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Preferences and uncertainty are common in many real-life problems. In this
article, we focus on bipolar preferences and uncertainty modelled via uncontrol-
lable variables, and we assume that uncontrollable variables are specified by
possibility distributions over their domains. To tackle such problems, we
concentrate on uncertain bipolar problems with totally ordered preferences,
and we eliminate the uncertain part of the problem, while making sure that some
desirable properties hold about the robustness of the problem and its relationship
with the preference of the optimal solutions. We also consider several semantics to
order the solutions according to different attitudes with respect to the notions of
preference and robustness.

Keywords: preferences; uncertainty; possibility theory; positive and negative
judgements

1. Introduction

Real-life problems present several kinds of preferences and may be affected by uncertainty.
In this article, we focus on problems with positive and negative preferences with
uncertainty.

Bipolar preferences (Dung 1995; Benferhat, Dubois, Kaci, and Prade 2002, 2006;
Amgoud, Bonnenfon, and Prade 2005; Grabisch and Labreuche 2005; Dubois and Fargier
2005, 2006; Bistarelli, Pini, Rossi, and Venable 2006, 2007a, 2010) and uncertainty (Zadeh
1978; Fargier, Lang, Martin-Clouaire, and Schiex 1995; Dubois, Fargier, and Prade 1995;
Fargier and Sabbadin 2003) appear in many application fields, such as satellite scheduling,
logistics and production planning. Moreover, in multi-agent problems, agents may express
their preferences in a bipolar way, and variables may be under the control of different
agents. To give a specific example, just consider a conference reviewing system, where
usually preferences are expressed in a bipolar scale. Uncertainty can arise for the number
of available conference rooms at the time of the acceptance decision. The goal could be to
select the best papers while ensuring that they all can be presented.

Bipolarity is an important topic in several domains, e.g. psychology (Osgood, Suci, and
Tannenbaum 1957; Tversky and Kahneman 1992; Cacioppo, Gardner, and Berntson
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1997), multi-criteria decision making (Grabisch and Labreuche 2005), and more recently
also in AI (in areas such as argumentation (Dung 1995; Amgoud et al. 2005) and
qualitative reasoning (Benferhat et al. 2002, 2006; Dubois and Fargier 2005, 2006)).
Preferences on a set of possible choices are often expressed in two forms: positive and
negative statements. In fact, in many real-life situations agents express what they like and

what they dislike, thus often preferences are bipolar.
In this article, to handle bipolarity, we use the formalism presented in Bistarelli et al.

(2006, 2007a, 2010). Related but different formalisms to achieve a similar goal can be
found in Grabisch and Labreuche (2005), Amgoud et al. (2005), Benferhat et al. (2002,
2006) and Dubois and Fargier (2005, 2006). The considered formalism generalises to
positive and negative preferences the soft constraints formalism (Bistarelli, Montanari,
and Rossi 1997), which is able to model problems with one kind of preferences (i.e.
negative preferences). Thus, each partial instantiation within a constraint will be
associated to either a positive or a negative preference. For example, when buying a
house, we may like very much to live in the country, but we may also not like to have to
take a bus to go to work, and be indifferent to the colour of the house. Thus we will give a
preference level (either positive, negative or indifference) to each feature of the house, and

then we will look for a house that has the best combined preference overall.
Another important feature, which arises in many real world problems, is uncertainty.

In Benferhat et al. (2002, 2006), Amgoud et al. (2005), Grabisch and Labreuche (2005),

Dubois and Fargier (2005, 2006), the authors handle bipolarity but not the presence of
uncertainty. In this article, we consider both bipolarity and uncertainty. We model
uncertainty by the presence of uncontrollable variables. This means that the value of such
variables will not be decided by us, but by Nature or by some other agent. Thus a solution
of such problems will not be an assignment to all the variables but only to the controllable
ones. A typical example of an uncontrollable variable, in the context of satellite scheduling
or weather prediction, is a variable representing the time when clouds will disappear. A
more general setting in which uncertainty occurs are scheduling problems, which constrain
the order of execution of various activities, and where the durations of some activities may
be uncertain (Dubois et al. 1995). In this case the goal is to define a schedule which is the

most robust with respect to the uncertainty.
Although we cannot choose the value for such uncontrollable variables, usually we

have some information on the plausibility of the values in their domains. In Fargier et al.

(1995) the information over uncontrollable variables, which is not bipolar, is given in terms
of probability distributions. In this article, we model this information by a possibility
distribution over the values in the domains of such variables. Possibilities are useful when
probability distributions are not available, and provide upper and lower bounds to
probabilities (Zadeh 1978).

In this article we focus on problems with this kind of uncertainty, and that contain
positive and negative preferences. We call them uncertain bipolar problems. To tackle such
problems, we generalise to bipolar preferences the approach to handle fuzzy preferences
(that are a special kind of negative preferences) and uncertainty presented in Pini, Rossi, and
Venable (2005, 2010). In particular, we generalise to the bipolar context the notions of
preference and robustness for the solutions, as well as properties that such notions should
respect in relation to the solution ordering, and the procedure used to compute preference

and robustness degrees. First, we generalise the approach presented in Pini et al. (2010)
to uncertain bipolar problems where the set of the positive preferences and the set of R.
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Then, we use abstraction techniques and Galois connection properties
(Bistarelli, Codognet, and Rossi 2002) to generalise the procedure also to uncertain bipolar
problems where the set of positive/negative preferences are generic totally ordered sets.

Our approach follows the one presented in Pini et al. (2010). More precisely, given an
uncertain bipolar problem, the uncontrollable part of the problem is removed and new
constraints on the controllable part are added. Thus, we obtain a bipolar problem without
uncertainty and with additional constraints. Such additional constraints are considered to
define the robustness of the problem. Starting from this problem, we define the preference
and the robustness of the solutions of the initial uncertain problem, and we show that they
satisfy some desired properties. Moreover, we consider some semantics that use such
notions to order the solutions, and we show that they satisfy desired properties on the
solution ordering. In particular, they allow us to distinguish between highly preferred
solutions which are not robust, and robust but not preferred solutions. Also, they
guarantee that, if there are two solutions s and s0 with the same robustness (resp. the same
preference), and the preference (resp. the robustness) of s is better than the preference
(resp. the robustness) of s0, then s is considered better than s0.

This article is structured as follows. Section 2 provides the readers with the main
notions about positive, negative, and bipolar properties, bipolar preference problems, soft
constraint problems with uncertainty and their properties, as well as the approach of Pini
et al. (2010) for removing uncertainty in uncertain fuzzy CSPs. Then, Section 3 introduces
the notion of uncertain bipolar problems, while Section 4 defines some desirable properties
of such problems. Section 5 describes the approach to solve uncertain bipolar problems,
while Section 6 defines the notions of preference and robustness of such problems, and
relates them to the properties proposed in Section 4. Section 7 studies some possible
semantics for uncertain bipolar problems. Then, Section 8 extends the overall approach to
more general bipolar preference structures, and Section 9 summarises the main results and
gives some hints for possible lines of future work.

This article is a revised and extended version of Bistarelli, Pini, Rossi, and Venable
(2007b). In particular, while Bistarelli et al. (2007b) shows only a procedure for handling
bipolar preference problems where the sets of positive and negative preferences are two
closed intervals of R, this article also proposes a procedure to handle bipolar problems
where the set of positive/negative preferences are generic totally ordered structures, by
using abstraction techniques and galois connections properties (Bistarelli et al. 2002).

2. Background

We now give some basic notions on bipolar preference problems (Bistarelli et al. 2006,
2007a, 2010) and uncertain soft (fuzzy) problems (Pini et al. 2005, 2010).

2.1. Negative preferences

Bipolar preference problems (Bistarelli et al. 2006, 2007a, 2010) are based on a bipolar
preference structure, which allows us to handle both positive and negative preferences.
This structure contains two substructures, one for each kind of preferences.

When dealing with negative preferences, two main properties should hold: combina-
tion should bring to worse preferences, and indifference should be better than all the other
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negative preferences. These properties can be found in a c-semiring (Bistarelli et al. 1997),
which is the structure used to represent soft constraints.

A c-semiring is a tuple ðA,þ,�, 0, 1Þ where: A is a set and 0, 1 2 A; þ is commutative,
associative, idempotent, 0 is its unit element, and 1 is its absorbing element; � is
associative, commutative, distributes over þ, 1 is its unit element and 0 is its absorbing
element. Consider the relation �S over A such that a �S b iff aþ b ¼ b. Then: �S is a
partial order; þ and � are monotonic on �S; 0 is its minimum and 1 its maximum.
Informally, the relation �S gives us a way to compare (some of the) tuples of values and
constraints. In fact, when a �S b, we will say that b is better than a.

Given a c-semiring S ¼ ðA,þ,�, 0, 1Þ, a finite set D (the domain of the variables), and
an ordered set of variables V, a soft constraint is a pair hdef, coni where con � V and
def : Djconj ! A. Therefore, a soft constraint specifies a set of variables (the ones in con),
and assigns to each tuple of values of D of these variables an element of A. A soft
constraint satisfaction problem (SCSP), denoted by hS,V,C i, is a set of soft constraints C
based on the c-semiring S, which is defined over a set of variables V. For example, fuzzy
CSPs (Fargier, Schiex, and Verfaille 1995) are SCSPs that can be modelled by choosing the
c-semiring SFCSP ¼ ð½0, 1�,max, min, 0, 1Þ.

In a c-semiring there is an element, which combined with every other preference returns
such a preference, i.e. there is an element that acts as indifference. Such an element is 1. In
fact, 8a 2 A, a� 1 ¼ a. Moreover, a c-semiring holds a desired property for negative
preferences, that is, the combination between preferences is worse than the considered
preferences (in fact, 8a, b 2 A, a� b � a, b). This interpretation is very natural when
considering, for example, the weighted c-semiring ðRþ, min, þ, þ1, 0Þ, where preferences
are real positive numbers interpreted as costs. Such costs are combined via the sum (þ)
and the best costs are the lower ones (min). In this case preferences are costs and thus
negative preferences, and the sum of the cost costs is worse in general than these costs,
since we want to minimise the sum of the cost.

The interpretation above is also natural when considering, the fuzzy c-semiring
ð½0, 1�, max,min, 0, 1Þ, where preferences are in ½0, 1�, are combined via the minimum
operator and the best preferences are the higher ones (max). In fact, in this case the
combination of preferences is worse in general than these preferences, since it is equal to
the worst one of these preferences w.r.t. the ordering induced by the additive operator
(that is, max) of the c-semiring. From now on, a standard c-semiring will be used to model
negative preferences, denoted as ðN, þn , �n , ?n ,>nÞ.

2.2. Positive preferences

When dealing with positive preferences, two main properties should hold: combination
should bring better preferences, and indifference should be lower than all the other positive
preferences.

These properties can be found in a positive preference structure (Bistarelli et al. 2006,
2007a, 2010), which is a tuple ðP,þp, �p, ?p,>pÞ s.t. P is a set and >p,?p 2P; þp, the
additive operator, is commutative, associative, idempotent, with ?p as its unit element
(8a 2 P, aþp?p¼ aÞ and >p as its absorbing element (8a 2 P, aþp >p ¼ >p); �p,
the multiplicative operator, is associative, commutative and distributes over þp

(a�p ðbþp cÞ ¼ ða�p bÞ þp ða�p cÞ), with ?p as its unit element and >p as its absorbing
element.1
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The additive operator of this structure has the same properties as the corresponding

one in c-semirings, and thus it induces a partial order over P in the usual way: a �p b

iff aþp b ¼ b. This allows to prove that þp is monotonic (8a, b, d 2 P s.t. a �p b,

a�p d �p b�p d ) and that þp is the least upper bound in the lattice ðP, �pÞ (8a, b 2 P,

a�p b �p aþp b �p a, b).
On the other hand, �p has different properties w.r.t. �n: its absorbing element is now

the best element in the ordering ð>pÞ, while its unit element, that can model indifference, is

the worst element ð?pÞ. These are exactly the desired properties for combination and

indifference of positive preferences. An example of a positive preference structure is

ð<þ, max, sum, 0,þ1), where preferences are positive real numbers aggregated with sum

and compared with max (i.e. the best preferences are the highest ones). Another example is

ð½0, 1�, max,max, 0, 1), where preferences are positive real numbers aggregated and

compared with max.

2.3. Bipolar preferences

When we deal with both positive and negative preferences, the same properties described

above for a single kind of preferences should continue to hold. Moreover, all the positive

preferences should be better than all the negative ones and there should exist an operator

which allows for the compensation between positive and negative preferences. These

properties can be obtained by considering the bipolar preference structure presented

below, that links the previous two structures by setting the highest negative preference to

coincide with the lowest positive preference to model indifference.
A bipolar preference structure (Bistarelli et al. 2006, 2007a, 2010) is a tuple

ðN,P,þ,�,? ,œ,>Þ, where ðP,þjP ,�jP ,œ,>Þ is a positive preference structure;

ðN,þjN ,�jN ,? ,œÞ is a c-semiring; þ : ðN [ PÞ2�!ðN [ PÞ is an operator s.t.

an þ ap ¼ ap 8an 2 N and ap 2 P; it induces a partial ordering on N [ P: 8a, b 2 P [N,

a � b iff aþ b ¼ b; � : ðN [ PÞ2�!ðN [ PÞ (called the compensation operator) is a

commutative and monotonic (8a, b, c 2 N [ P, if a � b, then a� c � b� c) operator.
In the following, we will write þn instead of þjN and þp instead of þjP . Similarly for �n

and �p. When � is applied to a pair in ðN� PÞ, we will sometimes write �np.
Note that the compensation operator may not be associative. This is due to the fact

that one wants to leave complete freedom to choose the positive and negative algebraic

structures. However, in some situations associativity could be desirable. In such a case one

can build a bipolar structure with associative compensation operator, by following the

procedure presented in Bistarelli et al. (2007a, 2010).
From the monotonicity of the compensation operator it follows that the combination

of a positive and a negative preference is a preference which is higher than, or equal to, the

negative one and lower than, or equal to, the positive one.
An example of bipolar structure is the tuple (N¼ ½�1, 0�, P¼ ½0, 1�, þ¼max, �,

?¼�1, œ¼ 0, >¼ 1), where � is such that �p¼ max, �n¼min and �np¼ sum. Negative

preferences are between �1 and 0, positive preferences between 0 and 1, compensation is

sum, and the order is given by max. In this case � is not associative.
Note that, when the preferences are totally ordered, operators �n and �p described

here correspond respectively to the t-norm and t-conorm considered in Grabisch, de Baets,
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and Fodor (2003), and requiring that the compensation operator is associative, then it

corresponds to the uninorm operator considered in Grabisch et al. (2003).

2.4. Bipolar preference problems

A bipolar constraint is a constraint where each assignment of values to its variables is

associated to one of the elements in a bipolar preference structure. Given a bipolar
preference structure S ¼ ðN,P, þ ,�, ?, œ,>Þ, a finite set D (the domain of the variables),

and an ordered set of variables V, a bipolar constraint is a pair hdef, coni where con � V
and def : Djconj ! ðN [ PÞ. A bipolar CSP (BCSP) hS,V,C i is a set of variables V and a set

of bipolar constraints C over V defined on the bipolar structure S. An RBCSP
hS,V,C1,C2i is a BCSP over the bipolar structure S, where the set of variables is V and the
set of bipolar constraints is C1 [ C2.

Given a subset of variables I � V, and a bipolar constraint c ¼ hdef, coni, the

projection of c over I, written as c +I, is a new bipolar constraint hdef 0, con0i, where
con0 ¼ con \ I and def ðt0Þ ¼

P
ftjt#con0¼t

0g defðtÞ. In particular, the scope, con0, of the
projection constraint contains the variables that con and I have in common, and thus

con0 � con. Moreover, the preference associated to each assignment to the variables in
con0, denoted with t0, is the best one among the preferences associated by def to any

completion of t0, t, to an assignment to con. The notation t #con0 indicates the subtuple of t
on the variables of con0. For example, if con ¼ X [ Y, con0 ¼ X, and t ¼ ðX ¼ a,Y ¼ bÞ,
then t #X¼ a.

A solution of a BCSP hS,V,C i is a complete assignment to all variables in V, say s.

Its overall preference is ovprefðsÞ ¼ ovprefpðsÞ � ovprefnðsÞ ¼ ð p1 �p . . .�p pkÞ�
ðn1 �n . . .�n nlÞ, where, for i :¼ 1, . . . , k, pi 2 P, for j :¼ 1, . . . , l, nj 2 N, and

9hdefi, conii 2 C such that pi ¼ defiðs #coniÞ and 9hdefj, conji 2 C such that
nj ¼ defðs #conj Þ. Hence the preference of a solution is obtained by combining all the
positive preferences associated to its projections over the constraints on one side, all the

negative preferences associated to its projections over the constraints on the other side, and
then compensating the two preferences so obtained. This definition is in accordance with

the classical tool used in bipolar decision making, namely with cumulative prospect theory
(Tversky and Kahneman 1992).

A solution s is optimal if there is no other solution s0 with ovprefðs0Þ4 ovprefðsÞ.
Given a bipolar constraint c ¼ hdef, coni and one of its tuple t, it is possible to define

two functions pos and neg as follows:

posðcÞðtÞ ¼
defðtÞ if defðtÞ 2 P,
œ otherwise,

�

negðcÞðtÞ ¼
defðtÞ if defðtÞ 2 N,
œ otherwise:

�

In other words, given a constraint c and one of its tuple t, posðcÞðtÞ (resp. negðcÞðtÞ)

returns the preference given by c for the tuple t if it is positive (resp. negative) and
indifference otherwise.
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Example 1: Figure 1 shows an example of a BCSP. It is defined on the same bipolar
preference structure considered before, that is, hN ¼ ½�1, 0�,P ¼ ½0, 1�, þ ¼ max,�,
?¼ �1, œ ¼ 0,> ¼ 1i, where � is s.t. �p ¼ max, �n ¼ min and �np ¼ sum. It is
composed by four variables, that is, x, y, z1 and z2, and by the three bipolar constraints
hq, fx, z1gi, ht, fx, z2gi and h f, fx, ygi. The domain of x and y is fa, bg, while the domain of z1
and z2 is fa, b, cg. One of the solutions of such a BCSP is s ¼ ð y ¼ b, x ¼ a, z1 ¼ a, z2 ¼ bÞ.
To compute its preference, we must consider the preferences of all the projections of s in
the various constraints, i.e. the preference þ0:8 of ð y ¼ b, x ¼ aÞ in h f, fx, ygi, the
preference �0:5 of ðx ¼ a, z1 ¼ aÞ in hq, fx, z1gi and the preference �0:3 of ðx ¼ a, z2 ¼ bÞ
in ht, fx, z2gi. Thus ovprefðsÞ ¼ ð�0:5�n �0:3Þ �np 0:8 ¼ minð�0:5,�0, 3Þ þ 0:8 ¼
�0:5þ 0:8 ¼ þ0:3. In this example an optimal solution is s0 ¼ ð y ¼ b, x ¼ a,
z1 ¼ b, z2 ¼ cÞ with preference ovprefðs0Þ ¼ þ0:8. Let us now show how functions pos
and neg defined above work on the constraint c1 ¼ hq, fx, z1gi and on the tuples
t1 ¼ ðx ¼ a, z1 ¼ aÞ and t2 ¼ ðx ¼ a, z1 ¼ bÞ. For t1 we have posðc1Þðt1Þ ¼ 0 and
negðc1Þðt1Þ ¼ �0:5, and for t2 we have posðc1Þðt2Þ ¼ þ0:8 and negðc1Þðt2Þ ¼ 0. œ

2.5. Uncertainty in soft constraint problems

Uncertain soft constraint satisfaction problems (USCSPs) (Pini et al. 2005, 2010) are soft
constraint problems where some variables are uncontrollable, i.e. they are not under the
user’s control. They can model many real-life problems, such as scheduling and
timetabling. For example, they can model the problem of scheduling some tasks, knowing
that the duration of some of those is uncertain, and only vaguely known (Dubois et al.
1995), or the problem of deciding how many training sessions to perform in a tutorial,
without knowing the effective number of participants, but knowing only an approximate
number of these participants (Dubois, Fargier, and Prade 1996). Contrary to classical
constraint problems, in USCSPs we cannot decide how to assign the variables to make the
assignment optimal, but we must assign values to the controllable variables, denoted with
Vc, guessing what Nature will do with the uncontrollable variables, denoted with Vu.

If the uncontrollable variables are equipped with additional information on the
likelihood of their values, like in our case, such an information can be used to infer new

t(a, a)=−0.4
t(a, b)=−0.3
t(a, c)=+0.8 

t(b, a)=+0.3
t(b, b)=−0.4
t(b, c)=+0.1

q(a, a)=−0.5
q(a, b)=+0.8
q(a, c)=−0.3

q(b, a)=−0.2
q(b, b)=+0.5
q(b, c)=+0.4 z1

z2

y

Dx=Dy ={a, b}
Dz1

= Dz2
={a, b, c}

x

f(a, a)=−0.4
f(a, b)=−0.5
f(b, a)=+0.8
f(b, b)=+0.7

Figure 1. Schematic representation of a BCSP.
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soft constraints over the controllable variables, which express the compatibility of the

controllable part of the problem with the uncontrollable one. This information can be used

to define the notion of optimal solution. It is assumed that there is no observability over

uncertain events before decision.
An USCSP is thus defined as a set of variables, which can be controllable or

uncontrollable, and a set of soft constraints over these variables. Moreover, the domain of

every uncontrollable variable is equipped with a possibility distribution, that specifies, for

every value in the domain, the degree of plausibility that the variable takes that value.
More formally, a possibility distribution � associated to a variable z with domain AZ is

a mapping from AZ to a totally ordered scale L (usually ½0, 1�) such that 8a 2 AZ, �ðaÞ 2 L

and 9 a 2 AZ such that �ðaÞ ¼ 1, where 1 is the top element of the scale L (Zadeh 1978).
A USCSP is a tuple hS,Vc,Vu,�,Cc,Ccu,Cui where S is a c-semiring, Vc ¼ fx1, . . . , xng

is a set of controllable variables, Vu ¼ fz1, . . . , zkg is a set of uncontrollable variables,

� ¼ f�1, . . . ,�kg is a set of possibility distributions over Vu, such that every zi 2 Vu has

possibility distribution �i with scale ½0, 1�, Cc is the set of constraints that involve only

variables of Vc, Ccu is a set of constraints that involve at least a variable in Vc and a

variable in Vu, and that may involve any other variable of Vc [ Vu, and Cu is the set of

constraints that involve only variables of Vu.
Notice that when the set of uncontrollable variables, i.e. Vu, is empty, then the sets

of constraints involving variables in Vu, i.e. Ccu and Cu, are empty, and the USCSP

corresponds to a soft constraint problem hS,Vc,Cci, as defined in Section 2.1.
When the chosen semiring is SFCSP ¼ h½0, 1�, max, min, 0, 1i, the definition of an

USCSP models an Uncertain Fuzzy CSP (UFCSP), that corresponds, when there are no

uncontrollable variables, to an FCSP, as defined in Section 2.1.

Example 2: Figure 2 shows an example of an UFCSP. Each constraint is defined by

associating a preference level (in this case between 0 and 1) to each assignment of its

variables to values in their domains. The set Vc of the controllable variables is composed

by x, y and w, while the set Vu of the uncontrollable variables contains only z. The values

in the domain of z are characterised by the possibility distribution �Z. The set of

constraints Cc is composed by the constraint hq, fx,wgi, which relates x and w via the

preference function q. The set of constraints Ccu is composed by the constraint h f, fx, y, zgi,

z

w

x
Dw={5, 6}

Dx=Dy={1, 2}
Dz={3, 4}

zπ

y
0

0.2

43 z

1 f(z=3, x=1, y=1)=0.3
f(z=4, x=1, y=1)=0.5
f(z=3, x=1, y=2)=0.4
f(z=4, x=1, y=2)=0.6
f(z=3, x=2, y=1)=0.5
f(z=4, x=2, y=1)=0.4
f(z=3, x=2, y=2)=0.1
f(z=4, x=2, y=2)=0.6

q(x=1, w=5)=0.4
q(x=1, w=6)=0.3
q(x=2, w=5)=0.9
q(x=2, w=6)=0.2

.

.

Figure 2. Schematic representation of an UFCSP.
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which is defined on variables x, y, and z by the preference function f , while the set Cu is
empty.

Given an assignment t to all the variables of an USCSP, its overall preference is
computed by combining, via the � operator, the preference levels of its subtuples in the
selected constraints. More formally, given an USCSP Q ¼ hS,Vc,Vu,�,Cc,Ccu,Cui, let t
be an assignment to all the variables of Q, then its overall preference is the value
ovprefðtÞ ¼

Q
fhdefi, conii2Cc[Ccu[Cug

defiðt #coniÞ:

A solution of an USCSP is a complete assignment to all its controllable variables.
More formally, given an USCSP Q ¼ hS,Vc,Vu,�,Cc,Ccu,Cui, a solution of Q is a
complete assignment to all the variables of Vc.

2.6. Preference, robustness and desirable properties for USCSPs

In Pini et al. (2010), a solution s of an USCSP is associated to both a preference degree,
written prefðsÞ, and a degree of robustness, written robðsÞ. The preference degree
summarises all the preferences in the controllable part and it can be really obtained for
some assignment to the uncontrollable variables decided by the Nature. The robustness of
a solution, that measures the impact of Nature on the preference obtained by choosing
that solution, is assumed to be dependent both on the preferences in the constraints
connecting both controllable and uncontrollable variables to s and on such possibility
distributions.

Two desirable properties for the notion of robustness that have been considered in Pini
et al. (2005, 2010) for USCSPs and in Dubois, Fargier, and Prade (1996) for UFCSPs are
the following.

Property P1: Given solutions s and s0 of an USCSP, hS,Vc,�,Vu,Cc,Ccui, where every
variable vi in Vu is associated to a possibility distribution �i, if for every constraint
hdef, coni 2 Ccu and for every assignment a to the uncontrollable variables in con,
def ððs, aÞ #conÞ �S defððs0, aÞ #conÞ, then it should be that robðsÞ �S robðs0Þ.

In other words, if we increase the preferences of any tuple involving uncontrollable
variables, the solution should have a higher value of robustness.

Property P2: Take a solution s of the USCSPs Q1 ¼ hS,Vc,Vu,�1,Cc,Ccui and
Q2 ¼ hS,Vc,Vu,�2,Cc,Ccui. Assume for every assignment a to variables in Vu,
�2ðaÞ � �1ðaÞ. Then it should be that rob�1 ðsÞ �S rob�2ðsÞ, where rob�1 is the robustness
computed in the problem Q1, and rob�2 is the robustness computed in the problem Q2.

In other words, if we lower the possibility of any value of the uncontrollable variables,
the solution should have a higher value of robustness.

To understand which solutions are better than others in an USCSP, in Pini et al. (2010)
a solution ordering, say �, is considered which is reflexive and transitive and should
depend on the notions of robustness and preference as in the following properties.

Property P3: Given two solutions s and s0 of an USCSP, if robðsÞ ¼ robðs0Þ and
prefðsÞ4S prefðs

0Þ, it should be that s � s0.

Property P4: Given two solutions s and s0 of an USCSP such that prefðsÞ ¼ prefðs0Þ, and
robðsÞ4S robðs

0Þ, then it should be that s � s0.
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In other words, two solutions which are equally good with respect to one aspect

(robustness or preference degree) and differ on the other should be ordered according to
the discriminating aspect.

Property P5: Given two solutions s and s0, an USCSP Q ¼ hS,Vc,Vu,�,Cc,Ccui, such
that ovprefðs, aÞ4S ovprefðs

0, aÞ 8a assignment to Vu, then it should be that s � s0.

In other words, if two solutions s and s0 are such that the overall preference of the

assignment ðs, aÞ to all the variables is better than or equal to one of ðs0, aÞ for all the values
a of the uncontrollable variables, then s should be considered better than the other one.

2.7. Removing uncertainty in UFCSPs: preferences, robustness and semantics

In Pini et al. (2010), a method is presented to remove uncontrollable variables from
UFCSPs preserving as much information as possible. Starting from this method, both a

degree of preference and a degree of robustness for a solution are defined, and it is shown
that these degrees satisfy the desirable properties mentioned above.

2.7.1. Removing uncertainty

The procedure presented in Pini et al. (2010) to remove uncertainty in UFCSPs, that is

called Algorithm SP, works as follows. It takes as input an UFCSP Q ¼
hS,Vc,Vu,�,Cc,Ccui, where every variable zi 2 Vu has a possibility distribution �i and
where S is the fuzzy c-semiring and returns an RFCSP that is similar to an FCSP but has
two sets of constraints rather than one. More precisely, an RFCSP is a tuple hS,Vc,C1,

C2 i such that hS,Vc,C i, where C ¼ C1 [ C2, is an FCSP.

Algorithm 1: SP

Input: Q ¼ hS,Vc,Vu,�,Cc,Ccui: an UFCSP;
Output: Q0 ¼ hS,Vc,C

	
c ,Crobi: an RFCSP;

Crob  ;;
Cproj  ;;
for each constraint c 2 Ccu do

Crob  Crob [ Compute Fuzzy Robustness ConstraintðcÞ;
Cproj  Cproj [ Compute Fuzzy Projection ConstraintðcÞ;

C	c  Cc [ Cproj;
Q0  hS,Vc,C

	
c ,Crobi;

return Q0;

The RFCSP Q0 returned by SP is obtained from Q by eliminating its uncontrollable

variables and the fuzzy constraints in Ccu relating controllable and uncontrollable
variables, and by adding new fuzzy constraints only among these controllable variables

that we call Cproj (the fuzzy projection constraints) and Crob (the fuzzy robustness
constraints), that encode (some of ) the information contained in the uncontrollable part of

the problem. In particular, it adds Cproj to Cc, while it keeps Crob separate. More precisely,
given a constraint c ¼ hdef, coni in Ccu such that con \ Vc ¼ X and con \ Vu ¼ Z,

554 S. Bistarelli et al.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
 d

i P
ad

ov
a]

, [
M

ar
ia

 S
ilv

ia
 P

in
i]

 a
t 0

7:
20

 1
4 

O
ct

ob
er

 2
01

1 



. its corresponding robustness contraint in Crob, obtained by applying the

procedure Compute Fuzzy Robustness Constraint(c), returns a fuzzy constraint

hdef 0,X i where, 8tX assignment to X,

def 0ðtXÞ ¼ min
tZ2AZ

maxðdefðtX, tZÞ, 1� �ZðtZÞÞÞ:

. its corresponding projection constraint in Cproj, obtained by applying the

procedure Compute Fuzzy Projection Constraint(c), is the constraint hdef 00,X i,

where

def 00ðtXÞ ¼ max
fa2AZgj�ZðaÞ4 0

defðtX, tZÞ:

2.7.2. Preference, robustness and semantics in UFCSPs

In Pini et al. (2010) the problem returned by the Algorithm SP is used to define the

preference and the robustness of a solution in an UFCSP. More precisely, given a solution

s of an UFCSP Q, let Q0 ¼ hS,Vc,C
	
c ,Crobi, where C

	
c ¼ Cc [ Cproj, the RFCSP obtained

from Q by Algorithm SP,

. the preference of s is prefðsÞ ¼ minfhdef,coni2C 	c g defðs #conÞ,

. the robustness of s is robðsÞ ¼ minfhdef,coni2Crobg defðs #conÞ:

In other words, the preference (resp. robustness) of a solution is obtained by combining

the preferences of the appropriate subtuples of the solution over the constraints in C 	c , i.e.

in Cc [ Cproj (resp. in Crob). In Pini et al. (2010) it is shown that the desirable properties on

the robustness (i.e. Properties P1 and P2) presented previously hold.
Since a solution of an UFCSP is associated to a preference and robustness degree,

in Pini et al. (2010) various semantics are defined to order the solutions which depend on

the attitude w.r.t. these two notions. In the following, we will describe those that we

consider in this article.

. Risky semantics: given A1 ¼ ðpref1, rob1Þ and A2 ¼ ðpref2, rob2Þ, A1 �Risky A2 iff

pref1 4 pref2 or (pref1 ¼ pref2 and rob1 4 rob2). Informally, the idea is to give

more relevance to the preference that can be reached in the best case considering

less important a high risk of being inconsistent.
. Safe semantics: given A1 ¼ ðpref1, rob1Þ and A2 ¼ ðpref2, rob2Þ, A1 �Safe A2 iff

rob1 4 rob2 or (rob1 ¼ rob2 and pref1 4 pref2). The idea is to give more

importance to the robustness level that can be reached considering less important

having a high preference.
. Diplomatic semantics: given A1 ¼ ðpref1, rob1Þ and A2 ¼ ðpref2, rob2Þ,

A1 �Dipl A2 iff (pref1 � pref2 and rob1 � rob2) and (pref1 4 pref2 or

rob1 4 rob2). The idea is that a pair is to be preferred to another only if it wins

both on preference and robustness, leaving incomparable all the pairs that have

one component higher and the other lower.

In Pini et al. (2010) it is shown that for Risky, Safe and Diplomatic semantics the

desired properties on solution ordering (i.e. Properties P3 and P4) presented previously

hold. Also, they prove that Property P5 is satisfied only by �Risky.
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3. Uncertain bipolar problems

Uncertain bipolar problems (UBCSPs) are characterised by a set of variables, each of
which can be controllable or uncontrollable, and by a set of bipolar constraints. Thus, an
UBCSP is a BCSP where some of the variables are uncontrollable. Moreover, the domain
of every uncontrollable variable is equipped with a possibility distribution, that specifies,
for every value in the domain, the degree of plausibility that the variable takes that value.
Hence, an UBCSP is also an USCSP where every constraint is bipolar. More formally,

Definition 1 (UBCSP): An uncertain bipolar CSP is a tuple hS,Vc,Vu,�,Cc,Ccui, where

. S ¼ ðN,P,þ,�, ?, œ,>Þ is a bipolar preference structure and �S is the ordering
induced by operator þ;

. Vc ¼ fx1, . . . , xng is a set of controllable variables;

. Vu ¼ fz1, . . . , zkg is a set of uncontrollable variables;

. � ¼ f p1, . . . , pkg is a set of possibility distributions over Vu. In particular, every
zi 2 Vu has possibility distribution �i with scale ½0, 1�;

. Cc is the set of bipolar constraints that involve only variables of Vc;

. Ccu is a set of bipolar constraints that involve at least a variable in Vc and a
variable in Vu and that may involve any other variable of ðVc [ VuÞ.

. Cu is the set of bipolar constraints that involve only variables of Vu.

For simplicity we will assume that Cu is empty and thus we will omit it in the tuple
when we refer to an UBCSP. If Cu 6¼ ;, we can translate every constraint of type Cu into a
new constraint of type Ccu, thus obtaining an UBCSP with Cu ¼ ;. This can be done by
using a procedure similar to the one used for UFCSPs in Pini et al. (2010).

Given an assignment t to all the variables of an UBCSP, its overall preference (see
Section 2) is computed by combining, via the � operator, first all the positive preferences
of its subtuples in the selected constraints, then all the negative preferences of its subtuples
in the selected constraints and finally the two resulting preferences. More formally so,
using the notation presented in this section.

Definition 2 (overall assignment preference): Given a UBCSP Q ¼ hS,Vc,Vu,�,Cc,Ccui,
let t be an assignment to all the variables of Q, then its overall preference is the value
ovprefðtÞ ¼ ovprefpðtÞ � ovprefnðtÞ, where ovprefpðtÞ ¼

Q
fhdefi, conii2Cc[Ccug

posðdefiÞðt #coni Þ,
and ovprefnðtÞ ¼

Q
fhdefi, conii2Cc[Ccug

negðdefiÞðt #coni Þ.

A solution of a UBCSP is a complete assignment to all its controllable variables. More
formally so, as in the following definition.

Definition 3 (solution): Given an UBCSP Q ¼ hS,Vc,Vu,�,Cc,Ccui, a solution of Q is a
complete assignment to all the variables of Vc.

Example 3: An example of an UBCSP is the one presented in Figure 3(a). It is like the
one in Figure 1, except that now variables z1 and z2 are uncontrollable and characterised
by two possibility distributions �1 and �2. More formally, such an UBCSP is defined by
the tuple hS,Vc ¼ fx, yg,Vu ¼ fz1, z2g,� ¼ f pi1,�2g,Cc,Ccugi. We recall that the bipolar
structure is hN ¼ ½�1, 0�,P ¼ ½0, 1�,þ ¼ max,�, ?¼ �1, œ ¼ 0,> ¼ 1i, where � is s.t.
�p ¼ max, �n ¼ min and �np ¼ sum. The set of constraints Cc contains h f, fx, ygi, while
Ccu contains hq, fx, z1gi and ht, fx, z2gi. Figure 3(a) shows the positive and the negative
preferences within such constraints and the possibility distributions �1 and �2 over the
domains of z1 and z2.
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4. Preference, robustness, and desirable properties in UBCSPs

Given a solution s of an UBCSP, we will associate to it a degree of preference,

say prefðsÞ, and a degree of robustness, say robðsÞ that generalise those given for USCSPs

in Pini et al. (2010). Moreover, we will show that these notions satisfy the following

generalised version of the desirable properties for USCSPs described in Section 2.6.

Property BP1: Given solutions s and s0 of an UBCSP, hS,Vc,�,Vu,Cc,Ccui, where every

variable vi in Vu is associated to a possibility distribution �i, if for every constraint

hdef, coni 2 Ccu and for every assignment a to the uncontrollable variables in con,

def ððs, aÞ #conÞ �S defððs0, aÞ #conÞ, then it should be that robðsÞ �S robðs0Þ.

Property BP2: Take a solution s of the UBCSPs Q1 ¼ hS,Vc,Vu,�1,Cc,Ccui and

Q2 ¼ hS,Vc,Vu,�2,Cc,Ccui. Assume that for every assignment a to variables in Vu,

�2ðaÞ � �1ðaÞ. Then it should be that rob�1 ðsÞ �S rob�2ðsÞ, where rob�1 is the robustness

computed in the problem Q1, and rob�2 is the robustness computed in the problem Q2.

Property BP3: Given two solutions s and s0 of an UBCSP, if robðsÞ ¼ robðs0Þ and

prefðsÞ4S prefðs
0Þ, it should be that s � s0.

Property BP4: Given two solutions s and s0 of an UBCSP such that prefðsÞ ¼ prefðs0Þ, and

robðsÞ4S robðs
0Þ, then it should be that s � s0.

Property BP5: Given two solutions s and s0, an UBCSP Q ¼ hS,Vc,Vu,�,Cc,Ccui, such

that ovprefpðs, aÞ4S ovprefpðs
0, aÞ and ovprefnðs, aÞ4S ovprefnðs

0, aÞ 8a assignment to Vu,

then it should be that s � s0.
Notice that the new desirable properties for bipolar preferences are similar to the ones

given for USCSPs in Pini et al. (2010). Two differences are that they consider an UBSCP

rather than an USCSP and that, as preference ordering, they consider �S, that is the

ordering induced by the additive operator of the bipolar preference structure of the

considered UBSCP and not the ordering induced by the additive operator of the c-semiring

of the consideredUSCSP. Another difference is in Property BP5where not only the negative

overall preferences are considered (as in USCSPs), but also the positive overall preferences.
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Figure 3. How B-SP works.
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5. Removing uncertainty from UBCSPs over closed real intervals

We now show how to extend the approach shown in Pini et al. (2005, 2010) to deal with

UFCSPs, i.e. problems with fuzzy preferences and uncertainty (Section 2.7), to UBCSPs

over real intervals, i.e. problems with bipolar preferences and uncertainty where the set of

the positive preferences and the set of the negative preferences are two closed intervals of R

(or structures isomorph to it).2 Starting from the generalisation of this approach, we will

define robustness and preference degrees and we will show that they satisfy the properties

which are considered desirable (see Theorems 1–5).
Our procedure, that we call Algorithm B-SP, takes as input an UBCSP

Q ¼ hS,Vc,Vu,�,Cc,Ccui, where every variable zi 2 Vu has a possibility distribution �i
and S ¼ hN,P,þ,�, ?, œ,>i is any bipolar preference structure where N and P are two

closed intervals of R (or structures isomorph to them) and it returns an RBCSP. We recall

that an RBCSP is similar to a BCSP but has two sets of constraints rather than one

(Section 2.4).

Algorithm 2: B-SP

Input: Q ¼ hS,Vc,Vu,�,Cc,Ccui: an UBCSP;
Output: Q0 ¼ hS,Vc,C

	
c ,Crobi: an RBCSP;

Crob  ;;
Cproj  ;;
for each constraint c 2 Ccu do

Crob  Crob [ Compute Robustness ConstraintðcÞ;
Cproj  Cproj [ Compute Projection ConstraintðcÞ;

C	c  Cc [ Cproj;
Q0  hS,Vc,C

	
c ,Crobi;

return Q0;

The RBCSP Q0 returned by B-SP is obtained from Q by eliminating its uncontrollable

variables and the bipolar constraints in Ccu relating controllable and uncontrollable

variables, and by adding new bipolar constraints only among these controllable variables

that we call Cproj and Crob. In particular, it adds Cproj to Cc, while it keeps Crob separate.

More precisely, Cproj (the projection constraints) is the set of constraints obtained applying

to every constraint c in Ccu of Q, the procedure Compute Projection Constraint(c), that will

be described in Section 5.2, while Crob (the robustness constraints) is the set of constraints

obtained applying to every constraint c in Ccu of Q, the procedure Compute Robustness

Constraint(c), that will be described in Section 5.1. In Sections 5.1 and 5.2 we will see that

these new constraints will encode (some of ) the information contained in the uncontrol-

lable part of the problem.
As in Pini et al. (2010) for the fuzzy case, starting from this problem Q0, we define the

preference degree of a solution considering the preference functions of the constraints in

Cc [ Cproj, and the robustness degree of a solution considering the preference functions of

the constraints in Crob.
Notice that Algorithm B-SP is similar to Algorithm SP (Pini et al. 2010) described in

Section 2.7. However, it takes in input an UBCSP rather than an UFCSP, it returns an

RBCSP rather than an RFCSP, and it uses different procedures for computing robustness
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and projection constraints that depend on specific properties of the bipolar preference

structure of the considered UBCSP.

5.1. Robustness constraints

Similar to the approach for the fuzzy case (Pini et al. 2010), the set of robustness

constraints Crob is composed by the bipolar constraints obtained by reasoning on

preference functions of the bipolar constraints in Ccu and on the possibilities associated to

values in the domains of uncontrollable variables involved in such constraints. However,

the procedure to obtain such bipolar constraints is different from the one considered in the

fuzzy case, since while in the fuzzy case the fact that fuzzy preferences and possibilities are

commensurable is exploited, in the bipolar context we cannot exploit this fact since

positive and negative preferences may not be commensurable with possibilities. We have

thus adapted the fuzzy approach used to defined robustness constraints to take this fact

into account.
More precisely, every constraint in Crob is built by exploiting the procedure denoted

Compute Robustness Constraint in Algorithm B-SP, that works as follows.

. (Normalisation) Every constraint c ¼ hdef, coni in Ccu such that con \ Vc ¼ X and

con \ Vu ¼ Z, is translated in two bipolar constraints hdef p, coni and hdef n, coni,

with preferences in ½0, 1�, where, 8ðtX, tZÞ assignment to X� Z,

def pðtX, tZÞ ¼ gpðposðcÞðtX, tZÞÞ

and def nðtX, tZÞ ¼ gnðnegðcÞðtX, tZÞÞ. If the positive (resp. negative) preferences are

defined in the interval of R, P ¼ ½ap, bp� (resp. N ¼ ½an, bn�) then gp :

½ap, bp� ! ½0, 1� (resp. gn : ½an, bn� ! ½0, 1�) associates to every x 2 ½ap, bp� the

value
x�ap
bp�ap
2 ½0, 1� (resp. to every x 2 ½an, bn� the value

x�an
bn�an

) by using the classical

division and subtraction operation of R.
. (Removing uncontrollability) The constraint hdef p, coni obtained before is then

translated in hdef p0,X i, and hdef n, coni is then translated in hdef n0,X i, where 8tX
assignment to X,

def p0ðtXÞ ¼ inf
tZ2AZ

supðdef pðtX, tZÞ, cSð�ZðtZÞÞÞ,

and def n0ðtXÞ ¼ inftZ2AZ
supðdef nðtX, tZÞ, cSð�ZðtZÞÞÞ, where cS is an order revers-

ing map with respect to �S in ½0, 1�, such that cSðcSð pÞÞ ¼ p and inf which is the

opposite of the sup operator (derived from operator þ of S ), applied to a set of

preferences, returns its worst preference with respect to the ordering �S.
. (Denormalisation) The constraint hdef p0,X i obtained before is then translated in

hdef p00,X i, and hdef n0,X i is then translated in hdef n00,X i, where 8tX assignment

to X,

def p00ðtXÞ ¼ g�1p ðdef p
0ðtXÞÞ,

and def n00ðtXÞ ¼ g�1n ðdef n
0ðtXÞÞ. The map g�1p : ½0, 1� ! ½ap, bp� associates to every

y 2 ½0, 1� the value ½ yðbp � apÞ þ ap� 2 ½ap, bp�, and the map g�1n : ½0, 1� ! ½an, bn�

associates to every y 2 ½0, 1� the value ½ yðbn � anÞ þ an� 2 ½an, bn�.
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Hence, given c ¼ hdef,X [ Zi 2 Ccu, its corresponding robustness constraints in Crob

are the bipolar constraints hdef p00,X i and hdef n00,X i defined above. When we compute the

robutsness constraints, we reason separately on positive and negative preferences since

in our approach commensurability with possibilities applies only separately to positive

and negative preference sets, and not to the whole preference set. Forcing the

commensurability of the possibility range with the bipolar preference set would induce a

bipolarisation of possibilities, which is not reasonable. However, in order to avoid loss

of information, when we compute the robustness degree of a solution, considering the

robustness constraints, we compensate the positive and the negative preferences of such

constraints.
It is possible to show that the functions gp and gn are strictly monotonic with respect to

the ordering �S induced by the operator þ of S. Hence such functions are invertible and

their inverse functions are monotonic with respect to the same ordering.

Proposition 1: Given ap, bp, an, bn 2 R, with ap 5S bp and an 5S bn the following maps are

strictly monotone w.r.t. the ordering induced �S: gp : ½ap, bp� ! ½0, 1� s.t. x� x�ap
bp�ap

, and gn :

½an, bn� ! ½0, 1� s.t. x� x�an
bn�an

.

Proof: We now show that gp is monotone w.r.t. �S. If x1 4S x2, then x1 � ap 4S x2 � ap,

by monotonicity of the subtraction among real numbers. Moreover, since bp 4S ap, then

bp � ap 4S 0 and also 1
bp�ap

4 0. Thus, by strict monotonicity of the product over real

numbers (8a, b, c 2 R, if c4S 0 and a4S b, then ac4S bc),
x1�ap
bp�ap

4S
x2�ap
bp�ap

, i.e.

gpðx1Þ4S gpðx2Þ. Similarly, since bn 4S an, and thus 1
bn�an

4 0, it is possible to show that

gn is strictly monotone. œ

This allows us to show that the new preference functions def p00 and def n00 in the

constraints Crob satisfy the same property given in Dubois et al. (1996) and Pini et al.

(2005). That is, given an assignment tX to controllable variables in X in a constraint

c ¼ hdef, coni 2 Ccu, where con ¼ X [ Z, the higher are def p00ðtXÞ and def n00ðtXÞ, the more

assignments to uncontrollable variables in c will yield in Q preference higher than a given

threshold. It is thus possible to prove that

. def p00ðd Þ �S � 2 P (resp. def n00ðd Þ �S � 2 N ) if and only if, for any tZ assignment

to Z with �ZðtZÞ4 cSð gpð�ÞÞ (resp. �ZðtZÞ4 cSð gnð�ÞÞ), then def ðtX, tZÞ �S �.

Note that this property holds for both positive and negative preferences, since the

definition of def p00 and def n00 is not based on the combination operators (�p and �n) of

positive and negative preferences, which have different behaviours, but only on the

operators sup and inf derived by the additive operators þp and þn, which satisfy the same

properties, more precisely as shown in the following proposition.

Proposition 2: Consider an UBCSP hS,Vc,Vu,�,Cc,Ccui, where S ¼ hN,P,þ,�, ?, œ,>i

is a bipolar preference structure where P ¼ ½ap, bp� and N ¼ ½an, bn� are closed intervals of R.

For every constraint c ¼ hdef, coni2Ccu such that con \ Vu ¼ Z, with possibility distribution

�Z, and con \ Vu ¼ X, the corresponding robustness constraints hdef p00,X i and hdef n00,X i

are such that, for every tX assignment to X,

. def p00ðtXÞ �S � 2 P iff, when �ZðtZÞ4 cSð gpð�ÞÞ, then posðcÞðtX, tZÞ �S �,

. def n00ðtXÞ �S � 2 N iff, when �ZðtZÞ4 cSð gnð�ÞÞ, then posðcÞðtX, tZÞ �S �,
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where tZ is an assignment to Z, gp : ½ap, bp� ! ½0, 1� is such that x� x�ap
bp�ap
2 ½0, 1� gn :

½an, bn� ! ½0, 1� is such that x� x�an
bn�an

, and cS is an order reversing map with respect to

ordering �S in ½0, 1� such that cSðcSð pÞÞ ¼ p 8p 2 ½0, 1�.

Proof: We show the first statement concerning def p00ðtXÞ. The second one, concerning
def n00ðtXÞ, can be proved analogously, since by construction gn and g�1n have the same
properties respectively of gp and g�1p . We recall that def p00ðtXÞ ¼ g�1p ðinftZ2AZ

�

ð gpðposðcÞðtX, tZÞÞþ cSð�ZðtZÞÞÞÞ, where AZ is the set of the assignment to Z.

()) We assume that def p00ðtXÞ �S �. If this holds, then, since gp is monotone
with respect to the ordering �S, gpðdef p

00ðtXÞÞ �S gpð�Þ, i.e. gpð g
�1
p ðinftZ2AZ

�

supð gpðposðcÞðtX, tZÞÞ, cSð�ZðtZÞÞÞÞÞ �S gpð�Þ, that is, since gp is the inverse function of
g�1p , inftZ2AZ

supð gpðposðcÞðtX, tZÞ, cSð�ZðtZÞÞÞÞ �S gpð�Þ. Since we are considering totally
ordered preferences, this implies that supð gpðposðcÞðtX, tZÞÞ, cSð�ZðtZÞÞÞ �S gpð�Þ 8tZ 2 AZ.
For tZ with �ZðtZÞ4 cSð gpð�ÞÞ, since cS is an order reversing map with respect to �S such
that cSðcSð pÞÞ ¼ p, we have cSð�ZðtZÞÞ5S cSðcSð gpð�ÞÞ ¼ gpð�Þ. Therefore, for such a value
tZ, we have that gpðposðcÞðtX, tZÞÞ¼ supð gpðposðcÞðtX, tZÞÞ, cSð�ZðtZÞÞÞ �S gpð�Þ and, since
g�1p is monotone, we have g�1p ð gpðposðcÞðtX, tZÞÞÞ �S g�1p ð gpð�ÞÞ, i.e. posðcÞðtX, tZÞ �S �.

(() We assume that 8tZ with �ZðtZÞ4 cSð gpð�ÞÞ, posðcÞðtX, tZÞ �S �. Then, for such tZ,
since gp is monotone with respect to �S, gpðposðcÞðtX, tZÞÞ �S gpð�Þ and so,
supð gpðposðcÞðtX, tZÞÞ, cSð�ZðtZÞÞÞ �S gpð�Þ. On the other hand, for every tZ such that
�ZðtZÞ4 cSð gpð�ÞÞ, we have cSð�ZðtZÞÞ 4S gpð�Þ and so supð gpðposðcÞðtX, tZÞÞ,
cSð�ZðtZÞÞÞ4S gpð�Þ. Thus 8tZ 2 AZ, supð gpðposðcÞðtX, tZÞÞ, cSð�ZðtZÞÞÞ �S gpð�Þ and
so inftZ2AZ

supðposðcÞðtX, tZÞ, cSð�ZðtZÞÞÞ �S gpð�Þ. Hence, since g�1p is monotone,
g�1p ðinftZ2AZ

ðsupðposðcÞðtX, tZÞ, cSð�ZðtZÞÞÞÞÞ �S g
�1
p ð gpð�ÞÞ, i.e. def p

00ðtXÞ �S �.

Example 4: Consider the constraint c1 ¼ hq, fx, z1gi in Figure 3(a). The robustness
constraints obtained from it are the constraints r1 ¼ hqp00, fxgi and r2 ¼ hqn00, fxgi shown in
Figure 3(b). They have been obtained by assuming gp the identity map, gn : N ¼
½�1, 0� ! ½0, 1� mapping every value n 2 ½�1, 0� into the value ðnþ 1Þ 2 ½0, 1�,
g�1n : ½0, 1� ! ½�1, 0� mapping every value t 2 ½0, 1� into the value ðt� 1Þ 2 ½�1, 0�, and
cS mapping every p 2 ½0, 1� in 1� p. We now show the meaning of these robustness
constraints. The value qp00ðx ¼ aÞ ¼ 0:3 means that in c1, as shown by the property above,
for all the values ti of z1 with possibility �1ðtiÞ4 1� 0:3 ¼ 0:7, (in this case only b), we
have qðx ¼ a, tiÞ � 0:3. Analogously, the value qn00ðx ¼ aÞ ¼ �0:5 means that, for all the
values ti of z1 with possibility �1ðtiÞ4 1� ð�0:5þ 1Þ ¼ 0:5, (that is, for a, b and c), we
have in c1 that qðx ¼ a, tiÞ � �0:5.

5.2. Projection constraints

As in the approach for the fuzzy case (Pini et al. 2010), projection constraints are added to
the problem in order to recall part of the information contained in the constraints in Ccu

that will be removed later. In particular, they guarantee that the preference degree of a
solution, say prefðsÞ, that we will define later, is a value that could be obtained in the given
UBCSP. The importance of considering such constraints is explained in Example 8.

However, the new projection constraints for the the bipolar context are defined in a
different way from those in the fuzzy case, since in the bipolar problems there may be
negative preferences different from fuzzy preferences and also positive preferences.
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Nevertheless, it is easy to check that the new approach to define these projection
constraints generalises the fuzzy one.

The set of projection constraints Cproj is defined by the function Compute Projection
Constraint in Algorithm B-SP. Such a function takes in input a bipolar constraint
c ¼ hdef, coni in Ccu, such that con \ Vc ¼ X and con \ Vu ¼ Z, and it returns constraints
hdef p,X i and hdef n,X i, where def pðtXÞ ¼ infftZ2AZj�ZðaÞ4 0g posðcÞ ðtX, tZÞ and
def nðtXÞ ¼ supfa2AZgj�ZðaÞ4 0 negðcÞ ðtX, tZÞ. In other words, def nðtXÞ (resp. def pðtXÞ) is the
best negative (resp. the worst positive) preference that could be reached for tX in c when we
consider the various values tZ in the domain of the uncontrollable variables in Z.

Example 5: Consider the constraint c1 ¼ hq, fx, z1gi in Figure 3(a), the projection
constraints obtained from it are the constraints p1 ¼ hqp, fxgi and p2 ¼ hqn, fxgi shown in
Figure 3(b). We recall that in this example positive preferences are in ½0, 1� and negative
preferences are ½�1, 0� and all the preferences are ordered via the maximum operator. In
this example, every assignment tx to the controllable variable x in p1 has positive
preference equal to 0, since 0 is the worst positive preference associated by posðc1Þ to tx,
and in p2 has negative preference equal to 0, since 0 is the best negative preference
associated by negðc1Þ to tx.

Example 6: Let us consider the UBCSP Q ¼ hS,Vc ¼ fx, yg,Vu ¼ fz1, z2g,� ¼ f p1, p2g,
Cc,Ccui in Figure 3(a). Figure 3(b) shows the RBCSP Q0 ¼ hS,Vc ¼ fx, yg,C

	
c ,Crobi,

where C 	c ¼ Cc [ Cproj, built by Algorithm B-SP. Cc is composed by h f, fx, ygi. Cproj is
composed by hqp, fxgi, hqn, fxgi, htp, fxgi and htn, fxgi, while Crob by hqp00, fxgi, hqn00, fxgi,
htp00, fxgi and htn00, fxgi. Constraints in Crob are obtained by using functions gp and gn as in
Example 4.

6. Preference and robustness

We are now ready to define the preference and the robustness of a solution in an UBCSP
Q ¼ hS,Vc,Vu,�,Cc,Ccui. To do that we generalise to the bipolar context the definition of
preference and robustness given for the fuzzy case (Pini et al. 2010). The main idea is to use
Algorithm B-SP to produce the RBCSP Q0 ¼ hS,Vc,C

	
c ,Crobi, where C

	
c ¼ Cc [ Cproj, and

then to associate to each solution of Q0, i.e. to every complete assignment to controllable
variables, a pair composed by a degree of preference and a degree of robustness.

Definition 4 (preference): Given a solution s of an UBCSP Q, let Q0 ¼ hS,Vc,C
	
c ,Crobi,

where C 	c ¼ Cc [ Cproj, the RBCSP obtained from Q by Algorithm B-SP. Then the
preference of s is

prefðsÞ ¼ prefpðsÞ � prefnðsÞ,

where

. � is the compensation operator of S,

. prefpðsÞ ¼�fhdef,coni2C 	c g posðcÞðs #conÞ,

. prefnðsÞ ¼ �fhdef,coni2C 	c g negðcÞðs #conÞ.

In other words, the preference of a solution is obtained by compensating a positive and
a negative preference, where the positive (resp. negative) preference is obtained by
combining all positive (resp. negative) preferences of the appropriate subtuples of the
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solution over the constraints in C 	c , i.e. over the constraints in Cc [ Cproj, that are the

initial constraints of Q linking only controllable variables and the new projection

constraints.
In the following proofs we will sometimes need to use a preference value that we call

projection preference. More precisely, we will denote the projection preference of a

solution s with

projðsÞ ¼ projpðsÞ � projnðsÞ,

where � is the compensation operator of S, projpðsÞ ¼�fhdef,coni2Cprojg posðcÞ ðs #conÞ, and

negðcÞðs #conÞ.

Definition 5 (robustness): Given a solution s of an UBCSP Q, let Q0 ¼ hS,Vc,C
	
c ,Crobi,

where C 	c ¼ Cc [ Cproj, the RBCSP obtained from Q by Algorithm B-SP. Then the

robustness of s is

robðsÞ ¼ robpðsÞ � robnðsÞ,

where

. � is the compensation operator of S,

. robpðsÞ ¼�fhdef,coni2Crobg posðcÞðs #conÞ,

. robnðsÞ ¼ �fhdef,coni2Crobg negðcÞðs #conÞ.

In other words, the robustness of a solution is obtained compensating a positive and a

negative robustness, where the positive (resp. negative) robustness is obtained by

combining all positive (resp. negative) preferences of the appropriate subtuples of the

solution over the constraints in Crob, i.e. over robustness constraints.

Notice that, when positive preferences are missing and when the negative preferences

are only of the fuzzy kind, the definitions of preference and robustness given above for the

bipolar case coincide with those given in (Pini et al. 2010) for the fuzzy case.

Example 7: Let us consider the UBCSP Q in Figure 3(a) and the RBCSP Q0 obtained

from Q by Algorithm B-SP. Figure 3(c) shows all the solutions of Q, i.e. all the complete

assignments to the controllable variables (thus x and y) with their associated preference

and robustness degrees.

In the following we will show why it is important to add projection constraints. Such

constraints avoid having solutions s with the negative preference prefnðsÞ better than the

best negative preference that could result from Ccu constraints and with the positive

preference prefpðsÞ worse than the worst positive preference that could result from Ccu

constraints.

Example 8: Consider an UBCSP Q defined over the bipolar preference structure

considered before, i.e. hN ¼ ½�1, 0�,P ¼ ½0, 1�,þ ¼ max,�, ?¼ �1, œ ¼ 0,> ¼ 1i,

where � is s.t. �p ¼ max, �n ¼ min and �np ¼ sum. Assume to have a solution s

with prefnðsÞ ¼ �0:7 and prefp ¼ þ0:5. Then prefðsÞ ¼ prefnðsÞ �np prefpðsÞ ¼

�0:7þ 0:5 ¼ �0:2. Assume also that the best negative preference that can be obtained

for s from constraints in Ccu is �0:9 and that the worst positive preference that can be

obtained for s from constraints in Ccu is þ0:9. Then the best negative preference that can
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be obtained by s in Q is pref 0nðsÞ ¼ prefnðsÞ �n ð�0:9Þ ¼ minð�0:7,�0:9Þ ¼ �0:9, i.e. a
negative preference which is strictly worse than prefnðsÞ ¼ �0:7. Moreover, the worst
positive preference that can be obtained for s in Q is pref 0pðsÞ ¼ prefpðsÞ�p

ðþ0:9Þ ¼maxðþ0:5,þ0:9Þ ¼ þ0:9, i.e. a positive preference which is strictly better than
þ0:5. Therefore, the preferences that can be obtained for s in Q are in ½�1,�0:9� and in
½0:9, 1�. Thus, prefðsÞ ¼ �0:7�np 0:5 ¼ �0:2 cannot be obtained in Q for s, since in Q the
best preference that can obtained for s is 0:1 ¼ �0:9�np 1 and the worst preference that
can be obtained for s is �0:1 ¼ �1�np 0:9. Instead, if we associate to s the preference
pref 0ðsÞ ¼ pref 0nðsÞ � pref 0pðsÞ ¼ �0:9þ 0:9 ¼ 0, then we are sure that such a preference
can be really obtained for s in Q. Thus, the addition of projection constraints guarantees
that every solution has a preference which can be really obtained in the original
problem Q.

Note that even if we keep the positive and negative preferences separate during
Algorithm B-SP, we compute the preference and robustness of a solution by compensating
its positive and its negative components, thus we don’t lose information. The only loss of
information that we have is due to the effect of the possibly non-associative compensation
operator. This feature is inherited from BCSPs (Bistarelli et al. 2007a, 2010), where
associativity is not required in order to allow for a more general framework, that is
desirable in practice. However, as said before, in Bistarelli et al. (2007a, 2010), a procedure
for building a bipolar preference structure with an associative compensation operator is
also shown.

It is possible to prove that the desired properties on the robustness (i.e. Properties BP1
and BP2, Pini et al. (2005) presented previously hold.

Theorem 1: The definition of robustness given in Definition 5 satisfies Property BP1.

Proof: Consider two solutions, say s and s0, of a UBCSP Q ¼ hS,Vc,Vu,�,Cc,Ccui,
where S¼ hN,Pþ,�, ?, œ,>i is a bipolar preference structure such that P and N are
closed intervals of R. For every bipolar constraint ci ¼ hdefi, conii 2 Ccu, let us denote with
Xi the set coni \ Vc, with Zi the set coni \ Vu, and with �Zi

the possibility distribution
associated to Zi. Assume that, for every such constraint ci, 8tZi

assignment to Zi,
defiðs#Xi

, tZi
Þ �S defiðs

0 #Xi
, tZi
Þ, To prove Property BP1, we will show that

robðsÞ �S robðs0Þ.
Let us denote with tXi

the value s#Xi
, with t0Xi

the value s0 #Xi
, and with AZi the set of

assignments of Zi. With this notation the hypothesis can be written as follows: 8tZi
2 AZi,

defiðtXi
, tZi
Þ �S defiðt

0
Xi
, tZi
Þ. This holds both for the positive preferences of ci and for the

negative preferences of ci. In particular, we have that 8tZi
2 AZi, posðciÞðtXi

, tZi
Þ �S

posðciÞðt
0
Xi
, tZi
Þ, and negðciÞðtXi

, tZi
Þ �S negðciÞðt

0
Xi
, tZi
Þ. We now consider the case of positive

preferences. The case of negative preferences can be dealt similarly.
If, 8tZi

2 AZi, posðciÞðtXi
, tZi
Þ �S posðciÞðt

0
Xi
, tZi
Þ, then, since the map gp, that we have

defined in Section 5.1, is monotone, 8tZi
2 AZi, gpðposðciÞðtXi

, tZi
ÞÞ �S gpðposðciÞðt

0
Xi
, tZi
ÞÞ.

Since the sup operator is monotone, 8tZi
2 AZi, supð gpðposðciÞ ðtXi

, tZi
ÞÞ, cSð�Zi

ðtZi
ÞÞÞ �S

supð gpðposðciÞðt
0
Xi
, tZi
ÞÞ, cSð�Zi

ðtZi
ÞÞÞ. Moreover, inft	

Zi
2AZi

supð gpðposðciÞðtXi
, t	Zi
ÞÞ,

cSð�Zi
ðt	Zi
ÞÞÞ �S supð gpðposðciÞðtXi

, tZi
ÞÞ, cSð�Zi

ðtZi
ÞÞÞ 8tZi

2 AZi. By the previous step,
8tZi
2 AZi, supð gpðposðciÞ ðtXi

, tZi
ÞÞ, cSð�Zi

ðtZi
ÞÞÞ �S supð gpðposðciÞ ðt

0
Xi
, tZi
ÞÞ, cSð�Zi

ðtZi
ÞÞÞ,

thus this also holds for t		Zi
2 AZi such that inft	

Zi
2AZi

supð gpðposðciÞðt
0
Xi
, t	Zi
ÞÞ,

cSð�Zi
ðt	Zi
ÞÞÞ ¼ supð gpðposðciÞ ðt

0
Xi
, t		Zi
ÞÞ, cSð�Zi

ðt		Zi
ÞÞÞ. Therefore, we have that inft	

Zi
2AZi
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supðgpðposðciÞðtXi
, t	Zi
ÞÞ,cSð�Zi

ðt	Zi
ÞÞÞ �S inft	

Zi
2AZi

supðgpðposðciÞðt
0
Xi
, t	Zi
ÞÞ,cSð�Zi

ðt	Zi
ÞÞÞ. Since

the map g�1p , defined in Section 5.1, is monotone, then the following relation

holds: g�1p ðinft	Zi2AZi
supð gpðposðciÞ ðtXi

, t	Zi
ÞÞ, cSð�Zi

ðt	Zi
ÞÞÞÞ �S g

�1
p ðinft	Zi2AZi

sup ð gpðposðciÞ �

ðt0Xi
, t	Zi
ÞÞ, cSð�Zi

ðt	Zi
ÞÞÞÞ, i.e. with the notation used in Section 5.1 for defining one the

robustness constraint in Crob corresponding to ci 2 Ccu, def p00i ðtXi
Þ �S def p

00
i ðt
0
Xi
Þ.

By monotonicity of �p, if we combine via �p all such constraints hdef p00i ,X i we have
that,

Q
phdef p00

i
,Xii

def p00i ðtXi
Þ �S

Q
phdef p00

i
,Xii

def p00i ðt
0
Xi
Þ.

Similarly, using the same notation presented in Section 5.1, the following result can be
shown:

Q
hdef n00

i
,Xii

def n00i ðtXi
Þ �S

Q
hdef n00

i
,Xii

def n00i ðt
0
Xi
Þ, since the maps gn and g�1n , described

in Section 5.1, are monotone and since the �n operator is monotone.
By definition 5, robðsÞ ¼ robpðsÞ � robnðsÞ, where robpðsÞ ¼

Q
pc¼hdef, coni2Crob

posðcÞ�

ðs#conÞ and robnðsÞ ¼
Q

nc¼hdef, coni2Crob
negðcÞðs#conÞ. Since robpðsÞ ¼

Q
pc¼hdef, coni2Crob

�

posðcÞðs#conÞ ¼
Q
hdef p00

i
,Xii

def p00i ðtXi
Þ, and since robnðsÞ ¼

Q
nc¼hdef, coni2Crob

negðcÞ �

ðs#conÞ ¼
Q
hdef p00

i
,Xii

def p00i ðt
0
Xi
Þ, we can conclude, by the previous step, that

robpðsÞ �S robpðs
0Þ, robnðsÞ �S robnðs

0Þ, and thus, since the � operator is monotone, that

robðsÞ �S robðs0Þ. œ

Theorem 2: The definition of robustness given in Definition 5 satisfies Property BP2.

Proof: Consider a solution s of the UBCSPs Q1 ¼ hS,Vc,Vu,�1,Cc,Ccui and
Q2 ¼ hS,Vc,Vu,�2,Cc,Ccui, where S¼ hN,Pþ,�,?,œ,>i is a bipolar preference
structure such that P and N are closed intervals of R. Assume that for every assignment
tZ to the uncontrollable variables in Vu, �2ðtZÞ � �1ðtZÞ. To prove Property BP2, we will
show that rob�1ðsÞ �S rob�2 ðsÞ, where rob�1 is the robustness computed in the problem
with possibility distribution �1, and rob�2 is the robustness computed in the problem with
possibility distribution �2.

Assume the notation considered in the first part of the proof of Theorem 1. By
hypothesis, we know that 8tZi

2 AZi, �2ðtZi
Þ � �1tZi

. Since cS is an order reversing map
8tZi
2 AZi, cSð�2ðtZi

ÞÞ �S cSð�1tZi
Þ. By monotonicity of the sup operator, 8tZi

2 AZi,
supð gpðposðciÞ ðtXi

, tZi
ÞÞ, cSð�1ðtZi

ÞÞÞ �S supð gpðposðciÞðtXi
, tZi
ÞÞ, cSð�2 ðtZi

ÞÞÞ and supð gp�
ðnegðciÞ ðtXi

, tZi
ÞÞ, cSð�1ðtZi

ÞÞÞ �S supð gpðnegðciÞðtXi
, tZi
ÞÞ, cSð�2 ðtZi

ÞÞÞ. From here we can
conclude as in the proof of Theorem 1. œ

The proofs of the Theorems 1 and 2 are based on the fact that the preference functions
in the robustness constraints, which are used to build robp and robn of a solution, are
obtained by using functions gp and gn (mapping resp. positive and negative preferences in
½0, 1�) which are strictly monotonic, and on the fact that the operators �p, used for
computing robp of a solution, �n, used for computing robn of a solution, and �, used for
compute rob of a solution, are monotonic. The proof regarding Property BP2 also depends
on the fact that cS is an order reversing map w.r.t. �S, and thus if �1ðaÞ � �2ðaÞ, then
cSð�1ðaÞÞ �S cSð�2ðaÞÞ.

7. Semantics

A solution of a BCSP is associated to a preference and a robustness degree as in the fuzzy
approach (Pini et al. 2010). In Section 2.7 we have recalled some of the most significative
semantics (i.e. Risky, Safe and Diplomatic) used in Pini et al. (2010) to order the solutions
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which depend on our attitude w.r.t. preference and robustness. We now generalise these

semantics to the bipolar context as follows.
More precisely, let �S the ordering induced by the additive operator of the bipolar

preference structure of the considered UBCSP (and not the ordering induced by the

additive operator of the c-semiring of considered USCSP as in Pini et al. (2010),

. Risky semantics is a lexicographic ordering w.r.t. �S on pairs hpref, robi, that

gives more importance to the preference degree: given A1 ¼ ðpref1, rob1Þ and

A2 ¼ ðpref2, rob2Þ, A1 �Risky A2 iff pref1 4S pref2 or (pref1 ¼ pref2 and

rob1 4S rob2). It gives more relevance to the preference that can be reached in

the best case considering less important a high risk of being inconsistent.
. Safe semantics is a lexicographic ordering w.r.t. �S on pairs hpref, robi, that gives

more importance to the robustness degree: given A1 ¼ ðpref1, rob1Þ and

A2 ¼ ðpref2, rob2Þ, A1 �Safe A2 iff rob1 4S rob2 or (rob1 ¼S rob2 and

pref1 4S pref2).
. Diplomatic semantics aims at giving the same importance to preference and

robustness. It is a Pareto ordering w.r.t. �S (and not w.r.t. � as in the fuzzy case)

on pairs hpref, robi: given A1 ¼ ðpref1, rob1Þ and A2 ¼ ðpref2, rob2Þ, A1 �Dipl A2

iff (pref1 �S pref2 and rob1 �S rob2) and (pref1 4S pref2 or rob1 4S rob2).

Example 9: Let us consider the UBCSP Q in Figure 3(a). In Figure 3(c) all the solutions

of Q are shown with their associated preference and robustness degrees. The optimal

solution for the Risky semantics is s2 ¼ ð y ¼ b, x ¼ aÞ, which has preference 0:8 and

robustness �0, 2, while for the Safe semantics is s4 ¼ ð y ¼ b, x ¼ bÞ, which has preference

0:7 and robustness 0:1. For the Diplomatic semantics, s2 and s4 are equally optimal. Note

that the solutions chosen by the various semantics differ on the attitude toward risk they

implement. In fact, Risky chooses the solution that gives a high positive preference in the

controllable part, even if the uncontrollable part has a high possibility of a negative

preference. On the other hand, for the Safe semantics it is better to select a solution with

a higher robustness, i.e. that guarantees a higher number of scenarios with a higher

preference. In this example, Safe chooses a solution with a lower preference with respect to

Risky, but that will have with high possibility a positive preference in the part involving

uncontrollable variables.

By definition of Risky, Safe and Diplomatic semantics, it follows that for these

semantics the desired properties on solution ordering (i.e. Properties BP3 and BP4)

presented previously hold.

Theorem 3: The solution orderings �Risky, �Safe and �Diplomatic satisfy Property BP3.

Proof: Property BP3 states that, given two solutions s and s0 of an UBCSP, if

robðsÞ ¼ robðs0Þ and prefðsÞ4S prefðs
0Þ, s � s0. By definition of Risky, Safe and Diplomatic

semantics, this property holds for �Risky, �Safe and �Dipl. œ

Theorem 4: The solution orderings �Risky, �Safe and �Diplomatic satisfy Property BP4.

Proof: Property BP4 states that, given two solutions s and s0 of an UBCSP, if

prefðsÞ ¼ prefðs0Þ and robðsÞ4S robðs
0Þ, s � s0. By definition of Risky, Safe and Diplomatic

semantics, this property holds for �Risky, �Safe and �Dipl. œ
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Also, it is possible to prove that Property BP5 is satisfied only by �Risky.

Theorem 5: Given an UBCSP hS,Vc,Vu,�,Cc,Ccui, the solution ordering �Risky satisfies

Property BP5 if the operator � of S is strictly monotonic, while the solution orderings �Safe

and �Diplomatic never satisfy Property BP5.

Proof: To prove Property BP5, we have to show that, given two solutions s and s0 of a

UBCSP Q ¼ hS,Vc,Vu,�,Cc,Ccui, such that ovprefpðs, aÞ4S ovprefpðs
0, aÞ and

ovprefpðs, aÞ4S ovprefpðs
0, aÞ 8a assignment to Vu, then s �Risky s

0.
From UBCSP Q we can obtain an equivalent problem that corresponds to the UBCSP

QP ¼ hS, fVcg, fVug,C1p [ C1n [ C3p [ C3n, C2p [ C2ni, where we recall separately the sets

of constraints C1p,C1n,C3p,C3n, C2p and C2n. In QP the element Vc is a controllable

variable and Vu is an uncontrollable variable, representing respectively all the variables in

Vc and Vu, having as domains the corresponding Cartesian products. The uncontrollable

variable Vu is described by a possibility distribution, �, which is the joint possibility, i.e.

the possibility obtained by performing the minimum among all the possibility distributions

of the uncontrollable variables in Vu. Constraint C1p ¼ hdef p1,V
ci (resp. C1n ¼

hdef n1,V
ci) is defined as the combination of all constraints in Cc connecting variables

in Vc, where the negative (resp. positive) preferences are interpreted as indifference.

Constraint C2p ¼ hdef p2, fV
c,Vugi (resp. C2n ¼ hdef n2, fV

c,Vugi) is the combination of all

the constraints in Ccu connecting variables in Vc to variables in Vu, where the negative

(resp. positive) preferences are interpreted as indifference. Constraint C3p ¼ hdef p3,V
ci

(resp. C3n ¼ hdef n3,V
ci) is defined as the combination of all the constraints obtained from

constraints in C2, interpreting the negative (resp. positive) preferences as indifference, and

by projecting them over the controllable variables in Vc as described in Section 5.2. Notice

that all these combinations are obtained using operator �p (resp. �n) of the c-semiring S.

Thus, given an assignment s to Vc in Q, which corresponds to an assignment to

all the variables in Vc, its preference on constraint C1p is def p1ðsÞ ¼Q
ci¼hdefi, conii2Cc

posðciÞðs#coniÞ ¼ controlpðsÞ, on C3p is def p3ðsÞ ¼ projpðsÞ, and on

C1

N
C3 is def p1ðsÞ � def p3ðsÞ ¼ controlpðsÞ � projpðsÞ ¼ prefpðsÞ. Given assignment

ðs, aiÞ to ðV
c,VuÞ, instead, which corresponds to a complete assignment to variables in

Vc and Vu, its preference, def p2ðs, aiÞ (resp. def n2ðs, aiÞ), is obtained by performing the

combination of the positive (resp. negative) preferences associated to all the subtuples of

ðs, aiÞ by the constraints in Ccu, interpreting the negative (resp. positive) preferences as

indifference. Using this new notation we have that, 8ðs, aiÞ assignments to Vc and Vu,

ovprefpðs, aiÞ ¼ def p1ðsÞ � def p2ðs, aiÞ ¼ controlpðsÞ � def p2ðs, aiÞ, and ovprefnðs, aiÞ ¼

def n1ðsÞ � def n2ðs, aiÞ ¼ controlnðsÞ �def n2ðs, aiÞ.
If we show that prefpðs, aiÞ4S prefpðs, aiÞ and prefnðs, aiÞ4S prefnðs, aiÞ 8ai assignment

to Vu, then, by strict monotonicity of the � operator, we can conclude that

prefðsÞ ¼ prefpðsÞ � prefnðsÞ4S prefpðs
0Þ � prefnðs

0Þ ¼ prefðs0Þ, and thus that s �Risky s
0.

We first show that prefpðsÞ4S prefpðs
0Þ. We know, by hypothesis, that

ovprefpðs, aiÞ4S ovprefpðs
0, aiÞ 8ai assignment to Vu, i.e. that controlpðsÞ�

def p2ðs, aiÞ4S controlpðs
0Þ � def p2ðs

0, aiÞ 8ai assignment to Vu. This must also hold for

the assignment to Vu, that we call a	, such that def p2ðs, a
	Þ ¼ projpðsÞ. Hence,

prefpðsÞ ¼ controlpðsÞ � projpðsÞ ¼ controlpðsÞ � def p2ðs, a
	Þ4S controlpðs

0Þ� def p2ðs
0, a	Þ.

Moreover, since, by definition of projp (see Sections 5.2 and 6), projpðs
0Þ �S
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def p2ðs
0, aiÞ 8ai, we have that controlpðs

0Þ � def p2ðs
0, a	Þ �S controlpðs

0Þ � projpðs
0Þ

¼ prefpðs
0Þ, and thus prefpðsÞ4S prefpðs

0Þ.
To conclude that s �Risky s

0, we have to show that prefnðsÞ4S prefnðs
0Þ. We know, by

hypothesis, that ovprefnðs, aiÞ4S ovprefnðs
0, aiÞ 8ai assignment to Vu, i.e. that

controlnðsÞ � def n2ðs, aiÞ4S controlnðs
0Þ � def n2ðs

0, aiÞ 8ai assignment to Vu. This must

also hold for the assignment to Vu, that we call a	, such that def n2ðs
0, a	Þ ¼ projnðs

0Þ.

Hence, controlnðsÞ � def2ðs, a
	Þ4S controlnðs

0Þ � projnðs
0Þ ¼ prefnðs

0Þ. Moreover,

since by definition of the projn (see Sections 5.2 and 6), projnðsÞ �S def n2ðs, aiÞ 8ai, we

have that prefnðsÞ ¼ controlnðsÞ � projnðsÞ �S controlnðsÞ � def n2ðs, a
	Þ4S prefnðs

0Þ, and

thus prefnðsÞ4S prefnðs
0Þ.

We now show that Property BP5 is not satisfied by �Safe and �Dipl. For these semantics

it can happen that s 6� s0. In fact, let us consider the UBCSP Q ¼ hSFCSP,Vc,

�,Vu,Cc,Ccui, where the bipolar preference structure is the fuzzy c-semiring

h½0, 1�, max,min, 0, 1i, Vc ¼ fxg, Vu ¼ fzg, Cc is composed by c1 ¼ h f1, fxgi, Ccu by

c2 ¼ h f2, fx, zgi, and where Dz ¼ fa1, a2g and Dx ¼ fs, s
0g are respectively the domain of z

and x. Let us assume that the possibility distribution on z is such that �ða1Þ ¼ 1 and

�ða2Þ ¼ 0:7. Let us moreover assume that f2ðs, a1Þ ¼ 0:4, f2ðs, a2Þ ¼ 0:5, f2ðs
0, a1Þ ¼ 0:8,

f2ðs
0, a2Þ ¼ 0:9, f1ðsÞ ¼ 0:3 and f1ðs

0Þ ¼ 0:2. The overall preferences are: ovprefðs, a1Þ ¼ 0:3,
ovprefðs, a2Þ ¼ 0:3, ovprefðs0, a1Þ ¼ 0:2, ovprefðs0, a2Þ ¼ 0:2, i.e. ovprefðs, aiÞ4
ovprefðs0, aiÞ, 8ai, i ¼ 1, 2, hence s and s0 satisfy the hypothesis. The robustness values

for s and s0 (computed considering as gn the identity map) are robðsÞ ¼

inf ðmaxð0:4, 0Þ, maxð0:5, 0:3ÞÞ ¼ 0:4, robðsÞ ¼ inf ðmaxð0:8, 0Þ, maxð0:9, 0:3ÞÞ ¼ 0:8.
Therefore, since robðsÞ5 robðs0Þ, s 
Safe s

0 for Safe semantics. The preference

degrees are prefðsÞ ¼minðcontrolðsÞ, projðsÞÞ ¼ minð0:3, 0:5Þ ¼ 0:3 and prefðs0Þ ¼

minðcontrolðs0Þ, projðs0ÞÞ ¼ minð0:2, 0:9Þ ¼ 0:2. Since robðsÞ5 robðs0Þ and prefðsÞ4
prefðs0Þ, s fflDipl s

0 for Diplomatic semantics. œ

We have shown before that Risky, Safe and Diplomatics semantics for UBCSPs satisfy

Properties BP3 and BP4 and that Risky satisfies also Property BP5. However, there are

semantics that don’t satisfy them. Consider for example a semantics, that we call Mixed,

such that given A1 ¼ ðpref1, rob1Þ and A2 ¼ ðpref2, rob2Þ, A1 �Mixed A2 iff

pref1 � rob1 4S pref2 � rob2, where � is the compensation operator in the considered

bipolar preference structure. This semantics generalises the one adopted to order the

solutions in Dubois et al. (1996) for fuzzy c-semiring h½0, 1�, max, min, 0, 1i. It is possible

to show that Mixed semantics does not satisfy properties BP3, BP4 and BP5.

8. Extending the approach to UBCSPs with totally ordered positive/negative preferences

In the previous sections we have shown a procedure for handling UBCSPs where the set of

the positive preferences (P) and the set of the negative preferences (N) are two closed

intervals of R (e.g. P ¼ ½3, 5� and N ¼ ½�3,�2�). In this section we will show that it is

possible to generalise this method to more general bipolar problems where the set of the

positive preferences and the set of the negative preferences are totally ordered sets that are

not necessarily closed intervals of R. For example,

. they can be real intervals including þ1 or �1 (e.g. P ¼ ½5,þ1� and

N ¼ ½�1,�8�),

568 S. Bistarelli et al.
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. they can be the union of disjoint intervals of R [ fþ1,�1g (e.g.
P ¼ ½1, 3� [ ½5,þ1� and N ¼ ½�1,�8� [ ½�3,�2�)),

. they can be generic totally ordered sets (e.g. P ¼ fa, b, cg where a4 b4 c and
N ¼ fd, e, f g where d4 e4 f ).

To show that the new approach generalises the previous one, we will show that the
same desirable properties continue to hold.

We recall that the main idea to handle UBCSPs over closed real intervals is to remove
uncertainty from them, recalling as much information as possible. In particular, the
adopted procedure (see Section 5) takes as input a UBCSP Q ¼ hS,Vc,Vu, �, Cc,Ccui, with
S ¼ hN,P,þ,�, ?, œ,>i, where P ¼ ½ap, bp� and N ¼ ½an, bn� are two closed intervals of R,
i.e. two intervals of R� f�1,þ1g, it removes uncertainty from Q, by eliminating
the uncontrollable variables and all the constraints in Ccu relating controllable and
uncontrollable variables, and by adding new constraints, i.e. Cproj and Crob, only among
these controllable variables.

The part of such a procedure that requires that positive and negative preferences are
two intervals of R� f�1,þ1g is the one regarding the addition of constraints in Crob

(Section 5.1). We recall that it works as follows. In the first step it translates every positive
(resp. negative) preference of the constraints in Ccu in ½0, 1�, via the map gp : ½ap, bp� ! ½0, 1�
such that x� x�ap

bp�ap
, (resp. gn : ½an, bn� ! ½0, 1� such that x� x�an

bn�an
), to be able to compare,

in the second step, preferences and possibilities, since the possibilities are defined in ½0, 1�.
Then, in the third step, it translates the preferences in ½0, 1� obtained so far in P (resp. N ),
i.e. in the set of positive (resp. negative) preferences defined in S, by using the inverse map
g�1p : ½0, 1� ! ½ap, bp� such that y� ½ yðbp � apÞ þ ap�, (resp. g

�1
n : ½0, 1� ! ½an, bn� such that

y� ½ yðbn � anÞ þ an�.
The functions gp, gn, g

�1
p , and g�1n mentioned above have been used to prove that some

of the desirable properties hold (see proofs of Proposition 2, Theorems 1 and 2). In these
proofs, for that concerning the functions above, we have only used the fact that gp and g�1p

(resp. gn and g�1n ) are monotonic, and that their combinations give the identity map.
To extend the approach to UBCSPs where the sets of positive and negative preferences

are generic totally ordered sets, we can use, instead of gp and g�1p (resp. gn and g�1n ), two
functions that define a Galois insertion (Section 8.1), since in this case we are sure that they
are both monotonic, and their combination is the identity map.

8.1. Galois insertions

In this section we give the notion of Galois insertions, that we will consider in our
generalised procedure, and we insert such a definition in the context of abstract
interpretation (Bistarelli et al. 2002).

Abstract interpretation (Birkhoff and MacLane 1965; Cousot and Cousot 1977) is a
theory developed to reason about the relation between two different semantics (the
concrete and the abstract semantics). The idea of approximating program properties by
evaluating a program on simpler domain of descriptions of ‘concrete’ program states goes
back to the early 70’s. The guiding idea is to relate the concrete and the abstract
interpretations of the calculus by a pair of functions, the abstraction function � and the
concretisation function �, which form a Galois connection.

Let (C, �) (concrete domain) be the domain of the concrete semantics, while (A, v)
(abstract domain) be the domain of the abstract semantics. The partial order relations
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reflect an approximation relation. Since in approximation theory a partial order specifies
the precision degree of any element in a poset, it is obvious to assume that if � is a mapping
associating an abstract object in (A, v) for every concrete element in (C, �), then the
following holds: if �ðxÞ v y, then y is also a correct, although less precise, abstract
approximation of x. The same argument holds if x � �ð yÞ. Then y is also a correct
approximation of x, although x provides more accurate information than �ð yÞ. This gives
rise to the following formal definition (Bistarelli et al. 2002).

Definition 6 (Galois insertion): Let (C, �) and (A, v) be two posets (the concrete and the
abstract domain). A Galois connection h�, �i : (C, �)Ð (A, v) is a pair of maps � : C ! A

and � : A! C such that

(1) � and � are monotonic;
(2) for each x 2 C, x � �ð�ðxÞÞ, and
(3) for each y 2 A, �ð�ðxÞÞ v y.

Moreover, a Galois insertion (of A and C) h�, �i : (C,�) Ð (A,v) is a Galois
connection where � � � ¼ idA.

8.2. A generalised approach to UBCSPs with totally ordered preferences

We now show how Galois insertions allow us to extend to UBCSPs over totally ordered
sets of positive and negative preferences, the procedure described in Section 5.1 to remove
uncertainty guaranteeing that the same desired properties continue to hold.

Consider an UBCSP with bipolar preference structure S ¼ hN,P,þ,�, ?, œ,>i, where
P and N are totally ordered sets. Let us denote with �S the ordering induced by the
additive operator. Consider also the totally ordered set ½0, 1� with the ordering v such that
where 0 v 1.

We now redefine the functions gp and g�1p presented in Section 5.1 as follows: hgp, g
�1
p i :

(P, �S)Ð (½0, 1�, v) is a Galois insertion. We know, by definition of Galois insertion, that

. gp : P! ½0, 1� is monotonic, i.e. 8x1,x2 2 P, with x1 � x2, gpðx1Þ v gpðx2Þ;

. g�1p : ½0, 1� ! P is monotonic, i.e. 8y1, y2 2 ½0, 1�, with y1 v y2, g
�1
p ð y1Þ v �ð y2Þ;

. g�1p � gp ¼ id.

Similarly, we redefine the functions gn and g�1n presented in Section 5.1 as follows
hgn, g

�1
n i : (N, �) Ð (½0, 1�, v) is a Galois insertion.

Note that gp and g�1p can be defined in several different ways, but all of them have to
satisfy the properties of the Galois insertions, from which it derives, among others, that
gpð?PÞ ¼ 0 and gpð>PÞ ¼ 1, i.e. the bottom of P must be mapped in 0 and that the top of P
must be mapped in 1. The same must hold for gn and g�1n .

Moreover, we redefine the map cS as follows: it is an order reversing map such that
8a, b 2 ½0, 1�, if a � b, then cSðaÞ v cSðbÞ, and 8p 2 ½0, 1�, cSðcSð pÞÞ ¼ p.

It is possible to show that, using the new definitions of gp, g
�1
p , gn, g

�1
n and cS, that all

the desired properties that have been shown by exploiting these functions (i.e. Proposition
2, Theorem 1, and Theorem 2) continue to hold.

Proposition 3: Consider an UBCSP hS,Vc,Vu,�,Cc,Ccui, where S ¼ hN,P,þ,�, ?, œ,>i
is a bipolar preference structure where P and N are totally ordered sets. For every constraint
c ¼ hdef, coni 2 Ccu such that con \ Vu ¼ Z, with possibility distribution �Z, and
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con \ Vu ¼ X, the corresponding robustness constraints hdef p00,X i and hdef n00,X i are such
that, for every tX assignment to X,

. def p00ðtXÞ �S � 2 P iff, when �ZðtZÞ4 cSð gpð�ÞÞ, then posðcÞðtX, tZÞ �S �,

. def n00ðtXÞ �S � 2 N iff, when �ZðtZÞ4 cSð gnð�ÞÞ, then posðcÞðtX, tZÞ �S �,

where tZ is an assignment to Z, hgp, g
�1
p i : (P, �S) Ð (½0, 1�, v) and hgn, g

�1
n i : (N, �S) Ð

(½0, 1�, v) are Galois insertions, and cS is an order reversing map such that 8a, b 2 ½0, 1�, if
a � b, then cSðaÞ w cSðbÞ, and 8p 2 ½0, 1�, cSðcSð pÞÞ ¼ p.

Proof: We show the first statement concerning def p00ðtXÞ. The second one, concerning
def n00ðtXÞ, can be proved analogously, since by construction gn and g�1n have the same
properties respectively of gp and g�1p . We recall that def p00ðtXÞ ¼ g�1p ðinftZ2AZ

�

ð gpðposðcÞðtX, tZÞÞþ cSð�ZðtZÞÞÞÞ, where AZ is the set of the assignment to Z.

()) We assume that def p00ðtXÞ �S �. If this holds, then, since gp is monotone,
gpðdef p

00ðtXÞÞ w gpð�Þ, i.e. gpð g
�1
p ðinftZ2AZ

supð gpðposðcÞðtX, tZÞÞ, cSð�ZðtZÞÞÞÞÞ w gpð�Þ,
that is, since the combination of gp and g�1p produce the identity map,
inftZ2AZ

supð gpðposðcÞðtX, tZÞ, cSð�ZðtZÞÞÞÞ w gpð�Þ. Since we are considering totally ordered
preferences, this implies that supð gpðposðcÞðtX, tZÞÞ, cSð�ZðtZÞÞÞ w gpð�Þ 8tZ 2 AZ. For tZ
with �ZðtZÞ4 cSð gpð�ÞÞ, by definition of cS, we have cSð�ZðtZÞÞ]cSðcSð gpð�ÞÞ ¼ gpð�Þ.
Therefore for such a value tZ we have that gpðposðcÞðtX, tZÞÞ¼ supð gpðposðcÞðtX, tZÞÞ,
cSð�ZðtZÞÞÞ wS gpð�Þ and, since g�1p is monotone, we have g�1p ð gpðposðcÞðtX, tZÞÞÞ �S

g�1p ð gpð�ÞÞ, i.e. posðcÞðtX, tZÞ �S �.

(() We assume that 8tZ with �ZðtZÞ4 cSð gpð�ÞÞ, posðcÞðtX, tZÞ �S �. Then, for such tZ,
since gp is monotone, gpðposðcÞðtX, tZÞÞ w gpð�Þ and so, supð gpðposðcÞðtX, tZÞÞ,
cSð�ZðtZÞÞÞ w gpð�Þ. On the other hand, for every tZ such that �ZðtZÞ5 cSð gpð�ÞÞ,
we have, by definition of cS, cSð�ZðtZÞÞA gpð�Þ and so supð gpðposðcÞðtX, tZÞÞ,
cSð�ZðtZÞÞÞA gpð�Þ. Thus 8tZ 2 AZ, supð gpðposðcÞðtX, tZÞÞ, cSð�ZðtZÞÞÞ w gpð�Þ and
so inftZ2AZ

supðposðcÞðtX, tZÞ, cSð�ZðtZÞÞÞ w gpð�Þ. Hence, since g�1p is monotone,
g�1p ðinftZ2AZ

ðsupðposðcÞðtX, tZÞ, cSð�ZðtZÞÞÞÞÞ �S g
�1
p ð gpð�ÞÞ, i.e. def p

00ðtXÞ �S �. œ

Consider an UBCSP hS,Vc,Vu,�,Cc,Ccui, where S ¼ hN,P,þ,�, ?, œ,>i is a bipolar
preference structure where P andN are totally ordered sets. It is possible to prove that, if we
determine the robustness constraints with the newmaps gp, g

�1
p , gn, g

�1
n and cS defined in this

section, the definition of robustness given in Definition 5 satisfies Properties BP1 and BP2.

Theorem 6: If we determine the robustness constraints described in Section 5.1 with the
maps gp, g

�1
p , gn, g

�1
n and cS such that hgp, g

�1
p i : (P, �S)Ð (½0, 1�, v) and hgn, g

�1
n i : (N, �S)

Ð (½0, 1�, v) are Galois insertions, and cS is an order reversing map such that 8a, b 2 ½0, 1�, if
a � b, then cSðaÞ w cSðbÞ, and 8p 2 ½0, 1�, cSðcSð pÞÞ ¼ p, the definition of robustness given in
Definition 5 satisfies Property BP1.

Proof: The first part of proof coincides with the one of Theorem 1.
Consider two solutions, say s and s0, of a UBCSP Q ¼ hS,Vc,Vu,�,Cc, Ccui, where

S¼ hN,Pþ,�, ?, œ,>i is a bipolar preference structure such that P and N are totally
ordered sets. For every bipolar constraint ci ¼ hdefi, conii 2 Ccu, let us denote withXi the set
coni \ Vc, with Zi the set coni \ Vu, and with �Zi

the possibility distribution associated
to Zi. Assume that, for every such constraint ci, 8tZi

assignment to Zi,
defiðs #Xi

, tZi
Þ �S defiðs

0 #Xi
, tZi
Þ, To prove Property BP1, we will show that

robðsÞ �S robðs0Þ. Let us denote with tXi
the value s #Xi

, with t0Xi
the value s0 #Xi

, and with
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AZi the set of assignments of Zi. With this notation the hypothesis can be written as

follows: 8tZi
2 AZi, defiðtXi

, tZi
Þ �S defiðt

0
Xi
, tZi
Þ. This holds for both the positive preferences

of ci and for the negative preferences of ci. In particular, we have that 8tZi
2 AZi,

posðciÞðtXi
, tZi
Þ �S posðciÞðt

0
Xi
, tZi
Þ, and negðciÞðtXi

, tZi
Þ �S negðciÞðt

0
Xi
, tZi
Þ. We now consider

the case of positive preferences. The case of negative preferences can be dealt similarly.
The new part of the proof starts from here. If, 8tZi

2 AZi, posðciÞðtXi
, tZi
Þ �S

posðciÞðt
0
Xi
, tZi
Þ, then, since the map gp is monotone, 8tZi

2 AZi, gpðposðciÞðtXi
, tZi
ÞÞ v

gpðposðciÞðt
0
Xi
, tZi
ÞÞ. Since the sup operator is monotone, 8tZi

2 AZi, supð gpðpos�

ðciÞ ðtXi
, tZi
ÞÞ, cSð�Zi

ðtZi
ÞÞÞ v supð gpðposðciÞðt

0
Xi
, tZi
ÞÞ, cSð�Zi

ðtZi
ÞÞÞ. Moreover, we have

inft	
Zi
2AZi

supð gpðposðciÞðtXi
, t	Zi
ÞÞ, cSð�Zi

ðt	Zi
ÞÞÞ v supð gpðposðciÞðtXi

, tZi
ÞÞ, cSð�Zi

ðtZi
ÞÞÞ 8tZi

2

AZi. By the previous step, 8tZi
2 AZi, supð gpðposðciÞ ðtXi

, tZi
ÞÞ, cSð�Zi

ðtZi
ÞÞÞ v

supð gpðposðciÞ ðt
0
Xi
, tZi
ÞÞ, cSð�Zi

ðtZi
ÞÞÞ, thus this holds also for t		Zi

2 AZi such that

inft	
Zi
2AZi

supð gpðposðciÞðt
0
Xi
, t	Zi
ÞÞ, cSð�Zi

ðt	Zi
ÞÞÞ is equal to supð gpðposðciÞðt

0
Xi
, t		Zi
ÞÞ,

cSð�Zi
ðt		Zi
ÞÞÞ. Therefore, we can conclude that inft	

Zi
2AZi

supð gpðposðciÞðtXi
, t	Zi
ÞÞ,

cSð�Zi
ðt	Zi
ÞÞÞ v inft	

Zi
2AZi

supð gpðposðciÞðt
0
Xi
, t	Zi
ÞÞ, cSð�Zi

ðt	Zi
ÞÞÞ. Since the map g�1p is mono-

tone, then g�1p ðinft	Zi2AZi
supð gpðposðciÞ ðtXi

, t	Zi
ÞÞ, cSð�Zi

ðt	Zi
ÞÞÞÞ �S g

�1
p ðinft	Zi2AZi

supð gp�

ðposðciÞðt
0
Xi
, t	Zi
ÞÞ, cSð�Zi

ðt	Zi
ÞÞÞÞ, i.e. the preferences in the robustness constraints are

def p00i ðtXi
Þ �S def p

00
i ðt
0
Xi
Þ.

By monotonicity of �p, if we combine via �p all such constraints hdef p00i ,X i we have

that,
Q

phdef p00
i
,Xii

def p00i ðtXi
Þ �S

Q
phdef p00

i
,Xii

def p00i ðt
0
Xi
Þ.

Similarly, it can be shown that
Q
hdef n00

i
,Xii

def n00i ðtXi
Þ �S

Q
hdef n00

i
,Xii

def n00i ðt
0
Xi
Þ, since the

maps gn and g�1n , are monotone and since the �n operator is monotone.
From here we can conclude as in the proof of Theorem 1. œ

Theorem 7: If we determine the robustness constraints described in Section 5.1 with the

maps gp, g
�1
p , gn, g

�1
n , and cS such that hgp, g

�1
p i : (P, �S)Ð (½0, 1�, v) and hgn, g

�1
n i : (N, �S)

Ð (½0, 1�, v) are Galois insertions, and cS is an order reversing map such that 8a, b 2 ½0, 1�, if

a � b, then cSðaÞ w cSðbÞ, and 8p 2 ½0, 1�, cSðcSð pÞÞ ¼ p, the definition of robustness given in

Definition 5 satisfies Property BP2.

Proof: The first part of proof coincides with the one of Theorem 1.
Consider a solution s of the UBCSPs Q1 ¼ hS,Vc,Vu,�1,Cc,Ccui and

Q2 ¼ hS,Vc,Vu,�2,Cc,Ccui, where S¼ hN,Pþ,�,?,œ,>i is a bipolar preference struc-

ture such that P and N are intervals of R (Z or Q). Assume that for every assignment tZ to

the uncontrollable variables in Vu, �2ðtZÞ � �1ðtZÞ. To prove Property BP2, we will show

that rob�1 ðsÞ �S rob�2ðsÞ, where rob�1 is the robustness computed in the problem with

possibility distribution �1, and rob�2 is the robustness computed in the problem with

possibility distribution �2. The new part starts from here.
Assume the notation considered in the first part of the proof of Theorem 6. By

hypothesis, we know that 8tZi
2 AZi, �2ðtZi

Þ � �1tZi
. By definition of cS 8tZi

2 AZi,

cSð�2ðtZi
ÞÞ w cSð�1tZi

Þ. By monotonicity of the sup operator, we have 8tZi
2 AZi,

supð gpðposðciÞ ðtXi
, tZi
ÞÞ, cSð�1ðtZi

ÞÞÞ v supð gpðposðciÞðtXi
, tZi
ÞÞ, cSð�2 ðtZi

ÞÞÞ and supð gp�

ðnegðciÞ ðtXi
, tZi
ÞÞ, cSð�1ðtZi

ÞÞÞ v supð gpðnegðciÞ ðtXi
, tZi
ÞÞ, cSð�2 ðtZi

ÞÞÞ. From here we can

conclude as in the proof of Theorem 6. œ

We now show, via an example, how to instantiate the functions defined above, i.e. gp,

g�1p , gn, g
�1
n and cS, in an UBCSP where the positive and the negative are not defined over

intervals. Notice that this UBCSP cannot be solved by the procedure for defining
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robustness constraints described in Section 5.1, since it is only able to handle UBCSPs

where the positive preferences and the negative one are defined over real intervals.

Example 10: Consider an UBCSP hS,Vc,Vu,�,Cc,Ccui, where S ¼ hR�,Rþ,max, sum,

�1, 0,þ1i. Let us denote with �S the ordering induced by the additive operator of S.

To compute robustness constraints we can choose as cS the map such that 8p 2 ½0, 1�,

cSð pÞ ¼ 1� p. Moreover, the Galois insertion hgn, g
�1
n i : (R�, �S)Ð (½0, 1�, �R), where �R

is the classical order over real numbers, can be defined in different ways. For example, we

can use the Galois insertion shown in Example 17 of Bistarelli et al. (2002), such that gn
maps all the reals below some fixed real x onto 0 and all the reals over ½x, 0� into the reals

in ½0, 1� by using a normalisation function f ðrÞ ¼ ðx� rÞ=x. Similarly, we can define the

Galois insertion hgp, g
�1
p i : (Rþ, �S) Ð (½0, 1�, �R), assuming that gp maps all the reals

above some fixed real x onto 1 and all the reals over ½0, x� into the reals in ½0, 1� by using

the same normalisation function considered before, i.e. f ðrÞ ¼ ðx� rÞ=x.

9. Conclusions and future work

We have considered problems with bipolar preferences and uncontrollable variables, and

with a possibility distribution over such variables (UBCSPs). We have then defined the

notion of preference and robustness for such problems, as well as some desirable

properties that such notions should respect, also in relation to the solution ordering. By

following the approach shown in Pini et al. (2010) for problems with fuzzy preferences and

uncertainty, we have provided an algorithm for UBCSPs, that removes the uncontrollable

part of the problem while altering the controllable part in order to loose little information.

On the resulting problem, we have then defined the preference and the robustness of a

solution of the initial UBCSP. Different semantics use such two notions to order the

solutions according to different attitudes to risk. We have then shown that our proposed

notions of preference and robustness, as well as our semantics, satisfy the desired

properties we have considered.
We have first considered UBCSPs where the sets of positive and negative preferences

are closed real intervals, and then we have generalised the proposed approach to the case

of generic totally ordered preferences by using abstraction techniques and Galois

connections.
The results of this article show that it is possible, without much effort, to deal

simultaneously with possibilistic uncertainty and bipolar preferences, while making sure

that several desirable properties hold and without requiring a bipolarisation of the

possibility scale. In other words, our results state that it is possible to extend the formalism

in Bistarelli et al. (2007a, 2010) to bipolar preferences and the one in Pini et al. (2005) to

uncertainty, while preserving the desired properties.
Following this approach, a solver for UCSPs would thus remove the uncontrollable

part first, and then find an optimal solution of the controllable part according to a chosen

semantics. Such a solver may be developed by adapting constraint propagation and branch

and bound techniques that have been already defined and implemented for bipolar CSPs

in Bistarelli et al. (2007a, 2010).
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Notes

1. The absorbing nature of >p can be derived from the other properties.
2. Notice that the procedure that we propose also holds for intervals of Q, and it can be easily

adapted to also handle closed intervals of Z.
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