one, since the

compensation operator is not associative.

This problem can be solved by achieving only partial forms of PAC and NAC in

a bipolar problem. The basic idea is to consider the given bipolar problem, apply the NAC

and PAC algorithms to its negative and positive versions, and thenmodify the preferences of

the original problem only when the two new versions can be reconciled that is, when at least

one of the two new preferences is the indifference element. In fact, this means that, in one of

the two consistency algorithms, no change has been made. If this holds, the other preference

is used to modify the original one. This algorithm achieves a partial form of BAC, that we

call p-BAC, and assures equivalence. More precisely, we give the following proposition.

Proposition 1: Consider a bipolar preference problem Q, its negative version neg(Q), and

its positive version pos(Q). Apply NAC to neg(Q) and PAC to pos(Q), and denote with

NAC(neg(Q)) and PAC( pos(Q)) the new bipolar problems. Consider also the bipolar

preference problem PBAC(Q) obtained from NAC(neg(Q)) and PAC( pos(Q)) as follows:

every tuple associated with the indifference element in PAC ( pos(Q)) (resp., NAC(neg(Q)))

and a negative (resp., positive) preference n (resp., p) in NAC(neg(Q)) (resp., PAC( pos(Q)))

has preference n (resp., p) in PBAC(Q), and every tuple associated with a positive preference p

in PAC( pos(Q)) and a negative preference n in NAC(neg(Q)) has the same preference as in Q.

Then, PBAC(Q) is equivalent to Q.

Proof: In order to show that PBAC(Q) is equivalent to Q, we have to show that for every

solution of Q, the preference of this solution in PBAC(Q) coincides with the one in Q.

Assume that s is a solution of Q with preference p� n, where p is a positive preference,

n is a negative preference and� is the compensation operator. Then, by construction of

pos(Q) and neg(Q), s has preference p in pos(Q) and n in neg(Q). Moreover, since �n is

idempotent, NAC(neg(Q)) is equivalent to neg(Q). Thus also in NAC(neg(Q)) the

preference of s is n. Similarly, since �p is idempotent, PAC( pos(Q)) is equivalent to pos(Q)

and so also in PAC( pos(Q)) the preference of s is p. By construction of PBAC(Q), we have

that the preference of s in PBAC(Q) is p� n.

Example 1: In Figure 4 it is shown how to make a bipolar constraint partially BAC. Part

(a) shows a bipolar preference problem with three constraints cX, cY and cXY. Preferences

are modelled by the bipolar preference structure (N¼ [ÿ1, 0],P¼ [0, 1],þ¼max,�,?¼

ÿ1,h¼ 0,>¼ 1), where � is such that �p¼max, �n¼min and �np¼ sum. Since

preferences are given independently in cX, cY and cXY, it is possible to give a low positive

preference for a value of X (e.g. X¼ b) in cX, a negative preference for a value of Y

(for example, X¼ b) in CY, but an high positive preference for the combination of such

values in cXY. In Part (b) we present the positive version of cXY, that becomes PAC by

increasing the positive preference associated to X¼ b from þ0.1 to þ0.6. Part (c) presents

the negative version of cXY, that becomes NAC by decreasing the negative preference

associated to X¼ a from ÿ0.2 to ÿ0.4. In Part (d) we show how to achieve p-BAC of cXY:

we must reconcile the modified preferences obtained in Part (b) and in Part (c) when it is

possible. Since in this example it is always possible to reconcile such preferences, we obtain

a bipolar constraint which is not only p-BAC, but also BAC.

In this approach we require idempotency of �p and �n. However, when such operators

are not idempotent, we can follow the approach used in the extended version of

arc-consistency presented in Larrosa and Schiex (2003); Cooper and Schiex (2004) and

Bistarelli and Gadducci (2006).

20 S. Bistarelli et al.
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Notice that our algorithm will possibly decrease some negative preferences and

increase some positive preferences. Therefore, if we use constraint propagation to improve

the bounds in a BB algorithm, it will actually sometimes produce worse bounds, due to the

increase of the positive preferences. We will thus use only the propagation of negative

preferences (that is, NAC) within a BB algorithm. Since the upper bound is just

a combination of several preferences, and since preference combination is monotonic,

lower preferences give a lower, and thus better, upper bound.

Even if PAC is not useful in a BB procedure, it could be useful (alone or with NAC)

when we do not want to follow a BB approach, but when we want to obtain preference

values in the variables’ domain that are closer to the ones that can be really obtained.

When we have bipolar preference problems with only positive preferences, it is useful to

perform only PAC, while when also negative preferences are present, it is useful to perform

both PAC and NAC, and to reconcile their results if it is possible.

11. Related and future work

Bipolarity is an important topic in several fields, such as psychology (Osgood and

Tannenbaum 1957; Tversky and Kahneman 1992; Cacioppo and Berntson 1997; Slovic,

Finucane and Mag-Gregor 2002) and multi-criteria decision making (Grabisch and

Labreuche 2005). Also, it has recently attracted interest in the AI community, especially in

argumentation (Amgoud and Prade 2005) and qualitative reasoning (Benferhat et al. 2002,

2006; Dubois and Fargier 2005, 2006). These works consider how two alternatives should

be compared, given for each a set of positive arguments and a set of negative ones, but they

do not analyse the question of combinatorial choice.

Our bipolar framework is in particular related to the usual ways to represent a bipolar

scale in psychology: a bipolar univariate method (Osgood and Tannenbaum 1957)

p−BAC

a ...  −0.2

a ...  0 
b ...  0
a ...  +0.5

b ...  +0.1 
+0.6

PAC

NAC

aa ...  −0.5

ab ...  −0.2

ba ...  0

bb ...  0 

a ...  −0.2
b ...  0 

a ...  0
b ...  −0.4

−0.4

aa ...  −0.5

ab ...  −0.2

ba ...  +0.6

bb ...  +0.7 

b ... +0.1

aa ...  −0.5

ab ...  −0.2

ba ...  +0.6

bb ...  +0.7

aa ...  0

ab ...  0

ba ...  +0.6

bb ...  +0.7

a ... +0.5

b ... −0.4
a ...  +0.5
b ...  −0.4

+0.6

−0.4

(a)

(b)

(c)

(d)

x

x y

y

x y

x y y

a ...  −0.2
b ... +0.1

Figure 4. How to make a bipolar constraint p-BAC.
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and a unipolar bivariate method (Cacioppo and Berntson 1997). The first approach

(Osgood and Tannenbaum 1957), which is the most similar to our approach, considers

a scale with a central element ranging from negative elements, which are lower than the

neutral element, to positive ones, which are higher than negative elements. The second

approach (Cacioppo and Berntson 1997), instead, uses two independent unipolar scales for

representing positive and negative aspects.

Although our approach is similar to the method in Osgood and Tannenbaum (1957),

the scale we use for representing positive and negative preferences is not a unique scale

with the neutral element in the exact middle. The positive and the negative scales may have

a different granularity, since we want to let the user free to choose whatever structure he

wants, if it satisfies the properties mentioned in the definition of a bipolar preference

structure.

Another work regarding bipolarity handling in constraint-based reasoning is presented

in Fargier and Wilson (2007). However, differently from our approach, it defines an

algebraic structure to model bipolarity that follows the approach in Cacioppo and

Berntson (1997) and not the one in Osgood and Tannenbaum (1957). The bipolar structure

considered in Fargier andWilson (2007) allows a combination between positive and

negative preferences that may produce a preference that is neither positive nor negative,

that is not allowed in our approach. Moreover, the operator to combine positive and

negative preferences is assumed always to be associative, while we do not force the user

to choose only associative operators. However, if the user want to be sure to have a bipolar

preference structure with an associative combination operator, in our article we have

shown how to obtain it.

The approach in Cacioppo and Berntson (1997) allows one to express, for the same

feature of an object, both a positive and a negative preference. Our current framework

does not model this. However, tuples of preferences could be considered, and this would

allow having more than one preference value for each feature.

Bipolar reasoning and preferences have been considered also in the context of

qualitative reasoning. In Benferhat et al. (2002, 2006) a bipolar preference model based on

a fuzzy-possibilistic approach is described where fuzzy preferences are considered and

negative preferences are interpreted as violations of constraints. Precedence is given to

negative preference optimisation and positive preferences are only used to distinguish

among the optimals found in the first phase, thus not allowing for compensation.

Another work related to bipolar scales is Grabisch de Baets and Fodor (2003), which

considers only totally ordered unipolar and bipolar preference scales. When the

preferences are totally ordered, our operators �n and �p correspond respectively to the

t-norm and t-conorm used in Grabisch et al. (2003). Moreover, in Grabisch et al. (2003)

it is defined an operator, the uninorm, which can be seen as a restricted form of compen-

sation and is forced to always be associative.

As future work, we plan to develop a solver for bipolar CSPs, which should be flexible

enough to accommodate for both associative and non-associative compensation operators.

The outlined algorithms for BB, NAC, PAC and p-BAC will also be implemented and

tested over classes of bipolar problems. We also intend to consider the presence of

uncertainty in bipolar problems, possibly using possibility theory to model such

uncertainty, and to develop solving techniques for such scenarios. A first study in this

direction has been presented in Bistarelli Pini, Rossi and Venable (2007b). Another line of

future research is the generalisation of other preference formalisms, such as CP-nets, to

deal with bipolar preferences.

22 S. Bistarelli et al.
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