
1 23

Annals of Mathematics and
Artificial Intelligence

ISSN 1012-2443
Volume 58
Combined 3-4

Ann Math Artif Intell (2010)
58:261-298
DOI 10.1007/
s10472-010-9203-0

Interval-valued soft constraint problems

1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media B.V.. This e-offprint

is for personal use only and shall not be self-

archived in electronic repositories. If you

wish to self-archive your work, please use the

accepted author’s version for posting to your

own website or your institution’s repository.

You may further deposit the accepted author’s

version on a funder’s repository at a funder’s

request, provided it is not made publicly

available until 12 months after publication.

Ann Math Artif Intell (2010) 58:261–298
DOI 10.1007/s10472-010-9203-0

Interval-valued soft constraint problems

Mirco Gelain · Maria Silvia Pini · Francesca Rossi ·
Kristen Brent Venable · Nic Wilson

Published online: 6 July 2010
© Springer Science+Business Media B.V. 2010

Abstract Constraints and quantitative preferences, or costs, are very useful for
modelling many real-life problems. However, in many settings, it is difficult to specify
precise preference values, and it is much more reasonable to allow for preference
intervals. We define several notions of optimal solutions for such problems, providing
algorithms to find optimal solutions and also to test whether a solution is optimal.
Most of the time these algorithms just require the solution of soft constraint prob-
lems, which suggests that it may be possible to handle this form of uncertainty in
soft constraints without significantly increasing the computational effort needed to
reason with such problems. This is supported also by experimental results. We also
identify classes of problems where the same results hold if users are allowed to use
multiple disjoint intervals rather than a single one.

Keywords Soft constraints · Preferences · Interval reasoning · Uncertainty

Mathematics Subject Classification (2010) Computer Science

M. Gelain · M. S. Pini (B) · F. Rossi · K. B. Venable
Dipartimento di Matematica Pura ed Applicata, University of Padova, Padova, Italy
e-mail: mpini@math.unipd.it

M. Gelain
e-mail: mgelain@math.unipd.it

F. Rossi
e-mail: frossi@math.unipd.it

K. B. Venable
e-mail: kvenable@math.unipd.it

N. Wilson
Cork Constraint Computation Centre, University College Cork, Cork, Ireland
e-mail: n.wilson@4c.ucc.ie

Author's personal copy

262 M. Gelain et al.

1 Introduction

Constraints [11] are useful to model real-life problems when it is clear what should
be accepted and what should be forbidden. Soft constraints [9] extend the constraint
notion by allowing several levels of acceptance. This allows to express preferences
and/or costs rather than just strict requirements.

In soft constraints, each instantiation of the variables of a constraint must be
associated to a precise preference or cost value. Sometimes it is not possible for a
user to know exactly all these values. For example, a user may have a vague idea of
the preference value, or may not be willing to reveal his preference, for example for
privacy reasons.

In this paper we consider these forms of imprecision, and we handle them by
extending soft constraints to allow users to state an interval of preference values
for each instantiation of the variables of a constraint. This interval can contain a
single element (in this case we have usual soft constraints), or the whole range of
preference values (when there is complete ignorance about the preference value),
or it may contain more than one element but a strict subset of the set of preference
values. We call such problems interval-valued soft CSPs (or also IVSCSPs).

In an elicitation procedure there will typically be some degree of imprecision,
so attributing an interval rather than a precise preference degree can be a more
reliable model of the information elicited. Also, linguistic descriptions of degrees of
preference (such as “quite high” or “low” or “undesirable”) may be more naturally
mapped to preference intervals, especially if the preferences are being elicited from
different experts, as they may mean somewhat different things by these terms.

Two examples of real world application domains where preference intervals can
be useful or necessary are energy trading and network traffic analysis [15], where the
data information is usually incomplete or erroneous. In energy trading, costs may
be imprecise because they may evolve due to market changes; in network traffic
analysis, the overwhelming amount of information and measurement difficulties
force the use of partial or imprecise information. Many other application domains
that are usually modelled via hard or soft constraints could benefit by increased
expressed power of preference intervals. To give a concrete example in this paper
we consider the meeting scheduling problem, that is a typical benchmark for CSPs,
and we allow the specification of preference intervals. This benchmark will be used
both to clarify notions related to IVCSPs and to run experimental tests.

Given an IVSCSP, we consider several notions of optimal solutions. We first start
with general notions of optimality, which apply whenever we have several scenarios
to consider. For example, as done in [7], we consider necessarily optimal solutions,
which are optimal in all scenarios, or possibly optimal solutions, which are optimal in
at least one scenario. We then pass to interval-based optimality notions, that define
optimality in terms of the upper and lower bounds of the intervals associated to the
solution by the constraints.

Since IVSCSPs generalize soft constraint problems, the problem of finding an
optimal solution in an IVSCP (according to any of the considered optimality notions)
is at least as difficult as finding an optimal solution in a soft constraint problem and
thus it is NP-hard.

We provide algorithms to find solutions according to all the notions defined, and
also to test whether a given solution is optimal. In most of the cases, finding or

Author's personal copy

Interval-valued soft constraint problems 263

testing an optimal solution amounts to solving a soft constraint problem. Thus, even
if our formalism significantly extends soft constraints, and gives users much more
power in modelling their knowledge of the real world, in the end the work needed
to find an optimal solution (or to test if it is optimal) is not more than that needed
to find an optimal solution in a soft constraint problem. This claim is supported by
the experimental results we present, obtained by extensive tests over instances of the
meeting scheduling problem.

We also show that for some classes of IVSCSPs the optimality notions considered
in this paper would not produce different results if users were allowed to use multiple
disjoint intervals rather than a single one. This means that a level of precision greater
than a single interval does not add any useful information when looking for an
optimal solution.

Previous approaches to uncertainty in soft constraint problems assumed either
a complete knowledge of the preference value, or a complete ignorance. In other
words, a preference value in a domain or a constraint was either present or not
[4, 6, 8, 14]. Then, the solver was trying to find optimal solutions with the information
given by the user or via some form of elicitation of additional preference values. Here
instead we consider a more general setting where the user may specify preference
intervals. Also, we assume that the user has given us all the information he has about
the problem, so we do not resort to preference elicitation (or the elicitation phase is
over with the user being unable or unwilling to give us more precise information).
Moreover, previous work looks only for necessarily optimal solutions, and uses
preference elicitation, if needed, to find them. Here instead we consider many other
notions of optimal solutions, with the aim of returning interesting solutions without
resorting to preference elicitation.

Another work that analyzes the impact of the uncertainty in soft constraint
problems is shown in [10]. However, while we assume to have only preference
intervals, in [10] it is assumed that all the preferences are given and some of them
are tagged as possibly unstable and are provided with a range, of possible variations,
around their value.

Other papers consider preference intervals, such as the work in [3]. However,
these lines of work focus on specific preference aggregation mechanisms (such as
the Choquet integral) and of modelling issues without addressing the algorithmic
questions related to finding optimal solutions according to different risk attitudes.
We are instead interested in providing efficient algorithms to find optimal solutions
according to different risk attitudes (called pessimistic and optimistic in the paper),
besides the modelling concerns.

The paper is structured as follows. In Section 2 we recall the main definitions
for soft constraints and in Section 3 we introduce interval-valued soft constraint
problems. In Section 4 we give general notions of optimal solutions, which apply
whenever we have several scenarios to consider, while in Section 5 we introduce
interval-based optimality notions. In Sections 6 and 7 we present algorithms to find
solutions according to optimality notions defined. Then, in Section 8 we introduce
notions of dominance between solutions, we show how they are related to the notions
of optimality, and we describe how to test dominance. In Section 9 we analyze
the impact of having multiple preference intervals. In Section 10 we present an
experimental study of the algorithms to find optimal solutions. Finally, in Section
11 we give some final considerations and we propose some hints for future work.

Author's personal copy

264 M. Gelain et al.

2 Background: soft constraints

In the literature there are many formalizations of the concept of soft constraints [5,
12]. Here we refer to the one described in [1, 5], which however can be shown to
generalize and express many others [2].

A soft constraint [1] is just a classical constraint where each instantiation of its
variables has an associated value from a (totally or partially ordered) set, which
is called a c-semiring. More precisely, a c-semiring is a tuple 〈A, +,×, 0, 1〉 such
that: A is a set, called the carrier of the c-semiring, and 0, 1 ∈ A; + is commutative,
associative, idempotent, 0 is its unit element, and 1 is its absorbing element; ×
is associative, commutative, distributes over +, 1 is its unit element and 0 is its
absorbing element. Consider the relation ≤S over A such that a ≤S b iff a + b = b .
≤S is a partial order; + and × are monotone on ≤S; 0 is its minimum and 1 its
maximum; 〈A, ≤S〉 is a lattice and, for all a, b ∈ A, a + b = lub(a, b). Moreover, if
× is idempotent, then 〈A, ≤S〉 is a distributive lattice and × is its glb. The relation
≤S gives us a way to compare preference values: when a ≤S b , we say that b is better
than a. Element 0 is the worst value and 1 is the best one.

A c-semiring 〈A, +,×, 0, 1〉 is said to be idempotent when the combination oper-
ator × is idempotent, while it is said to be strictly monotonic when the combination
operator × is strictly monotonic. If a c-semiring is totally ordered, i.e., if ≤S is a
total order, then the + operation is just max with respect to ≤S. If the c-semiring is
also idempotent, then × is equal to min, and the c-semiring is of the kind used for
fuzzy constraints (see below). Notice that there are also c-semirings that are neither
idempotent nor strictly monotonic.

Given a c-semiring S = 〈A, +,×, 0, 1〉, a finite set D (the domain of the variables),
and an ordered set of variables V, a soft constraint is a pair 〈def, con〉 where con ⊆ V
and def : D|con| → A. Therefore, a soft constraint specifies a set of variables (the
ones in con), and assigns to each tuple of values of D of these variables an element of
the c-semiring set A, which will be seen as its preference. A soft constraint satisfaction
problem (SCSP) is just a set of soft constraints over a set of variables.

A classical CSP is just an SCSP where the chosen c-semiring is SCSP = 〈{ f alse,
true}, ∨,∧, f alse, true〉. Fuzzy CSPs are instead modeled by choosing the idempotent
c-semiring SFCSP = 〈[0, 1], max, min, 0, 1〉: we want to maximize the minimum
preference. For weighted CSPs, the strictly monotonic c-semiring is SWCSP = 〈
+,

min, +, +∞, 0〉: preferences are interpreted as costs from 0 to +∞, and we want to
minimize the sum of costs.

Given an assignment s to all the variables of an SCSP Q, that is, a solution
of Q, its preference, written pref(Q, s), is obtained by combining the preferences
associated by each constraint to the subtuples of s referring to the variables of the
constraint: pref(Q, s) = �〈idef,con〉∈C def (s↓con), where � refers to the × operation
of the c-semiring and s↓con is the projection of tuple s on the variables in con. For
example, in fuzzy CSPs, the preference of a complete assignment is the minimum
preference given by the constraints. In weighted constraints, it is instead the sum
of the costs given by the constraints. An optimal solution of an SCSP Q is then
a complete assignment s such that there is no other complete assignment s′′ with
pref(Q, s) <S pref(Q, s′′). We denote with Opt(Q) the set of all optimal solutions of
an SCSP Q and with Sol(Q) the set of all the solutions of an SCSP Q.

Author's personal copy

Interval-valued soft constraint problems 265

Given an SCSP Q defined over an idempotent c-semiring, and a preference α,
we will denote as cutα(Q) (resp., scutα(Q)) the CSP obtained from Q allowing only
tuples with preference greater than or equal to α (resp., strictly greater than α). It is
known that the set of solutions of Q with preference greater than or equal to α(resp.,
strictly greater than α) coincides with the set of solutions of cutα(Q) (resp., scutα(Q)).

3 Interval-valued soft constraints

Soft constraint problems require users to specify a preference value for each tuple in
each constraint. Sometimes this is not reasonable, because a user may have a vague
idea of what preferences to associate to some tuples. In [6] a first generalization
allowed users to specify either a fixed preference (as in usual soft constraints) or
the complete [0, 1] interval. Thus an assumption of complete ignorance was made
when the user was not able to specify a fixed preference. Here we generalize further
by allowing users to state any interval over the preference set.

Definition 1 (interval-valued soft constraint) Given a set of variables V with finite
domain D and a totally-ordered c-semiring S = 〈A, +, ×, 0, 1〉, an interval-valued
soft constraint is a pair 〈int, con〉 where con ⊆ V is the scope of the constraint and int:
D|con| −→ A × A specifies an interval over A by giving its lower and upper bound.
If int(x) = (a, b), it must be a ≤S b .

In the following we will denote with l(int(x)) (resp., u(int(x))) the first (resp.,
second) component of int(x), representing the lower and the upper bound of the
preference interval.

Definition 2 (IVSCSP) An interval-valued soft constraint problem (IVSCSP) is a 4-
tuple 〈V, D, C, S〉, where C is a set of interval-valued soft constraints over S defined
on the variables in V with domain D.

Figure 1 shows an IVSCSP P defined over the fuzzy c-semiring 〈[0, 1], max, min,

0, 1〉, that contains three variables X1, X2, and X3, with domain {a, b}, and five
constraints: a unary constraint on each variable, and two binary constraints on (x1, x2)

and (x2, x3).
In an IVSCSP, a complete assignment of values to all the variables can be

associated to an interval as well. The lower bound (resp., the upper bound) of such an
interval is obtained by combining all the lower bounds (resp., the upper bounds) of
the preference intervals of the appropriate subtuples of this assignment in the various
constraints.

Definition 3 (preference interval) Given an IVSCSP P = 〈V, D, C, S〉 and an assign-
ment s to all its variables over D, the preference interval of s in P is [L(s), U(s)],

Author's personal copy

266 M. Gelain et al.

Fig. 1 An IVSCSP over fuzzy
semiring

where L(s) = �<int,con>∈Cl(int(s↓con)) and U(s) = �<int,con>∈Cu(int(s↓con)), and � is
the combination operator of the c-semiring S.

Figure 2 shows all the complete assignments of the IVSCSP in Fig. 1, together with
their preference interval and the computation details for s1.

Once we have an IVSCSP, it is useful to consider specific scenarios arising from
choosing a preference value from each interval.

Definition 4 (scenario) Given an IVSCSP P, a scenario of P is an SCSP P′ obtained
from P as follows: given any constraint c = 〈int, con〉 of P, we insert in P′ the con-
straint c′ = 〈def, con〉, where def (t) ∈ [l(int(t)), u(int(t))] for every tuple t ∈ D|con|.

We will denote with Sc(P) the set of all possible scenarios of P.

Definition 5 (best and worst scenario) Given an IVSCSP P, the best scenario
(bs(P)) (resp., the worst scenario (ws(P))) of P is the scenario obtained by replacing
every interval with its upper (resp., lower) bound.

We will denote with lopt and uopt the optimal preferences of the worst and best
scenario.

The preference interval of a complete assignment is a good way of representing
the quality of the solution in all scenarios, as stated by the following theorem.

Theorem 1 Consider an IVSCSP P over a c-semiring S and a complete assignment
s of its variables. Then, for all Q ∈ Sc(P), pref(Q, s) ∈ [L(s), U(s)]. Also, for p ∈
{L(s), U(s)}, there exists a Q ∈ Sc(P) such that p = pref(Q, s). If the c-semiring S
is idempotent, then for all p ∈ [L(s), U(s)], there exists a Q ∈ Sc(P) such that p =
pref(Q, s).

Fig. 2 Solutions of the
IVSCSP shown in Fig. 1

Author's personal copy

Interval-valued soft constraint problems 267

Proof pref(Q, s) ∈ [L(s), U(s)] follows by monotonicity. If p = L(s) (resp., p =
U(s)), it is possible to build a scenario where p = pref (Q, s), by fixing all the
tuples of s to their lower bound (resp., to their upper bound). If the c-semiring
is idempotent, since we are considering totally ordered c-semirings, the operator
× is minimum (with respect to the total order), so there exists some interval-
valued constraint 〈int, con〉 in P such that l(int(s↓con)) = L(s). We must also have
u(int(s↓con)) ≥ U(s). Let p be an element of [L(s), U(s)]. Define a scenario Q by
replacing this interval-valued constraint with any soft constraint which assigns the
tuple s↓con the preference value p, and replacing any of the other elements of P with
soft constraints which assign preference value U(s) to the appropriate projection of
s. We then have p = pref(Q, s). ��

This means that, in general, the upper and lower bounds of the solution preference
interval always model preferences of solutions in some scenarios. In the idempotent
case we have more: the whole interval, and not just the bounds, represents all and
only the preferences coming from the scenarios. Intuitively, if × is idempotent
(let us consider min for simplicity): given an assignment s, for every element x
in [L(s), U(s)], we can construct a scenario where s has preference x by fixing
preference x on at least one tuple (that has x in its interval) and by fixing all other
preferences of tuples in s to their upper bound.

4 Necessary and possible optimality

We will now consider general notions of optimality, that are applicable to any setting
where the lack of precision gives rise to several possible scenarios. First we define
optimal solutions that guarantee optimality in some or all scenarios (i.e., the possibly
and the necessarily optimal solutions [6]), and then we will define solutions that
guarantee a certain level of preference in some or all scenarios.

Definition 6 (necessarily optimal) Given an IVSCSP P = 〈V, D, C, S〉 and an assign-
ment s to the variables in V, s is necessarily optimal iff it is optimal in all scenarios.

Given an IVSCSP P, the set of its necessarily optimal solutions will be denoted
by NO(P). Necessarily optimal solutions are very attractive because they are very
robust: they are optimal independently of the uncertainty of the problem. Unfortu-
nately, NO(P) may be empty, as in the IVSCSP P of Fig. 1.

Definition 7 (possibly optimal) Given an IVSCSP P = 〈V, D, C, S〉 and an assign-
ment s to the variables in V, s is possibly optimal iff it is optimal in some scenario.

Given an IVSCSP P, the set of possibly optimal solutions of P will be denoted
by PO(P). In the IVSCSP P of Fig. 1 we have PO(P) = {s1, s2, s3, s4, s6}. PO(P)

is never empty. However, the possibly optimal solutions are less attractive than
the necessarily optimal ones, in fact they guarantee optimality only for a specific
completion of the uncertainty.

We assume now to want to guarantee a certain level of preference in some or all
the scenarios.

Author's personal copy

268 M. Gelain et al.

Definition 8 (necessarily of at least preference α) Given an IVSCSP P = 〈V, D,

C, S〉 and an assignment s to the variables in V, s is necessarily of at least preference
α iff, for all scenarios, its preference is at least α.

The set of all solutions of an IVSCSP P with this feature will be denoted by
Nec(P, α). In our running example, if we consider α = 0.5, we have Nec(P, 0.5) =
{s1, s2, s4, s6}. If α is a satisfactory preference level, elements in Nec(P, α) are ideal,
because they guarantee such a preference level independently of the uncertainty of
the problem.

Definition 9 (possibly of at least preference α) Given an IVSCSP P = 〈V, D, C, S〉
and an assignment s to the variables in V, s is possibly of at least preference α iff, for
some scenario, its preference is at least α.

The set of all solutions of an IVSCSP P with this feature will be denoted by
Pos(P, α). In the IVSCSP P of Fig. 1, if we take α = 0.3, we have Pos(P, 0.3) =
{s1, s2, s3, s4, s6, s7}.

5 Interval-based optimality notions

In an IVSCSP, uncertainty is specified via the preference intervals. Depending on
how one decides to deal with this form of uncertainty, different notions of optimality
can be given. Here we will consider interval-based optimality notions, and we will
relate them to the necessarily and possibly optimal solutions.

5.1 Interval-dominant assignments

In the attempt to characterize the necessarily optimal solutions, we can consider the
following notion.

Definition 10 (interval-dominant) Given an IVSCSP P = 〈V, D, C, S〉 and an as-
signment s to the variables in V, s is interval-dominant iff, for every other complete
assignment s′, L(s) ≥ U(s′).

Interval-dominant assignments are better than or equal to all others in all scenar-
ios, and thus are very robust w.r.t. uncertainty. We denote with I D(P) the set of the
interval dominant assignments of P. The IVSCSP P of Fig. 1 has I D(P) = ∅.

Proposition 1 If I D(P) �= ∅, either I D(P) contains a single solution, or all the
solutions in I D(P) have their lower bound equal to their upper bound, and all these
bounds are equal to the same value. Given an IVSCSP P, I D(P) may be empty.

Proof I D(P) may be empty as in the IVSCSP P of Fig. 1.
We now show, by contradiction, that if I D(P) �= ∅, either I D(P) contains a single

solution, or several solutions all with the lower bound equal to the upper bound,
and all equal to the same value. If I D(P) contains two solutions, say s1 and s2, with

Author's personal copy

Interval-valued soft constraint problems 269

different values of lower and upper bounds, then L(s1) < U(s1) and L(s2) < U(s2).
Since s1 ∈ I D(P), then for any other solution s′, L(s1) ≥ U(s′) and thus also L(s1) ≥
U(s2). Similarly, since s2 ∈ I D(P), then for any other solution s′, L(s2) ≥ U(s′) and
thus L(s2) ≥ U(s1). Therefore, L(s1) ≥ U(s2) > L(s2) ≥ U(s1) and so L(s1) > U(s1),
that is a contradiction. ��

It is possible to show that the interval-dominant optimality notion is stronger than
the necessary optimality notion. More precisely:

Proposition 2 Given an IVSCSP P, we have that I D(P) ⊆ NO(P). Also, if I D(P) �=
∅, then I D(P) = NO(P).

Proof We first show that I D(P) ⊆ NO(P). If a solution is in I D(P), its preference
is always greater than or equal to the upper bounds of all the other solutions, hence
it is optimal in all the scenarios.

We now prove that, if I D(P) �= ∅, then I D(P) = NO(P). We have already shown
that I D(P) ⊆ NO(P). It remains to prove that NO(P) ⊆ I D(P). Let us denote with
s∗ a solution of I D(P). If a solution s of P is not in I D(P) and I D(P) �= ∅, then s is
not in NO(P). In fact, if L(s∗) �= U(s∗), then U(s∗) > L(s∗) ≥ U(s), and so s is not
optimal in the best scenario. If L(s∗) = U(s∗), since s �∈ I D(P), L(s) < L(s∗) and so
s is not optimal in the worst scenario. ��

5.2 Weakly-interval-dominant assignments

A more relaxed interval-based optimality notion is the following one.

Definition 11 (weakly-interval-dominant) Given an IVSCSP P = 〈V, D, C, S〉 and
an assignment s to the variables in V, s is weakly-interval-dominant iff, for every
other complete assignment s′, L(s) ≥ L(s′) and U(s) ≥ U(s′).

Weakly-interval-dominant assignments are better than or equal to all others in
both the worst and the best scenario. We denote with W I D(P) the set of the weakly
interval dominant assignments of P. The IVSCSP P of Fig. 1 has W I D(P) = {s1}.

Proposition 3 Given an IVSCSP P, W I D(P) may be empty. Moreover, I D(P) ⊆
W I D(P).

Proof W I D(P) may be empty. For example, one can construct an IVSCSP over
fuzzy c-semiring with only three solutions, say s1, s2, and s3, with the following lower
and upper bounds: L(s1) = 0.2, U(s1) = 0.6, L(s2) = 0.3, U(s2) = 0.8, L(s3) = 0.4,
and U(s3) = 0.7.

We now show that I D(P) ⊆ W I D(P). If s ∈ I D(P), then L(s) ≥ U(s′) for every
other s′. Hence, since U(s) ≥ L(s) and U(s′) ≥ L(s′) for every other s′, we have
U(s) ≥ L(s) ≥ U(s′) ≥ L(s′) for every other s′, that is, U(s) ≥ U(s′) and L(s) ≥ L(s′)
for every other s′, hence s ∈ W I D(P). ��

Author's personal copy

270 M. Gelain et al.

The weakly-interval-dominant optimality notion is weaker than the necessary
optimality notion. In fact, NO(P) ⊆ W I D(P) and for some IVSCSP P (for example,
the IVSCSP of Fig. 1) this inclusion is strict. More precisely:

Proposition 4 Given an IVSCSP P, we have that I D(P) ⊆ NO(P) ⊆ W I D(P).

Proof By Proposition 2, we know that I D(P) ⊆ NO(P).
We now show that NO(P) ⊆ W I D(P). If s ∈ NO(P), then s must be optimal in

every scenario and so also in the best and in the worst scenario. Given that s is optimal
in the worst scenario, then L(s) ≥ L(s′) for every other solution s′. Moreover, as s is
optimal in the best scenario, then U(s) ≥ U(s′) for every other solution s′. Therefore,
L(s) ≥ L(s′) and U(s) ≥ U(s′) for every other solution s′. This allows us to conclude
that s ∈ W I D(P). ��

Since I D(P) ⊆ NO(P) ⊆ W I D(P), I D(P) and W I D(P) can be seen as lower
and upper approximations of NO(P).

5.3 Lower and upper optimal assignments

Until now we have considered how to characterize, via interval-based optimality
notions, the necessarily optimal solutions. In particular, we have found lower and
upper approximations of these optimal solutions. We now move to consider possibly
optimal solutions via new interval-based optimality notions.

Definition 12 (lower and upper optimal) Given an IVSCSP P = 〈V, D, C, S〉 and an
assignment s to the variables in V, s is lower-optimal (resp., upper-optimal) iff, for
every other complete assignment s′, L(s) ≥ L(s′) (resp., U(s) ≥ U(s′)).

A lower-optimal (resp., an upper-optimal) assignment is better than or equal to
all other complete assignments in the worst scenario (resp., in the best scenario).
Lower-optimal (resp., upper-optimal) assignments are useful in pessimistic (resp.,
optimistic) approaches to uncertainty, because they outperform the other assign-
ments in the worst (resp., in the best) case. We denote with LO(P) (resp., U O(P))
the set of the lower (resp., upper) optimal assignments of P. The IVSCSP P of Fig. 1
has LO(P) = {s1, s4} and U O(P) = {s1, s2}.

Lower and upper optimal solutions are never empty. Moreover, they are related
to weakly-interval-dominant and interval-dominant solutions as follows.

Proposition 5 Given an IVSCSP P, and the optimal preference lopt (resp., uopt) of
ws(P) (resp., bs(P)),

– LO(P) and U O(P) are never empty;
– U O(P) ∩ LO(P) = W I D(P);
– if lopt = uopt, then I D(P) = LO(P);
– if lopt < uopt, and |U O(P)| ≥ 2, then I D(P) = ∅;
– if |U O(P)| = 1, let us call s this single solution. If L(s) �= lopt then I D(P) = ∅.

Author's personal copy

Interval-valued soft constraint problems 271

Proof LO(P) is never empty because it is always possible to find the solutions with
the lower bound greater than or equal to all the other solutions. A similar argument
shows that U O(P) is never empty.

We now show that U O(P) ∩ LO(P) = W I D(P). We first show that U O(P) ∩
LO(P) ⊆ W I D(P). If s ∈ U O(P) ∩ LO(P), then, by definition of U O(P), U(s) ≥
U(s′) for every other s′ and, by definition of LO(P), L(s) ≥ L(s′) for every other
s′, therefore s ∈ W I D(P). We now show that W I D(P) ⊆ U O(P) ∩ LO(P). If s ∈
W I D(P), by definition of W I D(P), U(s) ≥ U(s′) and L(s) ≥ L(s′) for every other s′,
hence both s ∈ LO(P) and s ∈ U O(P), therefore s ∈ LO(P) ∩ U O(P).

To show that, if lopt = uopt, then I D(P) = LO(P), it is sufficient to show that
lopt = uopt implies LO(P) ⊆ I D(P), as I D(P) ⊆ LO(P) follows from Theorem 2.
In fact, if s ∈ I D(P), then s ∈ Opt(ws(P)) and thus, by Theorem 2, s ∈ LO(P). If
s ∈ LO(P) then L(s) = lopt. Moreover, since lopt = uopt, L(s) = uopt, and so L(s) ≥
U(s′), for every other solution s′, that is s ∈ I D(P).

We now prove, by contradiction, that, if lopt < uopt and |U O(P)| ≥ 2, then
I D(P) = ∅. Suppose I D(P) �= ∅. Let us denote with s one of the solutions of
I D(P). Then, by definition of I D(P), L(s) ≥ U(s′), for every other solution s′. Since
|U O(P)| ≥ 2, we are sure that there is a solution s′′ �= s such that U(s′′) = uopt.
Hence, L(s) ≥ U(s′′) = uopt > lopt, and so L(s) > lopt, that is a contradiction, because,
by the definition of lopt, lopt is greater than or equal to the lower bound of every
solution.

Assume that |U O(P)| = 1 and let us call s this single solution. We now show,
by contradiction, that, if L(s) �= lopt, then I D(P) = ∅. Let us denote with s1 one of
the solutions with L(s1) = lopt. Suppose that I D(P) �= ∅, and let s′ be an element
of I D(P). If s′ �= s then U(s′) ≥ L(s′) ≥ U(s), which implies that s′ ∈ U O(P), a
contradiction. Hence s′ = s. But then s′ �= s1, so L(s′) ≥ U(s1) ≥ L(s1) = lopt, which
contradicts L(s) �= lopt. ��

As every lower (resp., upper) optimal solution is optimal in the worst (resp. best)
scenario, then LO(P) ⊆ PO(P), U O(P) ⊆ PO(P), and these inclusions may be
strict, because there may be solutions that are optimal only in scenarios that are
different from the best and the worst scenario.

Proposition 6 Given an IVSCSP P, we have that LO(P) ∪ U O(P) ⊆ PO(P).

Proof Let s be a complete assignment to the variables of P.
LO(P) ⊆ PO(P). In fact, if s ∈ LO(P), then s is optimal in the worst scenario and

so s ∈ PO(P).
U O(P) ⊆ PO(P). In fact, if s ∈ U O(P), then s is optimal in the best scenario and

so s ∈ PO(P).
Therefore, LO(P) ∪ U O(P) ⊆ PO(P). ��

Therefore, the lower and upper optimality notions are stronger than the possible
optimality notion.

The lower and upper optimal assignments are also related to the necessarily and
possibly of at least preference α assignments as follows.

Author's personal copy

272 M. Gelain et al.

Proposition 7 Given an IVSCSP P and the optimal preference lopt of ws(P),

– Nec(P, α) �= ∅ if f α ≤ lopt;
– if α ≤ lopt, LO(P) ⊆ Nec(P, α);
– let α∗ be the maximum α such that there exists a solution in Nec(P, α), then α∗ =

lopt and Nec(P, α∗) = LO(P), and so Nec(P, α∗) ⊆ PO(P).

Proof Let us show the first item of the theorem. To show that Nec(P, α) �= ∅ iff
α ≤ lopt, we first prove that, if Nec(P, α) �= ∅, then α ≤ lopt. If Nec(P, α) �= ∅, then
there is a solution, say s, such that pref(Qi, s) ≥ α for every scenario Qi of P and
so also for the worst scenario. Hence, lopt ≥ pref(ws(P), s) ≥ α. Therefore, lopt ≥ α.
We now show that, if α ≤ lopt, then Nec(P, α) �= ∅. If Nec(P, α) = ∅, then for every
solution s we have that pref(Qi, s) < α for some scenario Qi. This holds also for any
solution, say s∗, such that pref(ws(P), s∗) = lopt, and so lopt = pref(ws(P), s∗) < α.

We now show the second item of the theorem: given α ≤ lopt, LO(P) ⊆
Nec(P, α). If LO(P) �⊆ Nec(P, α), then there is a solution, say s, such that s ∈
LO(P) \ Nec(P, α). Since s ∈ LO(P), pref(ws(P), s) = lopt. Since s �∈ Nec(P, α),
then pref(Qi, s) < α for some scenario Qi, and so, as ws(P) is the worst scenario,
lopt = pref(ws(P), s) ≤ pref(Qi, s) < α. Therefore, lopt < α.

We now show, by contradiction, that α∗ = lopt. If α∗ > lopt, then, by the previous
part of the proof, Nec(P, α∗) = ∅, that is a contradiction because α∗ is the maximum
α such that Nec(P, α) �= ∅. If α∗ < lopt, then α∗ is not the maximum α such that
Nec(P, α) �= ∅, since such a value is lopt, and so we have a contradiction.

We now prove that, if α∗ = lopt, then Nec(P, α∗) = LO(P). Let s be a com-
plete assignment to the variables of P. If s ∈ Nec(P, lopt), then for every sce-
nario Q, pref(Q, s) ≥ lopt and so also for the worst scenario. Therefore, as lopt

is the optimal preference of the worst scenario, s ∈ LO(P). If s ∈ LO(P), then
pref(ws(P), s) = lopt. Since for every scenario Q, pref(Q, s) ≥ pref(ws(P), s) = lopt,
then s ∈ Nec(P, lopt).

Since Nec(P, α∗) = LO(P) and since, by Proposition 6, LO(P) ⊆ PO(P), then
Nec(P, α∗) ⊆ PO(P). ��

Thus, in general, Nec(P, α) is not empty only if α is at most the optimal preference
of the worst scenario, and in such a case every lower-optimal solution is in Nec(P, α).
Moreover, if we consider a particular value of α, also the converse holds. Therefore,
in this case the necessarily of at least preference α solutions are lower-optimal
solutions and thus they are possibly optimal solutions.

Moreover, a solution is in Pos(P, α) only if α is at most the optimal preference of
the best scenario, and in such a case, for a particular value of α, the possibly of at
least preference α solutions coincide with the upper optimal solutions, and thus they
are possibly optimal solutions.

Proposition 8 Given an IVSCSP P and an assignment s to the variables of P,

– s is in Pos(P, α) if and only if α ≤ U(s);
– let α∗ be the maximum α such that Pos(P, α) is not empty, then Pos(P, α∗) =

U O(P), and so Pos(P, α∗) ⊆ PO(P).

Author's personal copy

Interval-valued soft constraint problems 273

Proof We first show that s is in Pos(P, α) if and only if α ≤ U(s). If s ∈ Pos(P, α),
then there is a scenario where pref(Q, s) ≥ α. By Theorem 1, we know that U(s) is
the highest preference associated to s in any scenario, then U(s) ≥ pref(Q, s) and so
U(s) ≥ α. If α ≤ U(s), then, by Theorem 1, there is a scenario Q, where pref(Q, s) =
U(s). Since U(s) ≥ α, then s ∈ Pos(P, α).

We now show that Pos(P, α∗) = U O(P). If s ∈ Pos(P, α∗), then there is a sce-
nario Q where pref(Q, s) ≥ α∗. Since α∗ is the maximum α such that Pos(P, α) �=
∅, then, α∗ = uopt, where uopt is the optimal preference in the best scenario.
Hence, s ∈ U O(P). If s ∈ U O(P), then pref(Q, s) = uopt, hence in the best scenario
pref(bs(P), s) = uopt and thus s ∈ Pos(P, α∗), where α∗ = uopt.

Since by Proposition 6, U O(P) ⊆ PO(P), then Pos(P, α∗) ⊆ PO(P). ��

5.4 Lower and upper lexicographically-optimal assignments

We now introduce two optimality notions that refine the lower and upper optimal
notions.

Definition 13 (Lower and upper lexicographically-optimal) Given an IVSCSP P =
〈V, D, C, S〉 and an assignment s to the variables in V, s is lower (resp., upper)
lexicographically-optimal iff, for every other complete assignment s′, either L(s) >

L(s′) (resp., U(s) > U(s′)), or L(s) = L(s′) and U(s) ≥ U(s′) (resp., U(s) = U(s′) and
L(s) ≥ L(s′)).

Lower (resp., upper) lexicographically-optimal assignments are those optimal
assignments of the worst scenario (resp., best scenario) that are the best ones in
the best scenario (resp., in the worst scenario). We denote with LLO(P) (resp.,
U LO(P)) the set of the lower (resp., upper) lexicographically-optimal assignments
of P. The IVSCSP P of Fig. 1 has LLO(P) = U LO(P) = {s1}.

Proposition 9 Given an IVSCSP P,

– LLO(P) ⊆ LO(P) and so LLO(P) is never empty;
– U LO(P) ⊆ U O(P) and so U LO(P) is never empty;
– I D(P) ⊆ (LLO(P) ∩ U LO(P)) = W I D(P).

Proof We show that LLO(P) ⊆ LO(P). The relation U LO(P) ⊆ U O(P) can be
shown similarly. If s ∈ LLO(P), then, by definition of LLO(P), L(s) > L(s′) or
(L(s) = L(s′) and U(s) ≥ U(s′)) for every other s′, hence L(s) ≥ L(s′) for every other
s′ and so s ∈ LO(P).

Since LLO(P) is contained in LO(P) and, by Proposition 5, LO(P) is never
empty, then LLO(P) is never empty. Similarly, it is possible to show that U LO(P)

is never empty.
We now prove that (LLO(P) ∩U LO(P)) = W I D(P). We first show that

(LLO(P) ∩U LO(P)) ⊆ W I D(P). If s ∈ (LLO(P) ∩ U LO(P)), then, by definition
of LLO(P), L(s) ≥ L(s′) for every other s′ and, by definition of U LO(P), U(s) ≥
U(s′) for every other s′, hence s ∈ W I D(P). We now show that W I D(P) ⊆
(LLO(P) ∩ U LO(P)). If s ∈ W I D(P), then, by definition of W I D(P), L(s) ≥ L(s′)
and U(s) ≥ U(s′) for every other s′. It could happen that (L(s) > L(s′) and U(s) >

U(s′)) or (L(s) > L(s′) and U(s) = U(s′)) or (L(s) = L(s′) and U(s) > U(s′)) or

Author's personal copy

274 M. Gelain et al.

(L(s) = L(s′) and U(s) = U(s′)) for every other s′. If L(s) > L(s′) and U(s) > U(s′)
for every other s′, then s ∈ LLO(P) ∩ U LO(P) by the first part of the definitions
of LLO(P) and U LO(P). If L(s) > L(s′) and U(s) = U(s′) for every other s′, then
s ∈ LLO(P) ∩ U LO(P) by the first part of the definition of LLO(P) and by the
second part of the definition of U LO(P). If L(s) = L(s′) and U(s) > U(s′) for
every other s′, then s ∈ LLO(P) ∩ U LO(P) by the second part of the definition
of LLO(P) and by the first part of the definition of U LO(P). If L(s) = L(s′) and
U(s) = U(s′) for every other s′, then s ∈ LLO(P) ∩ U LO(P) by the second part of
the definitions of LLO(P) and U LO(P). ��

Since lower and upper lexicographically-optimal solutions are refinements of
lower and upper optimal solutions, they are possibly optimal solutions as well.
However, the converse does not hold in general.

Proposition 10 Given an IVSCSP P, (LLO(P) ∪ U LO(P)) ⊆ PO(P).

Proof We know, by Proposition 9, that LLO(P) ⊆ LO(P) and U LO(P) ⊆ U O(P).
Since, by Proposition 6, LO(P) and U O(P) are contained PO(P), then also
LLO(P) and U LO(P) are contained in PO(P). ��

5.5 Interval-optimal assignments

Until now we have considered optimality notions that are stronger than the possibly
optimal notion. In the attempt to fully characterize possibly optimal solutions, we
now consider an interval-based optimality notion that is weaker than the lower and
upper optimality notions.

Definition 14 (interval-optimal) Given an IVSCSP P = 〈V, D, C, S〉 and an assign-
ment s to the variables in V, s is defined to be interval-optimal iff, for every other
complete assignment s′, L(s) ≥ L(s′) or U(s) ≥ U(s′).

An interval-optimal assignment is a complete assignment with either a higher or
equal lower bound, or a higher or equal upper bound, w.r.t. all other assignments.
This means that, for every other complete assignment, it must be better than, or equal
to it in either the worst or the best scenario. We denote with IO(P) the set of the
interval optimal assignments of P. The IVSCSP P of Fig. 1 has IO(P) = {s1, s2, s4}.

Proposition 11 Given an IVSCSP P, (U O(P) ∪ LO(P)) ⊆ IO(P) and so IO(P) is
never empty.

Proof Let s be a complete assignment to the variables of P. Suppose that s ∈
U O(P) ∪ LO(P). There are two cases, (i) s ∈ U O(P), and (ii) s ∈ LO(P). Suppose
(i) that s ∈ U O(P). Then U(s) ≥ U(s′) for every other complete assignment s′ and
so s ∈ IO(P). Similarly, (ii) if s ∈ LO(P) then L(s) ≥ L(s′) for every other s′, hence
s ∈ IO(P).

Since (U O(P) ∪ LO(P)) ⊆ IO(P) and, by Proposition 5, LO(P) and U O(P) are
never empty, then IO(P) is never empty. ��

Author's personal copy

Interval-valued soft constraint problems 275

The interval-optimal solutions are possibly optimal solutions, but the converse
does not hold in general, as shown in the following proposition. Therefore, also the
interval-optimality notion is stronger than the possible optimality notion.

Proposition 12 Given an IVSCSP P, if the c-semiring is strictly monotonic or idem-
potent, then IO(P) ⊆ PO(P). Moreover, PO(P) �⊆ IO(P).

Proof Let s be a complete assignment to the variables of P.
Let us consider a strictly monotonic c-semiring. We know, by Theorem 10, that

s ∈ PO(P) iff s ∈ Opt(Qs), where Qs is the scenario where all the preferences of
tuples in s are set to their upper bound and all other tuples are associated to the lower
bound of their preferences. We now show that, if s ∈ IO, then s ∈ Opt(Qs) and so,
by Theorem 10, s ∈ PO(P). Assume that s �∈ Opt(Qs), we will show that s �∈ IO(P).
If s �∈ Opt(Qs), then there is a solution s′ such that pref(Qs, s′) > pref(Qs, s).

– If s has no tuples in common with s′, then, by construction of Qs, pref(Qs, s′) =
L(s′) and pref(Qs, s) = U(s). Since pref(Qs, s′) > pref(Qs, s), and for every so-
lution its lower bound is lower than or equal to its upper bound, then U(s′) ≥
L(s′) > U(s) ≥ L(s) and so U(s′) > U(s) and L(s′) > L(s), that implies that
s �∈ IO(P).

– If s has some tuple in common with s′, then, pref(Qs, s′) = λ × u, and
pref(Qs, s) = μ × u, where λ (resp., μ) is the combination of the preferences
of the tuples that are in s′ but not in s (resp., in s but not in s′), and u is the
combination of the preferences of the tuples that are both in s and in s′. By
hypothesis, pref(Qs, s′) > pref(Qs, s), i.e., λ × u > μ × u. By construction of Qs,
U(s′) ≥ λ × u > μ × u = U(s), and so U(s′) > U(s). Moreover, since the combi-
nation operator is monotonic, if λ × u > μ × u, then λ > μ. In fact, if λ ≤ μ, by
monotonicity, λ × u ≤ μ × u. Let us denote with u′ (resp., μ′) the combination
of the lower bounds of the preferences of the tuples that are both in s and in
s′ (resp., in s but not in s′). Then, by strict monotonicity and by construction of
Qs, L(s′) = λ × u′ > μ × u′ ≥ μ′ × u′ = L(s), and so L(s′) > L(s). Therefore, if
s has some tuple in common with s′, then U(s′) > U(s) and L(s′) > L(s), i.e.,
s �∈ IO(P).

Let us now consider an idempotent c-semiring. We want to show that if s ∈ IO(P),
then s ∈ PO(P). We will show that, if s ∈ IO(P), then s ∈ Opt(Q∗), where Q∗ is
the scenario such that all the preferences of the tuples of s are set to U(s), if U(s)
is contained in their preference interval, and to their upper bound, if U(s) is not
contained in their preference interval, and all other tuples are associated to the
lower bound of their preferences. First, we show that pref(Q∗, s) = U(s). Then, we
show that pref(Q∗, s) ≥ pref(Q∗, s′), for every other solution s′ that has no tuples in
common with s and for every solution s′ that has some tuple in common with s.

– pref(Q∗, s) = U(s), by construction of Q∗, by Theorem 1 and by idempotency.
In fact, by Theorem 1, pref(Q∗, s) ≤ U(s). Moreover, pref(Q∗, s) �< U(s). In fact,
we now show that pref(Q∗, s) is given by the combination of the preferences that
are all greater than or equal to U(s). By construction of Q∗ we have two results.
(1) Every tuple of s in Q∗ with preference interval that contains U(s) is assigned
to U(s) and, by definition of U(s) and by idempotency, there must be at least
one of these preferences. (2) Every tuple with preference interval that does not

Author's personal copy

276 M. Gelain et al.

contain U(s) is assigned to its upper bound that must be a value greater than
U(s), since, by definition of U(s), the upper bound of every tuple of s must be
greater than or equal to U(s), otherwise the upper bound of s is not U(s) but a
value lower than U(s), that is a contradiction. Therefore, pref(Q∗, s) �< U(s) and
so pref(Q∗, s) = U(s).

– If s has no tuples in common with s′, then, by construction of Q∗, pref(Q∗, s′) =
L(s′) and pref(Q∗, s) = U(s). Since s ∈ IO(P), then L(s) ≥ L(s′) or U(s) ≥
U(s′). If L(s) ≥ L(s′), then pref(Q∗, s) = U(s) ≥ L(s) ≥ L(s′) = pref(Q∗, s′). If
U(s) ≥ U(s′), then pref(Q∗, s) = U(s) ≥ U(s′) ≥ L(s′) = pref(Q∗, s′).

– If s has some tuple in common with s′, then, by construction of Q∗ pref(Q∗, s′) ≤
U(s) = pref(Q∗, s).

Therefore, for every solution s′, pref(Q∗, s′) ≤ U(s) = pref(Q∗, s). Hence, s is
optimal in Q∗ and so s ∈ PO(P).

PO(P) �⊆ IO(P). In fact, assume to have an IVSCSP over a fuzzy c-semiring,
where there is only one variable x with three values in its domain, say x1, x2, and x3,
with preference intervals respectively [0.4, 0.6], [0.5, 0.7], and [0.5, 0.8]. Then, x1 �∈
IO(P), because L(x1) < L(x2) and U(x1) < U(x2). However, x1 ∈ PO(P), because
x1 is optimal in the scenario where we associate to x1 the value 0.6 and to x2 and x3

the value 0.5. ��

5.6 Summary of the various notions of optimality and of their relations

The various notions of optimality defined above are summarized in Table 1. For each
notion, we refer to a solution s and we describe compactly when s belongs to each of
the optimality sets.

The set-based relations between the various optimality notions are described in
Fig. 3.

5.7 An example: meeting scheduling problems

To better explain how to use the various optimality notions introduced in the
previous sections, we consider an example of a class of problems, related to meeting

Table 1 Optimality notions

Optimality notions Def inition

NO(P) s ∈ Opt(Q), ∀Q ∈ Sc(P)

PO(P) s ∈ Opt(Q), ∃Q ∈ Sc(P)

Nec(P, α) pref (Q, s) ≥ α, ∀Q ∈ Sc(P)

Pos(P, α) pref (Q, s) ≥ α, ∃Q ∈ Sc(P)

I D(P) L(s) ≥ U(s′), ∀s′ ∈ Sol(P)

W I D(P) L(s) ≥ L(s′) and U(s) ≥ U(s′), ∀s′ ∈ Sol(P)

LO(P) L(s) ≥ L(s′), ∀s′ ∈ Sol(P)

U O(P) U(s) ≥ U(s′), ∀s′ ∈ Sol(P)

LLO(P) L(s) > L(s′) or (L(s) = L(s′) and U(s) ≥ U(s′)), ∀s′ ∈ Sol(P)

U LO(P) U(s) > U(s′) or (U(s) = U(s′) and L(s) ≥ L(s′)), ∀s′ ∈ Sol(P)

IO(P) L(s) ≥ L(s′) or U(s) ≥ U(s′), ∀s′ ∈ Sol(P)

Author's personal copy

Interval-valued soft constraint problems 277

Fig. 3 Relation among
optimality sets

scheduling. The meeting scheduling problem is a benchmark for CSPs [13], and we
have adapted it to allow also for preference intervals.

A meeting scheduling problem (MSP) is informally the problem of scheduling
some meetings by allowing the participants to attend all the meetings they are
involved in. More formally, a MSP can be described by

– a set of agents;
– a set of meetings, each with a location and a duration;
– a set of time slots where meetings can take place;
– for each meeting, a subset of agents that are supposed to attend such a meeting;
– for each pair of locations, the time to go from one location to the other one.

Typical simplifying assumptions concern having the same duration for all meetings
(one time slot), and the same number of meeting for each agent. To solve a MSP, we
need to allocate each meeting in a time slot in a way that each agent can participate
in his meetings. The only way that an agent cannot participate has to do with the time
needed to go from the location of a meeting to the location of his next meeting.

The MSP can be easily seen as a CSP: variables represent meetings and variable
domains represent all time slots. Each constraint between two meetings model the
fact that one or more agents must participate in both meetings, and it is satisfied by
all pairs of time slots that allow the participation to both meetings according to the
time needed to pass between the corresponding locations. For this reason, it is often
used as a typical benchmark for CSPs.

For our purposes, we consider a generalization of the MSP, called IVMSP, where
there is a chair, who is in charge of the meeting scheduling, and who declares his
preferences over the variable domains and over the compatible pairs of time slots
in the binary constraints. The preferences over the variable domains can model the
fact that the chair prefers some time slots to others for a certain meeting. On the
other hand, the preferences in the binary constraints can model a preference for
certain feasible pairs of time slots, over others, for the two meetings involved in the
constraint.

Such preferences can be exact values when the chair works with complete informa-
tion. However, at the time the meeting scheduling has to be done, it may be that some
information, useful for deciding the preferences, is still missing. For example, the
chair could have invited agents to meetings, but he does not yet know who will accept

Author's personal copy

278 M. Gelain et al.

his invitations. As other examples, weather considerations or the presence of other
events in the same time slots may affect the preferences. Because of this uncertainty,
some preferences may be expressed by using an interval of values, which includes all
preference values that are associated to all possible outcomes of the uncertain events.

Since MSPs can be expressed as CSPs, it is thus clear that IVMSPs can be
expressed as IVSCSPs. The problem of solving an IVMSP concerns finding time slots
for the meetings such that all agents can participate and, among all possible solutions,
to choose an optimal one according to some optimality criteria. We will now consider
several of the optimality notions defined above and describe their use in this class of
problems.

In this context, given an IVMSP P, necessarily optimal solutions (i.e., solutions in
NO(P)) are meeting schedulings that are optimal no matter how the uncertainty is
resolved. Thus, if there is at least one of such solutions, this is certainly preferred to
any other. By working with the optimality notions defined over intervals, to find a
solution in NO(P), we may try to find a solution in I D(P), given that solutions in
I D(P), if any, coincide with solutions in NO(P). Otherwise, if I D(P) is empty, and
given that NO(P) is included in W I D(P), we may look for a solution in W I D(P).
We recall that solutions in I D(P) are meeting schedulings where the preference
interval of the optimal solution is above the preference intervals of all other solutions,
while solutions in W I D(P) have the upper bound of their preference interval above
the upper bounds of the preference intervals of all other solutions, and the same for
the lower bound.

Solutions in Nec(P, α∗) are also attractive, because they guarantee a preference
level of α∗ in all scenarios. Since LO = Nec(P, α∗), we may find a solution in LO(P),
that is, a solution which is optimal in the worst scenario. This solution will guarantee
the chair against the uncertainty of the problem by assuring a certain level of overall
preference. This notion can be useful if the chair is pessimistic, because such solutions
provide a preference guarantee over all scenarios. However, such a guaranteed
preference level may be very low.

If instead the chair is optimistic, he may ask for a solution in Pos(P, α∗), that
is, a solution with the highest preference level in some scenario. Since U O(P) =
Pos(P, α∗), we may find a solution in U O(P), that is, a solution which is optimal in
the best scenario.

When looking for solutions in LO(P) and U O(P), we may want to be as close as
possible to solutions in NO(P), as NO(P) is included in LO(P) and U O(P). To do
this, we can try to find solutions in LLO(P) or U LO(P), respectively. For example,
solutions in LLO(P) are solutions in LO(P) that have the highest upper bound
of their preference interval. This means that, depending on how the uncertainty is
resolved, they give more hope of achieving a higher level of preference.

6 Finding and testing interval-based optimal assignments

In this section we analyze how to determine if a complete assignment is one of the
different kinds of optimal assignments previously defined in Section 5, and how to
find such optimal assignments. These results will be useful to find and test possibly
and necessarily optimal solutions.

Author's personal copy

Interval-valued soft constraint problems 279

6.1 Lower and upper optimal assignments

It is easy to show that, by following directly the definitions of lower and upper
optimal assignments, the lower (resp., upper) optimal solutions coincide with the
optimal elements of the worst (resp., best) scenario.

Theorem 2 Given an IVSCSP P, LO(P) = Opt(ws(P)) and U O(P) = Opt(bs(P)).

Proof We show that LO(P) = Opt(ws(P)). Let s be a solution of P. If s ∈ LO(P),
then L(s) ≥ L(s′) for every other solution s′, hence if we consider ws(P), i.e.,
the worst scenario of P, that is the scenario where we fix all the preference
intervals to their lower bound, then pref(ws(P), s) = L(s) and so pref(ws(P), s) ≥
pref(ws(P), s′) for every other solution s′, hence s ∈ Opt(ws(P)). If s ∈ Opt(ws(P)),
then pref(ws(P), s) ≥ pref(ws(P), s′) for every other solution s′ of P, that is, by
definition of worst scenario, L(s) ≥ L(s′) for every s′ and so s ∈ LO(P). Similarly,
it is possible to show that U O(P) = Opt(bs(P)). ��

A lower-optimal solution is a complete assignment whose lower bound is greater
than or equal to the lower bound of every other complete assignment. Thus, it is
a complete assignment that is better than or equal to all other assignments in the
scenario obtained by replacing every interval with its lower bound, i.e., the worst
scenario.

Thus, finding a lower-optimal (resp. upper-optimal) solution is as complex as
solving an SCSP. This holds also for testing if an assignment s is in LO(P) (resp.
in U O(P)), since it is enough to solve the SCSP representing the worst or the best
scenario and to check if the preference of the optimal solution coincides with L(s)
(resp. U(s)).

6.2 Interval optimal assignments

To find an interval optimal assignment, it is sufficient to find a lower-optimal
solution or an upper-optimal solution, because (U O(P) ∪ LO(P)) ⊆ IO(P), and
neither U O(P) nor LO(P) can be empty. Thus, finding assignments of IO(P) can
be achieved by solving an SCSP.

To test if a solution is interval optimal, if the c-semiring is idempotent, we
can exploit the preference levels of the best and worst scenarios, as stated by the
following theorem.

Theorem 3 Given an IVSCSP P def ined over an idempotent c-semiring, and an
assignment s, we have s ∈ IO(P) if f the CSP obtained by joining1 scutL(s)(ws(P)) and
scutU(s)(bs(P)) has no solution.

Proof Let us denote with Q the CSP defined in the theorem. We first show that, if
Q has no solution, then s ∈ IO(P). Suppose that s /∈ IO(P). Then there exists some

1The join of two CSPs P1 and P2 is the CSP whose set of variables (resp., constraints) is given by the
union of the sets of variables (resp., constraints) of P1 and P2.

Author's personal copy

280 M. Gelain et al.

complete assignment s′ with L(s′) > L(s) and U(s′) > U(s). Then pref (ws(P), s′) =
L(s′) > L(s) and pref (bs(P), s′) = U(s′) > U(s), so s′ is a solution of Q. We now
show that, if s ∈ IO(P), then Q has no solution. If Q has a solution, say s∗, then, by
definition of Q, L(s∗) > L(s) and U(s∗) > U(s), and so s �∈ IO(P). ��

In fact, all and only the solutions of such a CSP strictly dominate s with respect to
both the lower and the upper bound. Thus, testing membership in IO(P) when the
semiring is idempotent amounts to solving a CSP.

More generally (that is, even if the combination operator is not idempotent), we
can test interval optimality by checking if a suitably defined SCSP has solutions with
preference above certain threshold.

Theorem 4 Given an IVSCSP P and an assignment s, let lopt and uopt be the optimal
preferences of the worst and best scenario. Then, s ∈ IO(P) if f at least one of the
following conditions holds: (1) L(s) = lopt; (2) U(s) = uopt; (3) the SCSP Q with the
same variables, domains, and constraint topology as P, def ined on the c-semiring
〈(A × A), (+, +), (×,×), (0, 0), (1, 1)〉, where the preference of each tuple in each
constraint is set to the pair containing the lower and upper bound of its interval
in P, has no solution s′ with preference pair (L(s′), U(s′)) pointwise greater than
(L(s), U(s)), i.e., such that L(s′) > L(s) and U(s′) > U(s).

Proof We first show that if L(s) = lopt, U(s) = uopt, or Q has no solution with
preference greater than (L(s), U(s)), then s ∈ IO(P). If L(s) = lopt (resp., U(s) =
uopt), then L(s) ≥ L(s′) (resp., U(s) > U(s′)) for every other solution s′, hence s ∈
LO(P) (resp., s ∈ U O(P)) and so, since LO(P) ∪ U O(P) ⊆ IO(P), s ∈ IO(P). If
Q has no solution with preference greater than (L(s), U(s)), then s ∈ IO(P). In fact,
if s �∈ IO(P), then there is a solution, say s∗, such that L(s∗) > L(s) and U(s∗) > U(s),
and so Q has a solution with preference greater than (L(s), U(s)).

We now show, that if s ∈ IO(P), then L(s) = lopt, U(s) = uopt, or Q has no solution
with preference greater than (L(s), U(s)). If L(s) �= lopt, U(s) �= uopt and Q has a
solution s∗ with preference greater than (L(s), U(s)), then, by definition of Q, the
preference of (L(s∗), U(s∗)) is greater than the preference of (L(s), U(s)), hence
L(s∗) > L(s) and U(s∗) > U(s) and so s �∈ IO(P). ��

The first two conditions simply check if s is either lower or upper optimal. The
second condition is satisfied when there is no solution better than s on both bounds.
Notice that this can be checked for example by running branch and bound on Q with
a strict bound equal to (L(s), U(s)). Therefore, testing membership in IO(P) with
any c-semiring can be achieved by solving at most three SCSPs.

6.3 Lower and upper lexicographically optimal assignments

To find the lower-lexicographically optimal solutions of an IVSCSP P we consider
the optimal solutions of a suitable SCSP, as described by the following theorem.

Theorem 5 Given an IVSCSP P over a strictly monotonic c-semiring S, let us
consider the SCSP Q with the same variables, domains, and constraint topology as
P, and def ined over the c-semiring 〈A × A, maxlex, (×,×), (0, 0), (1, 1)〉. The binary

Author's personal copy

Interval-valued soft constraint problems 281

operation maxlex is def ined to be the maximum with respect to the ordering �lex def ined
as follows: for each (a, a′), (b , b ′) ∈ (A × A), (a, a′) �lex (b , b ′) if f a >S b or a = b
and a′ ≥S b ′. For each tuple in each constraint of Q, its preference is set to the pair
containing the lower and upper bound of its interval in P. Then, LLO(P) = Opt(Q).

Proof We first show that LLO(P) ⊆ Opt(Q). If s ∈ LLO(P), then s ∈ Opt(Q). In
fact, if s �∈ Opt(Q), then, there is a solution, say s′, of Q such that pref(Q, s′) >

pref(Q, s), that is, by definition of preference given in the theorem, (L(s′), U(s′)) �lex

(L(s), U(s)), that is, by definition of �lex, either L(s′) > L(s) or (L(s′) = L(s) and
U(s′) > U(s)), and so s �∈ LLO(P).

We now show that Opt(Q) ⊆ LLO(P). If s ∈ Opt(Q), then pref(Q, s′) ≥
pref(Q, s), for every s′, that is, (L(s′), U(s′)) �lex (L(s), U(s)), for every other s′, that
is, for every other s′, either L(s′) > L(s) or (L(s′) = L(s) and U(s′) ≥ U(s)), and so
s ∈ LLO(P).

Note that the assumption of strict monotonicity of S guarantees that the structure
defined in the theorem 〈A × A, maxlex, (×,×), (0, 0), (1, 1)〉 is a c-semiring. If we
don’t make this assumption, then distributivity property does not hold and so the
structure above is not a c-semiring. ��

In words, the first component of the pairs in the semiring of Theorem 5 is
the most important, and the second one is used to break ties. To find the upper-
lexicographically optimal solutions, it is sufficient to consider the same SCSP as
defined above except for the ordering which considers the second component as the
most important. Thus, finding assignments in LLO(P) and U LO(P) can be achieved
by solving one SCSP.

To test if a solution s is in LLO(P), it is enough to find the preference pair,
say (p1, p2), of an optimal solution of the SCSP defined above and to check if
(L(s), U(s)) = (p1, p2). Similarly to test if a solution is in U LO(P).

6.4 Weakly interval dominant assignments

We know that W I D(P) = LO(P) ∩ U O(P). Thus a straightforward, but costly, way
to find a solution in W I D(P) is to compute all the optimal solutions of the best and
the worst scenario and to check if there is a solution in the intersection of the two
sets. However, if the c-semiring is idempotent, this is not necessary, as shown by the
following theorem.

Theorem 6 Given an IVSCSP P def ined over an idempotent c-semiring, and lopt and
uopt as def ined above, an assignment s is in W I D(P) if f it is a solution of the CSP
obtained by joining cutlopt (ws(P)) and cutuopt (bs(P)).

Proof Let us denote with Q the CSP described in the theorem. We first show that, if
s is a solution of Q, then s ∈ W I D(P). If s is a solution of Q, then, by definition of Q,
s is a solution of the CSP cutlopt (ws(P)) obtained from the worst scenario by allowing
only the tuples with preference greater than or equal to lopt, hence, by definition of
lopt, L(s) ≥ L(s′) for every other solution s′. Moreover, by definition of Q, s is also a
solution of the CSP cutuopt (bs(P)) obtained from the best scenario by allowing only
the tuples with preferences greater than or equal to uopt. Hence, by the definition of

Author's personal copy

282 M. Gelain et al.

uopt, U(s) ≥ U(s′), for every other s′. Therefore, if s is a solution of Q, then L(s) ≥
L(s′) and U(s) ≥ U(s′) for every other s′, and so s ∈ W I D(P).

We now show that, if s ∈ W I D(P), then s is a solution of Q. If s is not a solution
of Q, then L(s) < lopt or U(s) < uopt. If L(s) < lopt (resp., U(s) < uopt), then L(s) <

L(s′) (resp., U(s) < U(s′)) for any solution s′ such that pref(ws(P), s′) = lopt (resp.,
pref(bs(P), s′) = uopt). Therefore, s �∈ W I D(P). ��

In words, any solution of the join CSP is optimal both in the worst and in the
best scenario and this implies that it is undominated on both bounds. Thus, if the
c-semiring is idempotent, finding a weakly interval dominant solution amounts to
solving two SCSPs and one CSP. Moreover, to test whether a solution s is in W I D(P),
it is sufficient to check if L(s) = lopt and U(s) = uopt, which amounts to solving two
SCSPs.

6.5 Interval dominant assignments

To find an assignment in I D(P), we can use Proposition 5. Thus, if lopt = uopt, then it
is sufficient to find a lower-optimal solution. If instead lopt < uopt then, if |U O(P)| ≥
2, then we know that I D(P) = ∅. Moreover, if |U O(P)| = 1 (let us call s this single
solution), if L(s) �= lopt then we know that I D(P) = ∅.

If the c-semiring is idempotent, cuts can be exploited in the same style as above,
to build a suitably defined CSP, leading to a sound and complete procedure to find
an assignment, if any, in I D(P).

Theorem 7 Given an IVSCSP P over an idempotent c-semiring, and lopt as def ined
above, if scutlopt (bs(P)) has no solution, then I D(P) = LO(P). If scutlopt (bs(P)) has
one solution, say s, and L(s) = lopt, then this solution is the only one in I D(P).
Otherwise, I D(P) = ∅.

Proof Let us denote with Q the CSP scutlopt (bs(P)). We first show that if Q has
no solution, then I D(P) = LO(P). If Q has no solution, then, since Q is the CSP
obtained by the best scenario by allowing only tuples with preference greater than
lopt, there is no solution with upper bound greater than lopt, that is, for all the solutions
s′ of P, lopt ≥ U(s′). To show that I D(P) = LO(P) it is sufficient to show that
LO(P) ⊆ I D(P), since Theorem 2 implies that I D(P) ⊆ LO(P). Let s be a solution
of P. If s ∈ LO(P), then L(s) = lopt and thus, by the reasoning above, L(s) ≥ U(s′)
for every other s′, hence s ∈ I D(P).

If Q has a solution, say s, then U(s) > lopt ≥ L(s′) for all solutions s′, and so I D(P)

is either empty or equal to {s}. Therefore if Q has more than one solution then I D(P)

is empty. Suppose that Q has exactly one solution, s. If L(s) < lopt then L(s) < L(s′)
for any solution s′ with L(s′) = lopt, and so L(s) < U(s′), which implies that s /∈ I D(P)

and so I D(P) = ∅. If L(s) = lopt then for any other solution s′ we have U(s′) ≤ lopt

(since Q has only one solution), and so L(s) ≥ U(s′) which implies that s ∈ I D(P)

and so I D(P) = {s}. ��

Performing a strict cut of the best scenario at the optimal level of the worst
scenario means isolating solutions that have an upper bound higher than lopt. If
there is no such solution, then the upper bound of the lower-optimal solutions must

Author's personal copy

Interval-valued soft constraint problems 283

coincide with their lower bound (lopt). Thus, lower-optimal solutions coincide with
interval dominant solutions. If, instead, such a CSP has only one solution, all other
solutions must have an upper bound which is at most lopt. This means that, if this
solution is also lower-optimal, then it is the only interval dominant solution. Finally,
if there is more than one solution with an upper bound above lopt, then there cannot
be any solution whose lower bound dominates the upper bound of all others and,
thus, I D(P) is empty.

Summarizing, when the c-semiring is idempotent, to find a solution in I D(P) we
need to solve an SCSP and then one CSP. Proposition 5 and Theorem 7 can also be
used to test if a solution is interval dominant.

7 Finding and testing necessarily optimal and possibly optimal assignments

We will now show how to test if an assignment is possibly or necessarily optimal (or
of at least preference α) and how to find these kinds of assignments. To do that, we
will exploit the relation between possibly and necessarily optimal assignments and
the various kinds of interval-based optimal assignments, shown in Section 5.

7.1 Necessarily optimal solutions

To find a necessarily optimal solution, we exploit the results shown in Propositions 2
and 4 (i.e., if I D(P) �= ∅ then NO(P) = I D(P), and I D(P) ⊆ NO(P) ⊆ W I D(P)),
and thus we perform the following steps:

1. If I D(P) �= ∅, then return s ∈ I D(P);
2. If W I D(P) = ∅, then NO(P) = ∅;
3. Otherwise, return the first solution in W I D(P) that is necessarily optimal. If

none, NO(P) = ∅
Testing if a solution is necessarily optimal when I D(P) �= ∅ coincides with testing

if it is in I D(P). Otherwise, we need to test if it is an optimal solution of some suitably
defined SCSPs, as shown by the following theorem.

Theorem 8 Consider an IVSCSP P and an assignments s. Let Qs (resp., Qs) be the
scenario where every preference associated to a tuple of s is set to its lower bound (resp.,
upper bound) and the preferences of all other tuples are set to their upper bound (resp.,
lower bound). The following results hold:

– If s ∈ NO(P), then s ∈ Opt(Qs). Moreover, if the c-semiring is strictly monotonic,
the converse holds as well: s ∈ NO(P) ⇐⇒ s ∈ Opt(Qs).

– If s ∈ NO(P) then, for every s′, s ∈ Opt(Qs′
). If the c-semiring is idempotent, the

converse holds as well: s ∈ NO(P) ⇐⇒ for every s′, s ∈ Opt(Qs′
).

Proof We first show that, if s ∈ NO(P), then s ∈ Opt(Qs). If s ∈ NO(P), then it is
optimal in all scenarios and so also in Qs.

We now show that, if the c-semiring is strictly monotonic and if s ∈ Opt(Qs), then
s ∈ NO(P). If s ∈ Opt(Qs), then pref(Qs, s) ≥ pref(Qs, s′) for every other solution
s′. For every other s′, let λ (resp., μ) be the combination of the preference values of
tuples associated to s but not to s′ (resp., associated to s′ but not to s) in Qs, and let

Author's personal copy

284 M. Gelain et al.

u be the combination of the preference values of tuples associated to both s and s′
in Qs. Since, for every s′, pref(Qs, s) ≥ pref(Qs, s′), then for every s′, λ × u ≥ μ × u
that implies that λ ≥ μ. In fact, if λ < μ, then, by strict monotonicity of ×, then
λ × u < μ × u. For every scenario Qi, for every s′, let λi (resp., μi) be the combination
of the preference values of tuples associated to s′ but not to s (resp., associated to s′
but not to s) in Qi and let ui be the combination of the preference values of tuples
associated to both s and s′ in Qi. Since Qs is the least favorable scenario for s, then for
every scenario Qi, λi × u ≥ λ × u that implies λi ≥ λ. In fact, if λi < λ, then, by strict
monotonicity, λi × u < λ × u. Since Qs is the most favorable scenario for the tuples
in s′ but not in s, then μ ≥ μi for every scenario Qi. Therefore, for every scenario
Qi, for every s′, we have that λ ≥ μ, λi ≥ λ and μ ≥ μi, hence, by monotonicity,
pref(Qi, s) = λi × ui ≥ λ × ui ≥ μ × ui ≥ μi × ui = pref(Qi, s′), hence s is optimal in
every scenario and so s ∈ NO(P).

If s ∈ NO(P), then s is optimal in all the scenarios and so, for every s′, s is
optimal in Qs′

. If the c-semiring is idempotent and, for every s′, s ∈ Opt(Qs′
), then

s ∈ NO(P). In fact, assume that s �∈ NO(P), then there is a scenario Q, where s is
not optimal, i.e., there is s′ such that pref(Q, s) < pref(Q, s′). We want to show that
this holds also in the scenario Qs′

. If we consider the scenario Q1 obtained from
Q by putting the preference value of any tuple that is in s but not in s′ to its lower
bound, then, the preference of s decreases or remains the same, by monotonicity, and
the preference of s′ does not change. Hence, pref(Q1, s) ≤ pref(Q, s) < pref(Q, s′) =
pref(Q1, s′), and so pref(Q1, s) < pref(Q1, s′). If we consider the scenario Q2 ob-
tained from Q1 by setting the preference value of any tuple that is in s′ but not
in s to its upper bound, then the preference of s′ increases or remains the same,
by monotonicity, and the preference of s does not change. Hence, pref(Q2, s) =
pref(Q1, s) < pref(Q1, s′) ≤ pref(Q2, s′) and so pref(Q2, s) < pref(Q2, s′). If we con-
sider the scenario obtained from Q2 by setting the preference value of the tuples that
are in s and s′ to their upper bound, then we have the scenario Qs′

. The preferences
of the tuples that are in s and s′ does not modify pref(Q2, s) and pref(Q2, s′). In
fact, since the c-semiring is idempotent, then pref(Q2, s) (resp., pref(Q2, s′)) is given
by the tuple with the worst preference of s (resp., s′), and, since pref(Q2, s) <

pref(Q2, s′), pref(Q2, s) and pref(Q2, s′) must be given by different tuples, oth-
erwise pref(Q2, s) = pref(Q2, s′). Hence, pref(Qs′

, s) = pref(Q2, s) < pref(Q2, s′) =
pref(Qs′

, s). Therefore, there is a solution s′ such s′ �∈ Opt(Qs′
). ��

The intuition behind this theorem is that, in order for a solution to be necessarily
optimal, it must be optimal also in its least favorable scenario, when the c-semiring
is strictly monotonic, and it must be optimal in the most favorable scenario of every
other solution, when the c-semiring is idempotent.

7.2 Necessarily of at least preference α solutions

By Proposition 7, we know that s ∈ Nec(P, α) if and only if α ≤ L(s). Thus, testing
whether a solution s is in Nec(P, α) amounts at checking this condition that takes
linear time.

To find a solution in Nec(P, α), we know, by Proposition 7, that Nec(P, α) is not
empty only if α is at most the optimal preference of the worst scenario, and in such a
case any lower-optimal solution is in Nec(P, α). This amounts to solving one SCSP.

Author's personal copy

Interval-valued soft constraint problems 285

However, if the c-semiring is idempotent, it is sufficient to solve one CSP, as shown
by the following theorem.

Theorem 9 Given an IVSCSP P, if the c-semiring is idempotent, then Nec(P, α)

coincides with the set of solutions of cutα(ws(P)).

Proof Let us denote with SL the set of the solutions of cutα(ws(P)). We first
show that Nec(P, α) ⊇ SL and then we show that Nec(P, α) ⊆ SL. Let be s a
solution of P. If s ∈ SL, then, since cutα(ws(P)) is the CSP obtained from the
worst scenario of P by allowing only tuples with preference greater than or equal
to α, pref(ws(P), s) ≥ α, by idempotence. Since ws(P) is the worst scenario of P,
then pref(Qi, s) ≥ pref(ws(P), s) ≥ α for every scenario Qi and so s ∈ Nec(P, α).
Therefore, Nec(P, α) ⊇ SL. If s ∈ Nec(P, α), then pref(Qi, s) ≥ α for every scenario
Qi and so also for the worst scenario. Hence, pref(ws(P), s) ≥ α and so, by definition
of cutα(ws(P)), s ∈ SL. Therefore, Nec(P, α) ⊆ SL. ��

By Proposition 7, we know that Nec(P, α∗) = LO(P). Therefore, to find a solution
in Nec(P, α∗), it is sufficient to find a solution of the worst scenario, and thus to solve
one SCSP.

7.3 Possibly optimal solutions

To find a solution in PO(P), we can observe that LO(P), U O(P), LLO(P), and
U LO(P) are all contained in PO(P) (Propositions 6 and 10) and they are never
empty (Propositions 5 and 9).

To test if a solution is in PO(P), it is sufficient to test if s is optimal in one of the
two scenarios defined in the following theorem. This amounts to solving an SCSP.

Theorem 10 Given an IVSCSP P and an assignment s to the variables of P, let Qs be
the scenario where all the preferences of tuples in s are set to their upper bound and all
other tuples are associated to the lower bound of their preferences, and let Q∗ be the
scenario where all the preferences of the tuples of s are set to U(s), if U(s) is contained
in their preference interval, and to their upper bound otherwise, and all other tuples
are associated to the lower bound of their preferences. Then,

– if the c-semiring is strictly monotonic, s ∈ PO(P) ⇐⇒ s ∈ Opt(Qs);
– if the c-semiring is idempotent, s ∈ PO(P) ⇐⇒ s ∈ Opt(Q∗).

Proof We first show that, if s ∈ Opt(Qs), then s ∈ PO(P). If s ∈ Opt(Qs), then s
is optimal in the scenario Qs, and so s ∈ PO(P). We now show that, if s ∈ PO(P)

then s ∈ Opt(Qs). If s ∈ PO(P), then there is a scenario, say Qi, where s is optimal,
that is, pref(Qi, s) ≥ pref(Qi, s′), for every other solution s′. Assume to use the same
notations used in the proof of Theorem 8. Using these notations, since pref(Qi, s) ≥
pref(Qi, s′), for every other solution s′, then, for every other s’, λi × ui ≥ μi × ui in
the scenario Qi. This implies that, for every other s’, λi ≥ μi. In fact, if λi < μi, then,
by strict monotonicity, λi × ui < μi × ui. Since Qs is the most favorable scenario for
s, then for every scenario and so also for the scenario Qi, by monotonicity, λ × u ≥
λ × ui ≥ λi × ui, that implies λ ≥ λi. In fact, if λ < λi, then, by strict monotonicity,
λ × ui < λi × u. Since Qs is the least favorable scenario for the tuples in s′ but not

Author's personal copy

286 M. Gelain et al.

in s, then μi ≥ μ for every scenario and so also for Qi. Hence, since for every s′,
λ ≥ λi, λi ≥ μi, and μi ≥ μ, then, by monotonicity, for every s′, pref(Qs, s) = λ × u ≥
λi × u ≥ μi × u ≥ μ × u = pref(Qs, s′), hence s is optimal in the scenario Qs.

If s ∈ Opt(Q∗), then s ∈ PO(P). We now show that, if s ∈ PO(P), then s ∈
Opt(Q∗). If s �∈ Opt(Q∗), then there is a solution s′ such that pref(Q∗, s′) >

pref(Q∗, s). By construction of Q∗, by Theorem 1 and by idempotency, we have that
pref(Q∗, s) = U(s). In fact, by Theorem 1, pref(Q∗, s) ≤ U(s). Moreover, pref(Q∗, s)
�< U(s). In fact, we now show that pref(Q∗, s) is given by the combination of the
preferences that are all greater than or equal to U(s). By construction of Q∗ we have
two results. (1) Every tuple of s in Q∗ with preference interval that contains U(s)
is assigned to U(s) and, by definition of U(s) and by idempotency, there must be
at least one of these preferences. (2) Every tuple with preference interval that does
not contain U(s) is assigned to its upper bound that must be a value greater than
U(s), since, by definition of U(s), the upper bound of every tuple of s must be greater
than or equal to U(s), otherwise the upper bound of s is not U(s) but a value lower
than U(s), that is a contradiction. Therefore, pref(Q∗, s) �< U(s) and so pref(Q∗, s) =
U(s). If s and s′ have tuples in common, by construction of Q∗, pref(Q∗, s′) ≤ U(s).
In such a case, since we have shown above that pref(Q∗, s) = U(s), and since we are
assuming that there is a solution s′ such that pref(Q∗, s′) > pref(Q∗, s), then U(s) ≥
pref(Q∗, s′) > pref(Q∗, s) = U(s), and so we have a contradiction. If s and s′ have no
tuples in common, then, for every scenario Q, pref(Q, s′) ≥ L(s′) = pref(Q∗, s′) >

pref(Q∗, s) = U(s) ≥ pref(Q, s), and so s �∈ PO(P). ��

In Theorem 10 we have characterized possibly optimal solutions for IVSCSPs
with idempotent c-semiring and for IVCSPs with strictly monotonic c-semiring. The
characterization of possibly optimal solutions for IVSCSPs with a c-semiring that is
neither idempotent nor strictly monotonic is an open question.

7.4 Possibly of at least preference α solutions

We know, by Proposition 8, that, given an IVSCSP P and an assignment s, s is in
Pos(P, α) if and only if α ≤ U(s). Thus, to test whether a solution is in Pos(P, α), it
is enough to check this condition, that takes linear time.

If the c-semiring is idempotent, to find a solution in Pos(P, α) it is sufficient to
solve one CSP, as shown in the following theorem.

Theorem 11 Given an IVSCSP P over an idempotent c-semiring and an assignment
s, s ∈ Pos(P, α) if f it is a solution of cutα(bs(P)).

Proof We first show that, if s is a solution of cutα(bs(P)), then s ∈ Pos(P, α). If s
is a solution of cutα(bs(P)), then, since cutα(bs(P)) is the CSP obtained from the
best scenario by allowing only tuples with preference greater than or equal to α,
pref(bs(P), s) ≥ α. Hence, in the best scenario s has preference greater than or equal
to α, hence s ∈ Pos(P, α).

To conclude the proof, we show that if s ∈ Pos(P, α), then s is a solution of
cutα(bs(P)). If s ∈ Pos(P, α), then there is a scenario, say Qi, where pref(Qi, s) ≥ α.
Hence, since the preference of a solution in a scenario is always lower than or equal

Author's personal copy

Interval-valued soft constraint problems 287

Table 2 Finding and testing optimal solutions

Optimality notion c-semiring Finding Testing

LO(P) Generic 1 SCSP 1SCSP
U O(P) Generic 1 SCSP 1SCSP
IO(P) Generic 1 SCSP 3 SCSPs

Idempotent 1SCSP 1CSP
LLO(P) Strictly monotonic 1 SCSP 1 SCSP
W I D(P) Idempotent 2 SCSPs + 1 CSP 2SCSPs
I D(P) Generic 2 SCSPs 2 SCSPs

Idempotent 1 SCSP + 1 CSP 1 SCSP + 1 CSP
NO(P) Idempotent 2 SCSPs + 2 CSPs 2 SCSPs + 1 CSP

Strictly monotonic 1 SCSP 1 SCSP
Nec(P, α) Generic 1 SCSP Linear time

Idempotent 1 CSP Linear time
Nec(P, α∗) Generic 1 SCSP Linear time
PO(P) Idempotent 1 SCSP 1 SCSP

Strictly monotonic 1 SCSP 1 SCSP
Pos(P, α) Idempotent 1 CSP Linear time
Pos(P, α∗) Generic 1 SCSP Linear time

to its preference in the best scenario, then pref(bs(P), s) ≥ pref(Qi, s) ≥ α, and so s
is a solution of cutα(bs(P)). ��

By Proposition 8, we know that Pos(P, α∗) = U O(P). Therefore, to find a solu-
tion in Pos(P, α∗), it is sufficient to find an optimal solution of the best scenario of
P, i.e., a solution in U O(P), and thus to solve one SCSP.

7.5 Finding and testing optimality notions: summary of the results

We have provided algorithms to find solutions according to the various optimality
notions and also to test whether a given solution is optimal. In most of the cases,
these algorithms amounts to solving a soft constraint problem as shown in Table 2.

8 Necessary and possible dominance

Besides finding or testing for optimality, it may sometimes be useful to know if a
solution dominates another one. We will consider four notions of dominance, which
are related to the general optimality notions defined above.

Definition 15 ((strictly) dominance) Given a scenario Q, a solution s strictly
dominates (resp., dominates) a solution s′ if and only if pref(Q, s) > pref(Q, s′)
(resp.,pref(Q, s) ≥ pref(Q, s′)) in the ordering of the considered c-semiring.

Definition 16 (necessarily (strictly) dominance) Given an IVSCSP P and two solu-
tions s and s′ of P, s necessarily strictly dominates (resp., necessarily dominates) s′ if
and only if, in all scenarios, s strictly dominates (resp., dominates) s′. We will denote
with NDT OP(P) (resp., NSDT OP(P)) the undominated elements in the binary
relation given by the necessarily dominance (resp., strictly necessarily dominance).

Author's personal copy

288 M. Gelain et al.

Definition 17 (possibly (strictly) dominance) Given an IVSCSP P and two solutions
s and s′ of P, s possibly strictly dominates (resp., possibly dominates) s′ if and only if
there is at least one scenario where s strictly dominates (resp., dominates) s′. We will
denote with PDT OP(P) (resp., PSDT OP(P)) the undominated elements of the
binary relation given by the possibly dominance (resp., strictly possible dominance).

In the IVSCSP P of Fig. 1, s1 necessarily strictly dominates s8. In the best scenario,
s2 strictly dominates s4, while in the worst scenario s4 strictly dominates s2. Thus s2

possibly strictly dominates s4, and viceversa.

Theorem 12 Consider an IVSCSP P. The following results hold:

– NO(P) ⊆ NDT OP(P) ⊆ NSDT OP(P).
– NSDT OP(P) ⊇ PO(P).
– If the c-semiring is strictly monotonic or idempotent, then NDT OP(P) ⊆ PO(P).
– If the c-semiring is strictly monotonic, NSDT OP(P) = PO(P).
– The sets PSDT OP(P) and PDT OP(P) may be empty.
– If PDT OP(P) �= ∅, then |PDT OP(P)| = 1.
– PDT OP(P) ⊆ PSDT OP(P) = NO(P).

Proof Let s be a solution of P.
We first show that NO(P) ⊆ NDT OP(P). If s �∈ NDT OP(P), then there a

solution s′ that necessarily dominates s, and so there is a scenario Q where s′ strictly
dominates s, that is, pref(Q, s′) > pref(Q, s). Hence, s is not optimal in that scenario
and so s �∈ NO(P).

We now show that NDT OP(P) ⊆ NSDT OP(P). If s �∈ NSDT OP(P), then
there is a solution s′ that necessarily strictly dominates s and so s′ necessarily
dominates s and thus s �∈ NDT OP(P).

We now show that PO ⊆ NSDT OP(P). If s �∈ NSDT OP(P), then there is a
solution s′ that necessarily strictly dominates s, hence, for every scenario Q, s′ strictly
dominates s, that is, for every scenario Q, pref (Q, s′) > pref (Q, s), hence for every
scenario Q, s is not optimal, hence s �∈ PO(P).

To prove that NDT OP(P) ⊆ PO(P) when P is idempotent, we will show that
if s ∈ NDT OP(P) then s is optimal in the scenario Qs, where every tuple in s is
set to its maximum preference value and all other tuples are set to their minimum
preference value. This then implies that s is possibly optimal, and hence in PO(P),
as required.

Suppose, that s ∈ NDT OP(P) is not optimal in the scenario Qs, so there exists
some solution s′ with pref (Qs, s′) > pref (Qs, s). Since s ∈ NDT OP(P) there exists
a scenario Q with pref (Q, s) > pref (Q, s′) or else s′ would necessarily dominate s.
We have pref (Qs, s′) > pref (Q, s′). Since the combination is minimum, this means
that the preference value of the worst tuple of s′ (i.e., of the worst constraint) is
worse in Q than it is in Qs. The definition of Qs means that this tuple is also in s′ (i.e.,
s and s′ agree on the scope of the worst constraint). This implies that pref (Q, s) ≤
pref (Q, s′), which contradicts pref (Q, s) > pref (Q, s′), completing the proof that
NDT OP(P) ⊆ PO(P) when P is idempotent.

If the c-semiring is strictly monotonic, NSDT OP(P) = PO(P). We have already
shown that NSDT OP(P) ⊇ PO(P). We now show that NSDT OP(P) ⊆ PO(P).

Author's personal copy

Interval-valued soft constraint problems 289

If s ∈ NSDT OP(P), then there is no solution s′ such that for every scenario
Qi, pref(Qi, s′) > pref(Qi, s). Hence, for every s′, there is a scenario Qi where
pref(Qi, s′) ≤ pref(Qi, s). By following the same reasoning done above, it is possible
to show that, ∀s′, pref(Qs, s′) ≤ pref(Qs, s). Therefore, s is optimal in Qs and so
s ∈ PO(P).

Furthermore, if the c-semiring is strictly monotonic, then we have NDT OP(P) ⊆
PO(P) since NDT OP(P) ⊆ NSDT OP(P) = PO(P).

PSDT OP(P) and PDT OP(P) may be empty, because there can be cycles in
the possibly dominates and possibly strictly dominates relations. Let us consider the
solutions s2 and s4 in the running example. s2 has preference interval [0.5, 0.9] and s4

has preference interval [0.6, 0.8]. Then, s2 possibly strictly dominates (and so possibly
dominates) s4, since s2 strictly dominates s4 in the best scenario, and s4 possibly
strictly dominates (and so possibly dominates) s2, since s4 strictly dominates s2 in
the worst scenario.

If PDT OP(P) �= ∅, then |PDT OP(P)| = 1. In fact, assume that PDT OP(P)

contains two complete assignments s1 and s2. If s1 and s2 are in PDT OP(P), then s1

does not possibly dominate s2 and s2 does not possibly dominate s1. Since s1 does not
possibly dominate s2, then for every scenario Q of P, pref(Q, s1) < pref(Q, s2), and,
since s2 does not possibly dominate s1, then for every scenario Q of P, pref(Q, s2) <

pref(Q, s1), that is a contradiction.
PSDT OP(P) = NO(P). In fact, s ∈ PSDT OP(P) iff there is no solution s′ such

that s′ possibly strictly dominates s, iff there is no solution s′ that strictly dominates
s, iff there is no solution s′ such that pref(Q, s′) > pref(Q, s) for some scenario Q, iff
for every solution s′, pref(Q, s) ≥ pref(Q, s′) for every scenario Q, iff s ∈ NO(P).

PDT OP(P) ⊆ PSDT OP(P). In fact, if s �∈ PSDT OP(P), then there is a so-
lution s′ that possibly strictly dominates s and thus s′ possibly dominates s and so
s �∈ PDT OP(P). ��

Summarizing, given an IVSCSP P with an idempotent or a strictly monotonic c-
semiring, we have the following inclusions, that are shown in Fig. 4: PDT OP(P) ⊆
PSDT OP(P) = NO(P) ⊆ NDT OP(P) ⊆ PO(P) ⊆ NSDT OP(P). Moreover,
when the c-semiring is strictly monotonic, we have also NSDT OP(P) = PO(P).
Therefore, the set of the necessarily optimal solutions of P coincides with the set
of the undominated elements of the binary relation given by the possibly strictly
dominance over P, both if the c-semiring is strictly monotonic and if it idempotent.
Moreover, the set of the possibly optimal solutions of P coincides with the set of
the undominated elements of the binary relation given by the necessarily strictly
dominance over P, if the c-semiring is strictly monotonic.

To test if s possibly strictly dominates (resp., possibly dominates) s′ we can set each
interval associated with s but not with s′ to its upper bound; let λ be the combination
of these values. Then we set each interval associated with s′ but not with s to its lower
bound; let μ be the combination of these values. Finally, we compare the preference
values of s and s′, by testing if the condition λ × u1 × · · · × uk > μ × u1 × · · · × uk

(resp., λ × u1 × · · · × uk ≥ μ × u1 × · · · × uk) holds for any selections of values
u1, . . . , uk in the intervals of both s and s′. If we have strict monotonicity, testing
this condition amounts to testing if λ > μ (resp., λ ≥ μ). If we have idempotence, we
can replace each ui with its upper bound, and then test the condition.

Author's personal copy

290 M. Gelain et al.

Fig. 4 Relation between
undominated elements of the
binary relation given by the
(strictly) necessarily
dominance and the
undominated elements of the
binary relation given by the
(strictly) possibly dominance
for an IVSCSP P defined over
an idempotent or a strictly
monotonic c-semiring

To test if s necessarily dominates s′, we first check if s possibly strictly dominates
s′. Then:

– If s possibly strictly dominates s′, then there is a scenario where s strictly
dominates s′ and so s′ does not necessarily dominate s. Then, we check if s′
possibly strictly dominates s. If so, then there is a scenario where s′ strictly
dominates s, hence s does not necessarily dominate s′. Therefore, s and s′ are
incomparable w.r.t. the necessarily dominance relation and so we conclude
negatively. Otherwise, if s′ does not possibly strictly dominates s, then, for
every scenario, s dominates s′ and, since, by hypothesis, there is a scenario
where s strictly dominates s′, then s necessarily dominates s′ and so we conclude
positively.

– If s does not possibly strictly dominate s′, then, for every scenario, s′ dominates s,
i.e., for every scenario Q, pref(Q, s′) ≥ pref(Q, s). Then, we check if s′ possibly
strictly dominates s. If so, then s′ necessarily dominates s and so we conclude
negatively. Otherwise, if s′ does not possibly strictly dominates s, then, for every
scenario, s dominates s′, i.e., for every scenario Q, pref(Q, s) ≥ pref(Q, s′), and
so, since by the hypothesis above pref(Q, s′) ≥ pref(Q, s), we have that, for every
scenario Q, pref(Q, s) = pref(Q, s′), hence s does not necessarily dominates s′
and so we conclude negatively.

To test if s necessarily strictly dominates s′, we follow a reasoning similar to the
one presented above, but we consider the possibly dominance relation instead of the
possibly strictly dominance relation. Moreover, when s does not possibly dominate s′
(i.e., the second item above), we can conclude immediately negatively, since in this
case s′ necessarily strictly dominates s.

9 Multiple intervals

One may wonder if IVSCSPs would be more expressive if we allowed not just a single
preference interval for each assignment, but a set of such intervals. For example,
instead of giving us the interval [0.1, 0.8], a user could be more precise and give
us [0.1,0.5] and [0.7,0.8]. This would reduce the uncertainty of the problem. We

Author's personal copy

Interval-valued soft constraint problems 291

will now show that all the interval-based optimality notions and all the scenario-
based optimality notions that guarantee a certain level of preference would give the
same set of optimals in this more general setting. Moreover, when the c-semiring is
strictly monotonic, also the possibly and necessary optimality notions give the same
set of optimals. Also, when the c-semiring is idempotent, the necessary optimality
notions give the same set of optimals. In the other cases, we are however able to find
approximations of the possibly and necessarily optimal solutions. More precisely, we
have the following results, that are also summarized in Table 3.

Theorem 13 Consider an IVSCSP P. Take now a new problem P′ with the same
variables, domains, and constraint topology as P, where, for each interval [l, u] in P,
there is a set of intervals [l, u1], [l2, u2], . . . , [ln, u] such that ui < li+1 for i = 1, . . . , n −
1. Then:

– X(P) = X(P′) for X ∈ {LO, U O, IO, LLO, U LO, W I D, I D}.
– Nec(P, α) = Nec(P′, α) for all α.
– Pos(P, α) = Pos(P′, α) for all α.
– NO(P′) ⊇ NO(P).
– PO(P′) ⊆ PO(P).
– If the c-semiring is strictly monotonic, NO(P) = NO(P′) and PO(P) = PO(P′).
– If the c-semiring is idempotent, NO(P) = NO(P′).

Proof To show that X(P) = X(P′) for X ∈ {LO, U O, IO, LLO, U LO, W I D, I D},
it is sufficient to recall that all solutions in {LO, U O, IO, LLO, U LO, W I D, I D}
are computed by considering for every tuple associated with interval [l, u] only the
lower bound l and the upper bound u that, by construction of P′, are the same in P
and P′.

Let s be a complete assignment of P. Let us consider a generic α. To show that
Nec(P, α) = Nec(P′, α), we first show that Nec(P, α) ⊆ Nec(P′, α). If s ∈ Nec(P, α),
then, for every scenario Q of P, pref(Q, s) ≥ α. Since the set of the scenarios of P is
a superset of the scenarios of P′, this holds also for every scenarios of P′. Therefore,
s ∈ Nec(P′, α). We now show that Nec(P′, α) ⊆ Nec(P, α). If s �∈ Nec(P, α), then

Table 3 Comparison of the
optimality sets of problems P
(with single intervals) and P′
(with multiple intervals), as
defined in Theorem 13

Optimality c-semiring Comparison
notion

LO Generic LO(P) = LO(P′)
U O Generic U O(P) = U O(P′)
IO Generic IO(P) = IO(P′)
LLO Generic LLO(P) = LLO(P′)
U LO Generic U LO(P) = U LO(P′)
Nec(α) Generic Nec(P, α) = Nec(P′, α)

Pos(α) Generic Pos(P, α) = Pos(P′, α)

NO Generic NO(P) ⊆ NO(P′)
Idempotent NO(P) = NO(P′)
Strictly monotonic NO(P) = NO(P′)

PO Generic PO(P) ⊇ PO(P′)
Strictly monotonic PO(P) = PO(P′)

Author's personal copy

292 M. Gelain et al.

pref(Q, s) < α for some scenario Q of P and this holds also for the worst scenario,
since pref(ws(P), s) ≤ pref(Q, s) < α. Since the worst scenario is one of the scenario
of P′, then s �∈ Nec(P′, α).

To show that Pos(P, α) = Pos(P′, α), we first show that Pos(P′, α) ⊆ Pos(P, α).
If s ∈ Pos(P′, α), then for some scenario Q of P′, pref(Q, s) ≥ α. Since every scenario
of P′ is also a scenario of P, then s ∈ Pos(P, α). We now show that Pos(P, α) ⊆
Pos(P′, α). If s ∈ Pos(P, α), then pref(Q, s) ≥ α for some scenario Q of P, and this
holds also for the best scenario, since pref(bs(P), s) ≥ pref(Q, s) ≥ α. Since the best
scenario is one of the scenarios of P′, then s ∈ Pos(P′, α).

Since the set of the scenarios of P is a superset of the scenarios of P′, then
NO(P) ⊆ NO(P′). In fact, if s ∈ NO(P), then it is optimal for every scenario of P
and also for every scenario of P′.

Moreover, PO(P′) ⊆ PO(P). In fact, if s ∈ PO(P′), then there is a scenario of P′
where s is optimal and, as every scenario of P′ is also a scenario of P, then s ∈ PO(P).

If the c-semiring is strictly monotonic, then NO(P) = NO(P′). By Theorem 8, we
know that, if the c-semiring is strictly monotonic, then s ∈ NO(P) iff s ∈ Opt(Qs),
where Qs is the scenario where every preference associated to a tuple of s is set to
its lower bound and the preferences of all other tuples are set to their upper bound.
Since Qs is one of the scenarios of P′, it is possible to show that s ∈ NO(P′) iff s ∈
Opt(Qs), by following the same proof of Theorem 8. Hence, NO(P′) = NO(P).

Similarly, if the c-semiring is strictly monotonic, then PO(P) = PO(P′). By
Theorem 10, we know that, if the c-semiring is strictly monotonic, then s ∈ PO(P) iff
s ∈ Opt(Qs), where Qs is the scenario where all the preferences of tuples in s are set
to their upper bound and all other tuples are associated to their lower bound. Since
Qs is one of the scenarios of P′, it is possible to show, by following the same proof of
Theorem 10, that s ∈ PO(P) iff s ∈ Opt(Qs).

If the c-semiring is idempotent, NO(P) = NO(P′). In fact, by Theorem 8, we
know that s ∈ NO(P) iff for every s′, s ∈ Opt(Qs′

), where Qs′
is the scenario where

we put every tuple of s′ to its upper bound and every other tuple to its lower
bound. Since, for every s′, Qs′

is a scenario of P′, then by following the same proof
of Theorem 8, we can show that s ∈ NO(P′) iff for every s′, s ∈ Opt(Qs′

), Hence,
NO(P′) = NO(P). ��

10 Experimental results

10.1 Instance generator

We randomly generated fuzzy IVMSPs (as defined in Section 5.7) according to the
following parameters:

– m: number of meetings (default 12);
– n: number of agents (default 5);
– k: number of meetings per agent (default 3);
– l: number of time slots (default 10);
– min and max: minimal (default 1) and maximal (default 2) distance (in time slots)

between two locations;
– i: percentage of preference intervals (default 30%).

Author's personal copy

Interval-valued soft constraint problems 293

Given such parameters, we generate an IVSCSP with m variables, representing
the meetings, each with domain of size l. The domain values 1, . . . , l represent the
time slots, that are assumed to all have the same length equal to one time unit, and
to be adjacent to each other. Thus, for example, time slot i ends when time slot i + 1
starts. Given two time slots i and j > i, they can be used for two meetings only if the
distance between their locations (see later) is at most j − i − 1.

For each of the n agents, we generate randomly k integers between 1 and m,
representing the meetings he needs to participate in. Also, for each pair of time
slots, we randomly generate a integer between min and max that represents the time
needed to go from one location to the other one. This will be called the distance
table.

Given two meetings, if there is at least one agent who needs to participate in
both, we generate a binary constraint between the corresponding variables. Such a
constraint is satisfied by all pairs of time slots that are compatible according to the
distance table.

We then generate the preferences over the domain values and the compatible
pairs in the binary constraints, by randomly generating a number in (0, 1] or an
interval over (0, 1], according to the parameter i.

As an example, assume to have m = 5, n = 3, k = 2, l = 5, min = 1, max = 2, and
i = 30. According to these parameters, we generate a IVMSP with the following
features:

– 5 meetings: m1, m2, m3, m4, and m5;
– 3 agents: a1, a2, and a3;
– 5 time slots: t1, . . . , t5;
– agents’ participation to meetings: we randomly generate 2 meetings for each

agent, for example

• a1 must participate in meetings m1 and m2;
• a2 must participate in meetings m4 and m5;
• a3 must participate in meetings m2 and m3;

– distance table: we randomly generate its values, for example as in Table 4;
– we randomly generate the preferences associated to domain values and compat-

ible pairs in the constraints, in a way that 30% of the preferences are preference
intervals contained in (0, 1] and 70% of the preferences are single values in (0, 1].

In this example, a feasible meeting scheduling is obtained by assigning the follow-
ing time slots to meetings: (m1, t3), (m2, t1), (m3, t5), (m4, t2), (m5, t5). The preference
interval for such a scheduling will depend on the preference values in the domains
and constraints. More precisely, as we use preference values between 0 and 1 and
we adopt the fuzzy criteria, the preference interval will be [l, u], where l (resp., u) is

Table 4 Distance between
meeting locations

1 2 3 4 5

1 0 1 2 1 2
2 1 0 2 1 2
3 2 2 0 1 1
4 1 1 1 0 2
5 2 2 1 2 0

Author's personal copy

294 M. Gelain et al.

 0

 1000

 2000

 3000

 4000

 5000

 4 5 6 7 8 9 10

ex
ec

ut
io

n
tim

e
(m

se
c)

agents

 LO/IO
 UO

 WID
 ID

 0

 1000

 2000

 3000

 4000

 5000

 4 5 6 7 8 9 10

ex
ec

ut
io

n
tim

e
(m

se
c)

agents

 NO
 NEC(0.5)
 NEC(α ∗)

 PO/POS(α ∗)
 POS(0.5)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 2 3 4 5

ex
ec

ut
io

n
tim

e
(m

se
c)

meetings per agent

 LO/IO
 UO

 WID
 ID

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 2 3 4 5

ex
ec

ut
io

n
tim

e
(m

se
c)

meetings per agent

 NO
 NEC(0.5)
 NEC(α ∗)

 PO/POS(α ∗)
 POS(0.5)

a b

c d

Fig. 5 Execution time (milliseconds) as a function of number of agents and meetings per agent

the minimum among all the lower (resp., upper) bounds of the preference intervals
selected by this assignment in the constraints.

10.2 Experimental tests

We implemented our algorithms using a Java (version 1.6.0_07) c-semiring based
framework and the Choco constraint programming toolkit (version 1.2.06). Experi-
ments were run on AMD Opteron 2.3GHz machines with 2GB of RAM.

We used four different test sets, each one generated varying in turn n, m, k, and
i, while fixing the others to their default values. Moreover, α, i.e., the minimum level
of preference used in Pos(P, α) and Nec(P, α), is always 0.5.2 The sample size is 50
for each data point.

Figure 5a shows the execution time (measured in milliseconds) of the algorithms
to find a solution, belonging to each type of the interval-based optimality notions, as a
function of the number of agents. We can notice that there is a peak when the number
of agents is 8, which represents problems with a small number of solutions. With more
agents, the problems have no solution, while with a smaller number of agents there
are many solutions. In both such cases, it is easy to find a feasible meeting scheduling.

2In the following figures, we will omit writing P in the names of the algorithms.

Author's personal copy

Interval-valued soft constraint problems 295

For the more general optimality notions, Fig. 5b shows that the behavior is the
same except for POS(0.5) and NEC(0.5) because, in these algorithms, we need to
solve a CSP, while in the other algorithms we solve at least one SCSP. In fact,
POS(0.5) and NEC(0.5) takes approximately the same time no matter the number
of agents in the problem.

Figure 5c, d show the performance of the algorithms for all optimality notions,
as a function of the number of meetings per agent. Since LO(P) = Nec(P, α∗) and
U O(P) = Pos(P, α∗), these curves in the two graphs coincide. The lines correspond-
ing to the WID algorithm in Fig. 5c and to the NO algorithm in Fig. 5d are similar,
and are above the others in both figures, because the WID algorithm needs to find
the lower and upper optimal preference, to perform two cuts, and to solve the CSP
obtained combining the cuts, while the other algorithms (expect NO) only need to
solve an SCSP. Moreover, the WID algorithm is a sub-routine of the NO algorithm.

Notice that finding solutions in NO, Nec(P, α∗), or POS(P, α∗) is more expensive
than finding solutions in Nec(P, 0.5), or POS(P, 0.5), as expected since α∗ and α∗
are the best preference levels that one can reach.

The peak at four meetings per agents, shown in Fig. 5c, d, corresponds to problems
which are more difficult to solve because they have very few solutions. This is
analogous to what we have noticed in Fig. 5a, b with the peak at eight agents.

Figure 6a, b show that the execution time increases exponentially when the
number of meetings (i.e., the number of variables in the problem) arises. In this case,

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 5 8 11 14 17

ex
ec

ut
io

n
tim

e
(m

se
c)

meetings

 LO/IO
 UO

 WID
 ID

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 5 8 11 14 17

ex
ec

ut
io

n
tim

e
(m

se
c)

meetings

 NO
 NEC(0.5)
 NEC(α ∗)

 PO/POS(α ∗)
 POS(0.5)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 10 20 30 40 50 60 70 80 90 100

ex
ec

ut
io

n
tim

e
(m

se
c)

percentage of intervals

 LO/IO
 UO

 WID
 ID

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 10 20 30 40 50 60 70 80 90 100

ex
ec

ut
io

n
tim

e
(m

se
c)

percentage of intervals

 NO
 NEC(0.5)
 NEC(α)

 PO/POS(α ∗)
 POS(0.5)

∗

a b

c d

Fig. 6 Execution time (milliseconds) as a function of the number of meetings and the percentage of
intervals

Author's personal copy

296 M. Gelain et al.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2 3 4 5

%

meetings per agent

 WID
 ID

 NO

a

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 4 5 6 7 8 9 10

%

agents

 WID
 ID

 NO

b

Fig. 7 Existence of WID, ID, and NO solutions, varying agents and meetings per agent

the execution time is mainly influenced by the size of the problems, no matter which
algorithm is used.

Figure 6c, d show that the execution time is not influenced by the amount of
intervals in the problem. As in all the other graphs, finding a WID or an NO solution
is more expensive than finding other kinds of solutions. The two peaks at 20% and
60% of intervals are due to two very hard problems inside the test set.

Figure 7a, b consider those optimality sets that can be empty (that is, WID, ID,
and NO) and show the percentage of times a solution of a certain kind exists. Clearly,
when there is no solution, WID, ID and NO contain all assignments and coincide.
This is the case when the number of meetings per agents is larger (more than three
meetings per agent in our settings). When we consider less constrained problems
with two–three meetings per agent, as expected, we have more WID solutions than
ID and NO solutions. Notice that the size of WID, ID and NO varies very little
when the number of agents is between 4 and 8 (Fig. 7b). However, when such a
number is between 8 to 10, the size of the solution sets is larger because there are
more instances with no solution. If we vary the number of meetings, we can see in
Fig. 8a that the number of such a kind of solutions tends to decrease slightly as the

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 5 8 11 14 17

%

meetings

 WID
 ID

 NO

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

%

percentage of intervals

 WID
 ID

 NO

a b

Fig. 8 Existence of WID, ID, and NO solutions, varying meetings and intervals

Author's personal copy

Interval-valued soft constraint problems 297

number of variables (i.e. meetings) arises. In fact, a larger number of variables may
imply a larger number of constraints, which may imply a smaller number of WID,
ID, and NO solutions.

In Fig. 8b we consider instances where we vary the percentage of intervals from 10
to 100%. When incompleteness is higher than 40%, most of the instances don’t have
WID, ID, and NO solutions. This is predictable, because a larger number of intervals
makes it less probable the existence of solutions that are optimal in all scenarios,
since the number of scenarios is larger.

11 Final considerations and future work

Summarizing, given an IVSCSP P, the solutions in NO(P) are certainly the most
attractive, as they are the best ones in every scenario. However, if there is none, we
can look for solutions in Nec(P, α∗) (which coincide with solutions in LO(P)), which
guarantee a preference level α∗ in all scenarios. If α∗ is too low, we can consider
other notions of optimality; for example, if we feel optimistic, we can consider the
solutions in Pos(P, α∗)(which coincide with solutions in U O(P)): they guarantee that
it is possible to reach a higher level of preference, although not in all scenarios.

If we allow users to associate to each partial assignment in the constraints not just
a single interval, but a set of multiple intervals, this would reduce the uncertainty of
the problem. However, when the c-semiring is strictly monotonic (resp., idempotent),
this added generality does not change the set of the optimal solutions in any of the
considered notions (resp., in any of the considered notions with the exception of the
possibly optimal notions). This means that a level of precision greater than a single
interval does not add useful information when looking for an optimal solution.

This paper considers only totally ordered preferences. IVSCSPs can be defined
also for a partially ordered setting. We plan to extend the analysis of the optimality
notions also to this more general case. We also intend to define dedicated solving or
propagating schemes to tackle IVSCSPs rather than relying on existing solvers for
SCSPs. It is interesting also to consider the addition of probability distributions over
preference intervals and to interleave search with elicitation as in [6, 7].

Acknowledgements The work of Nic Wilson has been supported by the Science Foundation
Ireland under Grant No. 05/IN/I886 and Grant No. 08/PI/I1912.

The work of Mirco Gelain, Maria Silvia Pini, Francesca Rossi and Kristen Brent Venable has
been partially supported by the Italian MIUR PRIN project 20089M932N: “Innovative and multi-
disciplinary approaches for constraint and preference reasoning”.

References

1. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint solving and optimization.
JACM 44(2):201–236 (1997)

2. Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G., Fargier, H.: Semiring-based CSPs
and valued CSPs: frameworks, properties, and comparison. Constraints 4(3), 199–240 (1999)

3. Ceberio, M., Modave, F.: An interval-valued, 2-additive Choquet integral for multi-criteria
decision making. In: IPMU’04 (2004)

4. Faltings, B., Macho-Gonzalez, S.: Open constraint programming. AI J. 161(1–2):181–208 (2005)
5. Fargier, H., Schiex, T., Verfaille, G.: Valued constraint satisfaction problems: hard and easy

problems. In: IJCAI-95, pp. 631–637. Morgan Kaufmann, San Mateo (1995)

Author's personal copy

298 M. Gelain et al.

6. Gelain, M., Pini, M.S., Rossi, F., Venable, K.B.: Dealing with incomplete preferences in soft
constraint problems. In: Proc. CP’07, volume 4741 of LNCS, pp. 286–300. Springer, New York
(2007)

7. Gelain, M., Pini, M.S., Rossi, F., Venable, K.B., Walsh, T.: Dealing with incomplete preferences
in soft constraint problems. In: Proc. CP’08, volume 5202 of LNCS, pp. 402–417. Springer, New
York (2008)

8. Macho González, S., Ansótegui, C., Meseguer, P.: On the relation among open, interactive and
dynamic CSP. In: The Fifth Workshop on Modelling and Solving Problems with Constraints
(IJCAI’05) (2005)

9. Meseguer, P., Rossi, F., Schiex, T.: Soft constraints. In: Rossi F., Van Beek P, Walsh T. (eds.)
Handbook of Constraint Programming. Elsevier, Amsterdam (2006)

10. Pini, M.S., Rossi, F., Venable, K.B., Dechter, R.: Robust solutions in unstable optimization
problems. In: Proc. Recent Advances in Constraints, LNAI. Springer, New York (2009)

11. Rossi, F., Van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming. Elsevier,
Amsterdam (2006)

12. Ruttkay, Z.: Fuzzy constraint satisfaction. In: Proceedings 1st IEEE Conference on Evolutionary
Computing, pp. 542–547. Orlando (1994)

13. Zivan, R., Shapen, U., Meisels, A.: Meeting scheduling problem (MSP). Available at http://www.
cs.st-andrews.ac.uk/∼ianm/CSPLib/prob/prob046/index.html (2010)

14. Wilson, N., Grimes, D., Freuder, E.C.: A cost-based model and algorithms for interleaving
solving and elicitation of CSPS. In: Proc. CP’07, volume 4741 of LNCS, pp. 666–680. Springer,
New York (2007)

15. Yorke-Smith, N., Gervet, C.: Certainty closure: A framework for reliable constraint reasoning
with uncertainty. In: Proc. CP’03, volume 2833 of LNCS, pp. 769–783. Springer, New York (2003)

Author's personal copy

http://www.cs.st-andrews.ac.uk/$sim $ianm/CSPLib/prob/prob046/index.html
http://www.cs.st-andrews.ac.uk/$sim $ianm/CSPLib/prob/prob046/index.html

	Interval-valued soft constraint problems
	Abstract
	Introduction
	Background: soft constraints
	Interval-valued soft constraints
	Necessary and possible optimality
	Interval-based optimality notions
	Interval-dominant assignments
	Weakly-interval-dominant assignments
	Lower and upper optimal assignments
	Lower and upper lexicographically-optimal assignments
	Interval-optimal assignments
	Summary of the various notions of optimality and of their relations
	An example: meeting scheduling problems

	Finding and testing interval-based optimal assignments
	Lower and upper optimal assignments
	Interval optimal assignments
	Lower and upper lexicographically optimal assignments
	Weakly interval dominant assignments
	Interval dominant assignments

	Finding and testing necessarily optimal and possibly optimal assignments
	Necessarily optimal solutions
	Necessarily of at least preference α solutions

	Possibly optimal solutions
	Possibly of at least preference α solutions

	Finding and testing optimality notions: summary of the results

	Necessary and possible dominance
	Multiple intervals
	Experimental results
	Instance generator
	Experimental tests

	Final considerations and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

