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Preferences and uncertainty are common in many real-life problems. In this
article, we focus on bipolar preferences and uncertainty modelled via uncontrol-
lable variables, and we assume that uncontrollable variables are specified by
possibility distributions over their domains. To tackle such problems, we
concentrate on uncertain bipolar problems with totally ordered preferences,
and we eliminate the uncertain part of the problem, while making sure that some
desirable properties hold about the robustness of the problem and its relationship
with the preference of the optimal solutions. We also consider several semantics to
order the solutions according to different attitudes with respect to the notions of
preference and robustness.

Keywords: preferences; uncertainty; possibility theory; positive and negative
judgements

1. Introduction

Real-life problems present several kinds of preferences and may be affected by uncertainty.
In this article, we focus on problems with positive and negative preferences with
uncertainty.

Bipolar preferences (Dung 1995; Benferhat, Dubois, Kaci, and Prade 2002, 2006;
Amgoud, Bonnenfon, and Prade 2005; Grabisch and Labreuche 2005; Dubois and Fargier
2005, 2006; Bistarelli, Pini, Rossi, and Venable 2006, 2007a, 2010) and uncertainty (Zadeh
1978; Fargier, Lang, Martin-Clouaire, and Schiex 1995; Dubois, Fargier, and Prade 1995;
Fargier and Sabbadin 2003) appear in many application fields, such as satellite scheduling,
logistics and production planning. Moreover, in multi-agent problems, agents may express
their preferences in a bipolar way, and variables may be under the control of different
agents. To give a specific example, just consider a conference reviewing system, where
usually preferences are expressed in a bipolar scale. Uncertainty can arise for the number
of available conference rooms at the time of the acceptance decision. The goal could be to
select the best papers while ensuring that they all can be presented.

Bipolarity is an important topic in several domains, e.g. psychology (Osgood, Suci, and
Tannenbaum 1957; Tversky and Kahneman 1992; Cacioppo, Gardner, and Berntson
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1997), multi-criteria decision making (Grabisch and Labreuche 2005), and more recently
also in Al (in areas such as argumentation (Dung 1995; Amgoud et al. 2005) and
qualitative reasoning (Benferhat et al. 2002, 2006; Dubois and Fargier 2005, 2000)).
Preferences on a set of possible choices are often expressed in two forms: positive and
negative statements. In fact, in many real-life situations agents express what they like and
what they dislike, thus often preferences are bipolar.

In this article, to handle bipolarity, we use the formalism presented in Bistarelli et al.
(2006, 2007a, 2010). Related but different formalisms to achieve a similar goal can be
found in Grabisch and Labreuche (2005), Amgoud et al. (2005), Benferhat et al. (2002,
2006) and Dubois and Fargier (2005, 2006). The considered formalism generalises to
positive and negative preferences the soft constraints formalism (Bistarelli, Montanari,
and Rossi 1997), which is able to model problems with one kind of preferences (i.e.
negative preferences). Thus, each partial instantiation within a constraint will be
associated to either a positive or a negative preference. For example, when buying a
house, we may like very much to live in the country, but we may also not like to have to
take a bus to go to work, and be indifferent to the colour of the house. Thus we will give a
preference level (either positive, negative or indifference) to each feature of the house, and
then we will look for a house that has the best combined preference overall.

Another important feature, which arises in many real world problems, is uncertainty.
In Benferhat et al. (2002, 2006), Amgoud et al. (2005), Grabisch and Labreuche (2005),
Dubois and Fargier (2005, 2006), the authors handle bipolarity but not the presence of
uncertainty. In this article, we consider both bipolarity and uncertainty. We model
uncertainty by the presence of uncontrollable variables. This means that the value of such
variables will not be decided by us, but by Nature or by some other agent. Thus a solution
of such problems will not be an assignment to all the variables but only to the controllable
ones. A typical example of an uncontrollable variable, in the context of satellite scheduling
or weather prediction, is a variable representing the time when clouds will disappear. A
more general setting in which uncertainty occurs are scheduling problems, which constrain
the order of execution of various activities, and where the durations of some activities may
be uncertain (Dubois et al. 1995). In this case the goal is to define a schedule which is the
most robust with respect to the uncertainty.

Although we cannot choose the value for such uncontrollable variables, usually we
have some information on the plausibility of the values in their domains. In Fargier et al.
(1995) the information over uncontrollable variables, which is not bipolar, is given in terms
of probability distributions. In this article, we model this information by a possibility
distribution over the values in the domains of such variables. Possibilities are useful when
probability distributions are not available, and provide upper and lower bounds to
probabilities (Zadeh 1978).

In this article we focus on problems with this kind of uncertainty, and that contain
positive and negative preferences. We call them uncertain bipolar problems. To tackle such
problems, we generalise to bipolar preferences the approach to handle fuzzy preferences
(that are a special kind of negative preferences) and uncertainty presented in Pini, Rossi, and
Venable (2005, 2010). In particular, we generalise to the bipolar context the notions of
preference and robustness for the solutions, as well as properties that such notions should
respect in relation to the solution ordering, and the procedure used to compute preference
and robustness degrees. First, we generalise the approach presented in Pini et al. (2010)
to uncertain bipolar problems where the set of the positive preferences and the set of R.
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Then, we wuse abstraction techniques and Galois connection properties
(Bistarelli, Codognet, and Rossi 2002) to generalise the procedure also to uncertain bipolar
problems where the set of positive/negative preferences are generic totally ordered sets.

Our approach follows the one presented in Pini et al. (2010). More precisely, given an
uncertain bipolar problem, the uncontrollable part of the problem is removed and new
constraints on the controllable part are added. Thus, we obtain a bipolar problem without
uncertainty and with additional constraints. Such additional constraints are considered to
define the robustness of the problem. Starting from this problem, we define the preference
and the robustness of the solutions of the initial uncertain problem, and we show that they
satisfy some desired properties. Moreover, we consider some semantics that use such
notions to order the solutions, and we show that they satisfy desired properties on the
solution ordering. In particular, they allow us to distinguish between highly preferred
solutions which are not robust, and robust but not preferred solutions. Also, they
guarantee that, if there are two solutions s and s” with the same robustness (resp. the same
preference), and the preference (resp. the robustness) of s is better than the preference
(resp. the robustness) of s, then s is considered better than s'.

This article is structured as follows. Section 2 provides the readers with the main
notions about positive, negative, and bipolar properties, bipolar preference problems, soft
constraint problems with uncertainty and their properties, as well as the approach of Pini
et al. (2010) for removing uncertainty in uncertain fuzzy CSPs. Then, Section 3 introduces
the notion of uncertain bipolar problems, while Section 4 defines some desirable properties
of such problems. Section 5 describes the approach to solve uncertain bipolar problems,
while Section 6 defines the notions of preference and robustness of such problems, and
relates them to the properties proposed in Section 4. Section 7 studies some possible
semantics for uncertain bipolar problems. Then, Section 8 extends the overall approach to
more general bipolar preference structures, and Section 9 summarises the main results and
gives some hints for possible lines of future work.

This article is a revised and extended version of Bistarelli, Pini, Rossi, and Venable
(2007b). In particular, while Bistarelli et al. (2007b) shows only a procedure for handling
bipolar preference problems where the sets of positive and negative preferences are two
closed intervals of R, this article also proposes a procedure to handle bipolar problems
where the set of positive/negative preferences are generic totally ordered structures, by
using abstraction techniques and galois connections properties (Bistarelli et al. 2002).

2. Background

We now give some basic notions on bipolar preference problems (Bistarelli et al. 20006,
2007a, 2010) and uncertain soft (fuzzy) problems (Pini et al. 2005, 2010).

2.1. Negative preferences

Bipolar preference problems (Bistarelli et al. 2006, 2007a, 2010) are based on a bipolar
preference structure, which allows us to handle both positive and negative preferences.
This structure contains two substructures, one for each kind of preferences.

When dealing with negative preferences, two main properties should hold: combina-
tion should bring to worse preferences, and indifference should be better than all the other
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negative preferences. These properties can be found in a c¢-semiring (Bistarelli et al. 1997),
which is the structure used to represent soft constraints.

A c-semiring is a tuple (4, +, x,0,1) where: 4 is a set and 0,1 € A4; 4 is commutative,
associative, idempotent, 0 is its unit element, and 1 is its absorbing element; x is
associative, commutative, distributes over +, 1 is its unit element and 0 is its absorbing
element. Consider the relation <g over 4 such that a <gb iff a+b =b. Then: <g is a
partial order; + and x are monotonic on <g; 0 is its minimum and 1 its maximum.
Informally, the relation <g gives us a way to compare (some of the) tuples of values and
constraints. In fact, when a <g b, we will say that b is better than a.

Given a c-semiring S = (4, +, x,0, 1), a finite set D (the domain of the variables), and
an ordered set of variables ¥V, a soft constraint is a pair (def,con) where con C ¥ and
def : DIonl — 4. Therefore, a soft constraint specifies a set of variables (the ones in con),
and assigns to each tuple of values of D of these variables an element of 4. A soft
constraint satisfaction problem (SCSP), denoted by (S, V, C), is a set of soft constraints C
based on the c¢-semiring S, which is defined over a set of variables V. For example, fuzzy
CSPs (Fargier, Schiex, and Verfaille 1995) are SCSPs that can be modelled by choosing the
c-semiring Spesp = ([0, 1], max, min, 0, 1).

In a ¢-semiring there is an element, which combined with every other preference returns
such a preference, i.e. there is an element that acts as indifference. Such an element is 1. In
fact, Ya € A, a x 1 = a. Moreover, a c-semiring holds a desired property for negative
preferences, that is, the combination between preferences is worse than the considered
preferences (in fact, Va,b € A, a x b < a,b). This interpretation is very natural when
considering, for example, the weighted c-semiring (R, min, +, +o00, 0), where preferences
are real positive numbers interpreted as costs. Such costs are combined via the sum (+4)
and the best costs are the lower ones (min). In this case preferences are costs and thus
negative preferences, and the sum of the cost costs is worse in general than these costs,
since we want to minimise the sum of the cost.

The interpretation above is also natural when considering, the fuzzy c-semiring
([0, 1], max, min, 0, 1), where preferences are in [0, 1], are combined via the minimum
operator and the best preferences are the higher ones (max). In fact, in this case the
combination of preferences is worse in general than these preferences, since it is equal to
the worst one of these preferences w.r.t. the ordering induced by the additive operator
(that is, max) of the ¢-semiring. From now on, a standard c¢-semiring will be used to model
negative preferences, denoted as (N, +,, x,, L,, T,).

2.2. Positive preferences

When dealing with positive preferences, two main properties should hold: combination
should bring better preferences, and indifference should be lower than all the other positive
preferences.

These properties can be found in a positive preference structure (Bistarelli et al. 2000,
2007a, 2010), which is a tuple (P, +,, x,, L,, T,) s.t. Pis a set and T,, L, e P; +,, the
additive operator, is commutative, associative, idempotent, with L, as its unit element
(Vae P,a+,1,=a) and T, as its absorbing element (Vae P, a+,T,=T,); X,,
the multiplicative operator, is associative, commutative and distributes over +,
(ax, (b ;|—,, ¢) = (a x, b) +, (a x, ¢)), with L, as its unit element and T, as its absorbing
element.
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The additive operator of this structure has the same properties as the corresponding
one in c-semirings, and thus it induces a partial order over P in the usual way: a <, b
iff a+,b=>b. This allows to prove that +, is monotonic (Ya,b,de P s.t. a <, b,
ax,d<,bx,d)and that +, is the least upper bound in the lattice (P, <,) (Va,b € P,
ax,b>,a+,b>,ab).

On the other hand, x, has different properties w.r.t. x,: its absorbing element is now
the best element in the ordering (T,), while its unit element, that can model indifference, is
the worst element (L,). These are exactly the desired properties for combination and
indifference of positive preferences. An example of a positive preference structure is
(M, max, sum, 0, +00), where preferences are positive real numbers aggregated with sum
and compared with max (i.e. the best preferences are the highest ones). Another example is
([0, 1], max, max, 0, 1), where preferences are positive real numbers aggregated and
compared with max.

2.3. Bipolar preferences

When we deal with both positive and negative preferences, the same properties described
above for a single kind of preferences should continue to hold. Moreover, all the positive
preferences should be better than all the negative ones and there should exist an operator
which allows for the compensation between positive and negative preferences. These
properties can be obtained by considering the bipolar preference structure presented
below, that links the previous two structures by setting the highest negative preference to
coincide with the lowest positive preference to model indifference.

A bipolar preference structure (Bistarelli et al. 2006, 2007a, 2010) is a tuple
(N,P,+,%x,1L,0,T), where (P,+,,x,,0,T) is a positive preference structure;
(N, 4+, X|,»L,0) is a c-semiring; +:(NU P> — (NUP) is an operator s.t.
a, +a, = a, Ya, € N and a, € P; it induces a partial ordering on NU P: Ya,b € PUN,
a<b iff a+b=>b; x:(NUP)>— (NUP) (called the compensation operator) is a
commutative and monotonic (Ya,b,c € NU P, if a < b, then a x ¢ < b X ¢) operator.

In the following, we will write +, instead of +, and +, instead of +,. Similarly for x,
and x,. When x is applied to a pair in (N x P), we will sometimes write X,,,.

Note that the compensation operator may not be associative. This is due to the fact
that one wants to leave complete freedom to choose the positive and negative algebraic
structures. However, in some situations associativity could be desirable. In such a case one
can build a bipolar structure with associative compensation operator, by following the
procedure presented in Bistarelli et al. (2007a, 2010).

From the monotonicity of the compensation operator it follows that the combination
of a positive and a negative preference is a preference which is higher than, or equal to, the
negative one and lower than, or equal to, the positive one.

An example of bipolar structure is the tuple (N=[-1,0], P=][0, 1], + =max, X,
1L =-1,0=0, T=1), where x is such that x, = max, x, =min and X,, =sum. Negative
preferences are between —1 and 0, positive preferences between 0 and 1, compensation is
sum, and the order is given by max. In this case X is not associative.

Note that, when the preferences are totally ordered, operators x, and x, described
here correspond respectively to the z-norm and t-conorm considered in Grabisch, de Baets,
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and Fodor (2003), and requiring that the compensation operator is associative, then it
corresponds to the uninorm operator considered in Grabisch et al. (2003).

2.4. Bipolar preference problems

A bipolar constraint is a constraint where each assignment of values to its variables is
associated to one of the elements in a bipolar preference structure. Given a bipolar
preference structure S = (N, P, +, x, L, 0, T), a finite set D (the domain of the variables),
and an ordered set of variables V, a bipolar constraint is a pair (def, con) where con C V'
and def : DI°°"l — (N'U P). A bipolar CSP (BCSP) (S, V, C) is a set of variables V and a set
of bipolar constraints C over V defined on the bipolar structure S. An RBCSP
(S, V, Cy, Cy) is a BCSP over the bipolar structure S, where the set of variables is J and the
set of bipolar constraints is C; U Cj.

Given a subset of variables 7/ C V, and a bipolar constraint ¢ = (def,con), the
projection of ¢ over I, written as ¢ |};, is a new bipolar constraint (def’,con’), where
con’=conN/ and def(/) =}, 1=y def(?). In particular, the scope, con’, of the
projection constraint contains the variables that con and / have in common, and thus
con’ C con. Moreover, the preference associated to each assignment to the variables in
con’, denoted with 7, is the best one among the preferences associated by def to any
completion of 7, ¢, to an assignment to con. The notation 7 |, indicates the subtuple of ¢
on the variables of con’. For example, if con = XU Y, con’ =X, and t = (X =a, Y = b),
then 7 | y=a.

A solution of a BCSP (S, V,C) is a complete assignment to all variables in V, say s.
Its overall preference is  ovpref(s) = ovpref,(s) x ovpref,(s)= (p1 X, ... X, px)x
(m Xy ...xun), where, for i:=1,....,k, pjeP, for j:=1,...,[, nje N, and
3(def;,con;) € C such  that p; =defi(s |o,) and  3(defj,con;) € C such  that
n; = def(s beon))- Hence the preference of a solution is obtained by combining all the
positive preferences associated to its projections over the constraints on one side, all the
negative preferences associated to its projections over the constraints on the other side, and
then compensating the two preferences so obtained. This definition is in accordance with
the classical tool used in bipolar decision making, namely with cumulative prospect theory
(Tversky and Kahneman 1992).

A solution s is optimal if there is no other solution s" with ovpref(s’) > ovpref(s).

Given a bipolar constraint ¢ = (def, con) and one of its tuple ¢, it is possible to define
two functions pos and neg as follows:

[ def(r) if def(s) € P,
pos(c)(1) = 0 otherwise,

| def(r) if def(z) € N,
neg(c)(1) = 0 otherwise.

In other words, given a constraint ¢ and one of its tuple ¢, pos(c)(¢) (resp. neg(c)(¢))
returns the preference given by ¢ for the tuple ¢ if it is positive (resp. negative) and
indifference otherwise.
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q(a, a)=-0.5
q(a, b)=+0.8
D=Dy={a, b}  4(a;)=-03
D, =D.={a.b.c} g(b,a)=—02

q(b, b)=+0.5
q(b, c)=+0.4

t(a, a)=-0.4
fla, b)==05 " qa, b)=-0.3
S, a)=+0.8 14, ¢)=+0.8
Sfib, b)=+0.7

(b, a)=+0.3
(b, b)=-0.4
(b, ¢)=+0.1

Figure 1. Schematic representation of a BCSP.

Example 1: Figure 1 shows an example of a BCSP. It is defined on the same bipolar
preference structure considered before, that is, (N =[-1,0], P =][0, 1], + = max, x,
1l=-1, 0=0,T=1), where x is s.t. x, =max, X, =min and Xx,, =sum. It is
composed by four variables, that is, x, y, z; and z,, and by the three bipolar constraints
(g, {x, z1}), (t, {x, z2}) and (f, {x, y}). The domain of x and y is {a, b}, while the domain of z,
and z is {a, b, ¢}. One of the solutions of such a BCSPiss =(y =b,x =a,z; = a,z; = b).
To compute its preference, we must consider the preferences of all the projections of s in
the various constraints, i.e. the preference +0.8 of (y =bh,x =a) in (f,{x,»}), the
preference —0.5 of (x = a,z; = a) in (q, {x, z1}) and the preference —0.3 of (x = @,z = b)
in  (t,{x,z2}). Thus ovpref(s) = (-0.5 x, —0.3) x,, 0.8 = min(—0.5, —0,3) + 0.8 =
—0.5+0.8=+0.3. In this example an optimal solution is s =(y=b,x=a,
z1 = b, zp = ¢) with preference ovpref(s’) = +0.8. Let us now show how functions pos
and neg defined above work on the constraint ¢; = (¢, {x,z;}) and on the tuples
tt=(x=a,zy=a) and tp =(x=a,zy =b). For t; we have pos(c;)(t;))=0 and
neg(cy)(t1) = —0.5, and for #, we have pos(c;)(t2) = +0.8 and neg(c;)(z2) = 0. O

2.5. Uncertainty in soft constraint problems

Uncertain soft constraint satisfaction problems (USCSPs) (Pini et al. 2005, 2010) are soft
constraint problems where some variables are uncontrollable, i.e. they are not under the
user’s control. They can model many real-life problems, such as scheduling and
timetabling. For example, they can model the problem of scheduling some tasks, knowing
that the duration of some of those is uncertain, and only vaguely known (Dubois et al.
1995), or the problem of deciding how many training sessions to perform in a tutorial,
without knowing the effective number of participants, but knowing only an approximate
number of these participants (Dubois, Fargier, and Prade 1996). Contrary to classical
constraint problems, in USCSPs we cannot decide how to assign the variables to make the
assignment optimal, but we must assign values to the controllable variables, denoted with
V., guessing what Nature will do with the uncontrollable variables, denoted with V,.

If the uncontrollable variables are equipped with additional information on the
likelihood of their values, like in our case, such an information can be used to infer new
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soft constraints over the controllable variables, which express the compatibility of the
controllable part of the problem with the uncontrollable one. This information can be used
to define the notion of optimal solution. It is assumed that there is no observability over
uncertain events before decision.

An USCSP is thus defined as a set of variables, which can be controllable or
uncontrollable, and a set of soft constraints over these variables. Moreover, the domain of
every uncontrollable variable is equipped with a possibility distribution, that specifies, for
every value in the domain, the degree of plausibility that the variable takes that value.

More formally, a possibility distribution 7 associated to a variable z with domain 4 is
a mapping from Ay to a totally ordered scale L (usually [0, 1]) such that Va € Az, n(a) € L
and Ja € A such that 7(a) = 1, where 1 is the top element of the scale L (Zadeh 1978).

A USCSP is a tuple (S, V., V., 7, C., Cey, C,) where S'is a c-semiring, V. = {x, ..., x,}
is a set of controllable variables, V, = {z1,...,zx} i1s a set of uncontrollable variables,
w={m,...,m;} is a set of possibility distributions over V,, such that every z; € Vu has
possibility distribution 7; with scale [0, 1], C, is the set of constraints that involve only
variables of V., C,, is a set of constraints that involve at least a variable in V. and a
variable in V7, and that may involve any other variable of V.U V,, and C, is the set of
constraints that involve only variables of V,,.

Notice that when the set of uncontrollable variables, i.e. V,, is empty, then the sets
of constraints involving variables in V,, i.e. C, and C,, are empty, and the USCSP
corresponds to a soft constraint problem (S, V., C,), as defined in Section 2.1.

When the chosen semiring is Sgcsp = ([0, 1], max, min, 0, 1), the definition of an
USCSP models an Uncertain Fuzzy CSP (UFCSP), that corresponds, when there are no
uncontrollable variables, to an FCSP, as defined in Section 2.1.

Example 2: Figure 2 shows an example of an UFCSP. Each constraint is defined by
associating a preference level (in this case between 0 and 1) to each assignment of its
variables to values in their domains. The set V.. of the controllable variables is composed
by x, y and w, while the set V,, of the uncontrollable variables contains only z. The values
in the domain of z are characterised by the possibility distribution 7z. The set of
constraints C, is composed by the constraint (g, {x,w}), which relates x and w via the
preference function ¢. The set of constraints C,, is composed by the constraint (f, {x, y, z}),

qx=1,w=5)=04
qg(x=1,w=6)=0.3
q(x=2,w=5)=0.9
q(x=2,w=6)=0.2

fz=3,x=1,y=1)=0.3
fz=4,x=1,y=1)=0.5
Az=3,x=1,y=2)=0.4
Az=4,x=1,y=2)=0.6
@ fz=3,x=2,y=1)=0.5
flz=4,x=2,y=1)=0.4
Az=3,x=2,y=2)=0.1
fz=4,x=2,y=2)=0.6

Figure 2. Schematic representation of an UFCSP.
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which is defined on variables x, y, and z by the preference function f, while the set C, is
empty.

Given an assignment ¢ to all the variables of an USCSP, its overall preference is
computed by combining, via the x operator, the preference levels of its subtuples in the
selected constraints. More formally, given an USCSP Q = (S, V., V,,,n,C,, Ce,, Cy), let ¢
be an assignment to all the variables of Q, then its overall preference is the value
ovpref(#) = [T e, conyec.uc,uc,) €Ll deon,)-

A solution of an USCSP is a complete assignment to all its controllable variables.
More formally, given an USCSP Q = (S, V. V,, 7, C., Ce, Cy,), a solution of Q is a
complete assignment to all the variables of V..

2.6. Preference, robustness and desirable properties for USCSPs

In Pini et al. (2010), a solution s of an USCSP is associated to both a preference degree,
written pref(s), and a degree of robustness, written rob(s). The preference degree
summarises all the preferences in the controllable part and it can be really obtained for
some assignment to the uncontrollable variables decided by the Nature. The robustness of
a solution, that measures the impact of Nature on the preference obtained by choosing
that solution, is assumed to be dependent both on the preferences in the constraints
connecting both controllable and uncontrollable variables to s and on such possibility
distributions.

Two desirable properties for the notion of robustness that have been considered in Pini
et al. (2005, 2010) for USCSPs and in Dubois, Fargier, and Prade (1996) for UFCSPs are
the following.

Property P1: Given solutions s and s of an USCSP, (S, V., n, V,, C., C.,), where every
variable v; in V, is associated to a possibility distribution 7;, if for every constraint
(def,con) € C,, and for every assignment « to the uncontrollable variables in con,
def ((s, @) dcon) <s def((s, @) | .on)» then it should be that rob(s) <s rob(s’).

In other words, if we increase the preferences of any tuple involving uncontrollable
variables, the solution should have a higher value of robustness.

Property P2: Take a solution s of the USCSPs Q, = (S, V.V, n,C.,C.,) and
O, = (S, Ve, Vy,m,Co, Cry). Assume for every assignment a to variables in V,
ma(a) < mi(a). Then it should be that rob,, (s) <s robg,(s), where rob,, is the robustness
computed in the problem Q;, and rob,, is the robustness computed in the problem Q>.

In other words, if we lower the possibility of any value of the uncontrollable variables,
the solution should have a higher value of robustness.

To understand which solutions are better than others in an USCSP, in Pini et al. (2010)
a solution ordering, say >, is considered which is reflexive and transitive and should
depend on the notions of robustness and preference as in the following properties.

Property P3: Given two solutions s and s° of an USCSP, if rob(s) = rob(s’) and
pref(s) > g pref(s’), it should be that s > s'.

Property P4:  Given two solutions s and s of an USCSP such that pref(s) = pref(s’), and
rob(s) >grob(s’), then it should be that s > s'.
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In other words, two solutions which are equally good with respect to one aspect
(robustness or preference degree) and differ on the other should be ordered according to
the discriminating aspect.

Property P5: Given two solutions s and s, an USCSP Q = (S, V., V., 7, C., C.,), such
that ovpref(s, a) >govpref(s’, a) Va assignment to V,, then it should be that s > 5.

In other words, if two solutions s and s" are such that the overall preference of the
assignment (s, @) to all the variables is better than or equal to one of (s', @) for all the values
a of the uncontrollable variables, then s should be considered better than the other one.

2.7. Removing uncertainty in UFCSPs: preferences, robustness and semantics

In Pini et al. (2010), a method is presented to remove uncontrollable variables from
UFCSPs preserving as much information as possible. Starting from this method, both a
degree of preference and a degree of robustness for a solution are defined, and it is shown
that these degrees satisfy the desirable properties mentioned above.

2.7.1. Removing uncertainty

The procedure presented in Pini et al. (2010) to remove uncertainty in UFCSPs, that is
called Algorithm SP, works as follows. It takes as input an UFCSP Q=
(S, Ve, Vy,m, C.,Ce), where every variable z; € V,, has a possibility distribution 7; and
where S is the fuzzy c-semiring and returns an RFCSP that is similar to an FCSP but has
two sets of constraints rather than one. More precisely, an RFCSP is a tuple (S, V., Cy,
C») such that (S, V., C), where C = C; U C,, is an FCSP.

Algorithm 1: SP

Input: 9 = (S, V.V, C.C.): an UFCSP;

Output: Q' = (S, V., C%, Cyop): an RFCSP;

Crob <~ Q;

Cproj <~ Q’;

for each constraint ¢ € C,, do
Crob < Crop U Compute Fuzzy Robustness Constraint(c);
Cproj < Cproj U Compute Fuzzy Projection Constraint(c);

Ci <~ C. U Cproj;

Q/ <~ (57 V(,‘a Czk, Cl‘Ob);

return Q’;

The RFCSP Q' returned by SP is obtained from Q by eliminating its uncontrollable
variables and the fuzzy constraints in C,, relating controllable and uncontrollable
variables, and by adding new fuzzy constraints only among these controllable variables
that we call Cpwoj (the fuzzy projection constraints) and Cron (the fuzzy robustness
constraints), that encode (some of ) the information contained in the uncontrollable part of
the problem. In particular, it adds Cpoj to C., while it keeps Cyop separate. More precisely,
given a constraint ¢ = (def, con) in C,, such that conN V., = X and conNV, = Z,
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e its corresponding robustness contraint in C,,,, obtained by applying the
procedure Compute Fuzzy Robustness Constraint(c), returns a fuzzy constraint
(def’, X') where, Yty assignment to X,

def’(ty) = mijl max(def(ty, t2), | — wz(t2))).
tzedz

e its corresponding projection constraint in Cpj, obtained by applying the
procedure Compute Fuzzy Projection Constraint(c), is the constraint (def”, X),
where

def”(ty) = max  def(zy, 12).
{tlEAzHJ'rz(a) >0

2.7.2. Preference, robustness and semantics in UFCSPs

In Pini et al. (2010) the problem returned by the Algorithm SP is used to define the
preference and the robustness of a solution in an UFCSP. More precisely, given a solution
s of an UFCSP Q, let Q' = (S, V., C, Crop), Where C = C. U Cpyoj, the RFCSP obtained
from Q by Algorithm SP,

o the preference of s is pref(s) = mingef.conyecxy def(s con)
e the robustness of s is rob(s) = minggef.con)eC,y} 4f(S Lcon)-

In other words, the preference (resp. robustness) of a solution is obtained by combining
the preferences of the appropriate subtuples of the solution over the constraints in C, i.e.
in C. U Cpyoj (resp. in Crop). In Pini et al. (2010) it is shown that the desirable properties on
the robustness (i.e. Properties P1 and P2) presented previously hold.

Since a solution of an UFCSP is associated to a preference and robustness degree,
in Pini et al. (2010) various semantics are defined to order the solutions which depend on
the attitude w.r.t. these two notions. In the following, we will describe those that we
consider in this article.

e Risky semantics: given A1 = (pref},rob;) and 42 = (pref,,robs), A1 >gisky A2 iff
pref, > pref, or (pref; =pref, and rob; > rob,). Informally, the idea is to give
more relevance to the preference that can be reached in the best case considering
less important a high risk of being inconsistent.

e Safe semantics: given A1 = (pref},rob;) and 42 = (pref,,roby), Al >gue A2 iff
rob; > rob, or (rob; =rob, and pref; > pref,). The idea is to give more
importance to the robustness level that can be reached considering less important
having a high preference.

e Diplomatic  semantics: given Al = (pref;,rob;) and A2 = (pref,, rob,),
Al >pip A2 iff (pref; > pref, and rob; >roby) and (pref; > pref, or
rob; > rob,). The idea is that a pair is to be preferred to another only if it wins
both on preference and robustness, leaving incomparable all the pairs that have
one component higher and the other lower.

In Pini et al. (2010) it is shown that for Risky, Safe and Diplomatic semantics the
desired properties on solution ordering (i.c. Properties P3 and P4) presented previously
hold. Also, they prove that Property P5 is satisfied only by > gisky-
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3. Uncertain bipolar problems

Uncertain bipolar problems (UBCSPs) are characterised by a set of variables, each of
which can be controllable or uncontrollable, and by a set of bipolar constraints. Thus, an
UBCSP is a BCSP where some of the variables are uncontrollable. Moreover, the domain
of every uncontrollable variable is equipped with a possibility distribution, that specifies,
for every value in the domain, the degree of plausibility that the variable takes that value.
Hence, an UBCSP is also an USCSP where every constraint is bipolar. More formally,

Definition 1 (UBCSP): An uncertain bipolar CSP is a tuple (S, V., V,, 7, C., C.,), where

e S=(N,P,+,x,1,0,T)is a bipolar preference structure and <g is the ordering
induced by operator +;

e J.={xy,...,x,} 18 a set of controllable variables;
e VV,={z,...,z;} is a set of uncontrollable variables;
e 7w ={pi1,...,pr} 1s a set of possibility distributions over V. In particular, every

z; € V,, has possibility distribution 7; with scale [0, 1];

e (. is the set of bipolar constraints that involve only variables of V;

e (., is a set of bipolar constraints that involve at least a variable in V. and a
variable in ¥, and that may involve any other variable of (V.U V).

e (, is the set of bipolar constraints that involve only variables of V,.

For simplicity we will assume that C, is empty and thus we will omit it in the tuple
when we refer to an UBCSP. If C, # 0, we can translate every constraint of type C, into a
new constraint of type C.,, thus obtaining an UBCSP with C,, = @. This can be done by
using a procedure similar to the one used for UFCSPs in Pini et al. (2010).

Given an assignment ¢ to all the variables of an UBCSP, its overall preference (see
Section 2) is computed by combining, via the x operator, first all the positive preferences
of its subtuples in the selected constraints, then all the negative preferences of its subtuples
in the selected constraints and finally the two resulting preferences. More formally so,
using the notation presented in this section.

Definition 2 (overall assignment preference): Given a UBCSP Q = (S, V., V,,, 7, C., C,),
let ¢+ be an assignment to all the variables of Q, then its overall preference is the value
ovpref(#) = ovpref, (1) x ovpref,(¢), where ovpref, (1) = [ def. conyec,uc,,) POSAErN( dcon,),
and OVpI‘Cfn(Z) = H{(def;,con;)eCL.uC(.l(} neg(defi)(l \Lconl)~

A solution of a UBCSP is a complete assignment to all its controllable variables. More
formally so, as in the following definition.

Definition 3 (solution): Given an UBCSP Q = (S, V., V,,, 7, C., C,), a solution of Q is a
complete assignment to all the variables of V..

Example 3: An example of an UBCSP is the one presented in Figure 3(a). It is like the
one in Figure 1, except that now variables z; and z; are uncontrollable and characterised
by two possibility distributions 7; and m,. More formally, such an UBCSP is defined by
the tuple (S, V. = {x,y}, V., = {z1, 22}, m = { pi1, 12}, C., Co}). We recall that the bipolar
structure is (N =[—1,0],P =[0,1],+ = max, x, 1=—1, O=0,T = 1), where x is s.t.
X, = max, X, = min and x,, = sum. The set of constraints C, contains (f, {x, y}), while
C., contains (q,{x,z1}) and (t,{x, z;}). Figure 3(a) shows the positive and the negative
preferences within such constraints and the possibility distributions 7; and 7, over the
domains of z; and z,.
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@ i (b
D,=Dy={a, b} ,[1 qp’(@)=0.3 ap(a)=0
D, =D_,={a,b,c} %, Z;:(()).g 01? . qp”(b)=0.4 qp(b)=0
qla.c)=-03 067" oo gn(a)=0
(b, a)=—02 s =05 gn(b)=0
ab b=s05 b = D
qlb. c)=+0.4 @ @
fla,a)=-04 1p(a)=0
fla, b)=-0.5 tp”EZ)) =8 5 tp(b)=0
__ ,a)=+0.8 P (0)=0. tn(a)=0
fla.)==04  i(a,a)=-04 @ fb,a)=+08 =
fa,b)=-05  t(a. b)=—03 fib, b)=+0.7 m’(a)=-04 Mb)=0
fb,)=+08  t(a.c)=+08 ™ n”(a)=-03
[, 0)=+0.7 1 =403 )
b, b)=-04 031 . (©)
#b,c)=+0.1 02 . sl=(y=a,x=a) pref(s])=-0.4 rob(s1)=-0.2
abe % s2=(y=b,x=a) pref(s2)=+0.8 rob(s2)=-0.2
s3=(y=a,x=b) pref(s3)=-0.5 rob(s3)=+0.1

s4=(y=b,x=a) pref(s4)=+0.7 rob(s4)=+0.1

Figure 3. How B-SP works.

4. Preference, robustness, and desirable properties in UBCSPs

Given a solution s of an UBCSP, we will associate to it a degree of preference,
say pref(s), and a degree of robustness, say rob(s) that generalise those given for USCSPs
in Pini et al. (2010). Moreover, we will show that these notions satisfy the following
generalised version of the desirable properties for USCSPs described in Section 2.6.

Property BP1: Given solutions s and s’ of an UBCSP, (S, V., x, V,, C., C.,), where every
variable v; in ¥V, is associated to a possibility distribution ;, if for every constraint
(def,con) € C., and for every assignment a to the uncontrollable variables in con,
def ((s, @) deon) <s def((s, @) |.on), then it should be that rob(s) <s rob(s’).

Property BP2: Take a solution s of the UBCSPs Q; = (S, V., V,,n1,C. Cs) and
0, = (S, V., Vy, 12, Ce, Coy). Assume that for every assignment a to variables in V,
ma(a) < mi(a). Then it should be that rob,, (s) <g rob,(s), where rob,, is the robustness
computed in the problem Q), and rob,, is the robustness computed in the problem Q».

Property BP3: Given two solutions s and s° of an UBCSP, if rob(s) = rob(s’) and
pref(s) > s pref(s’), it should be that s > .

Property BP4: Given two solutions s and s of an UBCSP such that pref(s) = pref(s’), and
rob(s) >grob(s’), then it should be that s > s'.

Property BP5: Given two solutions s and s/, an UBCSP Q = (S, V., V,,«, C., Cs,), such
that ovpref, (s, a) >sovpref,(s',a) and ovpref,(s,a) >sovpref,(s', a) Ya assignment to V,,
then it should be that s > s'.

Notice that the new desirable properties for bipolar preferences are similar to the ones
given for USCSPs in Pini et al. (2010). Two differences are that they consider an UBSCP
rather than an USCSP and that, as preference ordering, they consider <g, that is the
ordering induced by the additive operator of the bipolar preference structure of the
considered UBSCP and not the ordering induced by the additive operator of the c-semiring
of the considered USCSP. Another difference is in Property BP5 where not only the negative
overall preferences are considered (as in USCSPs), but also the positive overall preferences.
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5. Removing uncertainty from UBCSPs over closed real intervals

We now show how to extend the approach shown in Pini et al. (2005, 2010) to deal with
UFCSPs, i.e. problems with fuzzy preferences and uncertainty (Section 2.7), to UBCSPs
over real intervals, i.e. problems with bipolar preferences and uncertainty where the set of
the positive preferences and the set of the negative preferences are two closed intervals of R
(or structures isomorph to it).? Starting from the generalisation of this approach, we will
define robustness and preference degrees and we will show that they satisfy the properties
which are considered desirable (see Theorems 1-5).

Our procedure, that we call Algorithm B-SP, takes as input an UBCSP
o=(SV.,V,nrC.,C.), where every variable z; € V,, has a possibility distribution s;
and S = (N, P,+, x, L, O, T) is any bipolar preference structure where N and P are two
closed intervals of R (or structures isomorph to them) and it returns an RBCSP. We recall
that an RBCSP is similar to a BCSP but has two sets of constraints rather than one
(Section 2.4).

Algorithm 2: B-SP

Input: Q = (S, V. 7, C., Co): an UBCSP;
Output: 0’ = (S *, Crob): an RBCSP;
Crob <~ gs

Cproj <~ Q’;

for each constraint ¢ € C,, do
Ciob < Crop U Compute Robustness Constraint(c);
Cproj <= Cproj U Compute Projection Constraint(c);
C <~ C. U Cproj;
Q/ <~ (S, VCa Cfa Crob)Q
return Q’;

The RBCSP Q' returned by B-SP is obtained from Q by eliminating its uncontrollable
variables and the bipolar constraints in C., relating controllable and uncontrollable
variables, and by adding new bipolar constraints only among these controllable variables
that we call Cproj and Crop. In particular, it adds Cproj to C., while it keeps Ciop, separate.
More precisely, Cproj (the projection constraints) is the set of constraints obtained applying
to every constraint ¢ in C,, of Q, the procedure Compute Projection Constraint(c), that will
be described in Section 5.2, while Ciy, (the robustness constraints) is the set of constraints
obtained applying to every constraint ¢ in C, of Q, the procedure Compute Robustness
Constraint(c), that will be described in Section 5.1. In Sections 5.1 and 5.2 we will see that
these new constraints will encode (some of) the information contained in the uncontrol-
lable part of the problem.

As in Pini et al. (2010) for the fuzzy case, starting from this problem Q’, we define the
preference degree of a solution considering the preference functions of the constraints in
C. U Cproj, and the robustness degree of a solution considering the preference functions of
the constraints in Cyop.

Notice that Algorithm B-SP is similar to Algorithm SP (Pini et al. 2010) described in
Section 2.7. However, it takes in input an UBCSP rather than an UFCSP, it returns an
RBCSP rather than an RFCSP, and it uses different procedures for computing robustness
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and projection constraints that depend on specific properties of the bipolar preference
structure of the considered UBCSP.

5.1. Robustness constraints

Similar to the approach for the fuzzy case (Pini et al. 2010), the set of robustness
constraints Crop 1S composed by the bipolar constraints obtained by reasoning on
preference functions of the bipolar constraints in C,, and on the possibilities associated to
values in the domains of uncontrollable variables involved in such constraints. However,
the procedure to obtain such bipolar constraints is different from the one considered in the
fuzzy case, since while in the fuzzy case the fact that fuzzy preferences and possibilities are
commensurable is exploited, in the bipolar context we cannot exploit this fact since
positive and negative preferences may not be commensurable with possibilitiecs. We have
thus adapted the fuzzy approach used to defined robustness constraints to take this fact
into account.

More precisely, every constraint in Ci,p, is built by exploiting the procedure denoted
Compute Robustness Constraint in Algorithm B-SP, that works as follows.

e (Normalisation) Every constraint ¢ = (def, con) in C,, such that conN V. = X and
conN V, = Z, is translated in two bipolar constraints (def p, con) and (defn, con),
with preferences in [0, 1], where, V(ty, t,) assignment to X x Z,

defp(ix, tz) = gy(pos(c)(ix., 7))

and defn(ty, tz) = g,(neg(c)(ty, tz)). If the positive (resp. negative) preferences are
defined in the interval of R, P =]a, by] (resp. N =]a,, b,]) then g,:
[ap, bp] — [0,1] (resp. gn: [an,b,] = [0,1]) associates to every x € [a,,b,] the
value % € [0, 1] (resp. to every x € [ay,, b,] the value %) by using the classical
division and subtraction operation of [R.

e (Removing uncontrollability) The constraint (defp,con) obtained before is then
translated in (def p’, X'), and (defn, con) is then translated in (defn’, X'), where Vty

assignment to X,
defp'(1x) = inf sup(defp(ix, 12), cs(m2(12))),

and defn'(ty) = inf,,c 4, sup(defn(tx, tz), cs(wz(t2))), where c¢s is an order revers-
ing map with respect to <g in [0, 1], such that cg(cs(p)) = p and inf which is the
opposite of the sup operator (derived from operator 4+ of S), applied to a set of
preferences, returns its worst preference with respect to the ordering <g.

e (Denormalisation) The constraint (defp’, X') obtained before is then translated in
(defp”, X), and (defn’, X') is then translated in (defn”, X'), where V¢y assignment
to X,

defp"(tx) = g, (defp'(1x)),

and defn’(1x) = g, " (def#/(tx)). The map g, :[0,1] — [a,, b,] associates to every
y €[0,1] the value [y(b, — a,) + a,] € [ay, by], and the map g, :[0,1] = [an, by]
associates to every y € [0, 1] the value [ y(b, — a,) + a,] € [ay, b,].
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Hence, given ¢ = (def, XU Z) € C,,, its corresponding robustness constraints in Ciop
are the bipolar constraints (def p”, X') and (defn”, X') defined above. When we compute the
robutsness constraints, we reason separately on positive and negative preferences since
in our approach commensurability with possibilities applies only separately to positive
and negative preference sets, and not to the whole preference set. Forcing the
commensurability of the possibility range with the bipolar preference set would induce a
bipolarisation of possibilities, which is not reasonable. However, in order to avoid loss
of information, when we compute the robustness degree of a solution, considering the
robustness constraints, we compensate the positive and the negative preferences of such
constraints.

It is possible to show that the functions g, and g, are strictly monotonic with respect to
the ordering <g induced by the operator + of S. Hence such functions are invertible and
their inverse functions are monotonic with respect to the same ordering.

Proposition 1:  Given a,,b,,a,,b, € R, with a, <sb, and a, <sb, the following maps are

strictly monotone w.r.1. the ordering induced <g: g, : [ap, by] = [0,1] s.t. x> =2, and g, :
" p—Ap
[@n, by] — [0,1] s.t. x> ;==

n—dn

Proof: We now show that g, is monotone w.r.t. <g. If x; >gx,, then x; —a, >5x, — a,,

by monotonicity of the subtraction among real numbers. Moreover, since b, >ga,, then

b, —a, >50 and also ﬁ > (0. Thus, by strict monotonicity of the product over real
P /4

numbers (Va,b,c € R, if ¢>30 and a>gb, then ac>gsbc), 7—2 =,
P 4 P 4
gp(x1) >g5gy(x2). Similarly, since b, >sa,, and thus ﬁ > 0, it is possible to show that

gy 18 strictly monotone. O

1.€.

This allows us to show that the new preference functions defp” and defn” in the
constraints Cyp satisfy the same property given in Dubois et al. (1996) and Pini et al.
(2005). That is, given an assignment ty to controllable variables in X in a constraint
¢ = (def, con) € C.,, where con = X' U Z, the higher are def p”(¢y) and defn”’(ty), the more
assignments to uncontrollable variables in ¢ will yield in Q preference higher than a given
threshold. It is thus possible to prove that

o defp’(d) =5 B € P (resp. defn’(d) =5 B € N)if and only if, for any 7, assignment
to Z with wz(tz) > cs(g,(B)) (resp. mz(tz) > cs(g.(B))), then def (ty, 17) =5 B.

Note that this property holds for both positive and negative preferences, since the
definition of defp” and defn” is not based on the combination operators (x, and x,) of
positive and negative preferences, which have different behaviours, but only on the
operators sup and inf derived by the additive operators 4, and +,, which satisfy the same
properties, more precisely as shown in the following proposition.

Proposition 2:  Consider an UBCSP (S, V., V,, 7, C,., Cp,), where S = (N, P,+,x, L, 0, T)
is a bipolar preference structure where P = [ay, b,] and N = [a,, b,] are closed intervals of R.
For every constraint ¢ = (def, con) € C, such that con N\ V,, = Z, with possibility distribution
7z, and con NV, = X, the corresponding robustness constraints (defp”, X') and (defn”, X')
are such that, for every ty assignment to X,

o defp’(ty) =5 B € P iff, when wz(tz) > cs(gy(B)), then pos(c)ty,tz) >s B,
o defn’(ty) >s o € N iff, when wz(tz) > cs(gn()), then pos(c)(tx,tz) >s «,
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where tz is an assignment to Z, g, : [ap,by] = [0,1] is such that x— ;;‘Z e[0,1]g, :
p

[@n, by] — [0,1] is such that x—> ;=°~, and cs is an order reversing map with respect to

ordering <g in [0, 1] such that cs(cs(p)) = p Vp € [0, 1].

Proof: We show the first statement concerning defp”(¢y). The second one, concerning
defn’(ty), can be proved analogously, since by construction g, and g, ' have the same
properties respectively of g, and gljl. We recall that defp’(ty) = g;l(inf,ze 4, X
(gp(pos(c)(tx, tz))+ cs(mz(t2)))), where Az is the set of the assignment to Z.

(=) We assume that defp”’(ty) >s 8. If this holds, then, since g, is monotone
with respect to the ordering <, g,(defp’(tx)) >5g,(B), ie. gp(gljl(inf,zeAz X
sup( gy(pos(c)(tx, t2)), cs(mz(12))))) =5 g,(B), that is, since g, is the inverse function of
g;l, inf;, e4, sup(g,(pos(c)(tx, tz), cs(wz(t2)))) >s g,(B). Since we are considering totally
ordered preferences, this implies that sup(g,(pos(c)(tx, 7)), cs(wz(12))) >s g,(B) Viz € Az.
For t7 with mz(17) > cs(g,(B)), since cs is an order reversing map with respect to <g such
that cs(cs(p)) = p, we have cs(2(12)) <s cs(cs(gy(B)) = g»(B). Therefore, for such a value
tz, we have that g,(pos(c)(tx, tz)) =sup(g,(pos(c)(tx. t2)), cs(mz(t2))) =5 g,(B) and, since

g, is monotone, we have g,'(g,(pos(c)(tx, 12))) =5 &, (g,(B)), i-e. pos(c)(tx, 1z) =5 B.

(<) We assume that Yz with 72(t2) > cs(g,(B)), pos(c)(ty.tz) >s B. Then, for such 7,
since g, is monotone with respect to <s, g,(pos(c)(tx,tz)) >sg,(f) and so,
sup( gy(pos(c)(tx, t2)), cs(mz(t2))) =5 g»(B). On the other hand, for every 7 such that
nz(1z) > ¢s(gp(B)), we have cs(mz(iz)) >sgy(B) and so sup(g,(pos(c)(ix,iz)),
es(A12) >s5gp(B). Thus Viy € Az, sup(gy(pos(e)ix. 12)), cs(iz) =5 g,(f) and
0 inf,,e4, sup(pos(c)tx, t2), cs(mz(t2))) >s g,(B). Hence, since g, ! is monotone,
g, ' (inf,,e, (sup(pos(c)(tx, 12), es(mz(12)) Zs &, ' (g,(B)), i.e. defp(1x) =5 B.

Example 4: Consider the constraint ¢; = (¢, {x,z}) in Figure 3(a). The robustness
constraints obtained from it are the constraints r1 = {¢gp”, {x}) and r2 = (¢gn”, {x}) shown in
Figure 3(b). They have been obtained by assuming g, the identity map, g,: N =
[-1,0] — [0,1] mapping every value ne[—1,0] into the value (m+1)€][0,1],
g,':[0,1] — [—1,0] mapping every value 7 € [0,1] into the value (1 — 1) € [-1,0], and
¢s mapping every p € [0,1] in 1 —p. We now show the meaning of these robustness
constraints. The value ¢p”(x = a) = 0.3 means that in ¢, as shown by the property above,
for all the values ¢; of z; with possibility 7;(¢;) > 1 — 0.3 = 0.7, (in this case only b), we
have ¢(x = a, t;) > 0.3. Analogously, the value gn”(x = a) = —0.5 means that, for all the
values #; of z; with possibility 7;(#;,) > 1 — (=0.5+ 1) = 0.5, (that is, for @, b and ¢), we
have in ¢; that ¢(x = a, t;) > —0.5.

5.2. Projection constraints
As in the approach for the fuzzy case (Pini et al. 2010), projection constraints are added to
the problem in order to recall part of the information contained in the constraints in C,,
that will be removed later. In particular, they guarantee that the preference degree of a
solution, say pref(s), that we will define later, is a value that could be obtained in the given
UBCSP. The importance of considering such constraints is explained in Example 8.
However, the new projection constraints for the the bipolar context are defined in a
different way from those in the fuzzy case, since in the bipolar problems there may be
negative preferences different from fuzzy preferences and also positive preferences.
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Nevertheless, it is easy to check that the new approach to define these projection
constraints generalises the fuzzy one.

The set of projection constraints Cp,; is defined by the function Compute Projection
Constraint in Algorithm B-SP. Such a function takes in input a bipolar constraint
¢ = (def, con) in C,,, such that conN V. = X and con N V,, = Z, and it returns constraints
(defp,X) and (defn, X), where defp(tx)=inf|,,c4 iz a)>0} POS(c)(tx,tz) and
defn(tx) = SUPyue a,yima) > 0 N€E(C) (Lx, 17). In other words, defn(iy) (resp. defp(zx)) is the
best negative (resp. the worst positive) preference that could be reached for 7y in ¢ when we
consider the various values ¢z in the domain of the uncontrollable variables in Z.

Example 5: Consider the constraint ¢; = (g, {x,z;}) in Figure 3(a), the projection
constraints obtained from it are the constraints pl = (gp, {x}) and p2 = {(gn, {x}) shown in
Figure 3(b). We recall that in this example positive preferences are in [0, 1] and negative
preferences are [—1,0] and all the preferences are ordered via the maximum operator. In
this example, every assignment ¢, to the controllable variable x in pl has positive
preference equal to 0, since 0 is the worst positive preference associated by pos(cy) to 7y,
and in p2 has negative preference equal to 0, since 0 is the best negative preference
associated by neg(c) to t,.

Example 6: Let us consider the UBCSP Q = (S, V. = {x,y}, V. = {z1, 22}, m = {p1, P2},
C., Ce) in Figure 3(a). Figure 3(b) shows the RBCSP Q' = (S, V. = {x, ¥}, C¥, Ciob),
where CF = C, U Cpyoj, built by Algorithm B-SP. C. is composed by (f, {x,»}). Cproj is
composed by (gp, {x}), (gn,{x}), (ip,{x}) and (in, {x}), while Cop by (gp", {x}), (gn”",{x}),
(tp”, {x}) and (tn”, {x}). Constraints in Ci, are obtained by using functions g, and g, as in
Example 4.

6. Preference and robustness

We are now ready to define the preference and the robustness of a solution in an UBCSP
oO=(SV.,V,nrC.C.). Todo that we generalise to the bipolar context the definition of
preference and robustness given for the fuzzy case (Pini et al. 2010). The main idea is to use
Algorithm B-SP to produce the RBCSP Q' = (S, V., C¥, Cop), Where C = C. U Cpyoj, and
then to associate to each solution of Q’, i.e. to every complete assignment to controllable
variables, a pair composed by a degree of preference and a degree of robustness.

Definition 4 (preference): Given a solution s of an UBCSP Q, let Q' = (S, V., C}, Crob),
where C} = C.U Cproj, the RBCSP obtained from Q by Algorithm B-SP. Then the
preference of s is

pref(s) = pref),(s) x pref,(s),

where

e X is the compensation operator of S,
L] prefp(s) = H[(def,con)eC(’f} pOS(C)(S ‘Lcon):
o pref,(s) = IMder.conjecs) NEG(C)(S L con)-
In other words, the preference of a solution is obtained by compensating a positive and

a negative preference, where the positive (resp. negative) preference is obtained by
combining all positive (resp. negative) preferences of the appropriate subtuples of the
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solution over the constraints in C7, i.e. over the constraints in C. U Cpj, that are the
initial constraints of @ linking only controllable variables and the new projection
constraints.

In the following proofs we will sometimes need to use a preference value that we call
projection preference. More precisely, we will denote the projection preference of a
solution s with

proj(s) = proj,(s) x proj,(s),

where x is the compensation operator of S, proj,(s) = Idef.con)eCyoj) POS(C) (5 {con)» and
neg(e)(s deon)-

Definition 5 (robustness): Given a solution s of an UBCSP Q, let Q' = (S, V., C}, Crop),
where C} = C.U Cproj, the RBCSP obtained from Q by Algorithm B-SP. Then the
robustness of s is

rob(s) = rob,(s) x rob,(s),
where

e x is the compensation operator of S,
° I'Ob[,(S) = H{(def,con)e(fmb} pos(c)(s \Lcon)a
® rob,(s)= I{(def.con)eCrop} neg(c)(s \Lcon)-

In other words, the robustness of a solution is obtained compensating a positive and a
negative robustness, where the positive (resp. negative) robustness is obtained by
combining all positive (resp. negative) preferences of the appropriate subtuples of the
solution over the constraints in C,.p, 1.€. over robustness constraints.

Notice that, when positive preferences are missing and when the negative preferences
are only of the fuzzy kind, the definitions of preference and robustness given above for the
bipolar case coincide with those given in (Pini et al. 2010) for the fuzzy case.

Example 7: Let us consider the UBCSP Q in Figure 3(a) and the RBCSP Q' obtained
from Q by Algorithm B-SP. Figure 3(c) shows all the solutions of Q, i.e. all the complete
assignments to the controllable variables (thus x and y) with their associated preference
and robustness degrees.

In the following we will show why it is important to add projection constraints. Such
constraints avoid having solutions s with the negative preference pref,(s) better than the
best negative preference that could result from C., constraints and with the positive
preference pref,(s) worse than the worst positive preference that could result from C,
constraints.

Example 8: Consider an UBCSP Q defined over the bipolar preference structure
considered before, ie. (N=[-1,0,P=][0,1],+ =max,x, 1l=-1, O=0,T=1),
where x is s.t. x, =max, x, =min and x,, =sum. Assume to have a solution s
with  pref,(s) = —0.7 and  pref, = +0.5. Then pref(s) = pref,(s) x,, pref,(s) =
—0.7+ 0.5 = —0.2. Assume also that the best negative preference that can be obtained
for s from constraints in C., is —0.9 and that the worst positive preference that can be
obtained for s from constraints in C,, is +0.9. Then the best negative preference that can
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be obtained by s in Q is pref)(s) = pref,(s) x, (—0.9)= min(—0.7, —0.9) = —0.9, i.e. a
negative preference which is strictly worse than pref,(s) = —0.7. Moreover, the worst
positive preference that can be obtained for s in Q is preflg(s) = pref,(s)x,
(+0.9) =max(+0.5, 4+0.9) = +0.9, i.e. a positive preference which is strictly better than
+0.5. Therefore, the preferences that can be obtained for s in Q are in [-1, —0.9] and in
[0.9,1]. Thus, pref(s) = —0.7 x,,, 0.5 = —0.2 cannot be obtained in Q for s, since in Q the
best preference that can obtained for s is 0.1 = —0.9 x,, 1 and the worst preference that
can be obtained for s is —0.1 = —1 x,, 0.9. Instead, if we associate to s the preference
pref’(s) = pref,(s) x pref (s)= —0.9+0.9 = 0, then we are sure that such a preference
can be really obtained for s in Q. Thus, the addition of projection constraints guarantees
that every solution has a preference which can be really obtained in the original
problem Q.

Note that even if we keep the positive and negative preferences separate during
Algorithm B-SP, we compute the preference and robustness of a solution by compensating
its positive and its negative components, thus we don’t lose information. The only loss of
information that we have is due to the effect of the possibly non-associative compensation
operator. This feature is inherited from BCSPs (Bistarelli et al. 2007a, 2010), where
associativity is not required in order to allow for a more general framework, that is
desirable in practice. However, as said before, in Bistarelli et al. (2007a, 2010), a procedure
for building a bipolar preference structure with an associative compensation operator is
also shown.

It is possible to prove that the desired properties on the robustness (i.e. Properties BP1
and BP2, Pini et al. (2005) presented previously hold.

Theorem 1: The definition of robustness given in Definition 5 satisfies Property BP1.

Proof: Consider two solutions, say s and s, of a UBCSP Q = (S, V., V,, 7, C., Cs),
where S= (N, P+, x, L, 0, T) is a bipolar preference structure such that P and N are
closed intervals of R. For every bipolar constraint ¢; = (def;, con;) € C,,, let us denote with
X; the set con; N V., with Z; the set con; N V,,, and with 7z the possibility distribution
associated to Z;. Assume that, for every such constraint c¢;, Vr, assignment to Z,
defi(s |y, .1z) <s defi(s"\x,.tz), To prove Property BPl, we will show that
rob(s) <g rob(s’).

Let us denote with zy, the value sy, with t/x,- the value s’ |y, and with 4Z; the set of
assignments of Z;. With this notation the hypothesis can be written as follows: Vi, € AZ,;,
defi(tx,, t7) <s def,-(t/xi, tz,). This holds both for the positive preferences of ¢; and for the
negative preferences of ¢;. In particular, we have that Viz € AZ;, pos(c;)(tx,,tz) <s
pos(ci)(ty,, tz,), and neg(c;)(tx,, tz,) <s neg(c;)(fy,1z). We now consider the case of positive
preferences. The case of negative preferences can be dealt similarly.

If, Ytz € AZ;, pos(ci)(tx., tz) <s pos(c,-)(l’X', tz,), then, since the map g,, that we have
defined in Section 5.1, is monotone, Viz, € AZ;, g,(pos(ci)(ix,, 1)) <s g&(pos(c)(y,,1z))-
Since the sup operator is monotone, Vtz, € AZ;, sup(g,(pos(c;) (tx,, tz,)). cs(wz(t2))) <s
sup(gy(pos(ci(Zy,, tz,), cs(mz, (12))). Moreover, infyy ¢4z, sup(g,(pos(ci)(tx;, 1)),
cs(mz,(17))) <ssup(gy(pos(ci)(ix,, 12,)), ¢s(wz(12,))) Viz, € AZ;. By the previous step,
Viz, € AZ;i, sup(gy(pos(ci) (ix,, 1)), cs(mz(1z,))) <ssup(gy(pos(c;) (fy,, 1z,)), cs(rz (12))),
thus this also holds for 7 € AZ; such that inf,;/_eAZ, sup(gy(pos(ci)(y,. 1)),
cs(mz, (7)) = sup(gy(pos(c:) (', 15)), cs(mz(t7))). Therefore, we have that inff*;é AZ;
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Sup(gp(pos(cz)(tXatz ), ¢s(z,(17,) <sinfy, caz, sup(gp(pPos(ci)ty,. 7)), cs(nz (7). Since
the map g, ! defined in Section 5.1, is monotone, then the following relation
holds: g, (mft ez, Sup(gy(pos(ci) (1,. 15). es(z,(15))) <s g, (infy, ez, sup (gp(pos(c) x
(ty,» 1)), CS(7TZ (17)))), 1.e. with the notation used in Section 5.1 ‘for defining one the
robustness constraint in Crob corresponding to ¢; € Cpy, defp](ty,) <sdefp}(ry).
By monotonicity of x,, if we combine via x, all such constraints (defp;, X') we have
that, [, wetpr vy def P (ty) <s Hp(defp” xy def i (zy,).

Slmllarly, using the same notation presented in Section 5.1, the following result can be
shown: [] (defn!’ X defn!(tx,) <s ]_[(def”/, x, defn/(ty ), since the maps g, and g, !, described
in Section 3. 1 are monotone and since the X, operator is monotone.

By definition 5, rob(s) = rob,(s) x rob,(s), where rob,(s) = ]—[p(:(defﬁcomecmb pos(c)x
(s con) and rob,(s) = l_[nc:(def, con)eCrup neg(c)(s | con). Since rob,(s) = ]_[pczmeﬂ con)eCrupy X
pos(¢)(s § con) =[] gerpr v, defpi(x,), and  since  10bu(s) = [T,c—(gef. conjec,q, 1€E(C) X
(s} con) :]—[<defp;,’ xy defp/(fy), we can conclude, by the previous step, that
rob,(s) <g rob,(s’), rob,(s) <s rob,(s’), and thus, since the x operator is monotone, that
rob(s) <g rob(s’). O

Theorem 2: The definition of robustness given in Definition 5 satisfies Property BP2.

Proof: Consider a solution s of the UBCSPs Q, = (S, V. V,,n,C.,C,) and
0, = (S, Ve, Vi1, Ce, Cy), where S=(N,P+,x,L1,0,T) is a bipolar preference
structure such that P and N are closed intervals of R. Assume that for every assignment
tz to the uncontrollable variables in V,,, m2(tz) < m1(tz). To prove Property BP2, we will
show that roby, (s) <s roby,(s), where rob,, is the robustness computed in the problem
with possibility distribution mj, and rob,, is the robustness computed in the problem with
possibility distribution ;.

Assume the notation considered in the first part of the proof of Theorem 1. By
hypothesis, we know that V¢, € AZ;, my(tz,) < mtz,. Since cs is an order reversing map
Ytz € AZ;, cs(ma(tz,)) >s cs(mitz). By monotonicity of the sup operator, Vi € AZ;,
sup( g,(pos(¢:) (tx;, tz,)), cs(wi(tz,))) <s sup(gy(pos(ci)(ix;, 1z,)), cs(m2 (iz))) and sup(g, x
(neg(ci) (1x;» 1)), ¢s(m1(1,))) <5 Sup( g,(neg(c:)tx;, £7,)): ¢s(2 (17,))). From here we can
conclude as in the proof of Theorem 1. O

The proofs of the Theorems 1 and 2 are based on the fact that the preference functions
in the robustness constraints, which are used to build rob, and rob, of a solution, are
obtained by using functions g, and g, (mapping resp. positive and negative preferences in
[0,1]) which are strictly monotonic, and on the fact that the operators x,, used for
computing rob, of a solution, x,, used for computing rob, of a solution, and x, used for
compute rob of a solution, are monotonic. The proof regarding Property BP2 also depends
on the fact that cg is an order reversing map w.r.t. <g, and thus if m;(a) < m(a), then

cs(mi(a)) =5 cs(ma(a)).

7. Semantics

A solution of a BCSP is associated to a preference and a robustness degree as in the fuzzy
approach (Pini et al. 2010). In Section 2.7 we have recalled some of the most significative
semantics (i.e. Risky, Safe and Diplomatic) used in Pini et al. (2010) to order the solutions
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which depend on our attitude w.r.t. preference and robustness. We now generalise these
semantics to the bipolar context as follows.

More precisely, let <g the ordering induced by the additive operator of the bipolar
preference structure of the considered UBCSP (and not the ordering induced by the
additive operator of the c-semiring of considered USCSP as in Pini et al. (2010),

e Risky semantics is a lexicographic ordering w.r.t. <g on pairs (pref, rob), that
gives more importance to the preference degree: given A1 = (pref;,rob;) and
A2 = (pref,,roby), Al >gisky A2 iff  pref; >gpref, or (pref; =pref, and
rob; >groby). It gives more relevance to the preference that can be reached in
the best case considering less important a high risk of being inconsistent.

e Safe semantics is a lexicographic ordering w.r.t. <g on pairs (pref, rob), that gives
more importance to the robustness degree: given A1 = (pref,,rob;) and
A2 = (pref,,roby), Al >gare A2 iff rob; >grob, or (rob; =grob, and
pref, > g pref,).

e Diplomatic semantics aims at giving the same importance to preference and
robustness. It is a Pareto ordering w.r.t. <g (and not w.r.t. < as in the fuzzy case)
on pairs (pref, rob): given A1 = (pref;,rob;) and 42 = (pref,,roby), A1 >pj, 42
iff (pref, >g pref, and rob; >4 rob,) and (pref; > g pref, or rob; >groby).

Example 9: Let us consider the UBCSP Q in Figure 3(a). In Figure 3(c) all the solutions
of Q are shown with their associated preference and robustness degrees. The optimal
solution for the Risky semantics is s, = (y = b, x = a), which has preference 0.8 and
robustness —0, 2, while for the Safe semantics is s4 = (y = b, x = b), which has preference
0.7 and robustness 0.1. For the Diplomatic semantics, s, and s4 are equally optimal. Note
that the solutions chosen by the various semantics differ on the attitude toward risk they
implement. In fact, Risky chooses the solution that gives a high positive preference in the
controllable part, even if the uncontrollable part has a high possibility of a negative
preference. On the other hand, for the Safe semantics it is better to select a solution with
a higher robustness, i.e. that guarantees a higher number of scenarios with a higher
preference. In this example, Safe chooses a solution with a lower preference with respect to
Risky, but that will have with high possibility a positive preference in the part involving
uncontrollable variables.

By definition of Risky, Safe and Diplomatic semantics, it follows that for these
semantics the desired properties on solution ordering (i.e. Properties BP3 and BP4)
presented previously hold.

Theorem 3:  The solution orderings >Risky, >safe ANd >Diplomatic Satisfy Property BP3.

Proof: Property BP3 states that, given two solutions s and s of an UBCSP, if
rob(s) = rob(s’) and pref(s) > g pref(s’), s > s". By definition of Risky, Safe and Diplomatic
semantics, this property holds for >gisy, >safe and >pijpi. O

Theorem 4:  The solution orderings >Risky, >safe @Nd >Diplomatic Satisfy Property BP4.

Proof: Property BP4 states that, given two solutions s and s of an UBCSP, if
pref(s) = pref(s’) and rob(s) >grob(s’), s > s'. By definition of Risky, Safe and Diplomatic
semantics, this property holds for >gisy, >safe and >pipi. O
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Also, it is possible to prove that Property BP5 is satisfied only by >Rgisky-

Theorem 5:  Given an UBCSP (S, V., V.7, C., Ce), the solution ordering >gisxy satisfies
Property BPS if the operator x of S is strictly monotonic, while the solution orderings >syge
and >piplomatic never satisfy Property BP5.

Proof: To prove Property BP5, we have to show that, given two solutions s and s" of a
UBCSP Q= (S, V., Vy,7,C,, Ce), such  that  ovpref,(s,a) >govpref,(s,a) and
ovpref,(s, a) >sovpref,(s', @) Va assignment to V,, then s >risky 5.

From UBCSP Q we can obtain an equivalent problem that corresponds to the UBCSP
OP = (S, {V},{V"}, Cip U C1, U C3, U C3yy, Cop U Cyy), where we recall separately the sets
of constraints Ci,, Ci,, C3p, C3,, Cop and Co,. In QP the element V¢ is a controllable
variable and ™ is an uncontrollable variable, representing respectively all the variables in
V. and V,, having as domains the corresponding Cartesian products. The uncontrollable
variable V' is described by a possibility distribution, sz, which is the joint possibility, i.e.
the possibility obtained by performing the minimum among all the possibility distributions
of the uncontrollable variables in V,. Constraint C;, = (defp;, V<) (resp. Cy, =
(defny, V) is defined as the combination of all constraints in C. connecting variables
in V., where the negative (resp. positive) preferences are interpreted as indifference.
Constraint Cy, = (def py, {V¢, V"}) (resp. Cy, = (defny, {V¢, V*})) is the combination of all
the constraints in C., connecting variables in V. to variables in V,, where the negative
(resp. positive) preferences are interpreted as indifference. Constraint Cs, = (def p3, V)
(resp. C3, = (defns, V°)) is defined as the combination of all the constraints obtained from
constraints in C,, interpreting the negative (resp. positive) preferences as indifference, and
by projecting them over the controllable variables in V. as described in Section 5.2. Notice
that all these combinations are obtained using operator x, (resp. x,) of the c-semiring S.
Thus, given an assignment s to V¢ in Q, which corresponds to an assignment to
all the wvariables in V., its preference on constraint Cj, is defpi(s) =
]_[Ciz(defi,coni)ea pos(¢;)(s | con;) = control,(s), on Cs, is defps(s) = proj,(s), and on
C1@QC; is defpi(s) x def ps(s) = control,(s) x proj,(s) = pref,(s). Given assignment
(s,a;) to (V¢, V"), instead, which corresponds to a complete assignment to variables in
V. and V,, its preference, defp,(s, a;) (resp. defna(s, a;)), is obtained by performing the
combination of the positive (resp. negative) preferences associated to all the subtuples of
(s,a;) by the constraints in C,,, interpreting the negative (resp. positive) preferences as
indifference. Using this new notation we have that, V(s, a;) assignments to V and V",
ovpref, (s, a;) = def pi(s) x def pa(s, a;) = control,(s) x defpa(s,a;), and  ovpref,(s,a;) =
defn;(s) x defny(s, a;) = control, (s) xdefn, (s, a;).

If we show that pref,(s, a;) >s pref,(s, a;) and pref, (s, a;) >s pref, (s, a;) Va; assignment
to V¥, then, by strict monotonicity of the x operator, we can conclude that
pref(s) = pref,(s) x pref,(s) > g pref,(s') x pref,(s’) = pref(s'), and thus that s >gisky 5.

We first show that pref,(s) >gpref,(s). We know, by hypothesis, that
ovpref,(s, a;) >s ovpref,(s',a;) Va; assignment to V¥, ie. that control,(s)x
def pa(s, a;) >s control,(s’) x defp(s', ;) Va; assignment to V. This must also hold for
the assignment to V*, that we call a*, such that defpi(s,a*) = proj,(s). Hence,
pref,(s) = control,(s) x proj,(s) = control,(s) x def pa(s, a*) >s control,(s')x defpa(s’, a*).
Moreover, since, by definition of proj, (see Sections 5.2 and 6), proj,(s) <s
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defpa(s’,a;) Va;, we have that control,(s") x defpa(s', a*) >s control,(s") x proj,(s)
= pref,(s'), and thus pref,(s) >g pref,(s").

To conclude that s >Ry 8, we have to show that pref, (s) > g pref, (s'). We know, by
hypothesis, that ovpref,(s,a;) >sovpref,(s',a;) Va; assignment to V¥ ie. that
control,(s) x defny(s, a;) >g control,(s") x defny(s', a;) Va; assignment to V*. This must
also hold for the assignment to F*, that we call a*, such that defn,(s, a*) = proj,(s’).
Hence, control,(s) x defy(s, a*) > control,(s") x proj,(s’) = pref,(s). Moreover,
since by definition of the proj, (see Sections 5.2 and 6), proj,(s) >s defna(s,a;)) Va;, we
have that pref,(s) = control,(s) x proj,(s) >s control,(s) x defny(s, a*) > g pref,(s’), and
thus pref, (s) > g pref,(s).

We now show that Property BP5 is not satisfied by >g,g and >pjp. For these semantics
it can happen that s ¥ . In fact, let us consider the UBCSP Q = (Srcsp, Ve,
7, Vy, Ce, Cey), where the bipolar preference structure is the fuzzy c¢-semiring
([0, 1], max, min, 0, 1), V.={x}, V,={z}, C. is composed by c¢; = (f1,{x}), C. by
¢ = (f2,{x,z}), and where D, = {ay,a;} and D, = {s,s’} are respectively the domain of z
and x. Let us assume that the possibility distribution on z is such that w(a;) =1 and
(ay) = 0.7. Let us moreover assume that f2(s,a;) = 0.4, f(s,a2) = 0.5, fo(s',a;) = 0.8,

(s, a2) = 0.9, f1(s) = 0.3 and f1(s") = 0.2. The overall preferences are: ovpref(s,a;) = 0.3,

ovpref(s,a;) = 0.3,  ovpref(s,a;) =0.2, ovpref(s',a;) =0.2, ie.  ovpref(s,a;) >
ovpref(s’, a;), Va;, i =1,2, hence s and s satisfy the hypothesis. The robustness values
for s and s (computed considering as g, the identity map) are rob(s)=
inf (max(0.4, 0), max(0.5,0.3)) =0.4, rob(s) =inf (max(0.8, 0), max(0.9,0.3)) =0.8.
Therefore, since rob(s) < rob(s’), s <sure s for Safe semantics. The preference
degrees are pref(s) =min(control(s), proj(s)) = min(0.3,0.5) = 0.3 and pref(s’) =
min(control(s’), proj(s’)) = min(0.2,0.9) = 0.2. Since rob(s) < rob(s’) and pref(s) >
pref(s’), s >pip 8" for Diplomatic semantics. O

We have shown before that Risky, Safe and Diplomatics semantics for UBCSPs satisfy
Properties BP3 and BP4 and that Risky satisfies also Property BP5. However, there are
semantics that don’t satisfy them. Consider for example a semantics, that we call Mixed,
such that given Al = (pref;,rob;) and A2 = (pref,,roby), Al >ppivea A2 iff
pref; x rob; > pref, x rob,, where x is the compensation operator in the considered
bipolar preference structure. This semantics generalises the one adopted to order the
solutions in Dubois et al. (1996) for fuzzy c-semiring ([0, 1], max, min, 0, 1). It is possible
to show that Mixed semantics does not satisfy properties BP3, BP4 and BP5.

8. Extending the approach to UBCSPs with totally ordered positive/negative preferences

In the previous sections we have shown a procedure for handling UBCSPs where the set of
the positive preferences (P) and the set of the negative preferences (N) are two closed
intervals of R (e.g. P =[3,5] and N =[-3, —2]). In this section we will show that it is
possible to generalise this method to more general bipolar problems where the set of the
positive preferences and the set of the negative preferences are totally ordered sets that are
not necessarily closed intervals of R. For example,

e they can be real intervals including +oo or —oo (e.g. P=|[5,+00] and
N = [—o0, —8]),
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e they can be the union of disjoint intervals of RU {400, —c0} (e.g.
P =]1,3]UJ[S, +oc] and N =[—o0, —8]U[-3, =2])),
e they can be generic totally ordered sets (e.g. P = {a,b,c} where a > b > ¢ and
={d,e,f} where d > e > f).

To show that the new approach generalises the previous one, we will show that the
same desirable properties continue to hold.

We recall that the main idea to handle UBCSPs over closed real intervals is to remove
uncertainty from them, recalling as much information as possible. In particular, the
adopted procedure (see Section 5) takes as input a UBCSP Q = (S, V., V,,, w, C., C.,), with
S=(N,P,+,x,1,0,T), where P =[a,,by] and N = [a,, b,] are two closed intervals of R,
ie. two intervals of R — {—o0, +00}, it removes uncertainty from Q, by eliminating
the uncontrollable variables and all the constraints in C,, relating controllable and
uncontrollable variables, and by adding new constraints, i.e. Cproj and Crop, only among
these controllable variables.

The part of such a procedure that requires that positive and negative preferences are
two intervals of R — {—o0, +00} is the one regarding the addition of constraints in Ciop
(Section 5.1). We recall that it works as follows. In the first step it translates every positive
(resp. negdtlve) preference of the constraints in C,, in [0, 1], via the map g, : [a,, b,] — [0, 1]
such that x— 7 ” , (resp. g, : [an, by] — [0, 1] such that x+— ;= “”) to be able to compare,
in the second step, preferences and possibilities, since the possrbrhtles are defined in [0, 1].
Then, in the third step, it translates the preferences in [0, 1] obtained so far in P (resp. N),
i.e. in the set of positive (resp. negative) preferences defined in S, by using the inverse map

~1:10,1] — [ay, by] such that y+—[y(b, — a,) + a,], (resp. g, : [0, 1] — [ay, b,] such that
y=[y(bn — an) + an)-

The functions g, g, g;l, and g, ! mentioned above have been used to prove that some
of the desirable properties hold (see proofs of Proposition 2, Theorems 1 and 2). In these
proofs, for that concerning the functions above, we have only used the fact that g, and gp
(resp. g, and g, ') are monotonic, and that their combinations give the identity map.

To extend the approach to UBCSPs where the sets of positive and negative preferences
are generic totally ordered sets, we can use, instead of g, and g_1 (resp. g, and g, 1), two
functions that define a Galois insertion (Section 8.1), since in thls case we are sure that they
are both monotonic, and their combination is the identity map.

8.1. Galois insertions

In this section we give the notion of Galois insertions, that we will consider in our
generalised procedure, and we insert such a definition in the context of abstract
interpretation (Bistarelli et al. 2002).

Abstract interpretation (Birkhoff and MacLane 1965; Cousot and Cousot 1977) is a
theory developed to reason about the relation between two different semantics (the
concrete and the abstract semantics). The idea of approximating program properties by
evaluating a program on simpler domain of descriptions of ‘concrete’ program states goes
back to the early 70’s. The guiding idea is to relate the concrete and the abstract
interpretations of the calculus by a pair of functions, the abstraction function a and the
concretisation function y, which form a Galois connection.

Let (C, <) (concrete domain) be the domain of the concrete semantics, while (A, E)
(abstract domain) be the domain of the abstract semantics. The partial order relations
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reflect an approximation relation. Since in approximation theory a partial order specifies
the precision degree of any element in a poset, it is obvious to assume that if « is a mapping
associating an abstract object in (A, C) for every concrete element in (C, <), then the
following holds: if a(x) C y, then y is also a correct, although less precise, abstract
approximation of x. The same argument holds if x < y(y). Then y is also a correct
approximation of x, although x provides more accurate information than y( y). This gives
rise to the following formal definition (Bistarelli et al. 2002).

Definition 6 (Galois insertion): Let (C, <) and (A, C) be two posets (the concrete and the
abstract domain). 4 Galois connection (o, y) : (C, <) = (A, C)isa pairof mapsa : C - A
and y : A — C such that

(1) « and y are monotonic;
(2) for each x € C, x < y(a(x)), and
(3) foreach y € A, a(y(x)) C y.

Moreover, a Galois insertion (of A and C) (o,y): (C,<) = (A,C) is a Galois
connection where y - o = id 4.

8.2. A generalised approach to UBCSPs with totally ordered preferences

We now show how Galois insertions allow us to extend to UBCSPs over totally ordered
sets of positive and negative preferences, the procedure described in Section 5.1 to remove
uncertainty guaranteeing that the same desired properties continue to hold.

Consider an UBCSP with bipolar preference structure S = (N, P, 4+, x, 1, O, T), where
P and N are totally ordered sets. Let us denote with <g the ordering induced by the
additive operator. Consider also the totally ordered set [0, 1] with the ordering T such that
where 0 C 1.

We now redefine the functions g, and g;l presented in Section 5.1 as follows: (g, g[jl) :
(P, <s) = ([0, 1], ©) is a Galois insertion. We know, by definition of Galois insertion, that

e g,: P —[0,1] is monotonic, i.e. Vxi,x, € P, with x| < x2, g,(x1) E g,(x2);
e g,':[0,1] — P is monotonic, i.e. Yy, y2 € [0, 1], with yi T ya, g, (31) E p(12);
o g l-g,=id

Similarly, we redefine the functions g, and g, ! presented in Section 5.1 as follows
(gn-g; ") o (N, <) = ([0, 1], ©) is a Galois insertion.

Note that g, and g;l can be defined in several different ways, but all of them have to
satisfy the properties of the Galois insertions, from which it derives, among others, that
gp(Lp) =0and g,(Tp) = 1, i.e. the bottom of P must be mapped in 0 and that the top of P
must be mapped in 1. The same must hold for g, and g '.

Moreover, we redefine the map cg as follows: it is an order reversing map such that
Va,b € [0, 1], if a < b, then cg(a) E cs(b), and Vp € [0, 1], cs(cs(p)) = p.

It is possible to show that, using the new definitions of g, g;l, Zns g;l and cg, that all
the desired properties that have been shown by exploiting these functions (i.e. Proposition
2, Theorem 1, and Theorem 2) continue to hold.

Proposition 3:  Consider an UBCSP (S, V., V,,x,C., Cp,), where S = (N, P,+,x, L, 0O, T)
is a bipolar preference structure where P and N are totally ordered sets. For every constraint
¢ = (def,con) € C,., such that conNV,=Z, with possibility distribution w7, and
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con NV, = X, the corresponding robustness constraints (defp”, X') and (defn”, X') are such
that, for every ty assignment to X,

o defp’(ty) =5 B € P iff, when mz(tz) > cs(g,(B)), then pos(c)(tx,tz) >s B,
o defn’(ty) >s o € N iff, when wz(tz) > cs(gn()), then pos(c)(tx,tz) >s «,

where tz is an assignment to Z, (gp,g;l) 2 (P, <5) = ([0,1], ©) and (gu, g, ') : (N, <g) =
([0, 1], ©) are Galois insertions, and cs is an order reversing map such that Va, b € [0, 1], if
a < b, then cs(a) 3 cs(b), and ¥p € [0,1], cs(cs(p)) = p.

Proof: We show the first statement concerning defp”(¢x). The second one, concerning
defn’(ty), can be proved analogously, since by construction g, and g, ! have the same
properties respectively of g, and g;l. We recall that defp’(ty) = g;l(inf[Ze Ay X
(gp(pos(c)(ty, tz))+ cs(mz(tz)))), where A is the set of the assignment to Z.

(=) We assume that defp”(ry) >s B. If this holds, then, since g, is monotone,
& (defp' (1) DB ie. g8, (infea, SUP(H(POSEix. (2)). es(T2(12))) 2 &(B).
that is, since the combination of g, and g;l produce the identity map,
inf;,c4, sup(g,(pos(c)(tx, tz), cs(mwz(tz)))) 2 g»(B). Since we are considering totally ordered
preferences, this implies that sup(g,(pos(c)(ty, 7)), cs(mwz(t2))) 2 g,(B) Ytz € Az. For t;
with wz(t7) > cs(gy(B)), by definition of c¢s, we have cg(mz(12)) Ces(es(g,(B)) = gp(B).
Therefore for such a value 7y we have that g,(pos(c)(tx,tz)) =sup(g,(pos(c)(tx,tz)),
es(mz(12))) 2s gp(B) and, since g;' is monotone, we have g,'(g,(pos(c)(tx,12)))=s
g, ' (gy(B)). ie. pos(c)(ty, tz) =5 B-

(<) We assume that Yz, with wz(t7) > cs(g,(B)), pos(c)(ty, tz) >s B. Then, for such 1z,
since g, is monotone, g,(pos(c)(ty,tz)) 2 g,(B) and so, sup(g,(pos(c)(ty,?z)),
cs(mz(t2))) 3 gp(B). On the other hand, for every ¢z such that mz(1z) < cs(g,(B)),
we have, by definition of «cg, cs(mz(t2))3g,(B) and so sup(g,(pos(c)(ty,tz)).
cs(mz(t2))) 2gp(B).  Thus  Viz e Az, sup(gy(pos(c)(ix,z)), cs(mz(i2)) 2 g,(B) and
so inf,,c4, sup(pos(c)(ty, tz), cs(mz(tz))) 2 g,(B). Hence, since g;l is monotone,
g, ' (inf e, (sup(pos(c)(tx, 12), es(mz(12)) Zs &, ' (g,(B)), i-e. defp(1x) =5 B. O

Consider an UBCSP (S, V., V,, 7, C., C.,), where S = (N, P,+, x, L, 0, T) is a bipolar
preference structure where P and N are totally ordered sets. It is possible to prove that, if we
determine the robustness constraints with the new maps g,,, g,jl ,&n» g, and cs defined in this
section, the definition of robustness given in Definition 5 satisfies Properties BP1 and BP2.

Theorem 6: If we determine the robustness constraints described in Section 5.1 with the
maps g,, g, g, g, ' and cs such that (g, g5') : (P, <5) = ([0, 1], ©) and (gs, ;') : (N, <s)
= ([0, 1], ©) are Galois insertions, and cs is an order reversing map such that Va,b € [0, 1], if’
a < b, then cs(a) 3 cs(b), and Vp € [0, 1], cs(cs(p)) = p, the definition of robustness given in
Definition 5 satisfies Property BP1.

Proof: The first part of proof coincides with the one of Theorem 1.

Consider two solutions, say s and s/, of a UBCSP Q = (S, V., V., w, C., C.,), where
S=(N,P+,x, L, O, T) is a bipolar preference structure such that P and N are totally
ordered sets. For every bipolar constraint ¢; = (def;, con;) € C,, let us denote with X; the set
con; N V., with Z; the set con; N V,,, and with mz the possibility distribution associated
to Z;. Assume that, for every such constraint ¢;, Vi¢z assignment to Z,
defi(s \y, ,17) <s defi(s' {x, ,1z), To prove Property BPl, we will show that
rob(s) <s rob(s). Let us denote with 7y, the value s | v, with 7 the value 5" | v, and with
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AZ; the set of assignments of Z;. With this notation the hypothesis can be written as
follows: Vtz, € AZ;, defi(ty,, t7,) <s def,-(l/Xi, tz,). This holds for both the positive preferences
of ¢; and for the negative preferences of ¢;. In particular, we have that Viz € AZ,
pos(ci)tx;» tz,) <s pos(c;)(fy, 1z), and neg(c;)(x,, 1z) <s neg(c:)(y,, tz,). We now consider
the case of positive preferences. The case of negative preferences can be dealt similarly.
The new part of the proof starts from here. If, Vi € AZ;, pos(ci)(tx,,tz) <s
pos(¢i)(fy,, tz), then, since the map g, is monotone, Viz, € AZ;, g,(pos(ci)(ix,, 1z))E
gp(pos(ci)(fy,,tz)). Since the sup operator is monotone, Viz € AZ;, sup(g(pos x
(i) (tx;5 12)), cs(mz,(12,))) E sup(gp(pos(ci)(ty,. tz)). ¢s(nz, (1z))). Moreover, we have
infy, caz, SUp(gp(pos(ci)(tx;, 1)), es(z(17,))) E sup(gy(pos(ci)(tx;s 1)), cs(mz (7)) Viz €
AZ[. By the previous step, Viz € AZ;, sup(gy(pos(c;)(tx;,tz,)).cs(mz(tz)) E
sup(g,(pos(¢;) (fy,, tz,)), cs(z (1z))), thus this holds also for 7 € AZ; such that
lnft* ez, Sup( gl,(pOS(cl)(tX 2 17)), es(z, (1, )) is  equal to sup( gp(pos(cz)(tx S 17),
eS(nZ (t7))). Therefore, we can conclude that inf,* Az, sup(gp(pos(c,)(txl, ),

cs(mz, (tZ ) Einfe caz sup(g,(pos(ci)(ly., 7)), cs(mz, (17)))- Since the map g is mono-
tone, then g, (lnfz* eaz; SUP(&p(pos(c:) (1x;, 17,)); es(mz,(17)))) <5, '(infy, caz, sup(g, x
(pos(e)(ty,, 7, )) eS(nZ (7)), i.e. the preferences in the robustness constraints are
defpj/(tx,) <sdefp](y).

By monotonicity of x,, if we combine via x,, all such constraints (defp;, X') we have
that, [T,erpr. xy 40P} (1x) s T Tperpy. x, def P} ().

Similarly, it can be shown that ]_[(defn,, xy 4ef 7} (1x) <s T Tigetny, x,) def i (7y,), since the

maps g, and g, !, are monotone and since the X, operator is monotone.
From here we can conclude as in the proof of Theorem 1. O

Theorem 7: If we determine the robuvtness eonstrainls described in Section 5.1 with the
maps gp, "', gu» &, and cs such that (g,,g,") : (P, <5) = ([0, 1], E) and (g, &, ") : (N, <)
= ([0, 1], ©) are Galois insertions, and cg is an order reversing map such that Va, b € [0, 1], if
a < b, then cs(a) 3 cs(b), and Vp € [0, 1], cs(cs(p)) = p, the definition of robustness given in
Definition 5 satisfies Property BP2.

Proof: The first part of proof coincides with the one of Theorem 1.

Consider a solution s of the UBCSPs Q;=(S,V.,V,n,C,C,) and
Q) = (S, V., Vy, 2, Ce, Cpy), where S= (N, P+, x, 1,0, T) is a bipolar preference struc-
ture such that P and N are intervals of R (Z or @). Assume that for every assignment 7 to
the uncontrollable variables in V,, m2(tz) < m(tz). To prove Property BP2, we will show
that robg, (s) <s robg,(s), where rob,, is the robustness computed in the problem with
possibility distribution 7y, and rob,, is the robustness computed in the problem with
possibility distribution 7. The new part starts from here.

Assume the notation considered in the first part of the proof of Theorem 6. By
hypothesis, we know that Vtz € AZ;, my(ty) < mty. By definition of csViy € AZ;,
cs(ma(tz)) 2 es(mitz). By monotonicity of the sup operator, we have Viz € AZ,
sup( g,(pos(¢:) (tx;» tz,)), cs(wi(tz,))) E sup(gp(pos(ci)ix;, iz,)), cs(m2(iz))) and sup(g, x
(neg(ci) (1x;» 1) ¢s(71(12,))) E sup( gy(neg(c:) (ix,s 17,)). cs( (17,))). From here we can
conclude as in the proof of Theorem 6. O

We now show, via an example, how to instantiate the functions defined above, i.e. g,
g;l, Zus g,jl and cg, in an UBCSP where the positive and the negative are not defined over
intervals. Notice that this UBCSP cannot be solved by the procedure for defining
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robustness constraints described in Section 5.1, since it is only able to handle UBCSPs
where the positive preferences and the negative one are defined over real intervals.

Example 10: Consider an UBCSP (S, V., V,, 7, C,, Cs,), where S = (R™,R", max, sum,
—00, 0,400). Let us denote with <g the ordering induced by the additive operator of S.
To compute robustness constraints we can choose as ¢g the map such that Vp € [0, 1],
¢s(p) = 1 — p. Moreover, the Galois insertion (g,,g,!) : (R™, <s) = ([0, 1], <g), where <g
is the classical order over real numbers, can be defined in different ways. For example, we
can use the Galois insertion shown in Example 17 of Bistarelli et al. (2002), such that g,
maps all the reals below some fixed real x onto 0 and all the reals over [x, 0] into the reals
in [0, 1] by using a normalisation function f(r) = (x — r)/x. Similarly, we can define the
Galois insertion (g,,,gljl) 1 (RT, <s) = ([0, 1], <g), assuming that g, maps all the reals
above some fixed real x onto 1 and all the reals over [0, x] into the reals in [0, 1] by using
the same normalisation function considered before, i.e. f(r) = (x — r)/x.

9. Conclusions and future work

We have considered problems with bipolar preferences and uncontrollable variables, and
with a possibility distribution over such variables (UBCSPs). We have then defined the
notion of preference and robustness for such problems, as well as some desirable
properties that such notions should respect, also in relation to the solution ordering. By
following the approach shown in Pini et al. (2010) for problems with fuzzy preferences and
uncertainty, we have provided an algorithm for UBCSPs, that removes the uncontrollable
part of the problem while altering the controllable part in order to loose little information.
On the resulting problem, we have then defined the preference and the robustness of a
solution of the initial UBCSP. Different semantics use such two notions to order the
solutions according to different attitudes to risk. We have then shown that our proposed
notions of preference and robustness, as well as our semantics, satisfy the desired
properties we have considered.

We have first considered UBCSPs where the sets of positive and negative preferences
are closed real intervals, and then we have generalised the proposed approach to the case
of generic totally ordered preferences by using abstraction techniques and Galois
connections.

The results of this article show that it is possible, without much effort, to deal
simultaneously with possibilistic uncertainty and bipolar preferences, while making sure
that several desirable properties hold and without requiring a bipolarisation of the
possibility scale. In other words, our results state that it is possible to extend the formalism
in Bistarelli et al. (2007a, 2010) to bipolar preferences and the one in Pini et al. (2005) to
uncertainty, while preserving the desired properties.

Following this approach, a solver for UCSPs would thus remove the uncontrollable
part first, and then find an optimal solution of the controllable part according to a chosen
semantics. Such a solver may be developed by adapting constraint propagation and branch
and bound techniques that have been already defined and implemented for bipolar CSPs
in Bistarelli et al. (2007a, 2010).



Downloaded by [Universitadi Padova], [Maria Silvia Pini] at 07:20 14 October 2011

574 S. Bistarelli et al.

Acknowledgement

This work has been partially supported by the MIUR PRIN 20089M932N project ‘Innovative and
multi-disciplinary approaches for constraint and preference reasoning’.

Notes

1. The absorbing nature of T, can be derived from the other properties.
2. Notice that the procedure that we propose also holds for intervals of @, and it can be easily
adapted to also handle closed intervals of Z.
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