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Abstract The stable marriage problem is a well-known problem of matching men to
women so that no man and woman who are not married to each other both prefer each
other. Such a problem has a wide variety of practical applications, ranging from matching
resident doctors, to hospitals to matching students to schools. A well-known algorithm to
solve this problem is the Gale–Shapley algorithm, which runs in quadratic time in the number
of men/women. It has been proven that stable marriage procedures can always be manipu-
lated. Whilst the Gale–Shapley algorithm is computationally easy to manipulate, we prove
that there exist stable marriage procedures which are NP-hard to manipulate. We also con-
sider the relationship between voting theory and stable marriage procedures, showing that
voting rules which are NP-hard to manipulate can be used to define stable marriage proce-
dures which are themselves NP-hard to manipulate. Finally, we consider the issue that stable
marriage procedures like Gale–Shapley favour one gender over the other, and we show how
to use voting rules to make any stable marriage procedure gender neutral.
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1 Introduction

The stable marriage problem (SMP) [12] is a well-known problem of matching the elements
of two sets. Given n men and n women, where each person expresses a strict ordering over the
members of the opposite sex, the problem is to match the men to the women so that there are
no two people of opposite sex who would both rather be matched with each other than with
their current partners. If there are no such people, all the marriages are said to be stable. Gale
and Shapley [8] proved that it is always possible to solve the SMP and make all marriages
stable, and provided an algorithm which is quadratic in the number of men/women, that can
be used to find one of two particular but extreme stable marriages, the so-called male optimal
or female optimal solution. The Gale–Shapley algorithm has been used in many real-life
applications, as shown in [24], such as in systems for matching hospitals to resident doctors
[23] and the assignment of primary school students in Singapore to secondary schools [28].
Variants of the stable marriage problem turn up in many domains. For example, the US Navy
has a web-based multi-agent system for assigning sailors to ships [19].

One important issue is whether agents have an incentive to tell the truth or can manip-
ulate the result by mis-reporting their preferences. However, Roth [22] has proved that all
stable marriage procedures can be manipulated. He demonstrated a stable marriage problem
with 3 men and 3 women which can be manipulated whatever stable marriage procedure we
use. This result is in some sense analogous to the classical Gibbard–Satterthwaite [11,27]
theorem for voting theory, which states that all voting procedures are manipulable under
modest assumptions provided we have 3 or more voters. For voting theory, Bartholdi, Tovey
and Trick [3] proposed that computational complexity might be an escape: whilst manipu-
lation is always possible, there are voting rules where it is NP-hard to find a manipulation.
We might hope that computational complexity might also be a barrier to manipulate stable
marriage procedures. Unfortunately, the Gale–Shapley algorithm is computationally easy to
manipulate [28].

Another drawback of many stable marriage procedures such as the one proposed by
Gale–Shapley is their bias towards one of the two genders. The stable matching returned by
the Gale–Shapley algorithm is either male optimal (that is, the best possible for every man)
but female pessimal (that is, the worst possible for every woman), or female optimal but male
pessimal. It is often desirable to use stable marriage procedures that are gender neutral [20].
Such procedures return a stable matching that is not affected by swapping the men with the
women. The goal of this paper is to study both the complexity of manipulation and gender
neutrality in stable marriage procedures, and to design gender neutral procedures that are
difficult to manipulate.

It is known that the Gale–Shapley algorithm is computationally easy to manipulate [28].
Our first contribution is to prove that if the male and female preferences have a certain
form, it is computationally easy to manipulate any stable marriage procedure. We provide a
universal polynomial time manipulation scheme that, under certain conditions on the prefer-
ences, guarantees that the manipulator marries his optimal stable partner irrespective of the
stable marriage procedure used. On the other hand, our second contribution is to prove that,
when the preferences of the men and women are unrestricted, there exist stable marriage
procedures which are NP-hard to manipulate.

Our third contribution is to show that any stable marriage procedure can be made gender
neutral, if applied twice (to the profile and its swapped version) and then choosing among
the two stable marriages via a score-based method which exploits a bijection between scores
and marriages. However, this may give a gender neutral stable matching procedure which is
easy to manipulate.
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Our final contribution is a stable matching procedure which is both gender neutral and
NP-hard to manipulate. This procedure uses a voting rule that, considering the male and
female preferences, helps to choose between stable matchings. In fact, it picks the stable
matching that is most preferred by the most popular men and women. We prove that, if the
voting rule is Single Transferable Vote (STV) or the hybrid plurality rule [1], which are NP-
hard to manipulate, then the resulting stable matching procedure is both gender neutral and
NP-hard to manipulate. We conjecture that other voting rules which are NP-hard to manipu-
late will give rise to stable matching procedures which are also gender neutral and NP-hard
to manipulate. Thus, our approach shows how combining voting rules and stable matching
procedures can be beneficial in two ways: by using preferences to discriminate among stable
matchings and by providing a possible computational shield against manipulation.

2 Background

We now give some basic notions on stable marriage problems.

Definition 1 (profile) Given n men and n women, a profile is a sequence of 2n strict total
orders, n over the men and n over the women.

Given a profile, the stable marriage problem (SMP) [8] is the problem of finding a match-
ing between men and women. The goal is to marry the men to the women such that there
are no two people of opposite sex who would both rather be married to each other than their
current partners. If there are no such people, the matching is said to be stable.

Definition 2 (feasible partner) Given an SMP P , a feasible partner for a man m (resp., a
woman w) is a woman w (resp., a man m) such that there is a stable marriage for P where
m and w are married.

Stable marriages for an SMP form a lattice w.r.t. the men’s or women’s preferences. The
top of this lattice is the stable matching where men (resp., women) are mostly satisfied.
Conversely, the bottom is the stable matching where men’s (resp., women’s) preferences are
least satisfied.

Definition 3 (male (resp., female) optimal matching) Given an SMP P , a matching is male
(resp., female) optimal iff every man (resp., woman) is paired with his (resp., her) highest
ranked feasible partner in P .

Definition 4 (male (resp., female) pessimal matching) Given an SMP P , a matching is male
(resp., female) pessimal iff every man (resp., woman) is paired with his (resp., her) lowest
ranked feasible partner.

Notice that male (resp., female) optimal and female (resp., male) pessimal stable match-
ings coincide [17].

2.1 The Gale–Shapley algorithm

The Gale–Shapley algorithm [8] is a well-known algorithm to solve the SMP problem. At the
start of the algorithm, each person is free and becomes engaged during the execution of the
algorithm. Once a woman is engaged she never becomes free again (although to whom she
is engaged may change), but men can alternate between being free and being engaged. The

123



Auton Agent Multi-Agent Syst

following step is iterated until all men are engaged: choose a free man m, and let m propose
to the most preferred woman w on his preference list, such that w has not already rejected
m. If w is free, then w and m become engaged. If w is engaged to man m’, then she rejects
the man (m or m’) that she least prefers, and becomes, or remains, engaged to the other man.
The rejected man becomes, or remains, free. When all men are engaged, the engaged pairs
are said to be paired and form the male optimal stable matching.

This algorithm needs a number of steps that is quadratic in n (that is, the number of men),
and it guarantees that, if the number of men and women coincide, and all participants express
a linear order over all the members of the other group, everyone gets married, and the returned
matching is stable. Since the input is a profile, the algorithm is linear in the size of the input.
Note that the pairing generated by the Gale–Shapley algorithm is male optimal and female
pessimal. It would be the reverse, of course, if the roles of male and female participants in
the algorithm were interchanged.

Example 1 Assume n = 3. Let W = {w1, w2, w3} and M = {m1,m2,m3} be respectively
the set of women and men. The following sequence of strict total orders defines a profile:

– m1 : w1 > w2 > w3 (i.e., the man m1 prefers the woman w1 to w2 to w3),
– m2 : w2 > w1 > w3,
– m3 : w3 > w2 > w1,
– w1 : m1 > m2 > m3,
– w2 : m3 > m1 > m2,
– w3 : m2 > m1 > m3

For this profile, the Gale–Shapley algorithm returns the male optimal solution
{(m1, w1), (m2, w2), (m3, w3)}. On the other hand, the female optimal solution is
{(w1,m1), (w2,m3), (w3,m2)}. �

2.2 Gender neutrality and non-manipulability

Against this background, a desirable property of a stable marriage procedure is gender neu-
trality.

Definition 5 (gender neutral procedure [20]) A stable marriage procedure is gender neutral
if and only if, when we swap the men with the women, we get the same result.

A related property is called peer indifference.

Definition 6 (peer indifferent property [20]) A stable marriage procedure has the peer indif-
ference property if the result is not affected by the order in which the members of the same
sex are considered.

The Gale–Shapley procedure is peer indifferent but it is not gender neutral. In fact, if we
swap men and women in Example 1, we obtain the female optimal solution rather than the
male optimal one.

Another useful property of a stable marriage procedure is its resistance to manipulation.
Indeed, it would be desirable that lying would not lead to better results for the liar. A sta-
ble marriage procedure is manipulable if there is a way for one person to mis-report their
preferences and obtain a result which is better than the one they would have obtained with
everybody using his or her true preference.

Roth [22] has proven that stable marriage procedures can always be manipulated, i.e, that
no stable marriage procedure always yields a stable outcome and gives agents the incentive
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to reveal their true preferences. He demonstrated a 3 men, 3 women profile which can be
manipulated whatever stable marriage procedure we use. A similar result in a different con-
text is the one by Gibbard and Satterthwaite [11,27], that proves that all voting procedures [1]
are manipulable when there are three or more candidates and the voting procedure satisfies
non-imposition (for every candidate, there exist votes that would make that candidate win)
and non-dictatorship (the rule does not simply always choose the most-preferred candidate
of a single fixed voter).

In this context, Bartholdi, Tovey and Trick [3] proposed that computational complexity
might be an escape: whilst manipulation is always possible, there are voting rules like, for
example, Single Transferable Vote (STV) where it is NP-hard to find a manipulation [2]. This
resistance to manipulation arises from the difficulty of inverting the voting rule and does not
depend on other assumptions like the difficulty of discovering the preferences of the other
voters. In this paper, we study whether computational complexity may also be an escape from
the manipulability of stable marriage procedures. Our results are only initial steps to a more
complete understanding of the computational complexity of manipulating stable matching
procedures. As mentioned before, NP-hardness results only address the worst case and may
not apply to preferences met in practice.

3 Manipulating stable marriage procedures

In the following, we will call a manipulation attempt by a participant p the mis-reporting of
p’s preferences.

Definition 7 (non-worsening manipulation) A manipulation attempt by a participant p in a
stable marriage procedure is non-worsening if the resulting marriage for p is better than or
equal to the marriage obtained by using the true preferences of p.

In what follows, it will be useful to distinguish the manipulation attempts that strictly
improve the manipulator’s satisfaction, which will be called successful.

Definition 8 (successful manipulation) A manipulation attempt by a participant p in a stable
marriage procedure is successful if the resulting marriage for p is better than the marriage
obtained by using the true preferences of p.

Definition 9 (manipulable) A stable marriage procedure is manipulable if there is a profile
with a successful manipulation attempt from a participant.

The Gale–Shapley procedure, which, depending on which set of participants it is applied
to, returns either the male optimal or the female optimal solutions, is computationally easy
to manipulate [28]. However, besides these two extreme solutions, there may be many other
stable matchings. Several procedures have been defined to return some of these other stable
matchings [13]. Our first contribution is to show that, under certain conditions on the shape
of the male and female preferences, any stable marriage procedure is computationally easy
to manipulate.

Definition 10 (universally manipulable profile) Consider a profile p and a woman w in such
a profile. Let m be the male optimal partner with w in p, and r be the female optimal partner
for w in p. Profile p is universally manipulable by w if the following conditions hold:

– in the men-proposing Gale–Shapley algorithm, w receives more than one proposal;
– there exists a woman v such that r is the male optimal partner for v in p;
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– v prefers m to r;
– r’s preferences are . . . > v > w > . . .;
– m’s preferences . . . w > v > . . ..

We now show that, if the profile is universally manipulable by a woman, then it is easy
for this woman to give false preferences to get her female optimal partner with any stable
matching procedure.

Theorem 1 Consider any stable marriage procedure and any woman w. There is a poly-
nomial non-worsening manipulation scheme that, for any profile p which is universally
manipulable by w, produces the female optimal partner for w.

Proof Consider the manipulation attempt that moves the male optimal partner m of w to
the lower end of w’s preference ordering, obtaining the new profile p′. Consider now the
behaviour of the men-proposing Gale–Shapley algorithm on p and p′. Since the profile is
universally manipulable, w receives a proposal from m, that is, her male optimal partner, and
from some other man o. In p she will decide for m, while in p′ she will decide for o. At this
point, in p′,m will have to propose to the next best woman for him, that is, v, and she will
accept because of the assumptions on her preference ordering. This means that r (who was
married to v in p) now in p′ has to propose to his next best choice, that is, w, who will accept,
since w prefers r to o. So, in p′, the male optimal partner for w, as well as her female optimal
partner, is r , since, with respect to p, w has only lowered m who wasn’t her female optimal
anyway, and the others’ preferences remained unchanged.This means that there is only one
stable partner for w in p′. Therefore, any stable marriage procedure applied to p′ must return
r as the partner for w. Hence, if the profile is universally manipulable, then w can give false
preferences p′, by moving m to the far right, in a way such that the female pessimal and the
female optimal partner for w in p′ becomes the same as the female optimal partner for w in
p, and thus she will get her female optimal partner, whatever stable marriage procedure is
used. The procedure is polynomial since the Gale–Shapley algorithm is polynomial. �

If a woman wants to manipulate a stable marriage procedure to obtain her female optimal
partner, she can check if the profile is universally manipulable by her. This involves checking
some conditions on the shape of male and female optimal preferences and simulating the
Gale–Shapley algorithm to see whether she receives a proposal only from her male optimal or
also from some other man. In the former case, she will not do the manipulation. Otherwise,
she can give false preferences, by moving her male optimal partner to the far right, thus
obtaining her female optimal partner, whatever stable marriage procedure is used.

Example 2 In a setting with 3 men and 3 women, consider the profile {m1 : w1 > w2 >

w3;m2 : w2 > w1 > w3 m3 : w1 > w2 > w3}{w1 : m2 > m1 > m3;w2 :
m1 > m2 > m3;w3 : m1 > m2 > m3}. In this profile, the male optimal solution is
{(m1, w1), (m2, w2), (m3, w3)}. This profile is universally manipulable by w1. It is easy to
see that w1 can obtain her female optimal partner, that is m2, by moving m1 after m3. Notice
that this holds no matter what stable marriage procedure is used. In fact, if the male and
female optimal partner for w1 coincide, then there is only one stable partner for w1 and thus
every stable marriage procedure produces this partner.

The same profile is not universally manipulable by w2 or w3, since they receive just one
proposal in the men-proposing Gale–Shapley algorithm. It is possible to show that woman
w2 cannot manipulate: trying to move m2 after m3 she gets a worse result. Also, woman w3

cannot manipulate since her male optimal partner is her least preferred man. �

123



Auton Agent Multi-Agent Syst

We now give an example of an arbitrary-sized universally manipulable profile.

Example 3 Assume to have a profile over k men, denoted by m1, . . . , mk , and k women,
denoted by w1, . . . , wk , such that:

– m1’s preferences are w1 > w2 > . . .;
– m2’s preferences are w2 > w1 > . . .;
– m3’s preferences are w1 > w3 . . .;
– mi’s preferences are wi > . . ., ∀i, 4 ≤ i ≤ k;
– w1’s preferences are m2 > m1 > . . .;
– w2’s preferences m1 > m2 . . .;
– wj ’s preferences mj > . . ., ∀j, 3 ≤ j ≤ k.

It is easy to see that m1 (resp., m2) is the male optimal of w1 (resp., w2), m2 is the female
optimal of w1, and that the profile satisfies all the requirements to be universally manipulable
by w1. Since the profile is universally manipulable by w1, by Theorem 1, w1 can give false
preferences and obtain her female optimal partner. In fact, she can move m1 at the end of her
preference ordering. Doing so, in any stable matching procedure, she is matched with m2,
that is, her female optimal partner. �

Restricting to universally manipulable profiles makes manipulation computationally easy.
On the other hand, if we allow all possible profiles, there are stable marriage procedures that
are NP-hard to manipulate. The intuition is simple. We construct a stable marriage proce-
dure that is computationally easy to compute but NP-hard to invert. To manipulate, a man
or a woman will essentially need to be able to invert the procedure to choose between the
exponential number of possible preference orderings. Hence, the constructed stable marriage
procedure will be NP-hard to manipulate.

Theorem 2 There exist stable marriage procedures for which deciding the existence of a
successful manipulation is NP-complete.

Proof We construct a stable marriage procedure which chooses between the male and female
optimal solution based on whether the profile encodes a NP-complete problem and its poly-
nomial witness. The manipulator’s preferences define the witness. The other people’s pref-
erences define the NP-complete problem. Hence, the manipulator needs to be able to solve a
NP-complete problem to be able to manipulate successfully. Deciding if there is a success-
ful manipulation for this stable marriage procedure is clearly in NP since we can compute
male and female optimal solutions in polynomial time, and we can check a witness to a
NP-complete problem also in polynomial time.

Our stable marriage procedure is defined to work on n+ 3 men (m1,m2 and p1 to pn+1)
and n + 3 women (w1, w2 and v1 to vn+1). It returns the female optimal solution if the
preferences of woman w1 encode a Hamiltonian path in a directed graph encoded by the
other women’s preferences, otherwise it returns the male optimal solution. The 3rd to n+2th
preferences of woman w1 encode a possible Hamiltonian path in a n node graph. In particular,
if the 2 + ith man in the preference ordering of woman w1 for i > 0 is man pj , then the
path goes from vertex i to vertex j . The preferences of the women vi for i ≤ n encode the
graph in which we find this Hamiltonian path. In particular, if man pj for j < n + 1 and
j �= i appears before man pn+1 in the preference list of woman vi , then there is a directed
edge in the graph from i to j . It should be noticed that any graph can be produced using this
construction.
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Given a graph which is not complete in which we wish to find a Hamiltonian path, we now
build a special profile. Woman w1 will be able to manipulate this profile successfully iff the
graph contains a Hamiltonian path. In the profile, woman w1 most prefers to marry man m1

and then man m2. Consider any pair of vertices (i, j) not in the graph. Woman w1 puts man
pj at position 2+ i in her preference order. She puts all other men in any arbitrary order. This
construction will guarantee that the preferences of w1 do not represent a Hamiltonian path.
Woman w2 most prefers to marry man m2. Woman vi most prefers to marry man pi , and has
preferences for the other men according to the edges from vertex i. Man m1 most prefers
woman w2. Man m2 most prefers woman w1. Finally, man pi most prefers woman vi . All
other unspecified preferences can be chosen in any way. By construction, all first choices are
different. Hence, the male optimal solution has the men married to their first choice, whilst
the female optimal solution has the women married to their first choice.

The male optimal solution has woman w1 married to man m2. The female optimal solu-
tion has woman w1 married to man m1. By construction, the preferences of woman w1 do
not represent a Hamiltonian path. Hence our stable matching procedure returns the male
optimal solution: woman w1 married to man m2. The only successful manipulation then for
woman w1 is if she can marry her most preferred choice, man m1. As all first choices are
different, woman w1 cannot successfully manipulate the male or female optimal solution.
Therefore, she must manipulate her preferences so that she spells out a Hamiltonian path
in her preference ordering, and our stable marriage procedure therefore returns the female
optimal solution. This means she can successfully manipulate iff there is a Hamiltonian path.
Hence, deciding if there is a successful manipulation is NP-complete. �

Note that we can modify the proof by introducing O(n2) men so that the graph is encoded
in the tail of the preferences of woman w2. This means that it remains NP-hard to manipulate
a stable marriage procedure even if we collude with all but one of the women. It also means
that it is NP-hard to manipulate a stable marriage procedure when the problem is imbalanced
and there are just 2 women but an arbitrary number of men. Notice that this procedure is
not peer indifferent, since it gives special roles to different men and women. However, it is
possible to make it peer indifferent, so that it computes the same result if we rename the
men and women. For instance, we just take the men’s preferences and compute from them a
total ordering of the women (e.g., by running an election with these preferences). Similarly,
we take the women’s preferences and compute from them a total ordering of the men. We
can then use these orderings to assign indices to men and women. Notice also this procedure
is not gender neutral. If we swap men and women, we may get a different result. We can,
however, use the simple procedure proposed in the next section to make it gender neutral.

4 Gender neutrality

As mentioned before, a weakness of many stable marriage procedures like the Gale–Shapley
procedure and the procedure presented in the previous section, is that they are not gender neu-
tral. They may greatly favour one sex over the other. We now present a simple and universal
technique for taking any stable marriage procedure and making it gender neutral. We will
assume that the men and the women are named from 1 to n.

We can convert any stable marriage procedure µ into one that is gender neutral µ′ by
applying Algorithm gn to µ. This algorithm runs µ twice, once over a given profile and once
over the profile in which men and women are swapped. This will give us two (not neces-
sarily different) stable matchings, say M1 and M2. We then choose among these two stable
matchings by exploiting the following bijection between matchings and vectors of integers:
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given a matching M , the corresponding vector V (M) = [v1, . . . , vn] is defined by vi = j if
(i, j) ∈ M . Between M1 and M2, we return the matching with the lexicographically smallest
vector. If the two vectors coincide, M1 = M2 and we return this matching.

Algorithm 1: gn
Input: µ: a stable matching procedure;
Output: µ′: a stable matching procedure;
p← a profile;
M1 ← µ(p);
p′ ← SwapMenWomen(p);
M2 ← µ(p′);
if V (M1) ≤lex V (M2) then

µ′ ← M1;

else
µ′ ← M2 ;

return µ′

Theorem 3 Let µ be a stable marriage procedure. Then, for any profile p, the procedure
µ′ = gn(µ) returns a gender neutral stable matching.

Proof Let us assume that running procedure µ′ on profile p we get the stable matching M .
Let us now swap men and women in p, obtaining the new profile p′. Notice that M is either
µ(p) or µ(p′). W.l.o.g., assume M = µ(p). This means that V (µ(p)) ≤lex V (µ(p′)). If
we now apply µ′ to p′, we get two matchings: µ(p′) and µ(p), since swapping men and
women on p′ generates p. Thus the returned matching will be µ(p), since we assumed that
V (µ(p)) ≤lex V (µ(p′)). Therefore µ′ is gender neutral. �

5 Voting rules and stable marriage procedures

We now show how to use voting rules to build stable marriage procedures which are both
gender neutral and difficult to manipulate. The intuition behind the procedure is to choose
between stable matchings according to the preferences of the most preferred men or women.
In particular, we will pick the stable matching that is most preferred by the most popular
men and women. A voting rule that ranks candidates is a social welfare function. Given such
a social welfare function, we order the men using the women’s preferences and order the
women using the men’s preferences. Using this ordering of the men (where a more preferred
man is before a less preferred one), we construct a male score vector for a matching. The
ith element of the male score vector is the integer j iff the ith man in this order is married
to his j th most preferred woman. A large male score vector is a measure of dissatisfaction
with the matching from the perspective of the more preferred men. A female score vector is
computed in an analogous manner.

The overall score for a matching is the lexicographically largest of its male and female
score vectors. A large overall score corresponds to dissatisfaction with the matching from
the perspective of the more preferred men or women. Using the Gale–Shapley algorithm, we
compute both the male and female optimal stable matchings. We then choose between these
two matchings according to which has the lexicographically least overall score. Since we
compare scores lexicographically, this is guaranteed to be the stable matching from the lattice
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of stable matchings with the lowest score. In the event of a tie, we can use any gender neutral
tie-breaking rule, such as the one described in Sect. 4, which relies on vectors V to choose
between the two matchings. Let us call this stable matching procedure the lexicographical
minimal regret (LMR) stable marriage procedure. In particular, when the social welfare func-
tion v is used to rank the men and women we will call it a v-based lexicographical minimal
regret stable marriage procedure. It is easy to see that this procedure is gender neutral.

Theorem 4 The lexicographical minimal regret stable marriage procedure is gender neutral.

Proof Given a set of stable matchings, let M be the matching returned by the LMR procedure.
If we swap men and women, for each marriage in the set, what was the male score vector
now is the female score vector, and vice versa. There are two cases. In the first case, the male
and female score vectors are different. However, the larger score vector is always the same as
before, although denoted by a different name. In the second case, the male and female score
vectors are the same. We now tie-break with a gender-neutral procedure. For example, we
can use the one described in Sect. 4. Therefore the chosen matching will remain the same.

�

There exist voting rules, based on which this stable procedure is computationally hard
to manipulate. Here we use STV [1] and the hybrid plurality rule [4] to rank the men and
women. Both of these voting rules are NP-hard to manipulate. We conjecture that similar
results hold for stable matching procedures using other voting rules which are NP-hard to
manipulate. In the STV rule, each voter provides a total order on candidates and, initially, an
individual’s vote is allocated to his most preferred candidate. If no candidate has a majority,
the candidate with the fewest votes is eliminated thus the votes are transferred to the second
choices of the voters who had selected him as first choice. This step is repeated until some
candidate has a majority. We rank the candidates according to the order in which they are
eliminated.

Theorem 5 It is NP-complete to decide if an agent can manipulate the STV-based lexico-
graphical minimal regret stable marriage procedure.

Proof We adapt the reduction used to prove that constructive manipulation of the STV rule
by a single voter is NP-hard [2]. We construct a profile in which every man and every woman
have different first choices. Thus, in the male optimal stable matching, every man will marry
his first choice whilst in the female optimal stable matching, every woman will marry her first
choice. The (male) manipulator will try to choose between these two matchings by ordering
the women appropriately.

In our proof, we need to consider how the STV rule treats ties. As all men and women have
different first choices, the first round of STV to rank the women needs to tie break between
all the men. In such tie breaks, we suppose that the alphabetically last woman is eliminated.
Note that this means that we are not peer indifferent in general.

To prove membership in NP, we observe that a manipulation has a polynomial witness
which is simply the preferences reported by the manipulator which give the desired result.
To prove NP-hardness, we give a reduction from 3-COVER (also called X3C). Given a set S

with |S| = n, subsets Si with i ∈ [1,m], |Si = 3| and Si ⊂ S, we ask if there exists an index
set I with |I | = n/3 and

⋃
i∈I Si = S.

We will construct a profile of preferences for the men so that the only possibility for
STV to rank first one of only two women, w or y. The (male) manipulator h will try to vote
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strategically so that woman y is ranked first. In this case, we return the male optimal stable
matching in which the manipulator marries his first choice. On the other hand, if w is ranked
first, we return the female optimal stable matching in which the manipulator is not married
to his first choice.

The following women participate in the problem:

– the two possible winners of the first STV election, w and y;
– “second line” in any election, ai and bi for i ∈ [1,m];
– “third line” in any election, ci and di for i ∈ [1,m];
– “e-bloc”, ei for i ∈ [0, n];
– “garbage collectors”, gi for i ∈ [1,m];
– “dummy women”, zi,j,k where i ∈ [1, 19] and j and k depend on i as outlined in the

description given shortly for the men’s preferences (e.g. for i = 1, j = 1 and k ∈
[1, 12m− 1] but for i ∈ [6, 8], j ∈ [1,m] and k ∈ [1, 6m+ 4j − 6]).

The men’s preferences are such that the dummy women are the first women eliminated by
the STV rule, and that ai and bi are 2m out of the next 3m woman eliminated. In addition,
let I = {i : bi is eliminated bef ore ai}. Then the men’s preferences will be constructed so
that STV ranks woman y first if and only if I is a 3-COVER. The manipulator can ensure bi

is eliminated by the STV rule before ai for i ∈ I by placing ai in the i + 1th position and bi

otherwise.
The men’s preferences are constructed as follows (where preferences are left unspecified,

they can be completed in any order):

– a man n with preference (y, . . .) and ∀k ∈ [1, 12m− 1] a man with (z1,1,k, y, . . .);
– a man p with preference (w, y, . . .) and ∀k ∈ [1, 12m−2] a man with (z2,1,k, w, y, . . .);
– a man q with preference (e0, w, y, . . .) and ∀k ∈ [1, 10m + 2n/3 − 1] a man with

(z3,1,k, e0, w, y, . . .);
– ∀j ∈ [1, n], a man with preference (ej , w, y, . . .) and ∀k ∈ [1, 12m − 3] a man with

preference (z4,j,k, ej , w, y, . . .);
– ∀j ∈ [1,m], a man rj with preference (gj , w, y, . . .) and ∀k ∈ [1, 12m− 1] a man with

preference (z5,j,k, gj , w, y, . . .);
– ∀j ∈ [1,m], a man with preference (cj , dj , w, y, . . .) and ∀k ∈ [1, 6m+ 4j − 6] a man

with preference (z6,j,k, cj , dj , w, y, . . .), and for each of the three k s.t. k ∈ Sj , a man with
preference (z7,j,k, cj , ek, w, y, . . .), and one with preference (z8,j,k, cj , ek, w, y, . . .);

– ∀j ∈ [1,m], a man with preference (dj , cj , w, y, . . .) and ∀k ∈ [1, 6m+ 4j − 2] a man
with preference (z9,j,k, dj , cj , w, y, . . .), one with preference (z10,j,k, dj , e0, w, y, . . .),
and one with (z11,j,k, dj , e0, w, y, . . .);

– ∀j ∈ [1,m], a man with preference (aj , gj , w, y, . . .) and ∀k ∈ [1, 6m+ 4j − 4] a man
with preference (z12,j,k, aj , gj , w, y, . . .), one with preference (z13,j,k, aj , cj , w, y, . . .),
one with preference (z14,j,k, aj , bj , w, y, . . .), and one with preference (z15,j,k, aj ,

bj , w, y, . . .).
– ∀j ∈ [1,m], a man with preference (bj , gj , w, y, . . .) and ∀k ∈ [1, 6m+ 4j − 4] a man

with preference (z16,j,k, bj , gj , w, y, . . .), one with preference (z17,j,k, bj , dj , w, y, . . .),
one with preference (z18,j,k, bj , aj , w, y, . . .), and one with preference (z19,j,k, bj ,

aj , w, y, . . .).

Note that each woman is ranked first by exactly one man. We suppose that the manipula-
tor’s most preferred women is z1,1,1 and then z2,1,1. The women’s preference are such that
the manipulator is assured that he at least marries his second choice woman as this will be his
female optimal partner. To manipulate the election, the manipulator needs to put z1,1,1 first
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in his preferences and to report the rest of his preferences so that the result returned is the
male optimal solution. As all woman are ranked first by exactly one man, the male optimal
matching marries h with his first choice, z1,1,1.

When we use STV to rank the women, zi,j,k are alphabetically last so are eliminated first
by the tie-breaking rule. This leaves the following profile:

– 12m men with preference (y, . . .);
– 12m− 1 men with preference (w, y, . . .);
– 10m+ 2n/3 men with preference (e0, w, y, . . .);
– ∀j ∈ [1, n], 12m− 2 men with preference (ej , w, y, . . .);
– ∀j ∈ [1,m], 12m men with preference (gj , w, y, . . .);
– ∀j ∈ [1,m], 6m + 4j − 5 men with preference (cj , dj , w, y, . . .), and for each of the

three k such that k ∈ Sj , two men with preference (cj , ek, w, y, . . .);
– ∀j ∈ [1,m], 6m + 4j − 1 men with preference (dj , cj , w, y, . . .), and two men with

preference (dj , e0, w, y, . . .),
– ∀j ∈ [1,m], 6m+4j −3 men with preference (aj , gj , w, y, . . .), a man with preference

(aj , cj , w, y, . . .), and two men with preference (aj , bj , w, y, . . .);
– ∀j ∈ [1,m], 6m+ 4j − 3 men with preference (bj , gj , w, y, . . .) a man with preference

(bj , dj , w, y, . . .), and two men with preference (bj , aj , w, y, . . .).

At this point, the votes are identical (up to renaming of the men) to the profile constructed
in the proof of Theorem 1 in [2]. Using the same argument as there, it follows that the
manipulator can ensure that STV ranks woman y first instead of w if and only if there is a
3-COVER. The manipulation will place z1,1,1 first in h’s preferences. Similar to the proof of
Theorem 1 in [2], the manipulation puts woman aj in j + 1th place and bj otherwise where
j ∈ J and J is any index set of a 3-COVER.

The women’s preferences are as follows:

– the woman y with preference (n, . . .);
– the woman w with preference (q, . . .);
– the woman z1,1,1 with preference (p, . . .);
– the woman z2,1,1 with preference (h, . . .);
– the women gi with preference (ri , . . .);
– the other women with any preferences which have all different first choices, and which

ensure STV ranks r0 first and r1 second overall.

Each man is ranked first by exactly one woman. Hence, the female optimal stable matching
is the first choice of the women.

The male score vector of the male optimal stable matching is (1, 1, . . . , 1). The female
score vector of the male optimal stable matching is (1, 2, . . .) if the manipulation is suc-
cessful and (2, 1, . . .) if it is not. Hence, the overall score vector of the male optimal stable
matching is (1, 2, . . .) if the manipulation is successful and (2, 1, . . .) if it is not. On the other
hand, the overall score vector of the female optimal stable matching is (1, 3, . . .). Hence the
lexicographical minimal regret stable marriage procedure will return the male optimal stable
matching iff there is a successful manipulation of the STV rule. Note that the profile used
in this proof is not universally manipulable. The first choices of the man are all different
and each woman therefore only receives one proposal in the men-proposing Gale–Shapley
algorithm. �

After having shown that the lexicographical minimal regret stable marriage procedure,
when based on STV, is NP hard to manipulate and gender neutral, we will do the same for
another voting rule, called the hybrid plurality rule. The hybrid plurality rule uses one round
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of the cup rule and then applies the plurality rule [4]. In other words, candidates are paired
and from each pair a winner remains, according to what the majority says about the two can-
didates in the pair. Thus, half of the candidates remain after this first phase. Then, a winner
among these candidates is chosen by majority. This simple hybridization has been shown to
make manipulation NP-hard.For simplicity, we suppose that the schedule for the cup rule is
fixed in advance. Fixing the schedule after the manipulator has voted will only increase the
computational complexity.

Theorem 6 It is NP-complete to decide if an agent can manipulate the lexicographical
minimal regret stable marriage procedure based on the hybrid plurality rule.

Proof We adapt the reduction used in the proof of Theorem 2 of [4], which shows that con-
structive manipulation of the hybrid plurality rule by a single voter is NP-hard. We again
construct a profile in which every man and every woman have different first choices. Thus, in
the male optimal stable matching, every man will marry his first choice whilst in the female
optimal stable matching, every woman will marry her first choice. The (male) manipulator
will try to choose between these two matchings by ordering the women appropriately.

To prove membership in NP, we again observe that a manipulation has a polynomial wit-
ness. To prove NP-hardness, we give a reduction from 3-SAT. Let L be the literals in the
3-SAT problem (e.g. v and ¬v),K be the clauses, l = |L| and k = |K|. We introduce the
following women: p,CL = {ci | i ∈ L},DK = {di | 0 ≤ i < k}, and four dummy sets
of women, X = {xi, x−i | 1 ≤ i ≤ 4k + 1}, Y = {yi,j , y−i,−j | 1 ≤ i ≤ k, 1 ≤ j ≤
4k − 1}, Z = {zi, z−i | 1 ≤ i ≤ 3k} and W = {wi | 1 ≤ i ≤ k + 1}.

The manipulating man h will try to vote strategically so that woman p is ranked first when
the hybrid plurality rule is applied to the men’s preferences. In this case, we return the male
optimal stable matching. On the other hand, if p is not ranked first, we will return the female
optimal stable matching (which is less good for h). Similar to [4], we write (A, b) if, for all
a ∈ A, the agent prefers a to b, but the order between the elements of A is not important. To
simplify notation, we write A′ for every remaining element of A. For instance, (a,A′) stands
for (a,A − {a}). This states that a is preferred to every other element in A but there is no
constraint between the other elements in A.

The men’s preferences are constructed as follows:

– a man a with preference (p, CL,DK,X, Y,Z,W) and for each i ∈ [1, 4k + 1] a man ei

with preference (xi, p, CL,DK,X′, Y, Z,W);
– for each i ∈ [1, k], a man bi with preference (di,D

′
k, CL, p,X, Y,Z,W) and 4k−1 men

with preferences (yi,j , di,D
′
k, CL, p,X, Y ′, Z,W);

– for each i ∈ [1, k] and ϕi ∈ K , a man with preference ({cl | l ∈ ϕi}, dk, {cl | l ∈ L, l �∈
ϕi},D′k, p,X, Y,Z,W) and 3 men with preferences (zi,j , {cl | l ∈ ϕi}, dk, {cl | l ∈ L, l �∈
ϕi},D′k, p,X, Y,Z′,W).

Note that there are an even number of men. We therefore are able to rank within the otherwise
unconstrained preferences for CL so that cl and c−l are tied for every pair of literals in L.
The manipulator’s job will be to decide if cl is ranked ahead of c−l . As cl plays against c−l

in the initial preround, the manipulator will get to decide which of these two literals survives
the preround.

Each woman is ranked first by exactly one man. Similarly, each man is ranked first by
exactly one woman. Hence, the male optimal stable matching will be the first choice of the
men, and the female optimal stable matching will be the first choice of the women.
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The schedule of the cup puts cl against c−l for every pair of literals in L, di against
wi, p against wk+1, xi against x−i , yi,j against y−i,−j , and zi against z−i . We arrange the
(otherwise unconstrained) votes within the sets X, Y and Z so that xi necessarily loses to
x−i in the preround, yi,j loses to y−i,−j , and zi loses to z−i . Note that, as W is last place in
each vote, W is also necessarily eliminated in the preround.

After half the women are eliminated by the preround, we are left with the following profile:

– 4k + 2 men with preference (p, CL,DK,X−, Y−, Z−)

– for each i ∈ [1, k], 4k men with preferences (di,D
′
k, CL, p,X−, Y−, Z−);

– for each i ∈ [1, k] and ϕi ∈ K , 4 men with preferences ({cl | l ∈ ϕi}, dk, {cl | l ∈ L, l �∈
ϕi},D′k, p,X−, Y−, Z−).

where X− = {x−i | 1 ≤ i ≤ 4k + 1}, Y− = {y−i,−j | 1 ≤ i ≤ k, 1 ≤ j ≤ 4k − 1}, and
Z− = {z−i | 1 ≤ i ≤ 3k}.

At this point, the preferences are identical (up to renaming of the men and the addition of
X−, Y− and Z−) to the profile constructed in the proof of Theorem 2 in [4]. Note that p gets
4k + 2 votes. If, for some ϕi ∈ K , all cl ∈ ϕi are eliminated in the preround, then dk gets
4k + 4 votes and p must lose. Otherwise dk gets just 4k votes and p wins. The manipulator
must order the literals cl and c−l to ensure this. The manipulator puts cl ahead of c−l iff l

is true in the corresponding satisfying assignment. Thus, the manipulator can ensure that p

wins iff the original 3SAT problem is satisfiable.
We now turn to the women’s preferences. These are as follows:

– woman p with preference (a, . . .);
– women di+1 with preferences (bi, bi+1, . . .) for 1 ∈ [1, k) and woman d1 with preference

(bk, b1, . . .);
– woman c1 with preference (e1, . . .);
– the other women with any preferences in which the first choices are all different, and

which ensure that the hybrid plurality rule ranks a first and then e1.

As in the case for the STV rule (see proof of Theorem 5), the overall score vector of the
male optimal stable matching is (1, 2, . . .) if the manipulation is successful and (2, . . .) if it
is not. Similarly, the overall score vector of the female optimal stable matching is (1, i, . . .)

where i > 2. Hence the lexicographical minimal regret stable marriage procedure will return
the male optimal stable matching iff there is a successful manipulation of the hybrid plurality
rule. �

We can thus see how the proposed matching procedures (the one based on STV and the
one based on the hybrid plurality rule) are reasonable and appealing. In fact, they allow us
to discriminate among stable matchings according to the men and women’s preferences, and
they are difficult to manipulate while ensuring gender neutrality.

6 Related work

In [20] fairness of a matching procedure is defined in terms of four axioms, two of which
are gender neutrality and peer indifference. Then, the existence of a matching procedures
satisfying all or a subset of the axioms is considered in terms of restrictions on preference
orderings. Here, instead, we propose a preprocessing step that allows to obtain a gender
neutral matching procedure from any matching procedure without imposing any restrictions
on the preferences in the input.

A detailed description of results about manipulation of stable marriage procedures can be
found in [14]. In particular, several early results [6,7,9,22] indicated the futility of men lying,
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focusing later work mostly on strategies in which the women lie. Gale and Sotomayor [10]
presented the manipulation strategy in which women truncate their preference lists. Roth and
Vande Vate [26] discussed strategic issues when the stable matching is chosen at random,
proposed a truncation strategy and showed that every stable matching can be achieved as an
equilibrium in truncation strategies. We instead do not allow the elimination of men from a
woman’s preference ordering, but permit reordering of the preference lists.

Teo et al. [28] suggested lying strategies for an individual woman, and proposed an algo-
rithm to find the best partner with the male optimal procedure. We instead focus on the
complexity of determining if the procedure can be manipulated to obtain a better result.
Moreover, we also provide a universal manipulation scheme that, under certain conditions
on the profile, assures that the female optimal partner is returned.

Also Kobayashi et al. [18] study a strategic issue in the stable marriage model with com-
plete preference lists. Given complete preference lists of men over women and a matching,
they present a necessary and sufficient condition for the existence of a set of preference lists
of women over men, such that the men-proposing Gale–Shapley algorithm applied to these
lists produces the given matching. We are instead interested in situations where there exists
a specific woman, that is the only deceitful agent, and that she knows the preferences of all
the other agents.

Coalition manipulation is considered in [14]. Huang shows how a coalition of men can
get a better result in the men-proposing Gale–Shapley algorithm. By contrast, we do not
consider a coalition but just a single manipulator, and do not consider just the Gale–Shapley
algorithm.

7 Conclusions

We have studied the manipulability and gender neutrality of stable marriage procedures. We
first looked at whether, as with voting rules, computationally complexity might be a barrier
to manipulation. It was known already that one prominent stable marriage procedure, the
Gale–Shapley algorithm, is computationally easy to manipulate. We proved that, under some
simple, yet demanding, restrictions on agents’ preferences, all stable marriage procedures
are in fact easy to manipulate. Our proof provides a universal manipulation method that an
agent can use to improve his result. On the other hand, when preferences are unrestricted,
we proved that there exist stable marriage procedures which are NP-hard to manipulate.

We also showed how to use a voting rule to choose between stable matchings. In par-
ticular, we gave a stable marriage procedure which picks the stable matching that is most
preferred by the most popular men and women. This procedure inherits the computational
complexity of the underlying voting rule. Thus, when the STV voting rule, or the hybrid
plurality rule (which are both NP-hard to manipulate), is used to compute the most popular
men and women, the corresponding stable marriage procedure is NP-hard to manipulate.
Another desirable property of stable marriage procedures is gender neutrality. Our procedure
of turning a voting rule into a stable marriage procedure is gender neutral.

This study of stable marriage procedures is only an initial step to understanding if computa-
tional complexity might be a barrier to manipulation. Many questions remain to be answered.
For example, the preferences in practice may be highly correlated. Men may have similar
preferences for many of the women. Are such profiles computationally difficult to manipu-
late? As a second example, it has been recently recognised (see, for example, [30,31,21,5])
that worst-case results may represent an insufficient barrier against manipulation since they
may only apply to problems that are rare. Are there stable marriage procedures which are
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difficult to manipulate on average? There are also many interesting and related questions
connected with privacy and mechanism design. For instance, how do we design a decentra-
lised stable marriage procedure which is resistant to manipulation and in which the agents
do not share their preference lists? As a second example, how can side payments be used in
stable marriage procedures to prevent manipulation?
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