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Abstract

In multiagent settings where agents have different preferences, preference ag-
gregation can be an important issue. Voting is a general method to aggregate pref-
erences. We consider the use of voting tree rules to aggregate agents’ preferences.
In a voting tree, decisions are taken by performing a sequence of pairwise compar-
isons in a binary tree where each comparison is a majority vote among the agents.
Incompleteness in the agents’ preferences is common in manyreal-life settings
due to privacy issues or an ongoing elicitation process. We study how to determine
the winners when preferences may be incomplete, not only forvoting tree rules
(where the tree is assumed to be fixed), but also for the Schwartz rule (in which
the winners are the candidates winning for at least one voting tree). In addition,
we study how to determine the winners when only balanced trees are allowed.
In each setting, we address the complexity of computing necessary (respectively,
possible) winners, which are those candidates winning for all completions (respec-
tively, at least one completion) of the incomplete profile. We show that many such
winner determination problems are computationally intractable when the votes are
weighted. However, in some cases, the exact complexity remains unknown. Since
it is generally computationally difficult to find the exact set of winners for voting
trees and the Schwartz rule, we propose several heuristics that find in polynomial
time a superset of the possible winners and a subset of the necessary winners which
are based on the completions of the (incomplete) majority graph built from the in-
complete profiles.

1 Introduction

In multiagent settings, agents generally have different preferences, and it can be im-
portant to aggregate these preferences, i.e., to select a collectively desirable candidate

∗This paper is a revised and extended version of the conference papers [23, 28].
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from a set of candidates. Candidates could be, for example, potential presidents, joint
plans, allocations of goods or resources, etc. A general method for aggregating prefer-
ences in multi-agent systems, in order to take a collective decision, is to run an election
among the different options using a voting rule.

Eliciting preferences from agents, to be able to run such an election, is a typical
problem in multiagent systems, such as combinatorial auctions and voting systems.
However, preference elicitation is often difficult, time-consuming and costly. Agents
may be unwilling to reveal all their preferences due to privacy reasons, or due to the set
of alternatives being large.Fortunately, we can often determine the outcome before all
the preferences have been revealed [10]. For example, it maybe that one option has so
many votes that it will win whatever happens with the remaining votes.

In this paper, we consider the class ofvoting tree rules (for short, we shall often
sayvoting trees, identifying the tree with the associated rule). These are sometimes
called “sequential majority voting” or“Cup.” In addition, we consider the Schwartz
rule, which can be characterized asa voting tree rulewith an undefined tree since
the Schwartz winners are exactly those who win forat least one voting tree. We also
consider fair winners, i.e., those candidates who win when thevoting treeis balanced.
Fairness comes from the fact that bothfinalistswill have faced the same number of
competitions, or the same number plus or minus one.

We consider the computation of the above rules when voters’ preferences are in-
complete, i.e., represented by partial orders on the set of candidates.We focus on the
problem of determining if a given candidate is thenecessary winner(i.e., the candidate
who wins for any completion of these partial preferences) and apossible winner(i.e., a
candidate who wins for some completion of these partial preferences). Determining if a
given candidate is the necessary or a possible winner for voting trees and the Schwartz
rule is likely to be computationally hard. We show that they are indeedNP-complete
when the input consists of weighted votes,and also when we require that the tree is bal-
anced.We thereforeintroduceheuristics, that find a superset of the possible winners
and a subset of the necessary winners, where the set of completions of the incomplete
preferences is replaced by the completions of theincomplete majority graphcomputed
from the incomplete preferences. We discuss the links between possible (respectively,
necessary) winnersfrom incomplete profiles and those returned by the heuristics, and
we show that theseheuristicscan be computed in polynomial time.

Our results concern several issues in computational socialchoice: voting trees,
voting under incomplete knowledge, and incomplete tournaments. Voting trees have
received increasing attention of late in the literature. For example, they have been
considered by Trick [34], Procacciaet al. [30, 31], Conitzeret al. [9, 11], Xia and
Conitzer [38], Hazonet al. [20], Vu et al. [35], Fischeret al. [16, 17], and Vassilevska
Williams [37]. The computational aspects of incomplete tournaments have been thor-
oughly investigated by Brandtet al. [6, 7]. Voting under incomplete knowledge has
received even more attention [10, 21, 27, 38, 36, 19, 4, 3, 5, 2, 8]. We will discuss some
of these papers in Section 7.
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2 Voting trees, the Schwartz rule, and fair winners

We define some basic notionsrelated to voting trees. We first focus on unweighted
profilesand then extend all the notions to weighted votes.

2.1 Preferences, profiles and majority graphs

We assume that each agent’spreferencesare specified by a strict total order(TO), that
is, by an asymmetric, transitive and complete order,on a set ofm candidates. The
candidates are taken from a setΩ, and they represent the possible options over which
agents vote.

Definition 1 (profile) A profileP onΩ is a collectionof n strict total ordersoverΩ,
i.e., P = (P1, . . . , Pn), wherePi is the preference relation(or vote) of agent(also
calledvoter) i.

For the sake of simplicity we assumethroughout the paperthat the numbern of
voters is odd.Our results can be extended to the case wheren is even, but at the price
of some complications that arise with the handling of ties.

Profiles are denoted using the following notation: ((A > B > C); (A > C > B);
(C > A > B)) means that voter 1 prefersA toB andB toC, etc.

Definition 2 (voting rule and correspondence)A (deterministic)voting rule is a map-
ping from the set of profiles to the set of candidates.A voting correspondence is a
mapping from the set of profiles to the set of nonempty sets of candidates.

A voting rule computes a single winner. On the other hand, a voting correspondence
can compute multiple winners. For the sake of simplicity, wewill use the word “rule”
even for correspondence where it does not cause any ambiguity.

Given a profileP , the induced majority graphM(P ) is defined as follows.

Definition 3 (majority graph) LetP be a profile. The majority graph induced byP ,
denoted byM(P ), is the graph whose set of vertices is the set of candidatesΩ and
where, for allA,B ∈ Ω, there is a directed edge fromA to B (denoted byA >P

m B,
or by the abbreviated formA >m B) if and only ifa strict majority of votersprefersA
toB.

The majority graphM(P ) induced from any profileP is asymmetric, but it is not
necessarily transitive. Moreover, since the number of voters is odd,M(P ) is complete:
for eachA andB 6= A, eitherA >m B or B >m A holds. Therefore,M(P ) is a
complete and asymmetric graph, also called atournamentonΩ [24].

2.2 Voting trees

Given a set of candidates, a voting treeis a binary tree (also called anagenda) with
one candidate per leaf, such thateach candidate appears on at least one leaf. This
assumption can be made without loss of generality: if a candidate does not appear
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anywhere in the tree then they can be removed from the set of candidates. In addition
if every candidate appears onexactlyone leaf then we say that the voting tree is a
simple voting tree. Each internal node represents the candidate that wins the pairwise
election between the node’s children. The winner of each pairwise election is computed
by the majority rule, whereA beatsB if and only if there is a majority of voters
statingA > B. The candidate at the root of the agenda is the overall winner. Given a
binary treeT , we will denotebyV (T ) (and sometimes withrV (T )) thevoting tree rule
inducedby T , and given a profileP , we will denote byV (P, T ) the candidatethat,
given profileP , wins in treeT . Note that, because the number of voters is odd, ties
never happen in the pairwise elections, so thatV (T ) is a (deterministic) voting rule.
We denote byV the class of allvoting treerules.

Example 1 Let Ω = {A,B,C,D}. Consider the agendaT shown in Figure1(a),
whereA first plays againstD, the winner, calledw1, plays againstC, and then the
winner, calledw2, plays againstB. The winner, calledw3, is the overall winner. Con-
sider the profileP = ((A > B > C > D); (D > A > B > C); (C > D > B > A)).
Its induced majority graph is shown in Figure1(b). ThereforeV (P, T ) = B. 2

w1

A

DB

C

(b)(a)

A D

C

Bw2

w3

Figure 1: An agenda and a majority graph.

2.3 The Schwartz rule

Given a profileP , a Schwartz winner [32] is a candidate that wins, according to the
preferences ofP , in some agenda.

Definition 4 (Schwartz winner) Given a profileP , a candidateA is a Schwartz win-
ner if and only ifthere exists a binary treeT such thatV (P, T ) = A.
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The Schwartz rule (more precisely, correspondence)denoted byrSchwartz maps
any profileP to the set of all Schwartz winners forP .

Example 2 Consider the profile presented in Example 1, i.e.,P = ((A > B > C >
D); (D > A > B > C); (C > D > B > A)). Thenthe set of Schwartz winners for
P is {A,B,C,D}. 2

The set of Schwartz winners coincides with thetop cycleof the majority graph [26].
The top cycle of a majority graphG is the set of maximal elements of the reflexive and
transitive closureG∗ of G. An equivalent characterization of Schwartz winners,that
we use later in this paper, is the following:

Theorem 1 (see e.g. [26, 24])Given a majority graphG, a candidateA is a Schwartz
winnerif and only if,for every other candidateC, there exists a path fromA toC.

From the characterization above, since finding a path from a single source to all
other candidates is polynomial [13], computing the set of the Schwartz winners is poly-
nomial.

Note thatvoting tree rules, as well as Schwartz, are rules that can be computed
from the majority graph. Among the most well-known rules computable from the ma-
jority graph, the Schwartz rule is the most liberal. At the other extreme, the Condorcet
set contains the Condorcet winner when there exists one, andis empty otherwise; we
recall that the Condorcet winner is a candidate who beats every other candidate in the
majority graph. In particular, the Schwartz set contains the set of Copeland winners1

[22], as well asthe uncovered set2, the Banks set [1], and theSlater set3 [33]. Finally,
all these rules are Condorcet-consistent: when a CondorcetwinnerA exists, all these
sets coincide with the singleton{A}.

2.4 Fair winners

Schwartz winners are candidates who win in at least one binary tree. However, such
a tree could be very unbalanced and the winner could competeagainst only a few
candidates. This might be considered “unfair”. In the following, we will consider a
voting rulefair if it has a balanced agenda.

Definition 5 (balanced agenda)A balanced agendaT is a binary tree in which each
candidate must appear exactly once in leaves and the difference between the maximum
and the minimum depth among the leaves (the level of imbalance, writtend(T )) is less
than or equal to 1.

Assume that we have a profile of strict total orders. We will say that a candidate is
a fair winner if he wins under some balanced agenda.

1Copeland winners are those candidates who maximize the number of outgoing edges in the majority
graph [12].

2The uncovered set are those candidates that defeat every other alternative either directly or indirectly at
one remove [25].

3We do not give formal definitions for Banks and Slater sets since they do not play any further role in the
paper.

5



Definition 6 (fair winner) Given a profileP , a candidateA is a fair winner if and
only if there exists a balanced agendaT , such thatV (P, T ) = A.

Example 3 Consider the profile presented in Example 1, i.e.,P = ((A > B > C >
D); (D > A > B > C); (C > D > B > A)). The set of the fair winners forP is
{A,D}. In fact, we have only three balanced trees, up to isomorphism: in the balanced
tree whereA plays againstB, andC plays againstD, the winner isA, while in the
other two balanced trees the winner isD. 2

Notice that the Condorcet winner is a fair winner since they win in all trees, and
thus also in balanced ones. Moreover, a fair winner is a Schwartz winner since there
is a tree, in fact a balanced tree in which they win. Moreover,while there could be no
Condorcet winner, there is always at least one fair winner, because there always exist
at least one balanced tree. Notice also that the candidates that win in every balanced
tree are Condorcet winners.

2.5 Weighted votes

Until now we have considered unweighted votes. However, weighted voting systems
are used in a number of real-world settings like shareholdermeetings and elected as-
semblies. An agentwith integer weightk can be viewed ask agents voting identically.
Although human elections are often unweighted, the addition of weights make voting
schemes more general. Weights are useful in multiagent systems where we have dif-
ferent types of agents and some agents are more important than others when taking
a decision. Moreover, the weighted case informs us about unweighted case when we
have probabilistic information about votes [9]. For example, in [9] Conitzer and Sand-
holm show that, if coalitional manipulation is hard in the weighted case with complete
information about the votes, evaluating a candidate’s winning probability is hard in the
unweighted case when there is uncertainty about the votesprovided we permit per-
fect correlations between the votes (that is, some votes areuncertain but known to be
identical).

We now generalize the notions presented above in this section assuming thateach
agent may have a weight.

Definition 7 (weighted profile) A weighted profile is a profile where each agent has a
given integer weight.

Note that the unweighted case considered previously is a special case of weighted
case whereall the agents’ weights are equal.

For simplicity, we assume that the sum of the weights of the agents is odd.

Definition 8 (corresponding unweighted profile) Given a weighted profileP , its cor-
responding unweighted profileU(P ) is the profile obtained fromP by replacing every
ordering, sayO, expressed by an agent withweightk, by k agents with weight1 all
with the same orderingO.
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Example 4 Consider the profile shown in Example 1, i.e.,P = ((A > B > C >
D); (D > A > B > C); (C > D > B > A)). Assume that the first agent has
weight1, and that the second and third agents have weight2. Then the corresponding
unweighted profile isU(P ) = ((A > B > C > D); (D > A > B > C); (D > A >
B > C); (C > D > B > A); (C > D > B > A)). 2

Given a weighted profileP , the inducedmajority graphM(P ) is the majority
graph of the corresponding unweighted profile ofP , i.e.,M(P ) = M(U(P )).

Since the sum of weights is odd,M(P ) is complete: for eachA andB 6= A,
eitherA >m B or B >m A holds. Therefore, as for unweighted profiles,M(P ) is a
tournament.

Example 5 Consider the weighted profile of Example 4. The majority graph induced
by such a profile is shown in Figure 1 (b). 2

Voting treesfor weighted profiles work as in the case of unweighted profiles, except
that the winner of every pairwise competition is computed bythe weightedmajority
rule (and not by the classical majority rule), whereA beatsB if and only if there is a
weighted majority of votes statingA > B.

3 From incomplete profiles to incomplete majority graphs

When votes are only partially known, applying a voting rule may result in some un-
certainty about the winner. We first define what we mean by an incomplete profile;
then we will make clear what we mean by applying a voting rule to an incomplete
preference profile, via the definition of possible and necessary winners. Finally, in the
specific case of voting trees, we defineheuristics that find a superset of possible win-
ners and a subset of necessary winners by consideringthe incomplete majority graph
induced from the incomplete profile.

3.1 Incomplete profiles, possible and necessary winners

Previously, weassumedagents gave complete preferences overcandidates. We now
consider the case whereagents’ preferences may only be partially known.

Definition 9 (incomplete profile) Let Ω be a set ofcandidatesand{1, . . . , n} a set
of voters. An incomplete preference relation> on Ω is a strict order onΩ, that is,
a transitive and irreflexive relation onΩ. An (n-voter) incomplete profileon Ω is a
collectionP = (P1, . . . , Pn) of incomplete preference relations onΩ.

Example 6 Assume there are three voters and three candidatesA, B, andC, then a
possible incomplete profile is ((A > B > C); (B > A); (A > B)). 2

This definition naturally extends to weighted voters: a weighted incomplete profile
is a weighted collection of incomplete preference relations.
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Definition 10 (complete extension (aka completion))Let P = (P1, . . . , Pn) be an
incomplete profile over a set of candidatesΩ. A complete extension (or completion)R
of P is a tuple(R1, . . . , Rn) such that everyRi is a strict total orderonΩ containing
Pi. We will denote byExt(P ) the set ofall complete extensionsofP .

Definition 11 (possible and necessary winners)Let r be a voting rule,P be an in-
complete profile andA a candidate.A is a possible winnerfor P andr, denoted by
A ∈ Poss(P, r), if there exists a completionQ of P such thatr(Q) = A. A is the
necessary winnerfor P andr, denoted byA ∈ Nec(P, r), if for any completionQ of
P we haver(Q) = A.

Possible and necessary winners were introduced in [21]. Xiaand Conitzer showed
that, for unweighted votes and an unbounded number of candidates,for most com-
monly used voting rules computing possible winners is NP-hard, whilst computing
necessary winners is coNP-hard for some voting rules but polynomial for others [38].
Also, Betzler and Dorn [3, 5], and Baumeister and Rothe [2], showed that, for an un-
bounded number of candidates and unweighted votes, computing possible winners is
NP-hard for some classes of scoring rules and polynomial forothers.

These definitions apply to any voting rule, and thus toV(T) and Schwartz.For
instance,A is apossible Schwartz winnerfor P if it is a possible winnerwith respect
to the incomplete profileP and the Schwartz rule, i.e.,A ∈ Poss(P, rSchwartz).

We also define possible and necessary Condorcet winners [21], and possible and
necessary fair winners:

Definition 12 (possible and necessary Condorcet winners)LetP be an incomplete
profile andA a candidate,A is a possible Condorcet winnerfor P if there exists a
completionQ of P such thatA is the Condorcet winner forQ, and thenecessary
Condorcet winnerfor P if for every completionQ ofP , A is the Condorcet winner for
Q.

Definition 13 (possible and necessary fair winners)Let P be an incomplete profile
andA a candidate,A is a possible fair winnerfor P if there exists a completionQ of
P such thatA is a fair winner forQ, and thenecessary fair winnerfor P if for every
completionQ ofP , A is the fair winner forQ.

3.2 Winners defined from the majority graph

We now consider an abstraction of the incomplete profile: theincomplete majority
graph.

Definition 14 (incomplete majority graph) Given an incomplete (weighted) profile
P withn voters, the incomplete majority graphM(P ) induced byP is the graph whose
set of vertices isΩ and where there is an edge fromA to B, denoted byA >P

m B (or
by the abbreviated formA >m B), if the number of voters (or the sum of the weights
of the voters) who preferA toB is greater thann/2 (half of the voters’ total weight).

M(P ) is an incomplete asymmetric graph (orweak tournament) overΩ.
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Example 7 Consider the incomplete profile shown in Example 6, i.e., ((A > B > C);
(B > A); (A > B)), and assume that the weight of the first agent is1 and the weightof
every other agent is2. The majority graph induced by this incomplete weighted profile,
thatwe callQ, is the graph with three nodesA, B, andC and only one edgeA >Q

m B.
2

A completionof M(P ) is a (complete) tournament containingM(P ). Note that
the set of all completions ofM(P ) is asupersetof the set of majority graphs induced
by all possible completions ofP . Formally, letExt(M(P )) be the set of all complete
extensions ofM(P ) andM(Ext(P )) = {M(R) | R ∈ Ext(P )} the set of all majority
graphs induced from the extensions ofP . Then, the following result holds.

Proposition 1 M(Ext(P )) ⊆ Ext(M(P )).

This inclusion can be strict, which means that moving fromP to M(P ) implies
a loss of information. An incomplete majority graph throws away information about
how individual agents have voted. For example, we lose information about correlations
between votes. Such correlations may prevent a candidate from being able to win.

Example 8 Consider an incomplete profileP with just one agent andΩ = {A,B,C},
where the only vote isA > B (the relations betweenA andC, and betweenB and
C have not been specified). The induced majority graphM(P ) has only oneedge
from A to B. In this situation, there is a completion ofM(P ) (with edgesfrom B
to C and fromC to A) and an agenda whereB wins (we first compareA with C, C
wins, and thenC with B, andB wins). However, there is no way to complete profile
P and set up the agenda so thatB wins. In fact, the possible completions ofP are
A > B > C, A > C > B, andC > A > B, and in all these casesB is always beaten
at least byA. Hence, there is no agenda whereB wins. Note that the completion of the
majority graph which allows us to conclude thatB can win, cannot be obtained from
any possible completion of the agent’s preferences ofP since it violates transitivity.2

Clearly, the more “complete”P is, the more completeExt(P ) is (M(P ) can even
be complete withoutP being so) and the betterM(P ) approximatesM(Ext(P )).

For any ruler based on the majority graph, includingV(T ) and Schwartz, we can
define notions of the possible (respectively, necessary) winner from the incomplete
majority graph.

Definition 15 (possible/necessary winners from the incomplete majority graph) Let
Q be a complete profile,A a candidate, andr a voting rule based on the majority
graph, that is, there is a functionfr such thatr(Q) = fr(M(Q)). LetP be an incom-
plete profile,A is a possible winnerfor M(P ) andr if there exists a completionM ′

of M(P ) such thatA = fr(M
′). A is thenecessary winnerfor M(P ) and r if for

every completionM ′ of M(P ) we haveA = fr(M
′). We denote by Poss(M(P ), r)

and Nec(M(P ), r)4 respectivelythe set of possible and necessary winners forM(P )
andr.

4Note that, given a voting ruler, Poss(x, r) andNec(x, r) represent two different functions, depending
on whether the first argumentx is a profile or a majority graph.
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Note that these notions of possible and necessary winners only apply to rules that
are based on the majority graph. Note also thatPoss(M(P ), r) ⊇ Nec(M(P ), r), and
that when the majority graph is complete,Poss(M(P ), r) = Nec(M(P ), r) = r(P ).

We also define the possible and necessary Condorcet winners from a majority graph
in a similar way:

Definition 16 LetP be a profile andA a candidate,A is apossible Condorcet winner
for M(P ) if there exists a completionM ′ ofM(P ) such thatA beats every other can-
didate inM ′. A is thenecessary Condorcet winnerfor M(P ) if for every completion
M ′ of M(P ), A beats every other candidate inM ′.

We will denote byPossCond(P ) andNecCond(P ) (respectively, PossCond(M(P ))
andNecCond(M(P ))) the possible and necessary Condorcet winners from the profile
P (respectively, from the majority graphM(P )).

Example 9 Consider the profileP given in Example 7. We have that NecCond(P ) =
Nec(P, rSchwartz) = ∅, PossCond(P ) = {A,C}, and Poss(P, rSchwartz) = {A,B,C}.
Notice that in this example the possible and necessary Schwartz and Condorcet win-
ners obtained by considering the completions ofP coincide with those obtained by
considering the completions of the majority graph induced by P . However, as shown
in Example 8, this is not true in general.

Given an incomplete unweighted profileP and the incomplete majority graphG
induced byP , that is,G = M(P ), we already observed that the completions ofG
are a (possibly proper) superset of the set of complete majority graphs induced by all
possible completions ofP . This observation leads to the following results.

Proposition 2 LetP be an incomplete weighted profile andr be a rule based on the
majority graph.

1. Poss(M(P ), r) ⊇ Poss(P, r).

2. Nec(M(P ), r) ⊆ Nec(P, r).

3. PossCond(P ) = PossCond(M(P )).

4. NecCond(P ) = NecCond(M(P ))

Proof: We first give the proof whenP is unweighted.Points 1 and 2 are straight-
forward consequences of Proposition 1.

For point 3, if a candidateA is a possible Condorcetwinnerfor P then, by Propo-
sition 1, it follows that it is also a possible Condorcet winner for M(P ). Also the
converse holds.If a candidateA is a possible Condorcet winner forM(P ), then there
must be one or more completions of the majority graph whereA is the Condorcet win-
ner, i.e., where there is an outgoing edge fromA to all the other candidates. We now
show that there is completion ofP in whichA is the Condorcet winner. For this we
completeP by first adding, to every agent preference relation>i and every candidate
C such that neitherA >i C norC >i A, the relationA >i C. Let >′

i the relation
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obtained. First, we claim that>′
i has no cycles. Assume that>′

i has a cycle, then there
exists an agenti and a cycle in>′

i involvingA (otherwise the cycle would already be in
>i, which is not possible because>i is a strict partial order). Without loss of generality,
this cycle isA >′

i C1 >′
i C2 >′

i . . . >
′
i Cm >′

i A, for some{C1, . . . , Cm} ⊆ Ω\{A},
wherem ≥ 1. Because everyCi is different fromA, Ci > Ci+1 was already in>i, as
well asCm > A, that is,C1 >i C2 >i . . . >i Cm >i A. Since>i is transitive, this
implies thatC1 >i A. This contradicts the fact thatA >i C1 was added to>i, because
the relation betweenA andC1 wasnot unspecified in>i. Now, for every agenti, let
>∗

i be the transitive closure of>′
i. Because>′

i has no cycles,>∗
i has no cycles and is

a partial order. Now, we complete>∗
i by instantiating all remaining unspecified pairs

in an arbitrary way that preserves transitivity. Let us denote byP ′ such a completion
of P . According to Proposition 1 we have,M(P ′) ∈ Ext(M(P )), therefore inM(P ′)
there is an outgoing edge fromA to all the other candidates and thusA is the Condorcet
winner forP ′, and therefore a possible Condorcet winner forP .

Now for point 4, the fact that the necessaryCondorcet winner fora majority graph
M(P ) is the necessary Condorcet winner for the profileP is an obvious consequence
of Proposition 1. For the converse inclusion,let us supposeA is not the necessary
Condorcet winner forM(P ). Then there existsB such that(A,B) 6∈M(P ), that is, in
the profile we have#{voter i | A >i B} <

n
2 . Let us complete the profile by adding

B >j A for all votersj for which the relation betweenA andB is unspecified: we get
an extension ofP in which a majority of voters prefersB to A, thereforeA is not the
necessary Condorcet winner forP .

The proof can be easily extended to weighted profiles. LetP be an incomplete
weighted profile,Poss(M(P ), r) ⊇ Poss(P, r), Nec(M(P ), r) ⊆ Nec(P, r), Nec-
Cond(M(P )) = NecCond(P ), andPossCond(M(P )) = PossCond(P ). In fact, obvi-
ously,M(P ) = M(U(P )), and it is easy to show thatNecCond(P ) =NecCond(U(P ))
andPossCond(P ) = PossCond(U(P )). We recall thatU(P ) is the corresponding un-
weighted profile ofP (see Definition 8). 2

Notice that there are cases in which the subset relationPoss(M(P ), rSchwartz) ⊇
Poss(P, rSchwartz) is strict. In fact, a candidate can be a Schwartz winner for a com-
pletion ofM(P ) which is not induced by any completion ofP , as shown previously in
Example 8.

Note that ifr is a Condorcet-consistent rule, thenNecCond(P ) ⊆ Nec(P, r) and
PossCond(P ) ⊆ Poss(P, r).

Notice also that the set of winners from an incomplete profileand from its incom-
plete majority graph coincide when we allow also for completions of the preferences
that may contain cycles, i.e., when we allow that the voters are irrational. Such pref-
erences do occur in practice and have been explored in the context of computational
social choice [14, 15].
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4 Computing winners with incomplete preferences in
voting trees

We now analyze the computational complexity of computing the various kinds of win-
ners invoting treeswhen preferences are incomplete5 . We will consider first winners
from an incomplete profile and then winners from an incomplete majority graph.

4.1 Incomplete profiles

Assume agents’ preferences have been specified by an incomplete weighted profile
P . It is possible to show that, when we have3 or more candidates, it is difficult to
determine if a candidate is a possible winnerfor V (T ), even ifT is a balanced tree.

Theorem 2 Given a fixed numberm of candidates withm ≥ 3, an incomplete weighted
profileP and any agendaT on these candidates, deciding if a candidate is in Poss(P,
rV (T )) is NP-complete,even if every candidate appears exactly once inT , and even if
T is a balanced tree.

Proof: We give a reduction from the number partitioning problem. Consider the
treeT whereA plays againstB and the winner thus plays againstC. We have a bag of
integers,ki with sum2k and we wish to decide if they can be partitioned into two bags,
each with sumk. We will show that we can build an election where we can complete
the incomplete weighted profile so thatC wins (i.e.,C is a possible winner)if and
only if such a partition exists. We suppose the following votes are given: 1 vote for
C > B > A of weight1, 1 voteC > A > B of weight2k−1, and 1 voteB > C > A
of weight2k − 1. Hence,C is ahead ofA by a weight of4k − 1, C is ahead ofB
by a weight of 1andB is ahead ofA by a weight of 1. For eachki in the bag of
integers, we have an incomplete vote of weight2ki in whichA > C is fixed, but the
rest of the vote is incomplete. We are sureA beatsC in the final result bya weight of
1 whatever completion takes place. We now show that the incomplete weighted profile
can be completed so thatB beatsA andC beatsB (andthusC is a possible winner)if
and only ifthere is a partition of sizek.

Assume that such a partition exists, and that votes in one partition haveA > C > B
and the votes in the other haveB > A > C. Thus,B beatsA overall andC beatsB.
ThusC is the winner. On the other hand, suppose there is a way to complete the
preferences so thatC wins. This can only happen ifB beatsA andC then beatsB. In
fact, if A beatsB in the first round,A will beatC in the second round, since we have
shown before thatA beatsC overall, and thenA will be the final winner. ForC to beat
B, at least half the weight of incomplete votes must rankC aboveB. Similarly, forB
to beatA, at least half the weight of incomplete votes must rankB aboveA. Since all
votes rankA aboveC, B cannot be both aboveA and belowC. Thus precisely half
the weight of incomplete votes ranksB aboveA and half ranksC aboveB. Hence, we
have a partition of equal weight. Therefore, we can completethe incomplete profile so
thatC wins if and only if there is a partition of sizek. The result can also be extended

5For a complete treatment of the basic notions of complexity theory, see [18].
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to the trees with more than3 candidateswhich extendT or a tree isomorphic to it, by
placing any additional candidate at the bottom of every voters’ preference ordering (it
does not matter how).

We can use the same construction above whenT is a balanced tree. Given the
profile constructed here, the only possible balanced trees in whichC wins are those
in whichA plays againstB, and the winner then plays againstC. All the additional
candidates will be defeated byA, B andC, so that they can be placed anywhere in the
balanced tree. 2

In [29] it is shown that, when we have 3 candidates and the agenda is a simple
voting tree, the necessary winner from the incomplete profile and from the incomplete
majority graph coincide. Therefore, since by Theorem 4, it is polynomial to com-
pute the necessary winner from the incomplete majority graph, it is also polynomial
to compute the necessary winner from the incomplete profile.On the other hand, we
now show that, when we have4 or more candidates, it is a coNP-complete problem to
determine if a candidate is the necessary winner.

Theorem 3 Given a fixed numberm of candidates withm ≥ 4, an incomplete weighted
profileP and any agendaT on these candidates, deciding if a candidate is in Nec(P,
rV (T )) is coNP-complete, even if every candidate appears exactly once inT .

Proof: To show that withat least4 candidates it is coNP-complete to decide if
a candidate wins for every completion of the preferences, wewill consider the tree
T whereA plays againstB, the winner then plays againstC, and the winner of this
match goes forward to the final match againstD. We will reduce number partitioning
to deciding if, given a particular incomplete weighted profile, we can complete such a
profile tomake a given candidate win.

We have a bag of integers,ki with sum2k and we wish to decide if they can be
partitioned into two bags, each with sumk. We construct an incomplete profile where
the following votes are given:1 vote for C > D > B > A of weight 1, 1 vote
C > D > A > B of weight2k − 1, and 1 voteD > B > C > A of weight2k − 1.
For the first number,k1 in the bag of integers, we have a vote forD > B > A > C
of weight2k1. For each other number,ki wherei > 1, we have an incomplete vote of
weight2ki in whichA > C is fixed, but the rest of the vote is incomplete. We are sure
thatA beatsC in the final result by 1 vote whatever completion takes place.Similarly,
we are also sure thatD beatsA, andD beatsB.

If we complete preferences so that in all incomplete votesD beatsC in their pair-
wise election,thenD will win overall. We now show that there is a completion that
makesC win if and only if there is a partition of equal weight.

Suppose there is such a partition and that the complete votesin one partition have
B > A > C and the complete votes in the other haveA > C > B. Thus,B beatsA
overall,C beatsB. We putD in the bottom position in all such completions as far as
possible, and soC beatsD. ThusC is the overall winner.

On the other hand, suppose there is a way to complete the preferences so thatC
wins. This can only happen ifB beatsA, C then beatsB andC finally beatsD. If A
beatsB in the first round,A will beatC in the second round and thenA will be beaten

13



byD. ForC to beatB, at least half the weight of incomplete votes must rankC above
B. Similarly, forB to beatA, at least half the weight of incomplete votes must rank
B aboveA. Since all votes rankA aboveC, B cannot be both aboveA and below
C. Thus precisely half the weight of incomplete votes ranksB aboveA and half ranks
C aboveB, and we have a partition of equal weight.Hence, if there is a partition of
equal weight then bothC andD are possible winners; if not, then onlyD is a possible
winner, therefore the necessary winner. Therefore,D is the necessary winner if and
only if there is no partition in the initial problem.The proof can be extended to all the
trees with more than4 candidates,whenthey extendT or a tree isomorphic to it, by
placing any additional candidate at the bottom of every voter’s preference ordering (it
does not matter how). 2

These results can be compared with Theorem 7 in [9] which states that weighted
constructive manipulation forV (T ) is polynomial. A candidate can be made a winner
by a coalition of weighted votes if it is a possible winner fora specific incomplete
profile consisting of full votes and empty votes. By allowingany kind of incomplete
profile, we increase the computational complexity.

The possible winner (respectively, necessary winner) problem forV (T )was proved
to be NP-complete (respectively, coNP-complete) for unweighted votes and an un-
bounded number of candidates even whenT is balanced [39] and easy to compute for
unweighted votes and a bounded number of candidates [36].

4.2 Incomplete majority graphs

In this Section (unlike the rest of the paper) we focus onsimple voting trees, that is,
voting trees where every candidate appears exactly once.We present an algorithm,
calledWin, for determining, given asimple voting treeT and an incomplete majority
graphG, the set of possible winners (i.e.,Poss(G, rV (T ))). We will represent a simple
voting treeT with a binary treewith a root, that we callroot(T ), a left subtree, called
left(T ), and a right subtree, calledright(T ).

Algorithm Winrecursively takes in input a simplevoting treeT and anincomplete
majority graphG, and it returns a set of candidatesW , which is the set ofpossible
winners. If root(T ) is not empty, and bothleft(T ) and right(T ) are empty, then the
algorithm returnsroot(T ). Otherwise,the set of winners at the root ofT is the set of
all candidates who are possible winners in the left (respectively, right) branch ofT and
who beat at least one candidate who is a possible winner in theright (respectively, left)
branch ofT .

To check whether there exists a necessary winner for an incomplete majority graph
G, it suffices to run the algorithmWin on P ; if it outputs a single candidate, then it
is the necessary winner, otherwise there is no necessary winner. We will call such a
procedureNecessaryWin.

Example 10 We now show how to determine possible and necessary winners given
a fixed simple voting treeby applyingWin. LetΩ = {A, B, C, D, E, F, H, I}
and consider the simple voting treeT over Ω with left(root(T )) = Win(Win({C},
{D}), Win({E}, {F})) and right(root(T )) = Win(Win({A}, {B}), Win({I}, {H})).
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Algorithm 1 : Win
Input : T : a simple voting tree,G: an incomplete majority graph;
Output : W : set of candidates;
if T contains only one nodethen

W ← label(root(T ))

else
W1 ←Win(left(T ), G);
W2 ←Win(right(T ), G);
W ← ∅;
foreach(s, t) ∈ W1 ×W2 do

if s >m t then
W ←W ∪ {s}

else
if t >m s then

W ←W ∪ {t}

else
W ←W ∪ {s, t}

return W

Consider also the incomplete majority graphG with edgesA >m B, A >m C, A >m

D, A >m E, A >m I, E >m F , andI >m H .
The application of Win to the subtree ofT that contains onlyC and D gives

Win({C}, {D}) = {C,D}, becauseG contains no edge betweenC andD. Its ap-
plication to the subtree thatcontains onlyE andF gives Win({E}, {F}) = {E},
becauseG contains an edge fromE to F . Next, the application of Win to the left
subtree ofT gives Win(Win({C}, {D}), Win({E}, {F})) = Win({C,D}, {E}) =
{C,D,E}, becauseE is not beaten by bothC and D, C is not beaten byE and
D is not beaten byE. As for the right subtree ofT , we get Win(Win({A}, {B}),
Win({I}, {H})) = Win({A}, {I}) = {A}. Finally, the application of Win to the root
of T gives Win({C,D,E}, {A}) = {A}, becauseA beats all ofC, D andE in the
graphG. Thus, Win returns{A}. Since the set returned by Win contains only one
candidate,A is also the necessary winner. 2

Theorem 4 Consider a set of candidatesΩ, an agendaT overΩ, and a possibly in-
complete majority graphG overΩ. Then,

• Algorithm Win(T,G) returns Poss(G, rV (T )).

• Algorithm NecessaryWin(T,G) returns Nec(G, rV (T )).

• Both algorithmsrun in polynomial time in the number of candidates.

Proof: Let us first consider AlgorithmWin. We prove by induction that the fol-
lowing induction hypothesis holds for any treeT :
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H(T ): Poss(G, rV (T )) = Win(T,G)

We omitG in H(T ) because the induction is over trees, and not onG.
If T is a tree with a single node, thenH(T ) holds trivially, becauseT contains

only one candidate, namelylabel(root(T )), and we haveWin(T,G) = Poss(G, rV (T ))
= {label(root(T ))}. Now we need to show that ifT is a tree whose left subtree isT1

and right subtree isT2, thenH(T1) andH(T2) imply H(T ). Assume now thatH(T1)
andH(T2) hold.

Assume thatA ∈ Win(T,G). Then eitherA ∈ Win(T1, G) or A ∈ Win(T2, G).
Without loss of generality, assumeA ∈Win(T1, G). Then there exists aB in Win(T2,
G) such thatG either contains an edge fromA to B or no edge betweenA andB.

By the induction hypothesis,A ∈ Win(T1, G) andB ∈ Win(T2, G) imply A ∈
Poss(G, rV (T1)) andB ∈ Poss(G, rV (T2)), which in turn imply that there exist two
complete tournamentsG1 andG2 extendingG such thatA = rV (T1)(G1) andB =
rV (T2)(G2). Now, letG3 be the tournament obtained fromG1 andG2 in the following
way: for any two candidatesX andY , (a) if bothX andY appear inT1 thenG3

contains the edgeX >m Y if and only ifG1 contains it; (b) if bothX andY appear in
T2 thenG3 contains the edgeX >m Y if and only if G2 contains it; (c)G3 contains
the edgeA >m B; (d) in all other cases, ifG contains an edgeX >m Y thenG3

contains it as well, and ifG does not contain any edge betweenX andY then we can
decide arbitrarily whether there is an edge fromX to Y or an edge fromY to X . By
construction,G3 is an extension ofG, because bothG1 andG2 are and becauseG
either contains or does not contain the edgeB >m A.

Now, because no candidate appears in more than one leaf ofT , the sets of can-
didates appearing inT1 andT2 are disjoint. Therefore no pair of candidates can be
concerned by more than one of the cases (a), (b), and (c), and the definition ofG3

is well-founded. Now, because the wayrV (T1)(G) (respectively,rV (T2)(G)) is deter-
mined depends only on the restriction of the graph on the candidates appearing inT1

(respectively,T2), we have thatrV (T1)(G3) = rV (T1)(G1) = A andrV (T2)(G3) =
rV (T2)(G2) = B. From this and the fact thatG3 contains the edgeA >m B, we get
that rV (T )(G3) = A. Thus we have found a complete extension ofG in which the
winner ofrV (T ) isA, which shows thatA ∈ Poss(G, rV (T )).

Conversely, assume thatA ∈ Poss(G, rV (T )). Then there is a completionG′ of
G such thatrV (T )(G

′) = A. Obviously,A appears inT . Without loss of gen-
erality, assume it appears inT1. BecauseT1 is a subtree ofT , rV (T )(G

′) = A
implies rV (T1)(G

′) = A; therefore, sinceG′ is an extension ofG, we haveA ∈
Poss(G, rV (T1)), and by the induction hypothesis, we haveA ∈ Win(T1, G). Now,
rV (T )(G

′) = A implies thatA beatsrV (T2)(G
′) in G′. DenoterV (T2)(G

′) by B.
Again by the induction hypothesis, we haveB ∈ Poss(G, rV (T2)). Finally,G does not
contain the edgeB >m A, otherwiseG′ (which contains the edgeA >m B) would not
be an extension ofG. This implies thatWin(T,G) containsA. We now have proven
thatH(T ) holds, and therefore we have shown that the algorithmWin is sound and
complete,i.e., returns the set of possible winners forrV (T ).

Finally, if we havem candidates, AlgorithmWin performs at mostO(m) steps,
where at each step it may considerO(m2) pairs of candidates. For each pair it per-
forms a constant amount of work. Thus, the overall complexity is O(m3). The same
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complexity holds for AlgorithmNecessaryWin. 2

SincePoss(M(P ), rV (T )) ⊇ Poss(P, rV (T )), Algorithm Win is a heuristic that
finds a superset ofPoss(P, rV (T )).

Notice that, in general, there isno guaranteeon the quality of thisheuristic,as
shown by the following example.

Example 11 Assume we have an incomplete profile, sayP , overn+2 candidates, say
A, B1, . . . , Bn, andC, where there is only one voter that expresses his preferences as
follows: A > Bi, ∀i. Assume also that the agendaT hasA first play againstC. For
example,T may be the agenda where firstA plays againstC, the winner plays against
B1, and each new winner at stepi plays againstBi+1. Then, Poss(M(P ), rV (T )) =
{A,B1, . . . , Bn, C}, while Poss(P, rV (T )) = {A,C}. This means that all candidates
are possible winners for the incomplete majority graphM(P ), while only two of them,
i.e.,A andC, are possible winners for the incomplete profileP . In fact, a candidateBi

may win only ifC beatsA andBi beatsC. To achieve this, there must be a completion
with a cycleA > Bi > C > A, which is allowed in the majority graph, but it is
forbidden by transitivity in the profile. 2

SincePoss(P, rV (T )) ⊆ Poss(M(P ), rV (T )), the quality of the heuristic can be
measured by the ratio between the number of winners returnedby Poss(M(P ), rV (T ))

andPoss(P, rV (T )). Example 11 shows that this ratio can be as bad asm+2
2 .

However, we are able to give an upper bound on the number of possible winners
from the incomplete majority graph, which depends on the number of the missing arcs
in the incomplete majority graph.

Proposition 3 Let P be an incomplete profile overm candidates,M(P ) its corre-
sponding incomplete majority graph, andk the number of the missing arcs inM(P ).
|Poss(M(P ), rV (T ))| ≤ 2k.

Proof: If there arek missing arcs inM(P ), then there are2k possible completions
of M(P ). Therefore, there are at most2k results and so there are at most2k possible
winners. 2

Parameterizations based on the total number of undetermined candidate pairs have
also been considered in [4] to analyze the complexity of the possible winner problem
for some voting rules. However, these voting rules do not include the voting tree rule.

4.3 Experimental evaluation of the heuristic

We tested computationally the quality of the heuristic given by AlgorithmWin in com-
puting anupper bound onthe set of possible winners.

4.3.1 Experimental setting

To do this, we generated profiles according to the following parameters:
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• number of candidatesm ∈ {4, 8, 16, 32};

• number of agentsn ∈ {3, 5, 7, 9, 11};

• type of agenda:

– completely balanced: a balanced simple voting tree,

– completely unbalanced: a simple voting tree where each internal node has
at least one child which is a leaf.

• level of completeness of the preference of each agent. We considered threelevels
of completeness:High, also denoted byH (80% of the relations of a complete
linear order),Medium, also denoted byM (50% of the relations of a complete
linear order) andLow, also denoted byL (20% of the relations of a complete
linear order).

For each combination of the above parameters, we randomly generated 100 in-
stances according to the impartial culture assumption, that is, using a uniform distribu-
tion over profiles. For each incomplete profileP and agendaT , we computed the set of
possible winnersPoss(M(P ), T ) as by AlgorithmWin and then we checked for each
candidate in such a set if it is indeed a possible winner from the profile, that is, if it is
in Poss(P, T ).

We then measured the following:

• the error rate: the percentage of instances wherePoss(M(P ), T ) is larger than
Poss(P, T );

• the error mean: the ratio|Poss(M(P ),T )|−|Poss(P,T )|
|Poss(P,T )|·(m−1) averaged over the instances in

which there is an error. The error is|Poss(M(P ), T )| − |Poss(P, T )| divided
by |Poss(P, T )|. We have then multiplied it by1/(m − 1) in the definition of
the error mean, since we wanted to have a value which is in[0, 1] independently
of the number of candidates.

All the experiments were done on an Intel Xeon 3.2GHz machinewith 16GB of
RAM.

4.3.2 IP model for incomplete profiles

To generate the possible winners from an incomplete profile,due to the combinato-
rial nature of this problem, we adopt aInteger Programming model (IP)6, defined as
follows, and solved with IBM ILOG Cplex 12.2.

We are givenm candidates,n agents, and a fixed agendaT . We want a model that
proves that a given candidate is a possible winner, by looking for a profile completion
where such a candidate wins, or proving that no such profile exists.

Let us introduce the following variables:

xijk =

{

1 if candidatei is preferred to candidatej according to agentk

0 otherwise

6Notice that we are not trying to optimize a specific function.We will consider a feasibility program.
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yij =

{

1 if candidatei is preferred to candidatej according to the majority graph

0 otherwise

For each agentk, variablesxijk define the ordering of the candidates according
to agentk: such an order can be seen as a permutation ofm elements and so it can
be easily modeled with linear constraints (as done, for example, in the linear ordering
problem). In particular, the following constraints suffice:

xijk + xjik ≤ 1 ∀(i, j)

xijk + xjlk + xlik ≤ 2 ∀(i, j, l)

Next we need to link variablesy to variablesx with the logical constraint

yij = 1↔
∑

k

xijk ≥ ⌈n/2⌉ ∀(i, j)

and this also can be modeled with the following linear constraints:

⌈n/2⌉yij ≤
∑

k

xijk ≤ ⌊n/2⌋+ ⌈n/2⌉yij ∀(i, j)

Finally, we must compute the winner for each nodea of the tree. To this end, we
introduce variables

wai =

{

1 if candidatei is the winner at nodea

0 otherwise

zaij =

{

1 if (i, j) is the pair of possible winners at nodea

0 otherwise

Some constraints are needed to ensure the correct computation of the winner at
nodea starting from the winners at its child nodesl andr

wai → wli ∨ wri ∀(a, i)

zaij → wai ≥ yij ∀(a, i, j)

zaij = (wli ∨ wri) ∧ (wli ∨wri) ∀(a, i, j)

The first set of constraints says that a candidatei can be a winner at nodea only if
it is a winner in one of its child nodes. The second set of constraints uses the majority
graph to compute the winner among the two possible candidates. The third set of
constraints just links variablesz andw. All of them can be stated as linear constraints

wai ≤ wli + wri ∀(a, i)

wai ≥ yij + znij − 1 ∀(a, i, j)
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zaij ≤ wli + wri ∀(a, i, j)

zaij ≤ wlj + wrj ∀(a, i, j)

zaij ≥ wli + wri + wlj + wrj − 1 ∀(a, i, j)

Notice that the model hasO(m2n+m3) variables andO(m3n) constraints. How-
ever, for small numbers of candidates, the size of the model is reasonably compact.
Also, several variables can be fixed right from the beginning, the more so if we run
algorithmWin and use the information collected by it. This variable fixing, together
with the logical constraints, allows for a very effective preprocessing and constraint
propagation on the model. To test if a candidatei is a possible winner we just need to
solve the model by settingwroot,i = 1.

Notice also that, givenm candidates andn agents, we have(m!)n possible com-
plete profiles. In fact, each agent gives a strict total orderover the candidates. Such an
ordering is a permutation of the candidates, and thus in the worst case (when there is
full incompleteness) we havem! possible orderings for every agent. For example, in
an instance with 8 candidates and 11 agents, we have(8!)11, that is, more than1050,
possible completions, which cannot be enumerated via a brute-force algorithm.

4.3.3 Experimental results

Figures 2 - 5 show the error rate and the error mean for the cases with4, 8, 16, and32
candidates.

It is easy to notice that the shape of the agenda (completely balanced vs. completely
unbalanced) does not seem to affect the quality of the heuristic. On the other hand, the
level of completeness of the profile does influence the quality of the heuristic, since
both the error rate and the error mean decrease as the level ofcompleteness decreases.
Indeed, when the profile is rather incomplete, the set of possible winners is larger and
thus closer to what the heuristic can return. However, the error mean is always very
small. Moreover, the error rate increases with the number ofcandidates and it decreases
as the number of agents increases. Notice that, with4 candidates and a high level of
completeness, the error is always0, since in this case the profile is almost complete.

The largest instances we have considered (32 candidates and11 agents) have been
solved in about30 seconds (we need to solve an IP model for each of the candidates
returned by the heuristic). Thus, we could certainly tacklemuch larger instances, but
we have preferred to focus on smaller instances and consider100 of them to get a
reasonable average. This is the time needed by the exact algorithm. Instead, the time
needed by the heuristics is less than 1 millisecond in all instances. This is expected,
since it is just a visit of the nodes of the agenda based on the majority graph.

5 Computing winners with incomplete preferences in
the Schwartz rule

We now analyze the complexity of determining Schwartz winners when we have un-
certainty in the preferences.
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Figure 2: Error rate and error mean for agendas with 4 candidates.
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Figure 3: Error rate and error mean for agendas with 8 candidates.
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Figure 4: Error rate and error mean for agendas with 16 candidates.
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Figure 5: Error rate and error mean for agendas with 32 candidates.
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We show thatdeciding whether a given candidate is a Schwartz winnerfrom in-
complete weighted profiles is intractable in general, but polynomial from the induced
majority graphs. Hence, computing the winners for incomplete majority graphs can be
acomputationally efficient heuristic that finds a superset ofthe winners for incomplete
weighted profiles. We conjecture thatcomputing the set of all the possible Schwartz
winnersfor incompleteunweightedprofiles is NP-hard as well, but so far have not been
able to show this.

5.1 Incomplete weighted profiles

We prove thatdetermining whether a given candidate is a possible Schwartz winner
for weighted profiles is NP-hard for incomplete weighted profiles where there are 3 or
more candidates.

Theorem 5 Given a fixed numberm of candidates withm ≥ 3 and an incomplete
weighted profileP on these candidates, deciding if a candidate is in Poss(P, rSchwartz)
is NP-complete.

Proof: Clearly the problem is in NP as a polynomial witness is a completion and
an agenda in which the candidate wins. To show it is NP-complete, we give a reduc-
tion from the number partitioning problem. The reduction isbasedon constructing a
Condorcet cycle and is similar to those used in [9] to show that manipulation is com-
putationally hard even with a small number of candidates when votes are weighted.

We have a bag of integers,ki with sum2k and we wish to decide if they can be
partitioned into two bags, each with sumk. We want to show that a candidateB is
a possible Schwartz winner if and only if such a partition exists. We construct an
incomplete profile over three candidates (A, B, andC) as follows. We have1 vote for
B > C > A of weight1, 1 voteB > A > C of weight2k−1, and 1 voteC > B > A
of weight2k − 1. At this point, the total weight of votes withB > A exceeds that of
A > B by 4k − 1, the total weight of votes withB > C exceeds that ofC > B by 1,
and the total weight of votes withC > A exceeds that ofA > C by 1.

We also have, for eachki, a partially specified vote of weight2ki in which we know
just thatA > B. As the total weight of these partially specified votes is4k, we are sure
A beatsB in the final result by 1 vote. The only agenda in whichB can win is the one
in whichA plays againstC and the winner then plays againstB. In addition, forB to
win, the partially specified votes need to be completed so that B beatsC, andC beats
A in the final result. We show that this is possibleif and only if there is a partition of
sizek. Suppose there is such a partition. Then let the votes in one bag beA > B > C
and the votes in the other beC > A > B. Then,A beatsB, B beatsC andC beats
A, all by 1 vote in the final result. On the other hand, suppose there is a way to cast the
votes to give the resultA beatsB, B beatsC, andC beatsA. All the uncast votes rank
A aboveB. In addition, at least half the weight of votes must rankB aboveC, and at
least half the weight of votes must rankC aboveA. SinceA is aboveB, C cannot be
both aboveA and belowB. Thus precisely half the weight of votes ranksC aboveA
and half ranksB aboveC. Hence we have a partition of equal weight. We therefore
conclude thatB can winif and only if there is a partition of sizek. That is, deciding if
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B is a possible Schwartz winner is NP-complete. We can extend the reduction to more
than 3 candidates by placing any additional candidate at thebottom of every voters’
preference ordering in whatever way we wish. 2

Computing possible Schwartz winners for weighted profilesseems to be intractable,
however we will show that is easy to finda supersetof these winners considering the
majority graph.

5.2 Incomplete majority graphs

We now give graph characterizations of possible and necessary Schwartz winners for
incomplete majority graphs,which allow usto conclude thatthey can be computed in
polynomial time.

Theorem 6 Given an incomplete majority graphG and a candidateA, A ∈ Nec(G,
rSchwartz) if and only if, for every other candidateB, there is a path fromA to B in
G.

Proof: (⇐) Suppose that for eachB 6= A there is a path fromA to B in G.
Then these paths remain in every completion ofG. Therefore, using Theorem 1,A is
a Schwartz winner in every completion ofG, i.e., it is the necessary Schwartz winner.
(⇒) Suppose there is no path fromA to B in G. Let us define the following three
subsets of the set of candidatesΩ: R(A) is the set of candidates reachable fromA in
G (includingA); R−1(B) is the the set of candidates from whichB is reachable inG
(includingB); andOthers= Ω \ (R(A) ∪R−1(B)). Because there is no path fromA
toB in G, we have thatR(A) ∩R−1(B) = ∅ and therefore{R(A), R−1(B), Others}
is a partition ofΩ. Now, let us build the complete majority grapĥG as follows:

1. Ĝ := G;

2. ∀ x ∈ R(A), y ∈ R−1(B), add(y, x) to Ĝ;

3. ∀ x ∈ R(A), y ∈ Others (i.e.,y ∈ Ω \ (R(A) ∪R−1(B))), add(y, x) to Ĝ;

4. ∀ x ∈ Others (i.e.,x ∈ Ω \ (R(A) ∪R−1(B))), y ∈ R−1(B), add(y, x) to Ĝ;

5. ∀ x, y belonging to the same element of the partition: if neither(x, y) nor (y, x)
is in G then add one of them (arbitrarily) in̂G.

Let us first show that̂G is a complete majority graph. Ifx ∈ R(A) andy ∈ R−1(B),
then(x, y) 6∈ G (otherwise there would be a path fromA to B in G). If x ∈ R(A)
andy ∈ Others, then (x, y) 6∈ G, otherwisey would be inR(A). If x ∈ Others
andy ∈ R−1(B), then(x, y) 6∈ G, otherwisex would be inR−1(B). Therefore,
wheneverx andy belong to two distinct elements of the partition,Ĝ contains(y, x)
or (x, y), but not both. Now, if x and y belong to the same element of the parti-
tion, by Step 5,Ĝ contains exactly one edgein {(x, y), (y, x)}. Therefore,Ĝ is a
complete majority graph. Let us show now that there is no pathfrom A to B in Ĝ.
Suppose there is one, that is, there existz0 = A, z1, . . . , zm−1, zm = B such that
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{(z0, z1), (z1, z2), . . . , (zm−1, zm)} ⊆ Ĝ. Now, for allx ∈ R(A) and ally such that
(x, y) ∈ Ĝ, by construction ofĜ, we necessarily havey ∈ R(A). Therefore, for all
i < m, if zi ∈ R(A) thenzi+1 ∈ R(A). Now, sincez0 = A ∈ R(A), by induction
we havezi ∈ R(A) for all i, thusB ∈ R(A), which is impossible. Therefore, there
is no path fromA to B in Ĝ. Thus,Ĝ is a complete majority graph with no path from
A to B, which implies thatA is not a Schwartz winner with respect tôG. Lastly, by
construction,Ĝ containsG. SoĜ is a complete extension ofG for whichA is not a
Schwartz winner. This shows thatA is not the necessary Schwartz winner forG. 2

A procedure based on the previous theorem gives us apolynomial time algorithm
to find necessary Schwartz winners for incomplete majority graphs. Hence, we havea
heuristicwhich computes in polynomial time a subset of necessary Schwartz winners
for incomplete profiles.

Corollary 1 Given an incomplete majority graphG, Nec(G, rSchwartz) can be com-
puted in polynomial time.

Proof: By Theorem 6, we know thatA ∈ Nec(G, rSchwartz) if and only if, for
every other candidateB, there is a path fromA to B in G. Since finding a path
from a single source to all other candidates is polynomial [13], then also computing
Nec(G, rSchwartz) is polynomial. 2

We now consider computing possible Schwartz winners. LetG be an asymmetric
graph, Ω the set of candidates, andA ∈ Ω. Let us consider Algorithm 2. It tries to
completeG in order to have a path fromA to every other candidateZ by putting edges
directed toZ, where it is possible, from the candidates that are reachable fromA.

Algorithm 2 : PossibleSchwartzWinner
Input : G: an asymmetric graph,A: a candidate,
Output : Σ: a set of candidates;
Σ← {A}∪ {X | there is a path fromA to X in G};
G′ ← G;
repeat

foreach(Y, Z) ∈ Σ× (Ω \ Σ) do
if (Z → Y ) 6∈ G′ then

add(Y → Z) to G′;

foreachZ ∈ Ω \ Σ do
if there is a path fromA to Z in G′ then

addZ toΣ;

until Σ = Ω or there is no(Y, Z) ∈ Σ× (Ω \ Σ) s. t. (Z → Y ) 6∈ G′ ;
return Σ

Theorem 7 Given an incomplete majority graphG and a candidateA, A ∈ Poss(G,
rSchwartz) if and only ifPossibleSchwartzWinner(G,A) = Ω.
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Proof: We start with the following observation: the graphG′ obtained at the end
of the algorithm is asymmetric and extendsG. It is asymmetric because it is so at
the start of the algorithm(sinceG is asymmetric) and it is still asymmetric ifan edge
Y → Z is added toG′ whenZ → Y is not already inG′.

Now, assumePossibleSchwartzWinner(G,A) = Ω. Let G′′ be a majority graph
extendingG′ (and, a fortiori,G). Such aG′′ exists (becauseG′ is asymmetric). By
construction ofG′, there is a path inG′ fromA to every node ofPossibleSchwartzWin-
ner(G, A)\{A}, hence to every node ofΩ \ {A}; sinceG′′ extendsG′, this holds a
fortiori for G′′, henceA is a Schwartz winner inG′′ and therefore a possible Schwartz
winner forG.

Conversely, assumePossibleSchwartzWinner(G,A) = Σ 6= Ω. DenoteΘ = Ω\Σ.
Then, for all(Y, Z) ∈ Σ × Θ we haveZ → Y ∈ G′. Now, Z ∈ Θ means that no
edgeZ → Y (for Z ∈ Θ andY ∈ Σ) was added toG′; hence, for everyY ∈ Σ and
Z ∈ Θ, we have thatZ → Y ∈ G′ if and only ifZ → Y ∈ G. This implies that for all
(Y, Z) ∈ Σ×Θ we haveZ → Y ∈ G, therefore, in every majority graphG′′ extending
G, every candidate ofΘ beats every candidate ofΣ, and in particularA. Therefore,
there cannot be a path inG′′ fromA to a candidate inZ, which implies thatA is not a
Schwartz winner inG′′. Since the latter holds for every majority graphG′′ extending
G, A is not a possible Schwartz winner forG. 2

Algorithm 2 is in fact a polynomial-timealgorithm for computinga superset of
possible Schwartz winners for incomplete profiles.

Corollary 2 Given an incomplete majority graphG, the set Poss(G, rSchwartz) can
be computed in polynomial time.

Proof: It follows from Theorem 7 together with the fact that Algorithm Possi-
bleSchwartzWinner(Algorithm 2) runs in polynomial time, since it performs at most
m iterations, each iteration considering at mostm2 pairs of candidates. 2

By Lemma 2 of [7], the set of the Smith winners7 for an incomplete tournament
G coincides with the set of possible Schwartz winners forG. Therefore, the above
polynomiality result is also subsumed by Theorem 5 of [7].

An equivalent characterization of possible Schwartz winners says thatPoss(G, rSchwartz)
is the smallest subsetΘ of G satisfying this condition: for everyZ ∈ Θ and every
X ∈ Ω \Θ, (Z,X) ∈ G. The proof of this result can be found in [23].

To conclude, we have shown that it is easy to compute a superset of the possible
Schwartz winners from the incomplete profile by consideringthe majority graph. Re-
garding the quality of this heuristic, similar results can be derived as in Section 4.2
since Example 11 can be easily generalized to work for every agenda.

7The Smith winners are the candidates that belong to the Smithset, which is the set of candidates that
dominate any candidate not in the set [7].
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6 Computing winners over balanced agendas

We now turn our attention to fair winners, that is, candidates that win insome balanced
agendas. We study the computational complexity of determining whether there is com-
pletion of the incomplete preferences such that a given candidate can win in a balanced
tree, i.e., whether he is a possible fair winner.

We recall that the candidates that win in every balanced agenda coincide with Con-
dorcet winners, thus the candidates that win in every balanced agenda for some com-
pletion (respectively, all completions) of the preferences coincide with possible (re-
spectively, necessary) Condorcet winners, and thus they are polynomial to find both
for weighted and unweighted profiles, and for majority graphs.

Given an incomplete weighted profileP , since every balanced agenda is also an
agenda, we have thatevery possible fair winner is also a possible Schwartz winner. We
already know from Theorem 5 thatdetermining whether a given candidate is inPoss(P,
rSchwartz) is intractable. We will now show that this remains soalso when we require
that the agenda is balanced.

Theorem 8 Given a fixed numberm of candidates withm ≥ 3 and an incomplete
weighted profileP , deciding if a candidate isa possible fair winner forP is NP-
complete.

Proof: We use the same construction as in the proof of Theorem 5. Given the
profile constructed there, the only possible fair agendas inwhich B wins are those in
whichA plays againstC, and (at some later point)B then plays against the winner.All
the additional candidates will be defeated byA, B, andC so can be placed anywhere
in the fair agenda. 2

The computational complexity ofdetermining whether a given candidate is the
necessary fair winnerremains an open question, justas thecomplexity of computing
necessary Schwartz winners. However, we know that, since every balanced agenda is
also an agenda,every necessary fair winner is also a necessary Schwartz winner.

7 Related work

Since we have studied a number of different issues (fair winners with complete profiles,
possible and necessary winners for voting trees and Schwartz, from incomplete profiles
and from incomplete majority graphs), the related work spans several areas of research.
We therefore structure this section according to the kind oftopic studied.There are
three related streams of work: voting rules with incompletepreferences, computational
aspects of voting trees, and computing winners from incomplete tournaments.

7.1 Computing voting rules with incomplete preferences

We have given several results about voting trees and the Schwartz rule when voters’
preferences are incomplete. The notions of possible and necessary winners for vot-
ing rules, as well as the notions of possible and necessary Condorcet winners, were
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introduced by Konczak and Lang [21]. The computational complexity of computing
possible and necessary winners for many common voting ruleswas thoroughly stud-
ied by Xia and Conitzer [38], by Betzler and Dorn [5], and by Baumeister and Rothe
[2]. We complete the picture by adding results concerning voting trees and Schwartz.
Moreover, we consider both the standard case of incomplete profiles and the case of
incomplete majority graphs, which leads to a superset of thesets of possible winners
which is easier to compute.The complexity ofdetermining whether a given candi-
date is a possible or necessary winner hasalso been considered inPini et al. [27] for
the STV rule. Moreover, they give a preference elicitation procedure which focuses
just on the set of possible winners. The problem of deciding if preference elicitation
is over (that is, the problem of determining if the remainingvotes can be castso that
a givencandidate does not win)has been previously investigatedalso by Conitzeret
al. [10, 11, 36] .

7.2 Voting trees

We have considered the computational complexity of determining possible winners for
voting trees. A special case of the possible winner problem is when a subset of voters
provide complete votes and the other voters provide empty votes. In such situations,
determining whether a given candidate is a possible winner is equivalent to deciding
whether there is a constructive coalitional manipulation for this candidate. Conitzer
et al. [11] have investigated the complexity of weighted coalitional manipulation for
V (T ) and found out that the latter problem is polynomial. We provethat the more
general possible winner problem forV (T ) is NP-complete for weighted voters and 3
candidates or more.

Vu et al. [35] consider the following problem. The input consists of aset of candi-
dates and a collection of pairwise winning probabilities(i, j) representing the probabil-
ity that candidatei beats candidatesj in a pairwise election; the problem (called “tour-
nament schedule control”) consists of designing a voting tree satisfying some given
conditions (such as balancedness) that maximizes the winning probability of a target
candidate. It is shown ([35], Theorems 1 and 3) that finding a balanced tree maximiz-
ing the probability that a given candidate wins is NP-hard, even if the pairwise winning
probabilities are all in{0, 0.5, 1}. Our fair winners correspond to winners for which the
maximum winning probability over all balanced trees is1, when the probability ma-
trix is composed only of0’s and1’s (for any two candidates, we know with certainty
which of them beats the other in a pairwise comparison). Whether the NP-hardness
result of [35] still holds when winning probabilities are0/1, that is, whether comput-
ing fair winnersis NP-hard,is still an open problem.However, Vassilevska Williams
[37] has shown that, if we allow only some of the matches between players, then the
problem of determining if a candidate is a fair winner is NP-complete. Moreover, she
has shown that if a candidate satisfies certain conditions, they are a fair winner and it is
possible to construct in polynomial time a balanced tree in which this candidate wins.
For example, if a candidateA has a number of outgoing edges in the majority graphG
that is greater than or equal to the number of outgoing edges of every candidateB that
beatsA in G, thenA is a fair winner and it is possible to compute in polynomial time
a binomial spanning arborescence ofG rooted inA [37].
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We have given some slightly different complexity results to[35] and [39] for certain
problems about voting trees with incomplete preferences. The differences concern
mainly the nature of the incomplete preferences. In [35], the input is a probability
matrix specifying, for every pair of candidatesx, y, how likely it is thatx beatsy.
In Sections 4.2 and 5.2, we start from an incomplete majoritygraph, therefore the
‘qualitative’ counterpart of [35]. In [39] and in Sections 4.1 and 5.1, the input is a
collection of partial orders over the set of candidates.

Hazonet al. [20] also address the maximization over all voting trees of the prob-
ability that a given candidate wins the election, and show that a modified version of
the problem of designing a tree such that the probability that a given candidate winsbe
greater than or equal to a certain valueis NP-hard.

7.3 Incomplete tournaments

Brandtet al. [7] generalize several tournament solutions to incompletetournaments,
and study their computational complexity. Among the concepts they study there are
the Smith set [7] and the Schwartz set (which are known to coincide for complete
tournaments). Therefore, their input is an incomplete tournament, just as we study
in Section 3.2. By Lemma 2 of [7] and Definition 15, the set of the Smith winners
for an incomplete tournamentG defined as in [7] coincides with the set of our possible
Schwartz winners forG. Therefore, our polynomiality result (Corollary 2) is subsumed
by their Theorem 5. Note that these two works have been developed independently
(both conference papers were published in 2007) with very different starting points
and motivations.

Since the Schwartz set is contained in the Smith set even for incomplete tourna-
ments (Theorem 1 in [7]), we may wonder whether it coincides with the set of neces-
sary Schwartz winners. However, this does not hold; for example, consider the graph
G with four candidatesA, B, C, D, and the edgesA >m B, B >m C, andC >m A:
A is in the Smith set forG, but from our Theorem 6,A is not a necessary Schwartz
winner.

8 Conclusions and future work

We have considered multi-agent settings where agents’ preferences may be incomplete
and are aggregated using voting trees. We have addressed various computational is-
sues of determining winners for complete and incomplete profiles, as well as majority
graphs.

All our complexityresultsabout determining the various types of winnersare sum-
marized in Table 1:in the first four rows we consider the voting tree rule associated
with a fixed tree (V (T )) with incomplete preferences, as well as the case of balanced
trees. The following three rows concern the Schwartz rule and the fair winner determi-
nation when the agents’ preferences are incomplete.

We first considered voting trees when the tree is fixed, i.e.,V (T ), when the agents’
preferences are incomplete (rows 1, 2, 3, and 4of Table 1). In this context, we have
shown that, if we assume we know the agents’ preferencesin the formof incomplete
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incomplete weighted profiles incomplete majority
(numberof candidates) graphs

Possible winner forV (T ) NP-complete (≥ 3) (Th. 2) P (Th. 4)
Necessary winner forV (T ) coNP-complete (≥ 4) (Th. 3) P (Th. 4)

Possible winner forV (T ), T balanced NP-complete (≥ 3) (Th. 2) P(Th. 4)
Necessary winner forV (T ), T balanced ? P(Th. 4)

Necessary Schwartz winner ? P (Cor. 1)
Possible Schwartz winner NP-complete (≥ 3) (Th. 5) P (Cor. 2)

Possible fair winner NP-complete (≥ 3) (Th. 8) ?

Table 1: Complexity of winner determination. All the polynomial results forV (T )
hold for simple voting trees.

majority graphs, it is polynomial to compute both the necessary and the possible win-
ners. However, if we assume that agents’ preferences are expressed by an incomplete
weighted profile, then possible and necessary winners are computationally intractable
to compute. We have also shown that possible winners are intractable to compute even
when the agenda is balanced. The same results have been shownalso in [39] in the
case of incomplete unweighted profiles with an unbounded number of candidates.

We also evaluated experimentally the quality of our heuristic to compute possible
winners, showing that it performs very well in every case.

We then analyzed the Schwartz rule in the case of incomplete preferences(rows
5 and 6 of Table 1).When the preferences are expressed via an incomplete majority
graph, it is easy to find possible and necessary Schwartz winners, i.e., those candidates
that are Schwartz winners in some completion or in all thecompletions of the prefer-
ences, respectively. On the other hard, when the agents’ preferences are expressed via
an incomplete weighted profile, it is intractable todetermineif a givencandidate is a
possible Schwartz winner. These two results imply that every candidate has an incen-
tive to participate in the electionwhich is desirable. If it were easy to find the set of
possible Schwartz winners, then a candidate that was not in this set,i.e., that is a loser,
might choose not to participate.

We also have defined fair winners, i.e., candidates thatwin in at least onebalanced
agenda. The problem ofdetermining whether a given candidate is a fair winner for a
given complete profile is an open problemthat we intend to investigate in the future.
We have also analyzed the complexity ofdetermining whether a given candidate is a
possible fair winnerwhen the agents’ votes are incomplete and weighted, and we have
shown that this problem isintractable(row 7 of Table 1).

The computational complexity of determining necessary Schwartz winners is re-
lated to the problem of testing whether constructive control is possible.This problem
is polynomial-time solvablefor some classes of incomplete profiles [29]. Nevertheless,
it remains open in general and needs to be studied further when we consider incomplete
profiles. However, we have shownthat it is polynomial-time solvableif we consider
incomplete majority graphs.

An interesting direction for future work is deciding which candidates are most
likely to win, which is related to probabilistic approachesto voting theory. We also
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plan to study other forms of uncertainty in the application of the voting rule, such as
uncertain weights in a scoring rule anduncertainty about the voting rule.

Acknowledgements

We would like to thank the referees for their helpful comments. This work has been
partially supported by the MIUR PRIN 20089M932N project “Innovative and multi-
disciplinary approaches for constraint and preference reasoning”. Jérôme Lang has
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