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Abstract

In multiagent settings where agents have different prafasg, preference ag-
gregation can be an important issue. Voting is a generaloddthaggregate pref-
erences. We consider the use of voting tree rules to aggregents’ preferences.
In a voting tree, decisions are taken by performing a sequehpairwise compar-
isons in a binary tree where each comparison is a majority &otong the agents.
Incompleteness in the agents’ preferences is common in meabfife settings
due to privacy issues or an ongoing elicitation process. td@yhow to determine
the winners when preferences may be incomplete, not onlydting tree rules
(where the tree is assumed to be fixed), but also for the S¢hwae (in which
the winners are the candidates winning for at least one gdtige). In addition,
we study how to determine the winners when only balanced tage allowed.
In each setting, we address the complexity of computing sgeg (respectively,
possible) winners, which are those candidates winninglfapanpletions (respec-
tively, at least one completion) of the incomplete profiles Stiow that many such
winner determination problems are computationally irtabke when the votes are
weighted. However, in some cases, the exact complexityiremmsknown. Since
it is generally computationally difficult to find the exact & winners for voting
trees and the Schwartz rule, we propose several heurisats$ind in polynomial
time a superset of the possible winners and a subset of tiessey winners which
are based on the completions of the (incomplete) majoraplgibuilt from the in-
complete profiles.

1 Introduction

In multiagent settings, agents generally have differeafggences, and it can be im-
portant to aggregate these preferences, i.e., to seledfeatoely desirable candidate

*This paper is a revised and extended version of the confenesgers [23, 28].



from a set of candidates. Candidates could be, for examptenpal presidents, joint
plans, allocations of goods or resources, etc. A generdioddor aggregating prefer-
ences in multi-agent systems, in order to take a colleceasibn, is to run an election
among the different options using a voting rule.

Eliciting preferences from agents, to be able to run suchlectien, is a typical
problem in multiagent systems, such as combinatorial anstand voting systems.
However, preference elicitation is often difficult, timercsuming and costly. Agents
may be unwilling to reveal all their preferences due to pyweeasons, or due to the set
of alternatives being largé&ortunately, we can often determine the outcome before all
the preferences have been revealed [10]. For example, ib@é#yat one option has so
many votes that it will win whatever happens with the remrainiotes.

In this paper, we consider the classwatting tree rules (for short, we shall often
sayvoting trees identifying the tree with the associated rulé)hese are sometimes
called “sequential majority voting” ofCup.” In addition, we consider the Schwartz
rule, which can be characterized assoting tree rulewith an undefined tree since
the Schwartz winners are exactly those who windbleast one voting treé/Ne also
consider fair winners, i.e., those candidates who win whewadting treeis balanced
Fairness comes from the fact that bdithalists will have faced the same number of
competitions, or the same number plus or minus one.

We consider the computation of the above rules when voteedepences are in-
complete, i.e., represented by partial orders on the setrafidates. We focus on the
problem of determining if a given candidate is thecessary winndf.e., the candidate
who wins for any completion of these partial preferenced)apossible winnefi.e., a
candidate who wins for some completion of these partialgregfces). Determining if a
given candidate is the necessary or a possible winner farytees and the Schwartz
rule islikely to be computationally hard. We show that they are adfdP-complete
when the input consists of weighted votard also when we require that the tree is bal-
anced.We thereforeintroduceheuristics, that find a superset of the possible winners
and a subset of the necessary winnaisere the set of completions of the incomplete
preferences is replaced by the completions ofiicemplete majority grapbomputed
from the incomplete preferences. We discuss the links Etwessiblergspectively
necessary) winneifsom incomplete profiles and those returned by the heusisticd
we show that theskeuristicscan be computed in polynomial time.

Our results concern several issues in computational sohiaite: voting trees,
voting under incomplete knowledge, and incomplete toumrasy Voting trees have
received increasing attention of late in the literature.r &ample, they have been
considered by Trick [34], Procaccet al. [30, 31], Conitzeret al. [9, 11], Xia and
Conitzer [38], Hazoret al.[20], Vu et al. [35], Fischeet al.[16, 17], and Vassilevska
Williams [37]. The computational aspects of incompletert@ments have been thor-
oughly investigated by Brandt al. [6, 7]. Voting under incomplete knowledge has
received even more attention [10, 21, 27, 38, 36, 19, 4, 3,8, Ve will discuss some
of these papers in Section 7.



2 \oting trees, the Schwartz rule, and fair winners

We define some basic notionslated to voting treesWe first focus on unweighted
profilesand then extend all the notions to weighted votes.

2.1 Preferences, profiles and majority graphs

We assume that each agemiieferencesire specified by a strict total ord@rO), that

is, by an asymmetric, transitive and complete oraer.a set ofm candidates. The
candidates are taken from a $gtand they represent the possible options over which
agents vote.

Definition 1 (profile) A profile P on (2 is a collectionof n strict total ordersover 2,
ie., P = (P,...,P,), whereP; is the preference relatiofor vote) of agent(also
calledvoter) i.

For the sake of simplicity we assuntiegroughout the papehat the numben of
voters is oddOur results can be extended to the case wheseeven, but at the price
of some complications that arise with the handling of ties.

Profiles are denoted using the following notatioM (¢ B > C); (A > C > B);
(C > A > B)) means that voter 1 prefersto B and B to C, etc.

Definition 2 (voting rule and correspondence)A (deterministicyoting rule is a map-
ping from the set of profiles to the set of candidatésvoting correspondence is a
mapping from the set of profiles to the set of nonempty setsnalidates.

A voting rule computes a single winner. On the other handtiaga@orrespondence
can compute multiple winners. For the sake of simplicity,mié use the word “rule”
even for correspondence where it does not cause any ambiguit

Given a profileP, the induced majority graph/ (P) is defined as follows.

Definition 3 (majority graph) Let P be a profile. The majority graph induced B
denoted byM (P), is the graph whose set of vertices is the set of candidatead
where, for allA, B € Q, there is a directed edge from to B (denoted byd > B,
or by the abbreviated ford >,,, B) if and only ifa strict majority of votergprefers A
to B.

The majority graphV/ (P) induced from any profilé® is asymmetricbut it is not
necessarily transitive. Moreover, since the number ofrgateodd, M (P) is complete:
for eachA and B # A, eitherA >,, B or B >,, A holds. Therefore)M (P) is a
complete and asymmetric grapiso called aournamenbn 2 [24].

2.2 \oting trees

Given a set of candidatea voting treeis a binary tree (also called agenda with
one candidate per leaf, such thesich candidate appears on at least one leaf. This
assumption can be made without loss of generality: if a chatdidoes not appear



anywhere in the tree then they can be removed from the sendidates. In addition

if every candidate appears @xactlyone leaf then we say that the voting tree is a
simple voting treeEach internal node represents the candidate that wins theiga
election between the node’s children. The winner of eactwise election is computed
by the majority rule, whered beatsB if and only if there is a majority of voters
statingA > B. The candidate at the root of the agenda is the overall wirBisen a
binary tre€l’, we will denoteby V' (7") (and sometimes withy (1)) thevoting tree rule
inducedby T, and given a profile”?, we will denote byV (P, T') the candidatéhat,
given profile P, wins in treeT". Note that, because the number of voters is odd, ties
never happen in the pairwise elections, so tHél") is a (deterministic) voting rule.
We denote by the class of aloting treerules.

Example 1 LetQ) = {A, B,C,D}. Consider the agend@ shown in Figurel(a),
where A first plays againstD, the winner, calledv;, plays againstC, and then the
winner, calledws, plays againstB. The winner, calledvs, is the overall winner. Con-
sider the profile? = (A> B >C > D); (D >A> B> ();(C>D > B> A)).
Its induced majority graph is shown in Figui€b). ThereforeV' (P, T) = B. ]
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Figure 1: An agenda and a majority graph.

2.3 The Schwartz rule

Given a profileP, a Schwartz winner [32] is a candidate that wins, accordinthé
preferences of, in some agenda.

Definition 4 (Schwartz winner) Given a profileP, a candidated is a Schwartz win-
nerif and only ifthere exists a binary tre® such thatV (P, T) = A.



The Schwartz rule (more precisely, correspondedesipted byrs.hwart. Maps
any profile P to the set of all Schwartz winners fé.

Example 2 Consider the profile presented in Example 1, irt= (A > B > C >
D); (D> A>B>C); (C >D> B > A)). Thenthe set of Schwartz winners for
Pis{A,B,C, D}. O

The set of Schwartz winners coincides with thp cycleof the majority graph [26].
The top cycle of a majority grap is the set of maximal elements of the reflexive and
transitive closuregz* of G. An equivalent characterization of Schwartz winnehst
we use later in this papgs the following

Theorem 1 (see e.g. [26, 24]5iven a majority grapltz, a candidateA is a Schwartz
winnerif and only if,for every other candidat€’, there exists a path from to C.

From the characterization above, since finding a path froimglessource to all
other candidates is polynomial [13], computing the set efShhwartz winners is poly-
nomial.

Note thatvoting tree rulesas well as Schwartz, are rules that can be computed
from the majority graph. Among the most well-known rules gartable from the ma-
jority graph, the Schwartz rule is the most liberal. At theestextreme, the Condorcet
set contains the Condorcet winner when there exists oneisamdpty otherwise; we
recall that the Condorcet winner is a candidate who beaty @iker candidate in the
majority graph. In particular, the Schwartz set contairesgbt of Copeland winnérs
[22], as well aghe uncovered s&tthe Banks set [1], and ti8later set [33]. Finally,
all these rules are Condorcet-consistent: when a Condaineer A exists, all these
sets coincide with the singletdm }.

2.4 Fair winners

Schwartz winners are candidates who win in at least one Ypitnee. However, such
a tree could be very unbalanced and the winner could conmgm@st only a few
candidates This might be considered “unfair”. In the following, we Wilonsider a
voting rulefair if it has a balanced agenda.

Definition 5 (balanced agenda)A balanced agendd is a binary tree in which each
candidate must appear exactly once in leaves and the diiferbetween the maximum
and the minimum depth among the leaves (the level of imbajavrétend(T)) is less
than or equal to 1.

Assume that we have a profile of strict total ordéie will say that a candidate is
a fair winner if he wins under some balanced agenda.

1Copeland winners are those candidates who maximize the efoutgoing edges in the majority
graph [12].

2The uncovered set are those candidates that defeat evenyatitrnative either directly or indirectly at
one remove [25].

3We do not give formal definitions for Banks and Slater setsesthey do not play any further role in the
paper



Definition 6 (fair winner) Given a profileP, a candidateA is a fair winnerif and
only if there exists a balanced agen@iasuch that’ (P, T) = A.

Example 3 Consider the profile presented in Example 1, ire= (A > B > C >
D); (D> A>B>C(C);(C>D > B> A)). The set of the fair winners fa? is
{4, D}. Infact, we have only three balanced trees, up to isomorphis the balanced
tree whereA plays againstB, and C plays againstD, the winner isA, while in the
other two balanced trees the winneriis ]

Notice that the Condorcet winner is a fair winner since they w all trees, and
thus also in balanced ones. Moreover, a fair winner is a Scthwanner since there
is a tree, in fact a balanced tree in which they win. Moreowile there could be no
Condorcet winner, there is always at least one fair winnecabise there always exist
at least one balanced treBlotice also that the candidates that win in every balanced
tree are Condorcet winners.

2.5 Weighted votes

Until now we have considered unweighted votes. Howeverghteid voting systems
are used in a number of real-world settings like sharehattestings and elected as-
semblies. An agemith integer weight can be viewed ak agents voting identically.
Although human elections are often unweighted, the additfoiveights make voting
schemes more general. Weights are useful in multiagengreygstvhere we have dif-
ferent types of agents and some agents are more importanbthars when taking
a decision. Moreover, the weighted case informs us aboutighted case when we
have probabilistic information about votes [9]. For exaejih [9] Conitzer and Sand-
holm show that, if coalitional manipulation is hard in theiglged case with complete
information about the votes, evaluating a candidate’s imigprobability is hard in the
unweighted case when there is uncertainty about the yot®sded we permit per-
fect correlations between the votes (that is, some votesrarertain but known to be
identical).

We now generalize the notions presented above in this seatisuming thag¢ach
agent may have a weight.

Definition 7 (weighted profile) A weighted profile is a profile where each agent has a
given integer weight.

Note that the unweighted case considered previously is @apmse of weighted
case wherall the agents’ weights are equal.
For simplicity, we assume that the sum of the weights of thentgjis odd.

Definition 8 (corresponding unweighted profile) Given a weighted profil@, its cor-
responding unweighted profilé(P) is the profile obtained fron® by replacing every
ordering, sayO, expressed by an agent witteightk, by & agents with weight all
with the same ordering.



Example 4 Consider the profile shown in Example 1, i.2.,.= (A > B > C >
D); (D >A>B>C();(C >D > B > A)). Assume that the first agent has
weightl, and that the second and third agents have weghithen the corresponding
unweighted profile i§/ (P) = (A>B>C>D); (D>A>B>C); (D> A>
B>C);(C>D>B>A);(C>D>B>A)). a

Given a weighted profile?, the inducedmajority graph M (P) is the majority
graph of the corresponding unweighted profilefi.e., M (P) = M (U(P)).

Since the sum of weights is odd/(P) is complete: for eactd and B # A,
eitherA >,, B or B >,, A holds. Therefore, as for unweighted profilag(P) is a
tournament.

Example 5 Consider the weighted profile of Example 4. The majority bregguced
by such a profile is shown in Figure 1 (b). a

\oting treedor weighted profiles work as in the case of unweighted prafiecept
that the winner of every pairwise competition is computedhmweightedmajority
rule (and not by the classical majority rule), whetédeatsB if and only if there is a
weighted majority of votes stating > B.

3 Fromincomplete profiles to incomplete majority graphs

When votes are only partially known, applying a voting ruleymesult in some un-
certainty about the winner. We first define what we mean by aomplete profile;
then we will make clear what we mean by applying a voting roleamn incomplete
preference profile, via the definition of possible and nemgssinners. Finally, in the
specific case of voting trees, we defimeuristics that find a superset of possible win-
ners and a subset of necessary winners by considdrengncomplete majority graph
induced from the incomplete profile.

3.1 Incomplete profiles, possible and necessary winners

Previously, weassumedgents gave complete preferences mandidates. We now
consider the case wheagents’ preferences may only be partially known.

Definition 9 (incomplete profile) Let 2 be a set ofcandidategnd {1, ...,n} a set
of voters Anincomplete preference relatian on 2 is a strict order on{2, that is,
a transitive and irreflexive relation of2. An (n-voter)incomplete profileon Q2 is a
collectionP = (P, ..., P,) ofincomplete preference relations tn

Example 6 Assume there are three voters and three candiddteB, andC, then a
possible incomplete profile is{(> B > C); (B > A); (A > B)). a

This definition naturally extends to weighted voters: a g incomplete profile
is a weighted collection of incomplete preference relation



Definition 10 (complete extension (aka completion)Let P = (P,..., P,) be an
incomplete profile over a set of candidafesA complete extension (or completiaR)
of Pisatuple(Ry,..., R,) such that eveng; is astrict total orderon 2 containing
P;. We willdenote byExt( P) the set ofall complete extensioref P.

Definition 11 (possible and necessary winnershet » be a voting rule,P be an in-

complete profile andi a candidate.A is a possible winnefor P andr, denoted by
A € PossP,r), if there exists a completio of P such thatr(Q) = A. A s the

necessary winnefor P andr, denoted byd € Ned P, r), if for any completior® of

P we haver(Q) = A.

Possible and necessary winners were introduced in [21]aXiaConitzer showed
that, for unweighted votes and an unbounded number of candidiatesjost com-
monly used voting rules computing possible winners is NRthwhilst computing
necessary winners is coNP-hard for some voting rules bynpaohial for others [38].
Also, Betzler and Dorn [3, 5], and Baumeister and Rothe [2pveed that, for an un-
bounded number of candidates and unweighted votes, comgpoiissible winners is
NP-hard for some classes of scoring rules and polynomiatfuers.

These definitions apply to any voting rule, and thus/(d@) and Schwartz.For
instance A is apossible Schwartz winnéor P if it is a possible winnewith respect
to the incomplete profilé> and the Schwartz rule, i.e4d € POSSP, rschwartz)-

We also define possible and necessary Condorcet winnersgd]possible and
necessary fair winners:

Definition 12 (possible and necessary Condorcet winnerd)et P be an incomplete
profile and A a candidate,A is a possible Condorcet winndor P if there exists a
completion@ of P such thatA is the Condorcet winner fo€), and thenecessary
Condorcet winnefor P if for every completiond) of P, A is the Condorcet winner for

Q.

Definition 13 (possible and necessary fair winners).et P be an incomplete profile
and A a candidate A is a possible fair winnefor P if there exists a completiof of
P such thatA is a fair winner for@, and thenecessary fair winndpr P if for every
completion of P, A is the fair winner forQ.

3.2 Winners defined from the majority graph

We now consider an abstraction of the incomplete profile: itlcemplete majority
graph.

Definition 14 (incomplete majority graph) Given an incomplete (weighted) profile
P with n voters the incomplete majority graph/ (P) induced byP is the graph whose
set of vertices i§) and where there is an edge frarhto B, denoted byd >2 B (or

by the abbreviated forml >,,, B), if the number of voters (or the sum of the weights
of the voters) who prefed to B is greater tham: /2 (half of the voters’ total weight)

M(P) is an incomplete asymmetric graph (@eak tournamefbver).



Example 7 Consider the incomplete profile shown in Example 6, i.el ¥(B > C);
(B > A); (A > B)), and assume that the weight of the first agerntasnd the weighof
every other agent i8. The majority graph induced by this incomplete weightedilero
thatwe call@, is the graph with three node$, B, andC and only one edgd >% B.
a

A completionof M (P) is a (complete) tournament containing(P). Note that
the set of all completions af/ (P) is asupersebdf the set of majority graphs induced
by all possible completions dP. Formally, letExt(AM (P)) be the set of all complete
extensions of\/ (P) and M (Ext(P)) = {M(R) | R € Ext(P)} the set of all majority
graphs induced from the extensionsfaéfThen, the following result holds.

Proposition 1 M (Ext(P)) C Ext(M(P)).

This inclusion can be strict, which means that moving frénto M (P) implies
a loss of information. An incomplete majority graph throwgag information about
how individual agents have voted. For example, we lose métion about correlations
between votes. Such correlations may prevent a candidatelfeing able to win.

Example 8 Consider an incomplete profile with just one agentan@ = {A, B, C'},
where the only vote isl > B (the relations betweer and C, and betweerB and

C' have not been specified)rhe induced majority grapii/ (P) has only oneedge
from A to B. In this situation, there is a completion af (P) (with edgesfrom B

to C and fromC to A) and an agenda wher8 wins (we first comparel with C, C'
wins, and therC' with B, and B wins). However, there is no way to complete profile
P and set up the agenda so thBtwins. In fact, the possible completions Bfare
A>B>C,A>C > B,andC > A > B, andin all these caseB is always beaten
at least byA. Hence, there is no agenda wheBawins. Note that the completion of the
majority graph which allows us to conclude th&tcan win, cannot be obtained from
any possible completion of the agent’s preference? since it violates transitivityQ

Clearly, the more “completeP is, the more completExt(P) is (M (P) can even
be complete withouP” being so) and the bettéd (P) approximates\/ (Ext(P)).

For any ruler based on the majority graph, includiM{7’) and Schwartzwe can
define notions of the possibleegpectively necessary) winner from the incomplete
majority graph.

Definition 15 (possible/necessary winners from the incompte majority graph) Let
@ be a complete profiled a candidate, and- a voting rule based on the majority
graph, that is, there is a functiofy. such that-(Q) = f,.(M(Q)). Let P be an incom-
plete profile,A is a possible winnefor M (P) andr if there exists a completioh/’
of M(P) such thatd = f,(M’'). Ais thenecessary winnefor M (P) andr if for
every completion\/” of M (P) we haveA = f,.(M’). We denote by Po&s/ (P), )
and Ne¢M (P),r)* respectivelythe set of possible and necessary winnersMbofP)
andr.

“Note that, given a voting rule, Possz, ) andNedz, ) represent two different functions, depending
on whether the first argumentis a profile or a majority graph.



Note that these notions of possible and necessary winngrapply to rules that
are based on the majority graph. Note also Pa$ M (P),r) O Ned M (P),r), and
that when the majority graph is compleRasg M (P),r) = Ned M (P),r) = r(P).

We also define the possible and necessary Condorcet winnersfmajority graph
in a similar way:

Definition 16 Let P be a profile and4 a candidate A is a possible Condorcet winner
for M (P) if there exists a completioh!’ of M (P) such thatd beats every other can-
didate inM’. A is thenecessary Condorcet winnéar M (P) if for every completion
M’ of M(P), A beats every other candidate iv”.

We will denote byPossCondP) andNecCondP) (respectivelyPossCondM (P))
andNecCondM (P))) the possible and necessary Condorcet winners from thdeprofi
P (respectivelyfrom the majority graphiV/ (P)).

Example 9 Consider the profile” given in Example 7. We have that NecCoRgl=
Ned P, rschwartz) = 0, PossCon@P) = { A, C'}, and PoS&P, 7schwartz) = {A, B, C}.
Notice that in this example the possible and necessary Sthaad Condorcet win-
ners obtained by considering the completionsrotoincide with those obtained by
considering the completions of the majority graph inducgd®» However, as shown
in Example 8, this is not true in general.

Given an incomplete unweighted profife and the incomplete majority graph
induced byP, that is,G = M (P), we already observed that the completions&of
are a (possibly proper) superset of the set of complete imagmaphs induced by all
possible completions dP. This observation leads to the following results.

Proposition 2 Let P be an incomplete weighted profile ande a rule based on the
majority graph.

1. PosgM (P),r) 2 PosgP,r).

2. Ne¢M (P),r) C NedP,r).

3. PossCon@P) = PossCondM (P)).
4. NecCondP) = NecCondM (P))

Proof: We first give the proof whe® is unweightedPoints 1 and 2 are straight-
forward consequences of Proposition 1.

For point 3, if a candidatd is a possible Condorcetinnerfor P then, by Propo-
sition 1, it follows that it is also a possible Condorcet wenrior M (P). Also the
converse holdslf a candidated is a possible Condorcet winner fa¢ (P), then there
must be one or more completions of the majority graph wheigthe Condorcet win-
ner, i.e., where there is an outgoing edge frdnto all the other candidates. We now
show that there is completion @t in which A is the Condorcet winner. For this we
completeP by first adding, to every agent preference relatignand every candidate
C such that neithed >; C norC >; A, the relationd >; C. Let >/ the relation

10



obtained. First, we claim that; has no cycles. Assume that has a cycle, then there
exists an agenitand a cycle in> involving A (otherwise the cycle would already be in
>;, which is not possible because is a strict partial order). Without loss of generality,
thiscycleisA >, Cy >, Cy >! ... >} Cp, >4 A, forsome{Cy,...,Cy} C Q\{4},
wherem > 1. Because everg); is different fromA, C; > C;1 was already in>;, as
well asC,, > A, thatis,Cy >; Cy >; ... >; C,, >; A. Since>; is transitive, this
implies that”; >; A. This contradicts the fact that >, C; was added to-;, because
the relation betweer andC; wasnotunspecified ir>;. Now, for every agent, let
>* be the transitive closure of]. Because>/ has no cycles;>; has no cycles and is
a partial order. Now, we complete} by instantiating all remaining unspecified pairs
in an arbitrary way that preserves transitivity. Let us derlly P’ such a completion
of P. According to Proposition 1 we hav&{(P’) € Ext(M (P)), therefore inM (P’)
there is an outgoing edge fromto all the other candidates and thiigs the Condorcet
winner for P’, and therefore a possible Condorcet winnerfor

Now for point 4, the fact that the necess&gndorcet winner foa majority graph
M (P) is the necessary Condorcet winner for the prafilées an obvious consequence
of Proposition 1. For the converse inclusidet us supposel is not the necessary
Condorcet winner fod/ (P). Then there exist® such tha{ A, B) ¢ M (P), thatis, in
the profile we have#{voteri | A >; B} < . Let us complete the profile by adding
B >; Afor all votersj for which the relation betweeA and 5 is unspecifiedwe get
an extension of? in which a majority of voters preferB to A, thereforeA is not the
necessary Condorcet winner fBt

The proof can be easily extended to weighted profiles. . dte an incomplete
weighted profile,PosgM (P), r) D PossP,r), Neq M (P),r) C NedP,r), Nec-
Cond M (P)) = NecCondP), andPossCondM (P)) = PossCondP). In fact, obvi-
ously,M(P) = M(U(P)), anditis easy to show thilecCondP) = NecCondU (P))
andPossCondP) = PossCon@U (P)). We recall thal/ (P) is the corresponding un-
weighted profile ofP (see Definition 8). a

Notice that there are cases in which the subset rel&@s3 M (P), rschwartz) =
Poss P, rschwart=) IS Strict. In fact, a candidate can be a Schwartz winner farra-c
pletion of M (P) which is not induced by any completion £ as shown previously in
Example 8.

Note that if is a Condorcet-consistent rule, thllecCondP) C Ned P, r) and
PossCondP) C PosgP, ).

Notice also that the set of winners from an incomplete prafild from its incom-
plete majority graph coincide when we allow also for comples of the preferences
that may contain cycles, i.e., when we allow that the voteesraational. Such pref-
erences do occur in practice and have been explored in thextaf computational
social choice [14, 15].
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4 Computing winners with incomplete preferences in
voting trees

We now analyze the computational complexity of computirearious kinds of win-
ners invoting treeswvhen preferences are incompRtéNe will consider first winners
from an incomplete profile and then winners from an incongphagjority graph.

4.1 Incomplete profiles

Assume agents’ preferences have been specified by an ineampkighted profile
P. Itis possible to show that, when we ha¥®r more candidates, it is difficult to
determine if a candidate is a possible winfarV’ (T'), even ifT is a balanced tree.

Theorem 2 Given a fixed numben of candidates withn > 3, an incomplete weighted
profile P and any agendd’ on these candidates, deciding if a candidate is in PBss
rv(r)) IS NP-completegven if every candidate appears exactly oncéjrand even if
T is a balanced tree.

Proof: We give a reduction from the number partitioning problemns€lder the
tree’T” where A plays againsB and the winner thus plays agaifist We have a bag of
integersk; with sum2k and we wish to decide if they can be partitioned into two bags,
each with sunk. We will show that we can build an election where we can coteple
the incomplete weighted profile so th@twins (i.e.,C is a possible winnerif and
only if such a partition exists. We suppose the following votes areng 1 vote for
C > B > Aofweightl, 1 voteC > A > B of weight2k —1,and 1voteB > C > A
of weight2k — 1. Hence,C' is ahead ofA by a weight of4k — 1, C' is ahead ofB
by a weight of 1and B is ahead ofA by a weight of 1 For eachk; in the bag of
integers, we have an incomplete vote of weight in which A > C'is fixed, but the
rest of the vote is incomplete. We are sutdeatsC in the final result bya weight of
1 whatever completion takes place. We now show that the ipteteweighted profile
can be completed so th&tbeatsA andC' beatsB (andthusC'is a possible winneiif
and only ifthere is a partition of sizé.

Assume that such a partition exisésd that votes in one partition hae> C > B
and the votes in the other haye> A > C. Thus,B beatsA overall andC' beatsB.
ThusC' is the winner. On the other hand, suppose there is a way to letenihe
preferences so thét wins. This can only happen B beatsA andC' then beats3. In
fact, if A beatsB in the first round A will beat C' in the second round, since we have
shown before thatl beatsC' overall, and themd will be the final winner. For' to beat
B, at least half the weight of incomplete votes must réhtboveB. Similarly, for B
to beatA, at least half the weight of incomplete votes must réh&iboveA. Since all
votes rankA aboveC, B cannot be both abové and belowC'. Thus precisely half
the weight of incomplete votes ranksaboveA and half rankg’ aboveB. Hence, we
have a partition of equal weight. Therefore, we can completéncomplete profile so
thatC winsif and only if there is a partition of sizé. The result can also be extended

5For a complete treatment of the basic notions of complekigpty, see [18].
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to the trees with more thahcandidatesvhich extend?” or a tree isomorphic to it, by
placing any additional candidate at the bottom of everyngareference ordering (it
does not matter how).

We can use the same construction above whes a balanced tree. Given the
profile constructed here, the only possible balanced treeghich C wins are those
in which A plays againsB, and the winner then plays agairst All the additional
candidates will be defeated by, B andC, so that they can be placed anywhere in the
balanced tree. m]

In [29] it is shown that, when we have 3 candidates and the dayéna simple
voting tree, the necessary winner from the incomplete grafild from the incomplete
majority graph coincide. Therefore, since by Theorem 4s ipolynomial to com-
pute the necessary winner from the incomplete majority lyrétgs also polynomial
to compute the necessary winner from the incomplete prd@iethe other hand, we
now show that, when we haveor more candidates, it is a coNP-complete problem to
determine if a candidate is the necessary winner.

Theorem 3 Given afixed numben of candidates withn > 4, an incomplete weighted
profile P and any agendd’ on these candidates, deciding if a candidate is in (Nec
rv (1)) is CONP-completeeven if every candidate appears exactly oncg'in

Proof: To show that withat least4 candidates it is coNP-complete to decide if
a candidate wins for every completion of the preferencesywileconsider the tree
T where A plays againsiB, the winner then plays against, and the winner of this
match goes forward to the final match agaifstWe will reduce number partitioning
to deciding if, given a particular incomplete weighted deyfive can complete such a
profile tomake a given candidate win

We have a bag of integerg; with sum2k and we wish to decide if they can be
partitioned into two bags, each with sumWe construct an incomplete profile where
the following votes are giveni vote forC > D > B > A of weight1, 1 vote
C > D > A> Bofweight2k — 1, and 1 voteD > B > C > A of weight2k — 1.
For the first numberk; in the bag of integers, we have avote for> B > A > C
of weight2k,. For each other numbet; wherei > 1, we have an incomplete vote of
weight2k; in which A > C' is fixed, but the rest of the vote is incomplete. We are sure
that A beatsC' in the final result by 1 vote whatever completion takes pl&imilarly,
we are also sure thd? beatsA, andD beatsB.

If we complete preferences so that in all incomplete vdddseatsC in their pair-
wise electionthen D will win overall. We now show that there is a completion that
makesC' win if and only if there is a partition of equal weight.

Suppose there is such a partition and that the complete otes partition have
B > A > C and the complete votes in the other have>= C' > B. Thus,B beatsA
overall,C beatsB. We putD in the bottom position in all such completions as far as
possible, and s@' beatsD. ThusC is the overall winner.

On the other hand, suppose there is a way to complete ther@nets so that”
wins. This can only happen B beatsA, C then beatd3 andC finally beatsD. If A
beatsB in the first round A will beat C in the second round and thehwill be beaten
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by D. ForC to beatB, at least half the weight of incomplete votes must réh&bove
B. Similarly, for B to beatA, at least half the weight of incomplete votes must rank
B aboveA. Since all votes ranld aboveC, B cannot be both abovd and below
C. Thus precisely half the weight of incomplete votes raBkaboveA and half ranks
C aboveB, and we have a partition of equal weiglience, if there is a partition of
equal weight then bott and D are possible winners; if not, then only is a possible
winner, therefore the necessary winner. Thereférds the necessary winner if and
only if there is no partition in the initial problenThe proof can be extended to all the
trees with more thad candidateswhenthey extendl” or a tree isomorphic to it, by
placing any additional candidate at the bottom of everyn@feference ordering (it
does not matter how). a

These results can be compared with Theorem 7 in [9] whiclesthiat weighted
constructive manipulation fdr' (7') is polynomial. A candidate can be made a winner
by a coalition of weighted votes if it is a possible winner #ospecific incomplete
profile consisting of full votes and empty votes. By allowiaigy kind of incomplete
profile, we increase the computational complexity.

The possible winner (respectively, necessary winner)lprotior V (T') was proved
to be NP-complete (respectively, coNP-complete) for ughtsid votes and an un-
bounded number of candidates even wiieis balanced [39] and easy to compute for
unweighted votes and a bounded number of candidates [36].

4.2 Incomplete majority graphs

In this Section (unlike the rest of the paper) we focussonple voting treesthat is,
voting trees where every candidate appears exactly oWée present an algorithm,
calledWin, for determining, given aimple voting tre€l” and an incomplete majority
graphG, the set of possible winners (i.€9sG, v (1))). We will represent a simple
voting treeT" with a binary treewith a root, that we caltoot(7'), a left subtree, called
left(T"), and a right subtree, calleijht(7').

Algorithm Winrecursively takes in input a simpleting tree7” and anincomplete
majority graphG, and it returns a set of candidatds, which is the set opossible
winners. Ifroot(T") is not empty, and botleft(7") andright(7") are empty, then the
algorithm returnsoot(7"). Otherwisethe set of winners at the root @f is the set of
all candidates who are possible winners in the left (re$gedgi right) branch ofl” and
who beat at least one candidate who is a possible winner inghte(respectively, left)
branch ofT".

To check whether there exists a hecessary winner for an ipletermajority graph
G, it suffices to run the algorithidVin on P; if it outputs a single candidate, then it
is the necessary winner, otherwise there is no necessanewiie will call such a
proceduréNecessaryWin

Example 10 We now show how to determine possible and necessary winivers g
a fixed simple voting treby applyingWin. LetQ = {A, B, C, D, E, F, H, I}
and consider the simple voting tré® over Q2 with left(root(7")) = Win(Win({C'},
{D}), Win({ £}, {F'})) and rightroot(T")) = Win(Win({ A}, { B}), Win({1}, {H })).
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Algorithm 1: Win
Input: T": a simple voting tree(s: an incomplete majority graph;
Output: W set of candidates;
if 7' contains only one nodi&en
| W <« labelroot(T))
else
W1+ Win(left(T'), G);
Wo + Win(right(T"), G);
W« 0;
foreach (s,t) € Wy x Wy do
if s >, tthen
| W<« WuU{s}
else
if t >, sthen
| W<« Wu{t}
else
| W« WuU{s,t}

re_turn W

Consider also the incomplete majority graphwith edgesA >,,, B, A >,,, C, A >,
D,A>,E A>,I E >, F,andl >,, H.

The application of Win to the subtree @f that contains onlyC' and D gives
Win({C},{D}) = {C, D}, becaus&= contains no edge betwe€hand D. Its ap-
plication to the subtree thatontains onlyE and F' gives Wil{ £}, {F'}) = {E},
because contains an edge fronk to /. Next, the application of Win to the left
subtree ofT’ gives WilWin({C'},{D}), Win({ E},{F})) = Win({C,D},{E}) =
{C,D, E}, becauseF is not beaten by botld’ and D, C is not beaten byZ and
D is not beaten byy. As for the right subtree of’, we get WitWin({ A}, { B}),
Win({I},{H})) = WIin({A},{I}) = {A}. Finally, the application of Win to the root
of T gives Wit{C, D, E'},{A}) = {A}, becauseA beats all ofC, D and E in the
graphG. Thus, Win returng A}. Since the set returned by Win contains only one
candidate A is also the necessary winner. |

Theorem 4 Consider a set of candidatéy an agendal” over(2, and a possibly in-
complete majority grapli- over(2. Then,

e Algorithm Win(T', ) returns Pos&G, v (r)).
e Algorithm NecessaryW', i) returns Ne¢G, ry (1) ).

e Both algorithmgun in polynomial time in the number of candidates.

Proof: Let us first consider AlgorithmVin. We prove by induction that the fol-
lowing induction hypothesis holds for any trée
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H(T): PossG,ry (1)) = WIin(T, G)

We omitG in H(T') because the induction is over trees, and noton

If T is a tree with a single node, thd(T") holds trivially, becausd” contains
only one candidate, namelgbel(root(7")), and we haveVin(T', G) = PossG, ry (1))
= {label(root(7"))}. Now we need to show that ¥f is a tree whose left subtreeT3
and right subtree i%5, thenH (T1) and H (T») imply H(T"). Assume now thak (T1)
andH (T») hold.

Assume thatd € WIn(T, G). Then eitherA € Win(Ty,G) or A € Win(Ts, G).
Without loss of generality, assume € Win(7y, G). Then there exists & in Win(7x,
G) such thatG either contains an edge frorhto B or no edge betweeA and B.

By the induction hypothesisd € Win(71,G) and B € Win(T», G) imply A €
PossG, v (1)) and B € Pos§G, ry (1)), Which in turn imply that there exist two
complete tournaments; and G, extendingG such thatd = ry (7,)(G1) and B =
v (1y)(G2). Now, letGs be the tournament obtained frafy andG in the following
way: for any two candidateX andY, (a) if both X andY appear inT; thenGj
contains the edg& >, Y if and only if G; contains it; (b) if bothX andY appearin
T, thenG3 contains the edg&” >,,, Y if and only if G5 contains it; (c)G3 contains
the edged >,, B; (d) in all other cases, itz contains an edg& >,, Y thenGj;
contains it as well, and i does not contain any edge betwe€randY then we can
decide arbitrarily whether there is an edge fréfo Y or an edge front” to X. By
construction,G3 is an extension of7, because botlé; and G, are and becaus@
either contains or does not contain the edye-,,, A.

Now, because no candidate appears in more than one I€&f thie sets of can-
didates appearing ifi, and 75 are disjoint. Therefore no pair of candidates can be
concerned by more than one of the cases (a), (b), and (c),hendeffinition ofG3
is well-founded. Now, because the way ) (G) (respectivelyyy 1,y (G)) is deter-
mined depends only on the restriction of the graph on theidates appearing iff;
(respectively,), we have thaty (1) (G3) = ry ) (G1) = A andry(r,)(G3) =
Tv(1,)(G2) = B. From this and the fact th&t; contains the edgd >,, B, we get
thatry (1) (Gs) = A. Thus we have found a complete extensiorGbin which the
winner ofry (1 is A, which shows thatl € PossG, ry (7)).

Conversely, assume that € PossG,ry (). Then there is a completiofd” of
G such thatry (1) (G') = A. Obviously, A appears inT". Without loss of gen-
erality, assume it appears ifi. Becausel is a subtree ofl’, ry(1)(G') = A
implies ry(7,)(G’) = A, therefore, since&:’ is an extension ofy, we haveA ¢
PosgG, v (1)), and by the induction hypothesis, we hadec Win(7, G). Now,
ry(ry(G') = Aimplies thatA beatsry 1,)(G’) in G'. Denotery (g,)(G’) by B.
Again by the induction hypothesis, we haldec PossG, v (7,)). Finally, G does not
contain the edg® >,, A, otherwise’ (which contains the edgé >,, B) would not
be an extension aff. This implies thaWin(T, G) containsA. We now have proven
that 7 (7') holds, and therefore we have shown that the algoriiim is sound and
completej.e, returns the set of possible winners for 7.

Finally, if we havemn candidates, AlgorithnWin performs at mosO(m) steps,
where at each step it may conside(m?) pairs of candidates. For each pair it per-
forms a constant amount of work. Thus, the overall compjezitD(m?3). The same
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complexity holds for AlgorithmNecessaryWin |

SincePosgM (P), ry(ry) 2 PosgP, ry (7)), Algorithm Win is a heuristic that
finds a superset d¥osg P, ry (1) ).

Notice that, in general, there i guarante®n the quality of thisheuristic,as
shown by the following example.

Example 11 Assume we have an incomplete profile, Bapvern + 2 candidates, say
A, By,...,B,,andC, where there is only one voter that expresses his prefesemse
follows: A > B;, Vi. Assume also that the agen@ahas A first play againsiC. For
examplel’ may be the agenda where fitdtplays against’, the winner plays against
B1, and each new winner at stémplays againstB;, ;. Then, Pos§V/ (P),ry (1)) =
{A, By, ..., By, C}, while PossP, ry (1)) = {A,C}. This means that all candidates
are possible winners for the incomplete majority grapti P), while only two of them,
i.e., AandC, are possible winners for the incomplete profiteln fact, a candidatd3;
may win only ifC' beatsA and B; beatsC'. To achieve this, there must be a completion
with a cycleA > B; > C > A, which is allowed in the majority graph, but it is
forbidden by transitivity in the profile. ]

SincePosg P, ry (1)) € PosgM (P),rv (1)), the quality of the heuristic can be
measured by the ratio between the number of winners retimn@dsg M (P), ry (7))
andPoss P, ry (7). Example 11 shows that this ratio can be as baé45.

However, we are able to give an upper bound on the number aitgesvinners
from the incomplete majority graph, which depends on thelmemof the missing arcs
in the incomplete majority graph.

Proposition 3 Let P be an incomplete profile oven candidates,M (P) its corre-
sponding incomplete majority graph, akdhe number of the missing arcs M (P).
|PosgM (P), rv(r))| < 2%.

Proof: If there arek missing arcs inV/ (P), then there arg* possible completions
of M(P). Therefore, there are at mat results and so there are at ma$tpossible
winners. m]

Parameterizations based on the total number of undetedmaraidate pairs have
also been considered in [4] to analyze the complexity of i&sjble winner problem
for some voting rules. However, these voting rules do ndtishe the voting tree rule.

4.3 Experimental evaluation of the heuristic

We tested computationally the quality of the heuristic gitag AlgorithmWinin com-
puting anupper bound otthe set of possible winners.

4.3.1 Experimental setting

To do this, we generated profiles according to the followiaggmeters:
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e number of candidates. € {4, 8,16, 32};
e number of agents € {3,5,7,9,11};
e type of agenda:

— completely balanced: a balanced simple voting tree,

— completely unbalanced: a simple voting tree where eachnat@ode has
at least one child which is a leaf.

o level of completeness of the preference of each agent. Wadmned threéevels
of completenessHigh, also denoted by (80% of the relations of a complete
linear order)Medium also denoted b (50% of the relations of a complete
linear order) and_ow, also denoted by (20% of the relations of a complete
linear order).

For each combination of the above parameters, we randonmgrgeed 100 in-
stances according to the impartial culture assumptionjshasing a uniform distribu-
tion over profiles. For each incomplete profiteand agendd’, we computed the set of
possible winner®osg M (P),T) as by AlgorithmWin and then we checked for each
candidate in such a set if it is indeed a possible winner flioenprofile, that is, if it is
in PosgP, T).

We then measured the following:

e the error rate: the percentage of instances wRess )/ (P),T) is larger than
PossP, T);

e the error mean: the rati@osﬁ%g:;;?)‘lf(ﬁo_sf)’) D)l averaged over the instances in

which there is an error. The error|iBoss(M (P),T)| — |Poss(P,T)| divided

by |Poss(P,T)|. We have then multiplied it by/(m — 1) in the definition of
the error mean, since we wanted to have a value which[i ifj independently
of the number of candidates.

All the experiments were done on an Intel Xeon 3.2GHz machitie 16GB of
RAM.

4.3.2 1P model for incomplete profiles

To generate the possible winners from an incomplete prafile, to the combinato-
rial nature of this problem, we adoptlateger Programming model (I®)defined as
follows, and solved with IBM ILOG Cplex 12.2.

We are givenn candidatesy agents, and a fixed agen@a We want a model that
proves that a given candidate is a possible winner, by lapfana profile completion
where such a candidate wins, or proving that no such profitdsex

Let us introduce the following variables:

1 if candidatei is preferred to candidateaccording to ageri
Tijk = .
h 0 otherwise

6Notice that we are not trying to optimize a specific functigve will consider a feasibility program.
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)1 ifcandidate: is preferred to candidateaccording to the majority graph
Y70 otherwise

For each agent, variablesz;;, define the ordering of the candidates according
to agentk: such an order can be seen as a permutation elements and so it can
be easily modeled with linear constraints (as done, for ganmn the linear ordering
problem). In particular, the following constraints suffice

Tijk + T <1 V(,7)
Tijk + ik + 2ue <20 VY(4,5,1)

Next we need to link variablegto variablese with the logical constraint
yij =14 injk > [n/2] V(i j)
k
and this also can be modeled with the following linear caists:

/21y < @ik < [n/2] + [n/2y; Y, J)
k

Finally, we must compute the winner for each naedef the tree. To this end, we
introduce variables

1 if candidatei is the winner at node
W, =
“ 0 otherwise

. 1 if (4,4) is the pair of possible winners at node
“ 10 otherwise

Some constraints are needed to ensure the correct congoutdtihe winner at
nodeq starting from the winners at its child nodkeandr
Wai = Wy V Wy Y(ay,i)
Zaij = Wai > Yij V(CL, Z,j)
Zaij = (Wi V wei) A (Wi Vwy)  Y(a,i,j)

The first set of constraints says that a candidai@n be a winner at nodeonly if
it is a winner in one of its child nodes. The second set of gairdls uses the majority
graph to compute the winner among the two possible candidaiée third set of
constraints just links variablesandw. All of them can be stated as linear constraints

Wai < Wiy + wypp Y(a,i)

Wai > Yij + Znij — 1 V(a,1,j)
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Zaij < wi +wp Y(a,i,j)
Zaij < wij +wr; V(a,i,j)
Zaij = Wi + Wr +wi; +wry — 1 Y(a,i,7)

Notice that the model hag(m?n + m?) variables and)(m?n) constraints. How-
ever, for small numbers of candidates, the size of the ma@deddsonably compact.
Also, several variables can be fixed right from the beginnthg more so if we run
algorithmWin and use the information collected by it. This variable fixit@gether
with the logical constraints, allows for a very effectiveeprocessing and constraint
propagation on the model. To test if a candidaitea possible winner we just need to
solve the model by setting,.,:,; = 1.

Notice also that, givem: candidates and agents, we havémn!)" possible com-
plete profiles. In fact, each agent gives a strict total ooder the candidates. Such an
ordering is a permutation of the candidates, and thus in thrstvease (when there is
full incompleteness) we have! possible orderings for every agent. For example, in
an instance with 8 candidates and 11 agents, we (&ly€, that is, more than0°°,
possible completions, which cannot be enumerated via a{foute algorithm.

4.3.3 Experimental results

Figures 2 - 5 show the error rate and the error mean for thes eeitie4, 8, 16, and32
candidates.

Itis easy to notice that the shape of the agenda (compledddynbed vs. completely
unbalanced) does not seem to affect the quality of the hHeur@n the other hand, the
level of completeness of the profile does influence the quefithe heuristic, since
both the error rate and the error mean decrease as the lex@inpiieteness decreases.
Indeed, when the profile is rather incomplete, the set ofipleswinners is larger and
thus closer to what the heuristic can return. However, therenean is always very
small. Moreover, the error rate increases with the numbeaoflidates and it decreases
as the number of agents increases. Notice that, vithndidates and a high level of
completeness, the error is alwayssince in this case the profile is almost complete.

The largest instances we have considef2dc@indidates antll agents) have been
solved in abouB0 seconds (we need to solve an IP model for each of the candidate
returned by the heuristic). Thus, we could certainly tacklech larger instances, but
we have preferred to focus on smaller instances and cons@fiof them to get a
reasonable average. This is the time needed by the exacithigo Instead, the time
needed by the heuristics is less than 1 millisecond in ataimses. This is expected,
since it is just a visit of the nodes of the agenda based on #jerity graph.

5 Computing winners with incomplete preferences in
the Schwartz rule

We now analyze the complexity of determining Schwartz wisrnghen we have un-
certainty in the preferences.
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We show thadeciding whether a given candidate is a Schwartz wiriren in-
complete weighted profiles is intractable in general, blympamial from the induced
majority graphs. Hence, computing the winners for incongaieajority graphs can be
acomputationally efficient heuristic that finds a supersehefwinners for incomplete
weighted profiles. We conjecture theamputing the set of all the possible Schwartz
winnersfor incompletaunweightedrofiles is NP-hard as well, but so far have not been
able to show this.

5.1 Incomplete weighted profiles

We prove thatdetermining whether a given candidate is a possible Schwdarner
for weighted profiles is NP-hard for incomplete weightedfies where there are 3 or
more candidates.

Theorem 5 Given a fixed numbei of candidates withn > 3 and an incomplete
weighted profile” on these candidates, deciding if a candidate is in PBSSschwartz)
is NP-complete.

Proof: Clearly the problem is in NP as a polynomial witness is a catigh and
an agenda in which the candidate wins. To show it is NP-cotaplee give a reduc-
tion from the number partitioning problem. The reductiobma&sedon constructing a
Condorcet cycle and is similar to those used in [9] to show tenipulation is com-
putationally hard even with a small number of candidatesnwoges are weighted.

We have a bag of integers; with sum2k and we wish to decide if they can be
partitioned into two bags, each with sutn We want to show that a candidafeis
a possible Schwartz winner if and only if such a partitionsexi We construct an
incomplete profile over three candidates (8, andC') as follows. We havé vote for
B > C > Aofweightl, 1 voteB > A > C of weight2k —1,and 1 voteZ' > B > A
of weight2k — 1. At this point, the total weight of votes witB > A exceeds that of
A > Bby4k — 1, the total weight of votes witl8 > C' exceeds that of' > B by 1,
and the total weight of votes with' > A exceeds that ofl > C by 1.

We also have, for eadh, a partially specified vote of weigB#:; in which we know
justthatA > B. As the total weight of these partially specified votesiiswe are sure
A beatsB in the final result by 1 vote. The only agenda in whigltan win is the one
in which A plays against” and the winner then plays agairist In addition, forB to
win, the partially specified votes need to be completed soAhaeatsC, andC beats
A in the final result. We show that this is possiifland only if there is a partition of
sizek. Suppose there is such a partition. Then let the votes in agdbA > B > C
and the votes in the other l6¢ > A > B. Then, A beatsB, B beatsC andC' beats
A, all by 1 vote in the final result. On the other hand, supposeetls a way to cast the
votes to give the resull beatsB, B beatsC, andC' beatsA. All the uncast votes rank
A aboveB. In addition, at least half the weight of votes must rdnlkboveC, and at
least half the weight of votes must ra6kaboveA. SinceA is aboveB, C' cannot be
both aboveA and belowB. Thus precisely half the weight of votes ranksaboveA
and half ranksB aboveC'. Hence we have a partition of equal weight. We therefore
conclude tha®3 can winif and only if there is a partition of sizk. That is, deciding if
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B is a possible Schwartz winner is NP-complete. We can extendeduction to more
than 3 candidates by placing any additional candidate abdti®m of every voters’
preference ordering in whatever way we wish. |

Computing possible Schwartz winners for weighted profiEsmms to be intractable,
however we will show that is easy to firdsupersebf these winners considering the
majority graph.

5.2 Incomplete majority graphs

We now give graph characterizations of possible and negeSsdwartz winners for
incomplete majority graphsyhich allow usto conclude thathey can be computed in
polynomial time.

Theorem 6 Given an incomplete majority grapi and a candidated, A € NedG,
Tsehwartz) If @nd only if, for every other candidatB, there is a path fromd to B in
G.

Proof: (<) Suppose that for eacB # A there is a path fromd to B in G.
Then these paths remain in every completioitzofTherefore, using Theorem 4, is
a Schwartz winner in every completion@f i.e., it is the necessary Schwartz winner.
(=) Suppose there is no path frohto B in G. Let us define the following three
subsets of the set of candidates R(A) is the set of candidates reachable franin
G (including A); R~1(B) is the the set of candidates from whighis reachable ir7
(including B); andOthers= Q \ (R(A) U R~'(B)). Because there is no path fram
to B in G, we have thafz(A4) N R~(B) = 0 and thereford R(A), R~1(B), Others
is a partition of(2. Now, let us build the complete majority graphas follows:

1. G :=G;

2.Vz e R(A),y € R(B), add(y, z) to G;

3.V e R(A),y € Others(i.e.,y € 2\ (R(A) U R~*(B))), add(y, z) to &;
4.V z € Others(i.e.,z € Q\ (R(A) URL(B))),y € R~1(B), add(y, z) to G;
5

. V z,y belonging to the same element of the partition: if neither) nor (y, z)
is in G then add one of them (arbitrarily) iA.

Let us first show thaf? is a complete majority graph. ¥ € R(A) andy € R~*(B),
then(z,y) ¢ G (otherwise there would be a path framto B in G). If = € R(A)
andy € Others then(z,y) ¢ G, otherwisey would be inR(A). If © € Others
andy € R™!(B), then(z,y) ¢ G, otherwisez would be inR~!(B). Therefore,
whenever: andy belong to two distinct elements of the partitia,contains(y, =)

or (z,y), but not both. Now, if x andy belong to the same element of the parti-
tion, by Step 5,G contains exactly one edge {(z,y), (y,z)}. Therefore,G is a
complete majority graph. Let us show now that there is no fraiim A to B in G.
Suppose there is one, that is, there exist= A, z1,...,2m_1,2m = B such that

24



{(20,21), (21, 22), - -+ (Zm—1,2m)} C G. Now, for allz € R(A) and ally such that
(z,y) € G, by construction of7, we necessarily have € R(A). Therefore, for all

i < m,if z; € R(A) thenz;;1 € R(A). Now, sincezyp = A € R(A), by induction
we havez; € R(A) for all ¢, thusB € R(A), which is impossible. Therefore, there
is no path fromA to B in G. Thus,( is a complete majority graph with no path from
A to B, which implies that4 is not a Schwartz winner with respectda Lastly, by
construction( containsG. SoG is a complete extension @ for which A is not a
Schwartz winner. This shows thdtis not the necessary Schwartz winnerar O

A procedure based on the previous theorem givesp@ymomial time algorithm
to find necessary Schwartz winners for incomplete majonigpgs. Hence, we haze
heuristicwhich computes in polynomial time a subset of necessary Sahwinners
for incomplete profiles.

Corollary 1 Given an incomplete majority graph, Ned G, rschwart=) €N be com-
puted in polynomial time.

Proof: By Theorem 6, we know thatt € Ned G, rschwartz) If @and only if, for
every other candidat®, there is a path fromd to B in G. Since finding a path
from a single source to all other candidates is polynomia],[then also computing
Ned G, rschwartz) IS polynomial. ]

We now consider computing possible Schwartz winners.(Lée an asymmetric
graph 2 the set of candidates, amtl € Q. Let us consider Algorithm 2. It tries to
completed in order to have a path from to every other candidaté by putting edges
directed toZ, where it is possible, from the candidates that are reaetiedoh A.

Algorithm 2 : PossibleSchwartzWinner

Input: G: an asymmetric graph: a candidate,
Output: X: a set of candidates

Y« {A}U {X]|thereis a path froml to X in G};
G' + G,

repeat

foreach (Y, Z) € £ x (2\ X) do

L if (Z—Y)¢G then

| add(Y — Z)to G';

foreachZ € Q\ ¥ do

if there is a path fromd to Z in G’ then
| addZ toX;

until ¥ = QorthereisnaY,Z) e ¥ x (Q\¥)s. t.(Z =Y) &G ;
return X

Theorem 7 Given an incomplete majority graphi and a candidated, A € PossG,
TSchwartz) It @nd only ifPossibleSchwartzWinngr, A) = Q.
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Proof: We start with the following observation: the gragh obtained at the end
of the algorithm is asymmetric and extends It is asymmetric because it is so at
the start of the algorithr(sinceG is asymmetric) and it is still asymmetricain edge
Y — Zis added ta5’ whenZ — Y is not already inG’.

Now, assumdossibleSchwartzZWinngk, A) = Q. Let G” be a majority graph
extendingG’ (and, a fortiori,G). Such aG” exists (becausé&’ is asymmetric). By
construction of7’, there is a path id"’ from A to every node oPossibleSchwartzWin-
ner(G, A)\{A}, hence to every node 6t \ {A4}; sinceG"” extends’, this holds a
fortiori for G”, henceA is a Schwartz winner i’ and therefore a possible Schwartz
winner forG.

Conversely, assunfeossibleSchwartzWinngk, A) = ¥ # Q. Denote® = Q\ X.
Then, forall(Y,Z) € ¥ x © we haveZ — Y € G’. Now, Z € © means that no
edgeZ — Y (for Z € © andY € X) was added t@’; hence, for every” € X and
Z € ©,wehavethaZ — Y € G'ifandonly if Z — Y € G. This implies that for all
(Y, Z) € xOwe haveZ — Y € G, therefore, in every majority gragh’” extending
G, every candidate o beats every candidate &f, and in particularA. Therefore,
there cannot be a path @&” from A to a candidate it, which implies that4 is not a
Schwartz winner irG”. Since the latter holds for every majority grapff extending
G, Ais not a possible Schwartz winner f6r. |

Algorithm 2 is in fact a polynomial-timalgorithm for computinga superset of
possible Schwartz winners for incomplete profiles.

Corollary 2 Given an incomplete majority grapi, the set PoSEr, rschwartz) CaAN
be computed in polynomial time.

Proof: It follows from Theorem 7 together with the fact that Algdnt Possi-
bleSchwartzWinne¢Algorithm 2) runs in polynomial time, since it performs abgt
m iterations, each iteration considering at mestpairs of candidates. O

By Lemma 2 of [7], the set of the Smith winnérfr an incomplete tournament
G coincides with the set of possible Schwartz winners@dor Therefore, the above
polynomiality result is also subsumed by Theorem 5 of [7].

An equivalent characterization of possible Schwartz wiasays thaPoss(G, rschwartz)
is the smallest subs& of G satisfying this condition: for everg € © and every
X € Q\ 0O, (Z,X) € G. The proof of this result can be found in [23].

To conclude, we have shown that it is easy to compute a suprtee possible
Schwartz winners from the incomplete profile by considetigmajority graph. Re-
garding the quality of this heuristic, similar results camderived as in Section 4.2
since Example 11 can be easily generalized to work for evgenda.

"The Smith winners are the candidates that belong to the Ssetttwhich is the set of candidates that
dominate any candidate not in the set [7].
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6 Computing winners over balanced agendas

We now turn our attention to fair winners, that is, candiddlat win insome balanced
agendasWe study the computational complexity of determining wieethere is com-
pletion of the incomplete preferences such that a givenidateican win in a balanced
tree, i.e., whether he is a possible fair winner.

We recall that the candidates that win in every balanceda@aeaincide with Con-
dorcet winners, thus the candidates that win in every baldagenda for some com-
pletion {espectively all completions) of the preferences coincide with possibé-
spectively necessary) Condorcet winners, and thus they are polyhoonisnd both
for weighted and unweighted profiles, and for majority gaph

Given an incomplete weighted profil, since every balanced agenda is also an
agenda, we have thavery possible fair winner is also a possible Schwartz wirive
already know from Theorem 5 thdétermining whether a given candidate i$osg P,
TSchwartz) 1S INtractable. We will now show that this remainsadso when we require
that the agenda is balanced.

Theorem 8 Given a fixed numbei of candidates withn > 3 and an incomplete
weighted profileP, deciding if a candidate i® possible fair winner forP is NP-
complete.

Proof: We use the same construction as in the proof of Theorem 5.nGhe
profile constructed there, the only possible fair agendaghich B wins are those in
which A plays against’, and (at some later poinfj then plays against the winnexll
the additional candidates will be defeatedAyB, andC so can be placed anywhere
in the fair agenda. ]

The computational complexity adetermining whether a given candidate is the
necessary fair winneiemains an open question, just thecomplexity of computing
necessary Schwartz winners. However, we know that, sinegydalanced agenda is
also an agenda&yvery necessary fair winner is also a necessary Schwartewin

7 Related work

Since we have studied a number of different issues (fair ariswith complete profiles,
possible and necessary winners for voting trees and Schviienn incomplete profiles
and from incomplete majority graphs), the related work spaaveral areas of research.
We therefore structure this section according to the kintbpfc studied.There are
three related streams of work: voting rules with incomppetferences, computational
aspects of voting trees, and computing winners from incetegburnaments.

7.1 Computing voting rules with incomplete preferences

We have given several results about voting trees and the @thwle when voters’
preferences are incomplete. The notions of possible anessacy winners for vot-
ing rules, as well as the notions of possible and necessangd@oet winners, were
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introduced by Konczak and Lang [21]. The computational clexify of computing
possible and necessary winners for many common voting naesthoroughly stud-
ied by Xia and Conitzer [38], by Betzler and Dorn [5], and byuBweister and Rothe
[2]. We complete the picture by adding results concernirtgngatrees and Schwartz.
Moreover, we consider both the standard case of incomplefidgs and the case of
incomplete majority graphs, which leads to a superset oféte of possible winners
which is easier to computeThe complexity ofdetermining whether a given candi-
date is a possible or necessary winner &ilas been considered Rini et al. [27] for
the STV rule. Moreover, they give a preference elicitatioagedure which focuses
just on the set of possible winners. The problem of decidimgeference elicitation
is over (that is, the problem of determining if the remainimges can be caso that
a givencandidate does not wirtjas been previously investigatatso by Conitzeet
al.[10, 11, 36].

7.2 \oting trees

We have considered the computational complexity of det@ngipossible winners for
voting trees. A special case of the possible winner probtewhien a subset of voters
provide complete votes and the other voters provide emptigsvdn such situations,
determining whether a given candidate is a possible wimeguivalent to deciding
whether there is a constructive coalitional manipulationthis candidate. Conitzer
et al. [11] have investigated the complexity of weighted coatiibmanipulation for
V(T) and found out that the latter problem is polynomial. We prthet the more
general possible winner problem f&¥(7") is NP-complete for weighted voters and 3
candidates or more.

Vu et al.[35] consider the following problem. The input consists &k of candi-
dates and a collection of pairwise winning probabili{ieg ) representing the probabil-
ity that candidateé beats candidatesin a pairwise election; the problem (called “tour-
nament schedule control”) consists of designing a votieg satisfying some given
conditions (such as balancedness) that maximizes the mgrpriobability of a target
candidate. It is shown ([35], Theorems 1 and 3) that findinglarced tree maximiz-
ing the probability that a given candidate wins is NP-haveef the pairwise winning
probabilities are all i{0, 0.5, 1}. Our fair winners correspond to winners for which the
maximum winning probability over all balanced treed jsvhen the probability ma-
trix is composed only 0f’'s and1’s (for any two candidates, we know with certainty
which of them beats the other in a pairwise comparison). Wérethe NP-hardness
result of [35] still holds when winning probabilities abél, that is, whether comput-
ing fair winnersis NP-hard,is still an open problemHowever, Vassilevska Williams
[37] has shown that, if we allow only some of the matches betwgayers, then the
problem of determining if a candidate is a fair winner is Ndtaplete. Moreover, she
has shown that if a candidate satisfies certain conditibey,dre a fair winner and it is
possible to construct in polynomial time a balanced treehictvthis candidate wins.
For example, if a candidaté has a number of outgoing edges in the majority gréph
that is greater than or equal to the number of outgoing edbegeoy candidate3 that
beatsA in G, then A is a fair winner and it is possible to compute in polynomiadei
a binomial spanning arborescenca®footed inA [37].
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We have given some slightly different complexity resultf3s] and [39] for certain
problems about voting trees with incomplete preferencelse differences concern
mainly the nature of the incomplete preferences. In [35, itiput is a probability
matrix specifying, for every pair of candidatesy, how likely it is thatz beatsy.
In Sections 4.2 and 5.2, we start from an incomplete majaigph, therefore the
‘qualitative’ counterpart of [35]. In [39] and in Sectionsldand 5.1, the input is a
collection of partial orders over the set of candidates.

Hazonet al. [20] also address the maximization over all voting treeshefrob-
ability that a given candidate wins the election, and shoat ghmodified version of
the problem of designing a tree such that the probabilitydalgiven candidate winse
greater than or equal to a certain vals®&lP-hard.

7.3 Incomplete tournaments

Brandtet al. [7] generalize several tournament solutions to incompietenaments,
and study their computational complexity. Among the conedipey study there are
the Smith set [7] and the Schwartz set (which are known tocidénfor complete
tournaments). Therefore, their input is an incompletentanrent, just as we study
in Section 3.2. By Lemma 2 of [7] and Definition 15, the set af ®mith winners
for an incomplete tourname6t defined as in [7] coincides with the set of our possible
Schwartz winners fofz. Therefore, our polynomiality result (Corollary 2) is subsed
by their Theorem 5. Note that these two works have been desdlindependently
(both conference papers were published in 2007) with velfferéint starting points
and motivations.

Since the Schwartz set is contained in the Smith set evemémniplete tourna-
ments (Theorem 1 in [7]), we may wonder whether it coincidéh the set of neces-
sary Schwartz winners. However, this does not hold; for gdaptonsider the graph
G with four candidatesi, B, C, D, and the edged >,, B, B >,, C, andC >,, A:

A is in the Smith set fo&, but from our Theorem 64 is not a necessary Schwartz
winner.

8 Conclusions and future work

We have considered multi-agent settings where agent®metes may be incomplete
and are aggregated using voting trees. We have addressedsvaomputational is-
sues of determining winners for complete and incompletélpsy as well as majority
graphs.

All our complexityresultsabout determining the various types of winnare sum-
marized in Table lin the first four rows we consider the voting tree rule asdedia
with a fixed tree {(7')) with incomplete preferences, as well as the case of bathnce
trees. The following three rows concern the Schwartz rutktha fair winner determi-
nation when the agents’ preferences are incomplete.

We first considered voting trees when the tree is fixed,W.€I,), when the agents’
preferences are incompleteys 1, 2, 3, and 4f Table 1). In this context we have
shown that, if we assume we know the agents’ prefereimctge formof incomplete
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incomplete weighted profiles incomplete majority
(numberof candidates) graphs
Possible winner fot/ (T") NP-complete & 3) (Th. 2) P (Th. 4)
Necessary winner fov' (T') coNP-completeX 4) (Th. 3) P (Th. 4)
Possible winner fo#/ (T'), T' balanced | NP-complete® 3) (Th. 2) P(Th. 4)
Necessary winner fov'(7'), T' balanced ? P(Th. 4)
Necessary Schwartz winner ? P (Cor. 1)
Possible Schwartz winner NP-complete & 3) (Th. 5) P (Cor. 2)
Possible fair winner NP-complete % 3) (Th. 8) ?

Table 1: Complexity of winner determination. All the polyna@l results forV (T')
hold for simple voting trees.

majority graphs, it is polynomial to compute both the neagsand the possible win-
ners. However, if we assume that agents’ preferences aressqu by an incomplete
weighted profile, then possible and necessary winners anpattionally intractable
to compute. We have also shown that possible winners agtatile to compute even
when the agenda is balanced. The same results have been alsowin [39] in the
case of incomplete unweighted profiles with an unboundedoeumf candidates.

We also evaluated experimentally the quality of our heigrist compute possible
winners, showing that it performs very well in every case.

We then analyzed the Schwartz rule in the case of incompletiegncegrows
5 and 6 of Table 1) When the preferences are expressed via an incomplete tgajori
graph, itis easy to find possible and necessary Schwartznsnne., those candidates
that are Schwartz winners in some completion or in alladbmpletions of the prefer-
ences, respectivelyOn the other hard, when the agents’ preferences are erpress
an incomplete weighted profile, it is intractabledeterminef a givencandidate is a
possible Schwartz winner. These two results imply thatyeeandidate has an incen-
tive to participate in the electiowhich is desirable. If it were easy to find the set of
possible Schwartz winners, then a candidate that was nbissé¢t,.e., that is a loser,
might choose not to participate.

We also have defined fair winners, i.e., candidateswlrain at least ondalanced
agenda. The problem afetermining whether a given candidate is a fair winner for a
given complete profile is an open probléiat we intend to investigate in the future.
We have also analyzed the complexityddtermining whether a given candidate is a
possible fair winnewhen the agents’ votes are incomplete and weighted, and vee ha
shown that this problem isitractable(row 7 of Table 1).

The computational complexity of determining necessarywaetr winners is re-
lated to the problem of testing whether constructive cdmgrpossible.This problem
is polynomial-time solvablér some classes of incomplete profiles [29]. Nevertheless,
it remains open in general and needs to be studied furthem weeonsider incomplete
profiles. However, we have showhat it is polynomial-time solvablé we consider
incomplete majority graphs.

An interesting direction for future work is deciding whiclraidates are most
likely to win, which is related to probabilistic approachesvoting theory. We also
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plan to study other forms of uncertainty in the applicatiénhe voting rule, such as
uncertain weights in a scoring rule aandcertainty about the voting rule.
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