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Preferences and uncertainty are common in many real-life problems. In this
article, we consider preferences modelled via soft constraints that allow for the
representation of quantitative preferences. Moreover, we consider uncertainty
modelled via uncontrollable variables, that is, variables whose value cannot be
decided by us. We also assume that some information is provided for such
variables in the form of a possibility distribution over their domains. Possibilities
provide a way to model imprecise probabilities, and give us a way to know which
values are more possible than others for the uncontrollable variables. For such
problems, the aim is to find a solution with a high preference which is also very
robust with respect to the uncontrollable part. To tackle such problems, we adopt
an existing approach that eliminates the uncertain part of the problem while
adding some constraints in the remaining part, and then solves the resulting
problem. However, contrarily to the specific methods present in the literature, we
formulate several desirable properties, on the robustness of the problem’s
solutions and its relationship with their preferences, that should be satisfied by
any specific method based on this approach. We also define several semantics to
order the solutions according to different attitudes to risk, and we discuss which
of the desirable properties are satisfied by each of the considered semantics.
Finally, we present a solver for this kind of problems, and we show some
experimental results of its application over the classes of such problems.

Keywords: constraint programming; preferences; uncertainty; possibility theory

1. Introduction

Preferences and uncertainty are present in many application fields, such as scheduling,
logistics and production planning. For example, in a satellite scheduling problem, the
activities of a satellite taking pictures of a part of the earth should be scheduled
according to some preferences on the energy consumption and the quality of the
pictures, and also considering the uncertainty on the weather, since clouds may hide the
part to be photographed. Also, in a production planning problem, a plan has to be
decided not only by following certain optimisation criteria, starting from a description of
the initial world, of the available decisions and their effects, and of the goals to reach,
but also by taking into account possible unexpected events during the production. In a
temporal scheduling problem, there are usually constraints and preferences over the
order of execution of various activities, and the durations of some activities may be
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uncertain (Dubois, Fargier, and Prade 1995). In this case, the goal is to define a
temporal schedule of the activities which is highly preferred and also robust with respect
to the uncertain durations. Finally, in energy trading and network traffic analysis
(Yorke-Smith and Gervet 2003) uncertainty is due to incomplete or erroneous data
information. In energy trading, costs may be imprecise since they may evolve due to
market changes; in network traffic analysis the overwhelming amount of information
and measurement difficulties force the use of partial or imprecise information. The goal,
in general, is to provide robust solutions to the problem, i.e. solutions that hold under
the maximum number of possible states of the world (Fargier, Lang and Schiex 1996) or
by reasoning upon probabilistic data distributions (Walsh 2002). Another approach is to
reason about uncertain problems by modelling explicitly what is known about uncertain
data in terms of an uncertain constraint satisfaction problem and to compute its full
closure, i.e. the set of the possible solutions to the model or a subset of it as the user
specifies (Yorke-Smith, and Gervet 2003).

Preferences can be of many kinds. For example, they can be qualitative or quantitative,
bipolar or unipolar, conditional or not, etc. Quantitative preferences associate a preference
value to an event, while qualitative ones usually give a relation among the events to state
the preference ordering over them. Examples of preference representation formalisms are
CP-nets (Boutilier, Brafman, Hoos, and Poole 1999; Boutilier, Brafman, Domshlak, Hoos,
and Poole 2004), soft constraints (Bistarelli, Montanari, and Rossi 1997) and utility theory
(Fishburn 1979).

Uncertainty can also come in several guises, and has been handled in different ways.
Probabilities are often used, and, when precise probabilities are not available, also
possibility theory (Zadeh 1978; Dubois and Prade 1988) has been adopted. Possibility
theory basically provides an upper and a lower bound to probabilities. Indeed, possibilistic
uncertainty is useful in many domains, such as data analysis (Wolkenhauer 1998; Tanaka
and Guo 1999), structural learning (Borgelt, Gebhardt, and Kruse 2000), database
querying (Bosc and Prade 1997), diagnosis (Cayrac, Dubois, Haziza, and Prade 1996),
belief revision (Benferhat, Dubois, Prade, and Williams 2002), argumentation (Amgoud
and Prade 2004), and case-based reasoning (Huellermeier 2007). Moreover, experimental
results in cognitive psychology (Raufaste, Neves, and Marin 2003) suggest that there are
situations where people reason about uncertainty using the rules of possibility theory,
rather than those of probability theory.

In this article, we consider problems with quantitative preferences and possibilistic
uncertainty. This kind of problems occurs often in real life, since quantitative preferences
model costs, utilities, as well as hard requirements, and since often we do not have precise
information about the uncontrollable part of the problem.

More precisely, we describe real-life problems via a set of variables with finite domains
and a set of soft constraints among subsets of the variables. Soft constraints allow us to
express preferences over the instantiations of the variables of the constraints. We will
consider, in particular, fuzzy preferences that employ values between 0 and 1, and that are
combined using the min operator. This means that each event is given a value between 0
and 1, with higher values being associated to more preferred events, and that a conjoint
event is given a preference value which is the smallest of the preference levels of the single
events. Thus, we only remember the worst event when several events occur. Fuzzy
preferences are very useful in many application domains, such as the spatial (Dominguez
and Klinko 2004) or the medical one (Blinowska 1993), where it is often necessary to have
a pessimistic approach.

2 M.S. Pini et al.
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We model uncertainty in such problems by the presence of uncontrollable variables.
This means that the value of such variables will not be decided by us, but by Nature or by
some other agent. Thus a solution will not be an assignment to all the variables, but only
to the controllable ones. Although we cannot choose the value for such uncontrollable
variables, usually we have some information on the plausibility of the values in their
domains. In Fargier, Lang, Martin-Clouaire, and Schiex (1995a) this information is given
in terms of probability distributions. In this article, we model this information by a
possibility distribution (Zadeh 1978) over the values in the domains of such variables.

As mentioned before, possibilities are useful when probability distributions are not
available, and provide an upper and a lower bound to probabilities (Zadeh 1978).
Moreover, they allow for easy integration with fuzzy preferences (Dubois, Fargier, and
Prade 1996), since both possibilities and fuzzy preferences associate values between 0 and 1
to events.

For the solutions of this kind of problems (i.e. fuzzy constraints plus uncontrollable
variables with a possibility distribution), we define the notion of preference and
robustness. We also discuss and define several desirable properties that such notions
should respect, also in relation to the solution preference ordering.

To find the optimal solutions of such problems, we eliminate the uncontrollable
variables (and all the constraints connecting them) and we add new fuzzy constraints in
the controllable part. Such new constraints contain, in a different form, some of the
information that was present in the removed part. While the old constraints are used to
compute the preference of a solution, these additional constraints are used to compute its
robustness.

We then introduce several semantics that use the notions of preference and robustness
to order the solutions. For all such semantics, and also for the one present in the literature
(Dubois et al. 1996), we study if the notions of preference and robustness, when one of
such semantics is used, satisfy the desired properties. The semantics introduced in this
article appear to be a finer way to evaluate the solutions of these problems (with respect
to the existing literature), since they allow us to distinguish between highly preferred
solutions which are not robust, and robust but not preferred solutions. For example, they
guarantee that, if there are two solutions with the same robustness (resp., the same
preference), then the ordering is given by their preference (resp., robustness).

In the last part of this article we describe a solver we have developed to solve fuzzy
constraint problems with possibilistic uncertainty that uses the approach just described to
solve a problem of this kind: first, it eliminates the uncertain part, and then it solves a
fuzzy constraint problem with the additional robustness information. The solution of the
fuzzy constraint problem is obtained by exploiting branch and bound (BB) techniques and
constraint propagation (Rossi, Van Beek, and Walsh 2006).

This article is structured as follows. In Section 2 we present the basic notions about soft
constraints, fuzzy constraints and possibility theory. In Section 3 we define the class of
problems we consider. In Section 4 we discuss the notions of preference and robustness, as
well as some desirable properties of such notions. In Section 5 we define our method to
remove uncertainty from the problems. Based on this method, in Section 6 we define
formally the notions of preference and robustness, and we show that the notion of
robustness satisfies the desired properties. In Section 7 we propose various semantics for
ordering the solutions with respect to their preference and robustness values. We also show
that the solution orderings that such semantics induce satisfy the desired properties.
In Section 8.3 we present in detail an example of a problem with fuzzy constraints and
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uncertainty, and of the application of our procedure. In Section 8 we present our solver,
and in Section 10 we test the solver over several problem instances with specific features.
Finally, in Sections 11 and 12 we discuss some related work, we summarise our results and
we point out possible directions for future research.

All the proofs of the results in this article are contained in the Appendix. Preliminary
versions of some parts of this article have appeared in Pini, Rossi, and Venable (2005a)
and Pini and Rossi (2005).

2. Background

In this section we give an overview of the background on which our work is based. First,
we present a formalism for representing soft preferences, i.e. the semiring-based soft
constraints (Bistarelli et al. 1997). Then, we describe the formalism we will use for
representing uncertainty, i.e. possibility theory (Zadeh 1978).

2.1. Soft constraints

In the literature there are many formalisations of the concept of soft constraints (Ruttkay
1994; Schiex, Fargier, and Verfaillie 1995). Here we refer to the one described in Bistarelli,
Montanari, and Rossi (1995) and Bistarelli et al. (1997), which, however, can be shown to
generalise and express many others (Bistarelli et al. 1996).

In a few words, a soft constraint (Bistarelli et al. 1997) is just a classical constraint
(Dechter 2003) where each instantiation of its variables has an associated value from a
(totally or partially ordered) set. Combining constraints will then have to take into account
such additional values, and thus the formalism should also provide suitable operations for
combination (�) and comparison (þ) of tuples of values and constraints. This is why this
formalisation is based on the concept of c-semiring, which is just a set plus two operations.
More precisely, a c-semiring is a tuple hA,þ,�, 0, 1i1 such that: A is a set, called the carrier
of the c-semiring, and 0, 12A; þ is commutative, associative, idempotent, 0 is its unit
element, and 1 is its absorbing element; � is associative, commutative, distributes over þ,
1 is its unit element and 0 is its absorbing element.

Consider the relation �S over A such that a�S b iff aþ b¼ b. Then: �S is a partial
order; þ and � are monotone on �S; 0 is its minimum and 1 its maximum; hA,�Si is a
lattice and, for all a, b2A, aþb¼ lub(a, b) where lub indicates the least upper bound
operator. Moreover, if � is idempotent, then hA,�Si is a distributive lattice and � is its
greatest lower bound operator. Informally, the relation �S gives us a way to compare
(some of the) tuples of values and constraints. In fact, when we have a�S b, we will say
that b is better than a. Thus, 0 is the worst value and 1 is the best one.

Definition 1 (soft constraints): Given a c-semiring S¼hA,þ,�, 0, 1i, a finite set D (the
domain of the variables), and an ordered set of variables V, a constraint is a pair hdef, coni
where con�V and def :Djconj!A.

Therefore, a constraint specifies a set of variables (the ones in con), and assigns an
element of the semiring set A to each tuple of values in D of these variables. This element
can be interpreted in many ways: as a level of preference, or as a cost, or as a probability,
etc. The correct way to interpret such elements determines the choice of the semiring
operations.

4 M.S. Pini et al.
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Definition 2 (SCSP): A soft constraint satisfaction problem, denoted by hS,V,Ci, is a set
of soft constraints C based on the c-semiring S, which is defined over a set of variables V.

Definition 3 (combination): Given two constraints c1¼hdef1, con1i and c2¼hdef2, con2i,
their combination c1� c2 is the constraint hdef, coni, where con¼ con1[ con2 and
def ðtÞ ¼ def1ðt #

con
con1
Þ � def2ðt #

con
con2
Þ
2.

The combination operator � can also be straightforwardly extended to finite sets of
constraints: when applied to a finite set of constraints C, we will write �C. In words,
combining constraints means building a new constraint involving all the variables of the
original ones, and which associates to each tuple of domain values for such variables a
semiring element, which is obtained by multiplying the elements associated by the original
constraints to the appropriate subtuples.

Definition 4 (projection): Given a constraint c¼hdef, coni and a subset I of V, the
projection of c over I, written c+I, is the constraint hdef 0, con0i where con0 ¼ con\ I and
def 0ðt 0Þ ¼

P
t=t#conI\con¼t

0 def ðtÞ.

Informally, projecting means eliminating some variables. This is done by associating to
each tuple over the remaining variables a semiring element, which is obtained by summing
(via the operator þ of the semiring) the elements associated by the original constraint to all
the extensions of this tuple over the eliminated variables.

Definition 5 (solution): A solution of a SCSP hS,C,V i is a complete instantiation,
(d1, . . . , dn), of the variables in V¼ {x1, . . . , xn}.

Each solution has a preference value, obtained by combining, via the � operator, the
preference levels of its subtuples given in the various constraints.

Definition 6 (solution preference): Given SCSP hS,C,V i and a solution s, the preference
of s is pref (s)¼�hdefi,conii2C} defi (s#coni ).

Definition 7 (optimal solution): Given a SCSP P and a solution s, s is optimal if and only
if `s 0, solution of P, such that pref (s 0)4S pref (s).

SCSPs can be solved by extending and adapting the techniques usually used for
classical CSPs. For example, to find the best solution, we could employ a BB search
algorithm (instead of the classical backtracking). Also the so-called constraint propagation
techniques, such as arc-consistency (Rossi et al. 2006) and path-consistency, can be
generalised to SCSPs (Bistarelli et al. 1995, 1997).

Choosing a specific semiring means selecting a class of preferences. For example, the
semiring SFCSP¼h[0, 1], max,min, 0, 1i allows one to model Fuzzy CSPs (FCSPs) (Schiex
1992; Ruttkay 1994), which is associate to each element allowed by a constraint a
preference between 0 and 1 (with 0 being the worst and 1 being the best preference), and
gives a preference to each complete assignment that is the minimal among all preferences
selected in the constraints. The optimal solutions are then those solutions with the
maximal preference.

2.2. Possibility theory

In this article we will consider SCSPs with uncertainty, where uncertainty is modelled by
the presence of uncontrollable variables. This means that the value for such variables will
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not be decided by us, but the Nature or by some other agent. Although we cannot choose
the values for such variables we assume, in this article, to have some information on the
plausibility of the values in their domain. We model this information by possibility
distributions over the values in the domains of such variables.

Possibility distributions were defined in the possibility theory, introduced in Zadeh
(1978), in connection with fuzzy set theory (Zadeh 1978; Dubois and Prade 1980, 2000), to
allow reasoning on vague knowledge. This theory is useful to deal with uncertain events
when probabilistic estimations are not available, for instance, because there is no similar
events to be referred to.

More formally, a possibility distribution �x associated to an uncontrollable variable x
represents the set of more or less plausible and mutually exclusive values of x.

Definition 8 (possibility distribution): A possibility distribution �x associated to a single-
valued variable x with domain D is a mapping from D to a totally ordered scale L (usually
[0, 1]) such that 8d2D, �x(d )2L and 9d2D with �x(d )¼ 1, where 1 the top element of
the scale L.

In particular, �x(d )¼ 0 means x¼ d is impossible, while �x(d )¼ 1 means x¼ d is fully
possible. A possibility distribution is similar to a probability density. However, �x(d )¼ 1
only means that x¼ d is a plausible situation, which cannot be excluded. Thus, a degree of
possibility can be viewed as an upper bound of a degree of probability. Possibility theory
encodes incomplete knowledge, while probability accounts for random and observed
phenomena. In particular, the possibility distribution �x can encode complete ignorance
about x : �x(d )¼ 1 8d2D. In this case all values d2D are plausible for x, and so it is
impossible to exclude any of them. Moreover, it can encode complete knowledge about x :
�xð �d Þ ¼ 1, 9 �d 2 D and �x(d )¼ 0 8d2D s.t. d 6¼ �d. In this case only the value �d is plausible
for x.

Given a possibility distribution �x associated to a variable x, the occurrence of the
event x2E�D can be defined by the possibility and the necessity degrees.

Definition 9 (possibility degree): The possibility degree of an event ‘x2E ’, denoted by
�(x2E ), or simply by �(E ), is �(x2E )¼maxd2E�x(d ).

The possibility degree of the event ‘x2E ’ evaluates the extent to which ‘x2E ’
is possibly true. In particular, �(x2E )¼ 1 means that the event x2E is totally
possible. However it could also not happen. Therefore in this case we are completely
ignorant about its occurrence. �(x2E )¼ 0 means that the event x2E for sure will not
happen.

Definition 10 (necessity degree): The necessity degree of ‘x2E ’, denoted by N(x2E ) or
simply by N(E ), is N(x2E )¼mind2 �E r(�x(d )), where r is the order reversing map in the
interval [0, 1] such that 8p2 [0, 1], r(p)¼ 1� p, and �E is the complement of E in D.

The necessity degree of the event ‘x2E ’ evaluates the extent to which ‘x2E ’ is
certainly true. In particular, N(x2E )¼ 1 means that the event x2E is certain, while
N(x2E )¼ 0 means that the event is not necessary at all, although it may happen. In fact,
N(x2E )¼ 0 if and only if �(x2 �E)¼ 1.

The possibility and the necessity degrees of an event x2E are, respectively, an upper
and a lower bound of the probability degree, say P(E ), of that event (i.e.
N(E )�P(E )��(E )). Moreover, the possibility and the necessity measures are related
by the formula �(E )¼ 1�N( �E). From this follows N(E )¼ 1��( �E).

6 M.S. Pini et al.
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3. Uncertain soft constraint problems

Uncertain soft constraint problems (USCSPs) are SCSPs where some variables are

uncontrollable, i.e. they are not under the user’s control. They can model many real-life

problems, such as scheduling and timetabling. For example, they can model the problem

of scheduling some tasks, knowing that the duration of some of those is uncertain, and

only vaguely known (Dubois et al. 1995), or the problem of deciding how many training

sessions to perform in a tutorial, without knowing the effective number of participants, but

knowing only an approximately number of these participants (Dubois et al. 1996).
Contrary to classical constraint problems, in USCSPs we cannot decide how to assign

the variables to make the assignment optimal, but we must assign values to

the controllable variables, denoted with Vc, guessing what Nature will do with the

uncontrollable variables, denoted with Vu. Depending on the assumptions made on the

observability of the uncontrollable variables, different optimality criteria can be defined.
For example, an optimal solution for an USCSP can be defined as an assignment of

values to the variables in Vc such that, whatever Nature will decide for variables in Vu, the

overall assignment will be optimal. This corresponds to assume that the values of the

uncontrollable variables are never observable, i.e. the values of the controllable variables

are decided without observing the values of the uncontrollable variables. This is a

pessimistic view, and often an assignment satisfying such a requirement does not exist. In

this case one can relax the optimality condition to that of having a preference above a

certain threshold � in all scenarios. Hence, solving the problem will consist of finding those

assignments to variables in Vc which satisfy this property at the highest �. Furthermore,

one could be satisfied with finding an assignment of values to the variables in Vc such that,

for at least one assignment decided by Nature for the variables in Vu, the overall

assignment will be optimal. This definition follows an optimistic view. Other definitions

can be between these two extremes.
If the uncontrollable variables are equipped with additional information on

the likelihood of their values, such as in our case, such an information can be used

to infer new soft constraints over the controllable variables, which express the

compatibility of the controllable part of the problem with the uncontrollable one. As

we will show in the next section, this information can be used to define the notion of

optimal solution.
In this article, we want to reason on uncertain problems by assuming to have no

observability over uncertain events before decision. We define an USCSP as a set of

variables, which can be controllable or uncontrollable, and a set of soft constraints over

these variables. Moreover, we assume that the domain of every uncontrollable variable is

equipped with a possibility distribution that specifies, for every value in the domain, the

degree of plausibility that the variable takes that value. Formally, we give the following

definition.

Definition 11 (USCSP): An uncertain soft CSP is a tuple hS,Vc,Vu,�,Cc,Ccu,Cui, where

. S is a c-semiring:

. Vc¼ {x1, . . . , xn} is a set of controllable variables;

. Vu¼ {z1, . . . , zk} is a set of uncontrollable variables

. �¼ {p1, . . . , pk} is a set of possibility distributions over Vu. In particular, every

zi2Vu has possibility distribution �i with scale [0, 1];
. Cc is the set of constraints that involve only variables of Vc;
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. Ccu is a set of constraints that involve at least a variable in Vc and a variable in Vu,

and that may involve any other variable of (Vc[Vu);
. Cu is the set of constraints that involve only variables of Vu.

Notice that when the set of uncontrollable variables, i.e. Vu, of an USCSP

hS,Vc,Vu,�Cc,Ccu,Cui, is empty, then the sets of constraints involving variables in Vu,

i.e. Ccu and Cu, are empty, and the USCSP corresponds to an SCSP hS,Vc,Cci, as defined

in Definition 2.

When the chosen semiring is SFCSP¼h[0, 1],max,min, 0, 1i, Definition 11 models an

Uncertain Fuzzy CSP (UFCSP) that corresponds, when there are no uncontrollable

variables, to an FCSP, as defined in Section 2.1.

Example 1: Figure 1 shows an example of an UFCSP. Each constraint is defined by

associating a preference level (in this case between 0 and 1) to each assignment of its

variables to values in their domains. The set Vc of the controllable variables is composed

by x, y and w, while the set Vu of the uncontrollable variables contains only z. The values

in the domain of z are characterised by the possibility distribution �Z. The set of

constraints Cc is composed by the constraint hq, {x,w}i, which relates x and w via the

preference function q. The set of constraints Ccu is composed by the constraint

h f, {x, y, z}i, which is defined on variables x, y and z by the preference function f, while

the set Cu is empty.

Given an assignment t to all the variables of an USCSP, its overall preference is

computed by combining, via the � operator, the preference levels of its subtuples in the

selected constraints.

Definition 12 (overall assignment preference): Given an USCSP

Q¼hS,Vc,Vu,�,Cc,Ccu,Cui, let t be an assignment to all the variables of Q, then its

preference is the value ovpref (t)¼
Q

{hdefi,conii2Cc[Ccu[Cu}
defi (t#coni ).

A solution of an USCSP is a complete assignment to all its controllable variables.

More formally, we give the following definition.

z

w

x
Dw={5,6}

Dx=Dy={1,2}

Dz={3,4}

pz

y0

0.2

43 z

1 f(z=3, x=1, y=1)=0.3

f(z=4, x=1, y=1)=0.5

f(z=3, x=1, y=2)=0.4

f(z=4, x=1, y=2)=0.6

f(z=3, x=2, y=1)=0.5

f(z=4, x=2, y=1)=0.4

f(z=3, x=2, y=2)=0.1

f(z=4, x=2, y=2)=0.6

q(x=1, w=5)=0.4

q(x=1, w=6)=0.3
q(x=2, w=5)=0.9
q(x=2, w=6)=0.2

Figure 1. An uncertain fuzzy CSP.
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Definition 13 (solution): Given an USCSP Q¼hS,Vc,Vu,�,Cc,Ccu,Cui, a solution of Q
is a complete assignment to all the variables of Vc.

In what follows, we will assume to have USCSPs with Cu¼;. If Cu 6¼ ;, we can
translate every constraint of type Cu in a new constraint of type Ccu, thus obtaining a
USCSP with Cu¼;. This procedure will be described in Section 8.1.

4. Preference, robustness and desirable properties

Given a solution s of a USCSP, we will associate a preference degree to it, written pref (s),
which summarises all the preferences in the controllable part, and that could be obtained
for some assignment to the uncontrollable variables decided by Nature. It is reasonable to
assume that pref (s) belongs to the set of preferences in the considered c-semiring.

When we deal with USCSPs, we have to consider another interesting aspect that
characterises a solution, that is, its robustness with respect to the uncertainty. In general
terms, the robustness of a solution measures the impact of Nature on the preference
obtained by choosing that solution. There are several ways to define the robustness of a
solution. An intuitive measure of robustness of a solution s is the one which considers the
worst preference which can be obtained for s in the constraints connecting controllable and
uncontrollable variables. However, if we have possibility distributions over the values in
the domains of uncontrollable variables, it is easy to imagine that the robustness of s
should depend both on the preferences in the constraints connecting both controllable and
uncontrollable variables to s, and on such possibility distributions. It is also reasonable
that the robustness of a solution should be an element of the c-semiring. This will allow us
to use the operators of such a structure over the robustness values.

Before giving our definition of the robustness of a solution s, we will denote with rob(s),
we define two properties such that a definition should satisfy.

Property 1: Given solutions s and s 0 of an USCSP hS,Vc,Vu,�,Cc,Ccu, ;i, where every
variable vi in Vu is associated to a possibility distribution �i, if, for every constraint
hdef, coni 2Ccu, and for every assignment a to the uncontrollable variables in con,
def ((s, a)#con)�S def ((s

0, a)#con), then it should be that rob(s)�S rob(s
0).

In other words, if we increase the preference of tuples involving uncontrollable
variables, then we should get a higher value of robustness.

Property 2: Take a solution s of the USCSPs Q1¼hS,Vc,Vu,�1,Cc,Ccu, ;i, Q2¼

hS,Vc,Vu,�2,Cc,Ccu, ;i. Assume that for every assignment a to variables in Vu,
�2(a)��1(a). Then it should be that rob1(s)�S rob2(s), where rob1 is the robustness
computed in the problem Q1, and rob2 is the robustness computed in the problem Q2.

In other words, if we lower the possibility of values of uncontrollable variables, we
should get a higher value of robustness.

To understand which solutions are better than others in a USCSP, it is reasonable to
consider a solution ordering, say �, which should be reflexive and transitive. No matter if
it is a partial or a total order, the notions of robustness and preference should be related to
this solution ordering by the following properties.

Property 3: Get two solutions s and s 0 of an USCSP Q¼hS,Vc,Vu,�,Cc,Ccu, ;i.
If ovpref(s, a)4S ovpref(s

0, a) 8a assignment to Vu, then it should be that s� s 0.
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In other words, if two solutions s and s 0 are such that the overall preference of the
assignment (s, a) to all the variables is better than or equal to one of (s 0, a) for all the values
a of the uncontrollable variables, then s should be considered better than or equal to s 0.

Property 4: Given two solutions s and s 0 of an USCSP, if rob(s)¼ rob(s 0) and
pref (s)4S pref (s

0), it should be that s� s 0.

Property 5: Given two solutions s and s 0 of an USCSP, if pref (s)¼ pref (s 0), and
rob(s)4S rob(s

0), then it should be that s� s 0.

In other words, if two solutions which are equally good with respect to one aspect
(robustness or preference degree) and differ on the other, one should be ordered according
to the discriminating aspect.

5. Removing uncertainty from UFCSPs

While in the previous sections we have considered USCSPs, where any semiring could be
chosen, we now focus on uncertain fuzzy CSPs (UFCSPs) to make the treatment simpler
and easier to understand. We now propose a procedure that eliminates uncontrollable
variables from UFCSPs while preserving as much information as possible. Starting from
this procedure, we define the preference and the robustness degrees of a solution, and we
show that such notions satisfy the desirable properties mentioned above.

This procedure, that we call Algorithm SP (for separation and projection), is applied in
the solver for UFCSPs, that we will describe in detail in the next sections, only after having
performed a preprocessing phase and a propagation phase. The preprocessing phase
connects every uncontrollable variable not connected with a controllable one, to at least a
controllable variable, by adding new induced constraints. The propagation phase, instead,
propagates all the constraints, including the new ones. These two steps are performed in
the solver before applying SP in order to mitigate the loss of information that can arise
after having applied SP, since it removes uncontrollable variables without taking into
account the information contained in the constraints involving only uncontrollable
variables and since it processes separately the constraints involving controllable and
uncontrollable variables even if they share some variables.

Algorithm SP takes an UFCSP Q¼hSFCSP,Vc,Vu,�,Cc,Ccu,Cui as input, where
Cu¼;, and returns a structure (that we call an RFCSP) which is similar to an FCSP but
has two sets of constraints rather than one.

Definition 14 (RFCSP): An RFCSP is a tuple hSFCSP,Vc,C1,C2i such that
hSFCSP,Vc,Ci, where C¼C1[C2, is an FCSP.

The RFCSP Q 0 returned by SP is obtained from the UFCSP Q by eliminating its
uncontrollable variables and the fuzzy constraints in Ccu, and by adding new sets of fuzzy
constraints, i.e. Crob and Cproj, only among the controllable variables. In particular, it adds
Cproj to Cc, while it keeps Crob separate. More precisely, Cproj (the projection constraints) is
the set of constraints obtained applying to every constraint c in Ccu of Q the procedure
ComputeProjectionConstraint(c) that will be described in Section 5.2, while Crob (the
robustness constraints) is the set of constraints obtained applying to every constraint c
in Ccu of Q the procedure ComputeRobustnessConstraint(c) that will be described in
Section 5.1. As mentioned above, both projection and robustness constraints are not
sufficient to prevent the loss of information occurring when the uncontrollable part of the
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problem is deleted. In Sections 5.1 and 5.2, we will see in detail how these new constraints
encode some of the information contained in the uncontrollable part of the problem.

Starting from this problem Q 0, we then define the preference degree of a solution
considering the preference functions of the constraints in Cc[Cproj, and the robustness
degree of a solution considering the preference functions of the constraints in Crob.

[h] SP Input: Q¼hSFCSP,Vc,Vu,�,Cc,Ccu, ;i: an USCSP;
Output: Q0 ¼ hSFCSP,Vc,C

�
c ,Crobi: an RFCSP;

Crob ;;
Cproj ;;
constraint c2CcuCrob Crob[ComputeRobustnessConstraint(c);
Cproj Cproj[ComputeProjectionConstraint(c);
C �c  Cc [ Cproj;
Q0  hSFCSP,Vc,C

�
c ,Crobi;

Q 0

5.1. Robustness constraints

The set of robustness constraints Crob is obtained by reasoning on the preference functions
of the constraints in Ccu and on the possibilities associated to values in the domains of
uncontrollable variables involved in such constraints.

Every constraint in Crob is built by exploiting the procedure described in (Dubois et al.
1996). Such a procedure, denoted ComputeRobustnessConstraint in algorithm SP, takes a
constraint c¼hdef, coni 2Ccu, relating controllable and uncontrollable variables, such that
con\Vu¼Z and con\Vc¼X, and it returns a fuzzy constraint c0 ¼ hdef 0, con0i such that
con0 ¼ con\Vc. The preference function of any assignment tX to X is

def 0ðtXÞ ¼ NðtX satisfies cÞ ¼ min
tZ2Az

maxðdef ðtX, tZÞ, rð�ZðtZÞÞÞ,

where tZ is an assignment to Z, AZ is the domain of Z and r is the order reversing map
such that r(p)¼ 1� p 8p2 [0, 1]. In words, the preference value def 0(tX) is given by the
necessity degree that the assignment tX partially satisfies the constraint c, i.e. by the
necessity degree that the preference def (tX, tZ) is greater than 0 when varying tZ in c
(Dubois et al. 1996).

This value, that has the form of the pessimistic possibilistic expected utility (Dubois and
Prade 1995, Dubois, Godo, Prade and Zapico 1998; Dubois et al. 1996), is characterised by
the following property, which we will denote with Property PO (Dubois et al. 1996):

def 0ðtXÞ 	 � if and only if def ðtX, tZÞ 	 � 8tZ with �ZðaÞ4 rð�Þ:

Informally, def 0(tX) is greater than or equal to � in c0 if and only if every assignment (tX, tZ)
to (X,Z), with possibility �Z(tZ) strictly greater than 1� �, has preference def (tX, tZ)
greater than or equal to � in c. Thus, the higher the def 0(tX), the more assignments to
uncontrollable variables in c produce a preference that is higher than a given threshold.

Notice that def 0 in the above formula is computed by applying the max operator
between preferences and possibilities. This can be done, assuming commensurability
between preferences and possibilities, since the scale of the preferences and the scale of the
possibilities are equal and since both fuzzy preferences and possibilities deal with vague
knowledge.

Journal of Experimental & Theoretical Artificial Intelligence 11

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
S
i
l
v
i
a
 
P
i
n
i
,
 
M
a
r
i
a
]
 
A
t
:
 
1
6
:
3
2
 
1
7
 
S
e
p
t
e
m
b
e
r
 
2
0
1
0



If the uncontrollable variables z1, . . . , zk2Z are logically independent from each other,
the knowledge about each zj is completely described by the possibility distributions �zj
and the joint possibility �Z is as follows: 8a¼ (a1, . . . , ak)2A1� 
 
 
 �Ak, �Z(a)¼
min{ j¼1, . . . , k}�zj(aj).

Example 2: Consider the constraint c¼h f, {x, y, z}i in Figure 2(a). The robustness
constraint obtained from it is the constraint h fr, {x, y}i shown in Figure 2(b). Consider, for
example, the preference value associated to the assignment (x¼ 1, y¼ 2), i.e. fr(x¼ 1,
y¼ 2)¼ 0.6. By Property PO, for all the values ti of z with possibility �Z(ti)41� 0.6¼ 0.4,
i.e. in this case for the value z¼ 4, we have f (x¼ 1, z¼ ti)	 0.6 in c.

5.2. Projection constraints

Projection constraints are added to the problem in order to encode part of the information
contained in the constraints in Ccu. In particular, as we will show in Example 5, they are
useful to guarantee that the preference degree of a solution, say pref (s), is a value that
could be obtained in the given UFCSP.

The set of projection constraints Cproj is defined by function
ComputeProjectionConstraint in algorithm SP. Such a function takes in input a fuzzy
constraint c¼hdef, coni in Ccu, such that con\Vc¼X and con\Vu¼Z, and it returns a
fuzzy constraint hdefp,X i, where defp(tX)¼max{tZ2AZj�Z(tZ)40} def (tX, tZ). In other words,
defp(tX) is the best preference that could be reached in c for the assignment tX to X, when
we consider the various assignments tZ to Z taken from the domain AZ of Z.

Notice that this value has the form of the optimistic possibilistic expected
utility (Dubois and Prade 1995; Dubois et al. 1998; Dubois et al. 1996), that is,
defp(tX)¼max{tZ2AZ}

min(def (tX, tZ),�Z(tZ)), where we consider only assignments tZ of the
uncontrollable variables with �Z(tZ)40 and we assume that all of them have a possibility
degree of 1.

Example 3: Consider the constraint c¼h f, {x, y, z}i in Figure 2(a). The projection
constraint obtained from it is the constraint h fp, {x, y}i shown in Figure 2(b). Let us

z

Dw = {5,6}

Dx = Dy = {1,2}
Dz = {3,4}

y

x

w

pz

(b)(a)

w

x

f(z = 3, x = 1, y = 1) = 0.3
f(z = 4, x = 1, y = 1) = 0.5
f(z = 3, x = 1, y = 2) = 0.4
f(z = 4, x = 1, y = 2) = 0.6
f(z = 3, x = 2, y = 1) = 0.5
f(z = 4, x = 2, y = 1) = 0.4
f(z = 3, x = 2, y = 2) = 0.1
f(z = 4, x = 2, y = 2) = 0.6

q(x = 1, w  = 5) = 0.4
q(x = 1, w = 6) = 0.3
q(x = 2, w = 5) = 0.9
q(x = 2, w = 6) = 0.2

q(x = 1, w = 5) = 0.4
q(x = 1, w  = 6) = 0.3
q(x = 2, w  = 5) = 0.9
q(x = 2, w  = 6) = 0.2

y

fp(x = 1, y = 1) = 0.5
fp(x = 1, y = 2) = 0.6
fp(x = 2, y = 1) = 0.5
fp(x = 2, y = 2) = 0.6

 fr(x = 1, y = 1) = 0.5

fr(x = 2, y = 2) = 0.6

 fr(x = 1, y = 2) = 0.6
fr(x = 2, y = 1) = 0.4

0

0.2

43 z

1

Figure 2. Schematic representation of how SP works.
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consider, for example, the value fp(x¼ 1, y¼ 1)¼ 0.5. It reminds us that in c the

assignment (x¼ 1, y¼ 1) has at most preference 0.5.

5.3. An example

We will now illustrate with an example how algorithm SP works.

Example 4: Let us consider the UFCSP, say Q, in Figure 2(a). Figure 2(b) shows the

corresponding problem Q 0 obtained by SP from Q. Notice that Q 0 is defined only on the

controllable variables of Q, namely x, y and w. The set of constraints Cc contains

the constraint hq, {x,w}i. The set of constraints Cproj contains the constraint h fp, {x, y}i,

obtained projecting constraint h f, {x, y, z}i of Q on the controllable variables x and y. The

set of constraints Crob, instead, contains the constraint h fr, {x, y}i.

6. Preference and robustness

We are now ready to define the preference and the robustness of a solution in an UFCSP

Q¼hSFCSP,Vc,Vu,�,Cc,Ccu, ;i. The main idea is to use algorithm SP to produce the

RFCSP Q 0 ¼ hSFCSCP,Vc,C
�,Crobi, where C �¼Cc[Cproj, and then to associate to each

solution of Q 0 a pair composed by a degree of preference and a degree of robustness.

Definition 15 (preference): Given a solution s of an UFCSP Q¼hSFCSP,Vc,Vu,�,
Cc,Ccu, ;i, letQ

0 ¼ hSFCSP,Vc,C
�
c ,Crobi, whereC

�
c ¼ Cc [ Cproj, the RFCSP obtained from

Q by algorithm SP. Then the preference of s is

pref ðsÞ ¼ minfhdef,coni2C�c g def ðs#conÞ:

In words, the preference of a solution is the preference obtained by combining all

the preferences of the subtuples of the solution over the constraints in Cc[Cproj of the

problem Q 0 returned by algorithm SP. Thus, the preference of a solution summarises all

the preferences in the controllable part (since it considers constraints in Cc), and it gives a

value that can be obtained for at least one way in which Nature will assign values to

uncontrollable variables (since it considers constraints in Cproj).

In the following we will sometimes need to use a preference value that we call projection

preference. More precisely, we will denote the projection preference of a solution s with

proj(s)¼min{hdef,coni2Cproj}
def (s#con).

Considering also projection constraints in the computation of a solution’s preference is

important to avoid having solutions s with preference better than the best preference that
can result from the Ccu constraints. In fact, it is not desirable to associate to a solution a

preference that can never be obtained from the Ccu constraints.

Example 5: Consider the UFCSP Q shown in Figure 2(a) and the solution s¼ (x¼ 2,

y¼ 1, z¼ 5) in Figure 3(b). If we do not consider the projection constraint h fp, {x, y}i in
the computation of the preference degree of s, then we will associate to s a preference value

0.9, that is strictly higher than the best preference value that can be obtained for s in Q, i.e.

0.5. Instead, if we add this projection constraint, we associate to s a preference value

0.5¼min(0.9, 0.5) that can be obtained in Q.
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Definition 16 (robustness): Given a solution s of an UFCSP Q¼hSFCSP,Vc,Vu,�,
Cc,Ccu, ;i, let Q 0 ¼ hSFCSP,Vc,C

�
c ,Crobi, where C �c ¼ Cc [ Cproj, the RFCSP obtained

from Q by algorithm SP. Then the robustness of s is

robðsÞ ¼ min
fhdef,coni2Crobg

def ðs #conÞ:

In words, the robustness of a solution is the preference obtained by combining all the

preferences of the subtuples of the solution over the constraints in Crob of the problem Q 0.

The notion of robustness given in Definition 16 satisfies all the properties that we have

stated as desirable in Section 4. In particular, given a solution s, the value rob(s), as

required in Section 4, depends, by the construction of Crob, on the preferences in the

constraints in Ccu relating controllable and uncontrollable variables to s, and on the

possibility distributions of such uncontrollable variables.
Moreover, as required in Section 4, rob(s) generalises the intuitive measure of

robustness, which considers the worst (i.e. in the fuzzy case, the minimal) preference which

can be obtained by s on the constraints involving controllable and uncontrollable

variables. In fact, if there is no additional information on the uncontrollable variables in

Z, we are in the case of complete ignorance, then the possibilities of every assignment tZ to

Z are equal to 1 (i.e. �Z(tZ)¼ 1 8tZ), thus rob(s)¼min{hdef 0,con0i2Crob}
def 0(s#con0), where

def 0(s#con0)¼mintZ2AZ
max(def (s#con0, tZ), r(�Z(tZ)))¼mintZ2AZ

def (s#con0, tZ), since

r(�Z(tZ))¼ r(1)¼ 1� 1¼ 0.
Also, it satisfies properties 1 and 2 presented in Section 4.

Proposition 1: The definition of robustness given in Definition 16 satisfies properties 1 and 2.

Proof: Proof is given in the Appendix.

The notion of robustness given in Definition 16 generalises, as shown above, the

intuitive notion of robustness which considers the worst preference which can be obtained

by s on the constraints involving controllable and uncontrollable variables, while taking

into account also the possibility distributions associated to the uncontrollable variables.

pref robproj control rob

(x = 1, y = 1, w = 6) ... <min(0.5, 0.3), 0.5)>  = <0.3, 0.5>

(x = 1, y = 2, w = 5) ... <min(0.6, 0.4), 0.6)>  = <0.4, 0.6>

(x = 1, y = 2, w = 6) ... <min(0.6, 0.3), 0.6)>  = <0.3, 0.6> 

(x = 2, y = 1, w = 5) ... <min(0.5, 0.9), 0.4)>  = <0.5, 0.4>

(x = 1, y = 1, w = 5) ... <min(0.5, 0.4), 0.5)>  = <0.4, 0.5>

(x = 2, y = 1, w = 6) ... <min(0.5, 0.2), 0.4)>  = <0.2, 0.4>
(x = 2, y = 2, w = 5) ... <min(0.6, 0.9), 0.6)>  = <0.6, 0.6>
(x = 2, y = 2, w = 6) ... <min(0.6, 0.2), 0.6)>  = <0.2, 0.6>

(a)

x

y

w
q(x = 1, w = 5) = 0.4

q(x = 1, w = 6) = 0.3
q(x = 2, w = 5) = 0.9

q(x = 2, w = 6) = 0.2

fr(x = 1, y = 1) = 0.5
fr(x = 1, y = 2) = 0.6
fr(x = 2, y = 1) = 0.4

fr(x = 2, y = 2) = 0.6

fp(x = 1, y = 1) = 0.5
fp(x = 1, y = 2) = 0.6

fp(x = 2, y = 1) = 0.5

fp(x = 2, y = 2) = 0.6

(b)

Figure 3. Solutions of an UFCSP with their preference and robustness degrees.
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Neglecting such additional information can lead to unreasonable judgments, as illustrated
by Example 6. In particular, using the intuitive definition of robustness we could consider
as bad a situation that behaves well in almost all cases, and that is bad only in one very
unlikely case.

Example 6: Consider an UFCSP composed only by the constraint h f, {x, z}i linking the
controllable variable x with the uncontrollable variable z. Assume that the preference
function f is defined on (x, z) as follows: f (d, a1)¼ 0.9, f (d, a2)¼ 0.9, f (d, a3)¼ 0.9,
f (d, a4)¼ 0.2. Assume also that assignments a1, a2 and a3 to variable z have possibility
equal to 1, and that assignment a4 has possibility 0.1. If we consider the notion of
robustness mentioned before, that does not consider the possibilities, then we give the
solution x¼ d a low robustness value 0.2¼min(0.9, 0.9, 0.9, 0.2), even if it behaves badly
only in one unlikely case. Instead, considering our notion, for solution x¼ d we have a
higher value of robustness, i.e. 0.9¼min{a1,a2,a3,a4}(max(0.9, 0),max(0.9, 0),max(0.9, 0),
max(0.2, 0.9)), which is coherent with the fact that solution x¼ d behaves well in most
possible cases.

We will now show via an example how to compute the preference and the robustness
values of the solutions of an UFCSP.

Example 7: Let us consider the UFCSP shown in Figure 2(a). Figure 3 (b) shows all the
solutions of Q with their preference and robustness values.

7. Semantics

In this section we propose various semantics for ordering the solutions with respect to their
preference and robustness values, and we check if these semantics, as well as the semantics
defined in Dubois et al. (1996), satisfy the desired properties on solution ordering.

Once each solution s is associated with two values, the preference degree pref (s) and the
robustness degree rob(s), there can be several ways to order the solutions. We will now
propose various approaches which differ on their attitude towards risk.

Definition 17 (semantics): Given an UFCSP Q, consider a solution s with preference
degree pref (s) and robustness degree rob(s). Each semantics associates to s, the ordered
pair has, bsi as follows:

. Risky (R), Diplomatic (D): has, bsi¼ h pref (s), rob(s)i;

. Safe (S ): has, bsi ¼ hrob(s), pref (s)i;

. Risky-Mix (R1); has, bsi¼hmin(pref (s), rob(s)), pref (s)i;

. Safe-Mix (S1): has, bsi¼hmin(pref (s), rob(s)), rob(s)i.

Given two solutions s and s 0, let has, bsi and has 0, bs 0i represent the pairs associated to the
solutions by a semantics. The Risky, Safe, Risky-Mix and Safe-Mix semantics work as
follows:

. if a14a2 then ha1, b1i4J ha2, b2i (and the opposite for a24a1)

. if a1¼ a2 then

– if b14b2 then ha1, b1i4J ha2, b2i (and the opposite for b24b1)
– if b1¼ b2 then ha1, b1i¼ ha2, b2i;

where J2 {R,S,R1,S1}.
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For the Diplomatic semantics, we have a different behaviour:

. if a1� a2 and b1� b2 then ha1, b1i�D ha2, b2i (and the opposite for a2� a1
and b2� b1);

. if a1¼ a2 and b1¼ b2 then ha1, b1i¼ ha2, b2i;

. else ha1, b1iffl ha2, b2i, where ffl means incomparable.

As it can be seen by Definition 17, all semantics, except Diplomatic, can be regarded as
a lexicographic ordering on pairs has, bsi with the first component as the most important
feature. Diplomatic, instead, is a Pareto ordering on the pairs.

Let us describe such semantics in detail:

. Risky: this semantics considers pref (s) as the most important feature. Informally,
the idea is to give more relevance to the preference degree that can be reached in
the best case of the uncertain part, considering less important a high risk of being
inconsistent. Hence we are risky, since we disregard almost completely the
uncertain part of the problem. This could be useful to reason with uncertain
problems where the uncontrollable part is almost irrelevant w.r.t. the controllable
one. In this case we are interested in finding solutions that guarantee an high level
of preference in the controllable part even if such a preference could be worsened
in some scenario of the uncontrollable part. Only when we have two or more
solutions with same best preference degree, we consider the robustness degree,
and so the uncontrollable part of the problem, to choose one among these
solutions.

. Safe: this semantics represents the opposite attitude with respect to the previous
one, since it considers rob(s) as the most important feature. Informally, the idea
is to give more importance to the robustness level that can be reached,
considering less important having a high preference. In particular, in this case
we consider a solution better than another one if its robustness is higher, i.e. if
it guarantees a higher number of scenarios with a higher preference. This
semantics considers the preference degree of a solution only for ordering
solutions having the same robustness. This can be useful for reasoning with
uncertain problems when we are mainly interested in the part of the problem
that we cannot control. In this case we want to find the most robust solution
independently from its preference degree. If the chosen solution has a very bad
preference degree, we could modify that solution, if we want, since we can
decide the controllable part.

. Risky-Mix: this semantics tries to overcome the myopic attitude of Risky, which
concentrates only on the preference degree (except when there is a tie), by first
considering the ordering generated by the minimum of pref (s) and rob(s). This
allows to avoid considering as good, solutions which will give a low overall
preference in most of the possible scenarios.

. Safe-Mix: this semantics mitigates the relevance given to robustness in Safe. In
fact, not considering the minimum value between pref and rob before focusing on
rob, as the Safe semantics does, can lead to consider, as optimal, solutions which
have a poor overall preference despite guaranteeing high preference on the
constraints involving uncontrollable variables.

. Diplomatic: this semantics aims at giving the same importance to the two
aspects of a solution: preference degree and robustness. As mentioned above,
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the Pareto ordering on pairs has, bsi is adopted. The idea is that a pair is to be
preferred to another only if it wins both on preference and robustness, leaving
incomparable all the pairs that have one component higher and the other lower.
Contrary to the Diplomatic, the other semantics produce a total order over the
solutions.

All semantics differ with respect to the attitude towards the risk they implement and
with respect to the point of view from which they consider the problem.

In particular, in the Risky and Safe semantics, for each solution, the two aspects, i.e.
how well the solution performs on the controllable part of the problem and on the
constraints involving uncontrollable variables, are kept separated. The relation between
how a solution satisfies the two aspects is ignored. This can be seen as a myopic attitude
which focuses on the preference of the controllable part in Risky, and on the compatibility
with uncertainty in Safe. However it should be noticed that, given a solution s, the
preference obtained by s on the constraints involving only controllable variables has
absolutely no impact on rob(s), while the compatibility of the solution with uncertain
events is taken into account (through the projection constraints) for pref (s). In this sense,
Risky can be regarded as less myopic than Safe.

A more global view of the problem characterises instead the Risky-Mix, Safe-Mix and
Diplomatic semantics. In fact, in the first two, considering the minimum of pref (s) and
rob(s) allows one to order the solutions first with respect to their predominant aspect, that
is the one on which they have a worst performance. Diplomatic, instead, considers both
aspects separate but with the same importance.

Example 8: Figure 3(b) shows a solution of the FCSP in Figure 3(a) which is optimal
according to all the semantics described in Definition 17.

Let us now consider an example that explains the differences between the various
semantics.

Example 9: Let us consider two solutions of an UFCSP, s1 and s2, such that
pref (s1)¼ 0.3, rob(s1)¼ 0.5, pref (s2)¼ 0.5 and rob(s2)¼ 0.3. According to the semantics
defined above, we have the following orderings: s15R,R1 s2, s14S,S1 s2, and s1fflD s2.

If we consider two solutions, s3 and s4, such that pref (s3)¼ 0.5, rob(s3)¼ 0.3,
pref (s4)¼ 0.6 and rob(s4)¼ 0.2, then s35R s4, s34S,S1,R1 s4, and s3fflD s4.

Another semantics that we will consider in the following is the semantics adopted in
(Dubois et al. 1996) to order the solutions of UFCSPs. Such a semantics, which we call
Mixed, is such that, given A1¼ (pref1, rob1) and A2¼ (pref2, rob2), A1�MixedA2 iff
min(pref1, rob1)4min(pref2, rob2). In words, according to this semantics, a solution s1 with
preference pref1 and robustness rob1 is better than a solution s2 with preference pref2 and
robustness rob2 iff the minimum between pref1 and rob1 is greater than the minimum
between pref2 and rob1.

7.1. Comparing the semantics

In this section we will compare the semantics we have considered in terms of the ordering
they produce over the solutions. Table 1 shows how a pair of solutions, which is ordered in
a given way by Mixed, is ordered by the other semantics. The first row of Table 1 indicates
that if a pair of solutions is equally preferred by Mixed, it can be equally preferred or
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ordered in any way for Risky, Safe, Risky-Mix and Safe-Mix, and it can also be
incomparable for Diplomatic.

Example 10: Consider two solutions, s1 and s2 such that pref (s1)¼ 0.5, rob(s1)¼ 0.7,
pref (s2)¼ 0.7, and rob(s2)¼ 0.5, then we have s1¼Mixed s2, s15R,R1 s2, s14S,S1 s2 and s1ffl s2.
Consider, instead, two solutions s3 and s4 such that pref (s3)¼ 0.2, rob(s3)¼ 0.2,
pref (s4)¼ 0.5, and rob(s4)¼ 0.2, then s4¼Mixed,S1 s3, while s44R,R1,S,D s3.

The second row of Table 1 states that, if a pair is ordered in some way by Mixed, then
it can be ordered in the same way by all the semantics, or in the opposite way in Risky and
Safe, or it can be incomparable in Diplomatic.

Example 11: Consider six solutions, s1, s2, s3, s4, s5 and s6 such that: pref (s1)¼ 0.4,
rob(s1)¼ 0.3, pref (s2)¼ 0.5, rob(s2)¼ 0.4, pref (s3)¼ 0.5, rob(s3)¼ 0.3, pref (s4)¼ 0.4,
rob(s4)¼ 0.4, pref (s5)¼ 0.3, rob(s5)¼ 0.8, pref (s6)¼ 0.4 and rob(s6)¼ 0.7. Then we have
s15Mixed,R,S,D,R1,S1 s2, s35Mixed s4, s34R s4, s55Mixed s6 and s54S s6.

Notice that two solutions, which are strictly ordered in Mixed, cannot be equally
preferred with respect to Safe or Risky semantics. In fact, two solutions are equally
preferred for Safe and Risky (and Diplomatic) only if they have the same preference and
the same robustness, and thus the same minimum.

A pair ordered by Mixed can either maintain its ordering or become incomparable
according to Diplomatic (as shown in Table 1). Moreover, Risky-Mix and Safe-Mix refine
the ordering given by Mixed, i.e. they can order tuples that are considered equal for
Mixed, but they never reverse the Mixed ordering. All these results are shown in the
following proposition.

Proposition 2: Consider two solutions of an UFCSP, say s1 and s2. If s14Mixed s2, then
either s14D s2 or s1fflD s2. Also, s14R1,S1 s2.

Proof: Proof is given in the Appendix.

Notice that from the second part of Proposition 2 it derives that the set of optimal
solutions according to Mixed is a superset of the set of optimal solutions of Risky-Mix and
Safe-Mix.

7.2. Desired properties on the solution ordering

We now check if the preferential orderings over the solutions of an UFCSP induced by the
semantics presented in Definition 17 satisfy Properties 3–5.

Property 3 is not satisfied by the preferential orderings induced by the various
semantics. However, it is possible to show that, if we combine all the constraints in Ccu

Table 1. The solution ordering produced by the Mixed semantics compared to that of Risky, Safe,
Diplomatic, Risky-Mix and Safe-Mix semantics.

Mixed Risky Safe Diplomatic Risky-Mix Safe-Mix

¼ 5,4, ¼ 5,4, ¼ 5,4, ¼, ffl 5,4, ¼ 5,4, ¼
4 5,4 5,4 4,ffl 4 4
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involving both controllable and uncontrollable variables, and if compute, starting from
this constraint, the projection constraint and the robustness constraint, then the
preferential ordering induced by Risky and Risky-Mix semantics satisfy such a property.

In our solver, which we will describe in detail in Section 8, we have decided to avoid to
perform the combination of all the constraints in Ccu, since it can be very expensive, and
thus we have computed a projection constraint and a robustness constraint for every
constraint in Ccu.

Proposition 3: The preferential orderings over the solutions of an UFCSP induced by Risky,
Risky-Mix, Safe, Safe-Mix and Diplomatic do not satisfy Property 3.

Proof: Proof is given in the Appendix.

Proposition 4: Consider an UFCSP Q¼hSFCSP,Vc,Vu,�,Cc,Ccu, ;i. If we compute the
constraint obtained by combining all the constraints in Ccu and, starting directly from such a
constraint, we compute the projection constraint over the controllable variables of Ccu and the
robustness constraint, then the preferential orderings over the solutions of Q induced by Risky
and Risky-Mix satisfy Property 3.

Proof: Proof is given in the Appendix.

Proposition 5: The preferential orderings over the solutions of an UFCSP induced by Risky,
Risky-Mix, Safe and Diplomatic satisfy Property 4, while the one induced by Safe-Mix does
not satisfy Property 4.

Proof: Proof is given in the Appendix.

Proposition 6: The preferential orderings over the solutions of an UFCSP induced by Risky,
Safe, Safe-Mix and Diplomatic satisfy Property 5, while the one induced by Risky-Mix does
not satisfy Property 5.

Proof: Proof is given in the Appendix.

Summarising, the preferential ordering over the solutions of an UFCSP induced by
Risky satisfies Properties 4 and 5, the one induced by Risky-Mix satisfies Property 4, those
induced by Safe and Diplomatic satisfy Properties 4 and 5, and the one induced by
Safe-Mix satisfies only Property 5. Moreover, if we perform the combination of all the
constraints of Ccu before computing the robustness and the projection constraints, then the
preferential orderings induced by Risky and Risky-Mix satisfy also Property 3.

Although Properties 3–5 are desirable, there are semantics that do not satisfy them. It
is possible to show that Mixed semantics do not satisfy Properties 3–5. Before showing
this, we give a result which will be useful in the proof of the following proposition.

Theorem 1: For every solution s of an UFCSP, rob(s)� proj(s).

Proof: Proof is given in the Appendix.

Proposition 7: The preferential ordering over the solutions of an UFCSP induced by the
Mixed semantics does not satisfy Properties 3–5.

Proof: Proof is given in the Appendix.

This behaviour depends on the use of the min operator, since it forgets about all the
elements which are higher than the minimum. This is usually called the ‘drowning effect’
(Dubois and Prade 1993).
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Table 2 summarises which properties hold in the various semantics. By looking at
Table 2 we can make the following remarks.

. Considering the first two rows, we see that the properties pertaining the definition
of robustness are satisfied by all the semantics. Indeed, all semantics use the same
value, rob(s), as a measure of robustness. We recall that Property 1 states that an
increase in the preferences on constraints involving uncontrollable variables result
in an increase in robustness, assuming that the possibility distribution is kept
fixed. The same result can be obtained by lowering the possibilities while
maintaining the preferences fixed (Property 2). Proposition 1 shows that the
definition of rob, given in Definition 16, satisfies these properties.

. Property 3 measures the coherence of the ordering produced by the semantics with
the original one defined on the UFCSP. Notice that not necessarily the absence of
such coherence should be considered as a drawback. In fact, while, at first sight,
it may seem desirable to prefer an assignment to controllable variables which
outperforms another one in every circumstance, this is not so obvious when the
performance measure is the min of the preference over all the constraints. In
particular, it may be reasonable to sacrifice this property in order to allow a
higher discriminating power among the two fundamental aspects of the solutions,
which are the preference and the robustness with respect to uncertainty.

. The last two properties are satisfied when, given two solutions that have the same
robustness then their ordering is determined by the preference degree (Property 4)
and, given two solutions that have the same preference then their ordering is
determined by the robustness (Property 5). Both of these properties are satisfied
by Risky, Safe and Diplomatic semantics, since such semantics consider the two
features separately and independently. The other two semantics, Risky-Mix and
Safe-Mix, which first consider the min of the two values, allow to discriminate
only with respect to the feature which appears as the second element of the pair.
This can be explained in terms of a trade off between the discrimination power of
the semantics and its coherence with the original ordering of the UFCSP.

8. A solver for UFCSPs

We now present a solver for UFCSPs. It takes an UFCSPQ¼hSFCSP,Vc,Vu,�,Cc,Ccu,Cui

in input, and it returns an optimal solution according to one of the semantics defined

Table 2. Properties satisfied in the various semantics.

Mixed Risky Safe Diplomatic Safe-Mix Risky-Mix

Property 1 X X X X X X
Property 2 X X X X X X
Property 3 X � X �

Property 4 X X X X
Property 5 X X X X

Notes: The presence of X in a cell (Property i, S) denotes that semantics S satisfies Property i. The
presence of X � in a cell (Property i, S) denotes that, if we compute the constraint obtained by
combining all the constraints in Ccu and, starting from such a constraint, we compute the projection
constraint over the controllable variables of Ccu and the robustness constraint, semantics S satisfies
Property i.
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in Section 7. Note that, for simplicity, we consider only binary constraints in Cu. However,
we do not lose generality, since we can always reformulate a problem with non-binary soft
constraints in a problem with only binary constraints (Rossi et al. 2006).

This solver consists of the following phases:

(1) Preprocessing: the goal of this phase is to connect every uncontrollable variable,
that is not directly connected to a controllable one, to some controllable variable.
This is achieved by adding constraints which are induced by existing constraints in
Cu and Ccu. This is needed to avoid the loss of information, since algorithm SP
removes all the uncontrollable variables from the problem only considering the
information contained in constraints between the controllable and uncontrollable
variables. We indicate with C0cu the set of constraints including those in Ccu and the
induced ones.

(2) Enforcing generalised soft arc consistency (GSAC) on C0cu [ Cu: this step mitigates
the loss of information contained in the constraints in Cu that will be removed by
Algorithm SP, and the loss of information about the correlations among
constraints in C0cu, since they will be processed separately by SP even if they
share some variable. In fact, it allows to propagate the information of the
constraints in C0cu [ Cu over their variables. In practice, some preferences
associated to the values in the domains of such variables may be lowered.

(3) SP algorithm (presented in Section 5): this algorithm removes all the uncontrollable
variables and, thus, all the constraints involving them (C0cu and Cu), by adding new
constraints Crob and Cproj, i.e. the robustness and projection constraints, are
obtained from the constraints in C0cu. We note that this may cause a loss of
information. Algorithm SP returns the current fuzzy problem without the
uncontrollable part and with the new constraints.

(4) Enforcing soft arc consistency (SAC) or its generalised version (GSAC) separately
on Cc, Cproj and Crob thus generating three independent sets of unary constraints:
this propagation step may reduce even further the search space. In particular, in
the first case only binary constraints are propagated, while, in the second case,
constraints of any arity are propagated. We consider separately the constraints in
Cc, Cproj and Crob in order to follow the requirements of the various semantics.

(5) BB search: a BB search procedure is used to find an optimal solution according to
one of the semantics defined in Section 7.

8.1. Preprocessing

The preprocessing phase takes in input an UFCSP Q¼hSFCSP,Vc,Vu,�,Cc,Ccu,Cui, with
Vu¼Zc[Znc, where Zc is the set of uncontrollable variables, which are connected directly
to a controllable variable, and Znc is the set of uncontrollable variables in Cu, that are not
connected directly with any controllable variable. Then, it returns an UFCSP, which is like
Q except that there are also new constraints, where all the uncontrollable variables in Znc

are connected to the controllable part.
In particular, if Cu is empty, the algorithm simply returns the UFCSP given in input,

since there are no constraints involving only uncontrollable variables. Otherwise, it returns
the UFCSP hSFCSP,Vc,Vu,�,Cc,C

0
cu,Cui, with Cu¼;, that has been obtained from the

given one by adding induced constraints between every variable znc in Znc and at least one
controllable variable in Vc. In particular, for every variable znc2Znc connected to a
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variable zc2Zc that is connected to a set X of controllable variables, we compute the
induced constraint between znc and X, by combining the constraint between znc and zc with
the constraint between zc and X, and by projecting the resulting constraint over the
variables in X[ znc.

[ht] Preprocessing Inputinput Outputoutput Q¼hSFCSP,Vc,Zc[Znc,�,Cc,Ccu,Cui:
UFCSP Q0 ¼ hSFCSP,Vc,Zc [ Znc,�,Cc,C

0
cu, ;i: UFCSP C0cu  Ccu Cu 6¼ ; znc2Znc zc a

variable of Vc connected to znc X set of controllable variables of a constraint involving zc
C0cu  C0cu[Generate_Induced_Constraints(znc,X ) return Q0 ¼ hSFCSP,Vc,Zc [ Znc,C

0
cu, ;i

Example 12: Consider the UFCSP Q shown in Figure 4. There is a variable z12Zc, which
is involved in a constraint c12Ccu. Let us call X the set {x1, x2} of the controllable
variables involved in c1. Also, there is a variable z22Znc connected to z1 by a constraint
c22Cu. Assume that x2, z1 and z2 have domain {a, b} and that x1 has domain {c, d}.
Assume also that c1¼h f1, {x1, x2, z1}i, where f1(c, a, a)¼ 0.4, f1(c, a, b)¼ 0.3,
f1(c, b, a)¼ 0.2, and f1(c, b, b)¼ 0.1, f1(d, a, a)¼ 0.7, f1(d, a, b)¼ 0.4, f1(d, b, a)¼ 0.3, and
f1(d, b, b)¼ 0.2, and that c2¼h f2, {z1, z2}i, where f2(a, a)¼ 0.5, f2(a, b)¼ 0.6, f2(b, a)¼ 0.7,
and f2(b, b)¼ 0.2. The preprocessing phase creates a new constraint, which we call c3,
between z2 and X. The constraint c3 is h f3, {x1,x2, z2}i, where the preference of every
assignment (a0, b0, c0) to (x1, x2, z2) is obtained by computing max{a2D} min( f1(a

0, b0, a),
f2(a, c

0)), where D is the domain of z1. Hence, for example, the preference of the tuple
(c, a, a) to (x1,x2, z2) is f3(c, a, a)¼max(min( f1(c, a, a), f2(a, a)), min( f1(c, a, b), f2(b, a))¼
max(min(0.4, 0.5), min(0.3, 0.7))¼max(0.4, 0.3)¼ 0.4.

8.2. SAC and GSAC

In Algorithm 8.2 we show Algorithm GSAC, which performs a generalised soft
arc-consistency (Rossi et al. 2006) over a set of constraints. It takes in input a set S of
constraints, and at the end S is modified in a way such that it is generalised arc consistent.
At every step of the while loop, a constraint c is extracted from the set S by the procedure
ExtractConstraint, and for every variable xi of the constraint c the variable denoted
modified is initialised to the value false. Such a variable indicates if the preference of a
value a of the variable xi has been changed. Then, it considers every value a in the domain
Di of xi, computes all the tuples which extend the current value a of xi via the procedure
Extensions, and it projects such tuples on xi via the procedure Project, thus obtaining a
new preference value. If this value is different from fi (a), that is, the preference of
such value a of xi in the constraint h fi, xii of S, then the algorithm inserts in S, via the

c3

x2

x1
z1 z2c1

c2

ZncZcX

Vc Vu

Figure 4. Schematic representation of preprocessing.
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procedure ObtainConstraints, all the constraints which involve the variable xi, since they
should be reconsidered. The while loop is repeated until S is empty, that is, until all the
constraints in S have been considered, and there is no other change in the preference values
associated to the values of the variables. In this case S is generalised arc-consistent.

If we want to propagate only binary constraints, we can use Algorithm 8.2, requiring
that the set S of the considered constraints is composed only by binary constraints, and
that the operations ExtractConstraint and ObtainConstraints consider only binary
constraints. In this case we denote Algorithm 8.2 with SAC.

[htbp] GSAC (resp., SAC ) Input: S: set of constraints (resp., set of binary constraints)
S 6¼ ; c ExtractConstraint(S) xi2 c modified false a2Di T Extensions(a, c)
v� Project(T, xi) v� 6¼ fi (a) fi (a) v� modified true modified¼ trueS¼S[
ObtainConstraints(xi)� {c};

Example 13: Let us consider an FCSP with three variables, x, y and z, with domain
{a, b}. Assume that the set of constraints is composed by three constraints: cx¼h fx, {x}i,
where fx(a)¼ 0.9, fx(b)¼ 0.1, cy¼h fy, {y}i, where fy(a)¼ 0.9, fy(a)¼ 0.5 and cxy¼
h fxy, {x, y}i, where fxy(a, a)¼ 0.8, fxy(a, b)¼ 0.2, fxy(b, a)¼ 0 and fxy(b, a)¼ 0. Applying
SAC to this set of constraints, we obtain these new lower preference values in cx and cy:
fx(a)¼ 0.8, fx(b)¼ 0, fy(a)¼ 0.8 and fy(a)¼ 0.2. Consider the assignment x to a, its new
preference is obtained by computing max(min( fx(a), fxy(a, a)),min( fx(a), fxy(a, b))¼
max(min(0.9, 0.8), min(0.9, 0.2)¼ 0.8.

8.3. Branch and Bound

We now describe the Branch and Bound (BB) algorithm that has been implemented in our
solver. It takes in input an UFCSP and one of the semantics described in Section 7, and it
returns an optimal solution of the given UFCSP according to the ordering induced by the
chosen semantics.

It follows the scheme of the classical BB algorithm (Dechter 2003) used for fuzzy
preferences. Whenever a solution is found, its preference, if higher than those found
before, is kept as a lower bound, L, for the optimal preference. Moreover, for each partial
solution t, an upper bound ub(t) is computed by overestimating the best preference of a
solution extending t. If ub(t)�L, i.e. if the preference of the best solution in the subtree
below t is worse than or equal to the preference of the best solution found so far, then the
subtree below t is pruned.

OurBB algorithm adapts the classical one to our framework, where every solution is not
associated to a single preference value, but to two values, representing its preference and its
robustness, and where there are several semantics to order the solutions according to these
two values. In particular, it associates to every solution s an ordered pair of values, that is
composed by the preference level pref (s) and the robustness rob(s), and it uses the various
semantics for comparing solutions. Also the upper bound ub(t) of a partial solution t is given
by a pair of values, which we call ubpref (t) and ubrob(t) that are, respectively,
overestimations of the best preference and the best robustness of a solution extending t.

Such overestimations can be computed by considering both instantiated and
non-instantiated variables (PastFutureUpperBound ), or only the instantiated ones
(PastUpperBound ). In the first case we have ubpref (t)¼min(prefi (t), prefni (t)) and
ubrob(t)¼min(robi (t), robni (t)), while in the second case we have that ubpref (t)¼ prefi (t),
and ubrob(t)¼ robi (t), where prefi (t) and robi (t) are, respectively, the preference level and
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the robustness value of the part of the problem instantiated by t, while prefni (t) and robni (t)
are overestimations, respectively, of the preference level and of the robustness value of the
non-instantiated part of problem. In particular, the values prefni (t) and robni (t) are
obtained combining all the best preference values of the extensions of t in Cc[Cproj and in
Crob. More formally, given a partial assignment t,

. let ci¼hdefi, conii be the generic constraint of Cc[Cproj (resp., Crob) involving only
variables instantiated in t with i¼ 1, . . . , k, then prefi (t)¼min{i¼1,. . .,k} defi (t#coni )
(resp., robi (t)¼min{i¼1,. . .,k} defi (t#coni ));

. let cj¼hdefi, conii be the generic constraint of Cc[Cproj (resp., Crob) involving
both variables instantiated in t and variables non-instantiated in t, with
i¼ 1, . . . , k, then, let tm, for m¼ 1, . . . , l, be an extension of t#conj, that also
assigns values to the variables that are non-instantiated of cj, then prefni (t)¼
min{i¼1,. . .,k}ð

Pl
m¼1 defj ðtmÞÞ (resp., robniðtÞ ¼ minfi¼1,...,kgð

Pl
m¼1 defj ðtmÞÞ.

In order to state in a compact way the conditions that allow to prune the subtree below
a partial assignment t in the various semantics, we use the ordered 4-tuple hai (t), ani (t),
bi (t), bni (t)i to represent the values associated to t. This tuple is h prefi (t), prefni (t), robi (t),

robni (t)i in Risky and Diplomatic, hrobi (t), robni (t), prefi (t), prefni (t)i in Safe, hmin(prefi (t),
robi (t)),min(prefni (t), robni (t)), prefi (t), prefni (t)i in Risky-Mix and hmin(prefi (t), robi (t)),
min(prefni (t), robni (t)), robi (t), robni (t)i in Safe-Mix.

More formally, assume that the best solution found so far is associated with the pair hlba,
lbbi, and that the partial assignment t is associated with the tuple hai (t), ani (t), bi (t), bni (t)i.
Then, in our BB algorithm, if we consider PastFutureUpperBound, we prune the subtree
below t if one of the following conditions, which we call conditions of type �, holds:

(1) ai (t)5lba;
(2) ai (t)	 lba and ani (t)5lba;
(3) ai (t)	 lba, ani (t)¼ lba, and bi (t)5lbb;
(4) ai (t)	 lba, ani (t)¼ lba, bi (t)¼ lbb, and bni (t)� lbb.

Theorem 2: When BB considers a semantics among Risky, Safe, Risky-Mix or Safe-Mix,
overestimations via PastFutureUpperBound, and the pruning conditions of type �, it returns
solutions that are optimal according to the chosen semantics.

The solutions that are optimal both for Risky and Safe are optimal also for

Diplomatic. However, some solutions, which are optimal for Diplomatic, may be not
optimal for Risky and Safe. For example, if we have only three solutions s, s 0 and s 00 resp.,
with values (0.5, 0.8), (0.6, 0.6) and (0.8, 0.5), then s is optimal for Safe, s 00 is optimal for
Risky and both s, s 0 and s 00 are optimal for Diplomatic. Hence there is a solution, i.e. s 0,
which is neither Risky nor Safe optimal. We want to be able to find this kind of solutions.
To compute such optimal solutions for Diplomatic, we need different pruning conditions
that are tighter than the previous ones. In fact, they require that both conditions on the
first component and conditions on the second one are satisfied. In particular, if the current
best solution is associated to a pair, we should be able to replace such a solution also by a
solution that is better only in one component, i.e. by a solution that may be incomparable
with it. For example, if the current best is associated to the pair (0.5, 0.8), then we want to
be able to replace this solution with a new current best solution that is (0.7, 0.3).

We recall that in Diplomatic, given a partial assignment t, ai (t)¼ prefi (t), ani (t)¼
prefni (t), bi (t)¼ robi (t) and bni (t)¼ robni (t). Optimal solutions can be obtained by pruning
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the subtree below t if one of the following conditions, which we call of type �, holds:

(1) ai (t)� lba and bi (t)� lbb;
(2) ai (t)� lba, bi (t)	 lbb, and bni (t)� lbb;
(3) ai (t)	 lba, ani (t)� lba, and bi (t)� lbb;
(4) ai (t)	 lba, ani (t)� lba, bi (t)	 lbb, and bni (t)� lbb.

Theorem 3: When BB considers the Diplomatic semantics, overestimations via

PastFutureUpperBound and the pruning conditions of type �, it returns solutions that are
optimal according to Diplomatic.

If instead we consider the heuristics PastUpperBound to compute overestimations, then

the pruning conditions are similar to the ones considered before, but they do not consider
the conditions with ani (t) and bni (t).

In our solver, we have implemented four versions of BB: two of them for Diplomatic
and two of them for the other semantics, which exploit the different pruning conditions
described before. The two versions for each semantics differ for the procedure used to

compute the upper bounds: a version considers both instantiated and non-instantiated
variables (PastFutureUpperBound ), while the other one considers only the instantiated
ones (PastUpperBound ). In all the implemented BB versions, the next variable to be

instantiated is the most constrained one, while the values in the variable domains are
ordered in a descending preference order.

All the BB algorithms are composed by two main parts. There is a part where we test if
the assignment t is a complete assignment. If this holds, then t is a solution of the problem,
thus we have to check if it is better than the best solution obtained so far. If this holds, we

store such a solution in the variable BestSol, and its preference and robustness values resp.,
in lba and lbb. Moreover, there is a part where we test if it is possible to prune the subtree
below t. If one of the pruning conditions described before is satisfied, then the Boolean
variable pruning is set to true and a recursive call of the algorithm is performed. In this

part, in the case of PastUpperBound, only the values ai (t) and bi (t) are used, while in the
case of PastFutureUpperBound ani (t) and bni (t) are also considered.

The BB algorithm shows a version of our BB where the pruning conditions are those
defined for Risky, Safe, Risky1 and Safe1, and where the upper bound is computed using

PastFutureUpperBound.
BB Inputinput indexVar: index of the current variable; t: partial assignment; bestSol:

best current solution; lba: value of the first component of the pair associated to the best
current solution; lbb value of the second component of the pair associated to the best current
solution. jtj ¼ nþ 1 return; var ObtainVariabe(indexVar) D ObtainDomain(var) d2D

t t[ (var, d ) jtj ¼ n ai (t)4lba lba ai (t); lbb bi (t); BestSol (t, hlba, lbbi) ai (t)¼ lba
bi (t)4lbb lba ai (t); lbb bi (t); BestSol (t, hlba, lbbi)

� conditions not satisfied BB(indiceVarþ 1, t,BestSol, lba, lbb) t t n (var, d )

9. An example

In this section we will present an example, which is similar to the one shown in Benferhat,

Dubois, Kaci, and Prade (2006) that can be modelled by an UFCSP. We will show how to
apply our solver on such a problem and how to order its solutions according to the
semantics presented in Section 7.
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Let us consider the work of a chair that must organise a summer school. The summer
school should involve some hours of lectures, exercises and training. The chair must find
an optimal partition of the hours for the various parts, which minimises costs and takes
into account the requirements of all the involved teachers and students, and several other
constraints. For example, he must establish the number of training hours, knowing that
they require very expensive rooms to book, and that they can contain only a certain
number of students for hour, but without knowing the definite number of students who
will attend them.

In the following we will present in detail the requirements that the chair has to
consider. We will show that the whole problem can be modelled by an UFCSP Q¼
hSFCSP,Vc,Vu,�, Cc,Ccu,Cui. Notice that we model the constraints as fuzzy constraints,
since the chair wants to find the solution that maximises the minimum preference of all the
people involved in the summer school.

. The summer school must involve lectures, exercises and training. Then Vc,
the set of the controllable variables that the conference chair can decide, contains
a variable x, which represents the number of lecture hours, variable y which
stands for the exercises hours and variable w, represents the number of training
hours.

. A requirement of the summer school is that the various part (lectures, exercises
and training) must last for 10, 20 or 30 h. Hence the domains of the variables x, y
and w are Dx¼Dy¼Dw¼ {10, 20, 30}.

. Training hours must be performed in rooms that can contain comfortably the
students. However, the conference chair does not know the definite number of
students who will attend them. Therefore Vu, the set of uncontrollable variables,
contains variable z that represents the number of students that will attend training
hours. Moreover, the chair has invited six professors to teach at the summer
school, but only three have already confirmed their participation. Thus, Vu also
contains variable t representing the number of teachers with domain
Dt¼ {3, 4, 5, 6}.

. The conference chair has received 90 student registrations. Hence, he knows that
at most there will be 90 students. He believes that it is possible that students will
be between 30 and 60. In fact, he thinks that not all of them will refuse to come,
since they have performed registration, but maybe not all of them will come, since
the registration is free and since there are other interesting conferences in that
period. This fact can be modelled giving to the uncontrollable variable z three
values in its domain that are few (between 0 and 30), average (between 30 and 60)
and many (between 60 and 90), and associating them with the following possibility
distribution: p1( few)¼ 0.4, p1(average)¼ 1, p1(many)¼ 0.3. As far as the number
of teachers, the chair is sure that at least three will participate. Moreover, he
believes that, while it is unlikely that all six of the invited professors will accept, it
is quite possible that four or five will. This is modelled by the following
probability distribution: p2(3)¼ 1, p2(4)¼ 0.8, p2(5)¼ 0.8, p2(6)¼ 0.2.

. Cc, the set of constraints defined only on controllable variables, contains the
following fuzzy constraints:

– The lecture professor prefers to teach many hours, since he wants to explain
well the material of his lessons. This can be modelled by the fuzzy constraint
c1¼h f1, {x}i, where f1(10)¼ 0.2, f1(20)¼ 0.9 and f1(30)¼ 1.
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– The exercise professor prefers to teach a small number of hours, since he is
very busy in that period. This can be described by the fuzzy constraint
c2¼h f2, {y}i, where f2(10)¼ 0.9, f2(20)¼ 0.4 and f2(30)¼ 0.1.

– The training hours must be done in laboratory rooms that are expensive.
Hence the conference chair, who wants to reduce costs, prefers to reduce these
hours: c3¼h f3, {w}i, where f3(10)¼ 0.6, f3(20)¼ 0.5 and f3(30)¼ 0.3.

– An additional requirement is that the summer school lasts at most 50 h. This
can be represented by the fuzzy constraint c4¼h f4, {x, y,w}i, where
f4(x, y,w)¼ 1 if xþ yþw� 50, and f4(x, y,w)¼ 0 if xþ yþw450.

– The students prefer to attend many hours of lessons to learn more. This can
be modelled by fuzzy constraint c5¼h f5, {x, y,w}i, where f5(x, y,w)¼ 0.4 if
xþ yþw¼ 30, f5(x, y,w)¼ 0.5 if xþ yþw¼ 40, and f5(x, y,w)¼ 1 if
xþ yþw¼ 50.

– Moreover, the students prefer to attend many hours of exercises to ease the
learning. We can model this requirement with the fuzzy constraint
c6¼h f6, {y}i, where f6(10)¼ 0.7, f6(20)¼ 0.8 and f6(30)¼ 1.

. Ccu, the set of constraints involving both controllable and uncontrollable
variables, contains the following fuzzy constraint:

– The laboratory rooms, where training hours will be done, can contain
comfortably 30 people. The chair wants to be able to allow every student to
attend at least 10 training hours, but, since every training hour has a cost and
he wants to save money, he does not want to book a number of training hours
higher than the needed ones. Thus, if the people are few (i.e. from 0 to 30
people), he prefers to book only 10 h, if the people are an average number (i.e.
from 30 to 60 people), he prefers to book 20 h, while if there are many people
(i.e, from 60 to 90 people), he prefers to book 30 training hours. Moreover,
since he wants to reduce cost, he prefers more to book a small number of
training hours than a big number of them. We can model this requirement
with the constraint c7¼h f7, {w, z}i, where f7(10, few)¼ 1, f7(10, average)¼ 0.5,
f7(10,many)¼ 0.1, f7(20, few)¼ 0.1, f7(20, average)¼ 0.9, f7(20,many)¼ 0,
f7(30, few)¼ 0.1, f7(30, average)¼ 0.2 and f7(30,many)¼ 0.8.

. Cu, the set of constraints involving only uncontrollable variables, contains
constraint c8 that models the fact that the more students will attend the school,
the more professors the chair would prefer to have. Thus, constraint c8 is
defined as follows: c8¼h f8, (z, t)i, where f8¼ ( few, 3)¼ 1, f8¼ ( few, 4)¼ 0.8, f8¼
( few, 5)¼ 0.7, f8¼ ( few, 6)¼ 0.3, f8¼ (average, 3)¼ 0.6, f8¼ (average, 4)¼ 1, f8¼
(average, 5)¼ 0.9, f8¼ (average, 6)¼ 0.7, f8¼ (many, 3)¼ 0.3, f8¼ (many, 4)¼ 0.8,
f8¼ (many, 5)¼ 0.9 and f8¼ (many, 6)¼ 1.

The structure of the UFCSP which models such a problem is presented in Figure 5(a).
We will now describe the different steps of our procedure on this example.

. Preprocessing: since uncontrollable variable t is not connected to any controllable
variable, in this phase we connect it to w by composing c72Ccu and c82Cu and by
projecting the new constraint on w and t. We call this new constraint c9 and we
note that it is defined as follows: c9¼h f9, (w, t)i, such that f9(10, 3)¼ 1,
f9(10, 4)¼ 0.8, f9(10, 5)¼ 0.7, f9(10, 6)¼ 0.5, f9(20, 3)¼ 0.6, f9(20, 4)¼ 0.9,
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f9(20, 5)¼ 0.9, f9(20, 6)¼ 0.7, f9(30, 3)¼ 0.3, f9(30, 4)¼ 0.8, f9(30, 5)¼ 0.8,
f9(30, 6)¼ 0.8. After this step C0cu will contain c7 and c9.

. Enforcing generalised soft arc consistency (GSAC) on C0cu [ Cu: in our example
C0cu [ Cu ¼ fc7, c8, c9g. After arc consistency, the preferences induced on the values
of w, namely 10, 20 and 30, are respectively 1, 0.9 and 0.8; those induced on the
values of z, namely few, average and many are, respectively, 1, 0.9 and 0.8;
while those induced on the values of t, namely 3, 4, 5 and 6 are, respectively, 1, 0.9,
0.9 and 0.8.

. SP algorithm (presented in Section 5): at this point our procedure removes
uncontrollable variables z and t and all the constraints involving them, namely c7,
c8 and c9, by adding the robustness and projection constraints, obtained from c7
and c8 on w, which we will denote, respectively, as c7p, c

0
7, c9p, c

0
9. The preference

functions of such constraints are defined as follows: f7p(10)¼ 1, f7p(20)¼ 0.9,
f7p(30)¼ 0.8, and f7p¼ f9p while f 07ð10Þ ¼ 0:5, f 07ð20Þ ¼ 0:6, f 07ð30Þ ¼ 0:2, and
f 09ð10Þ ¼ 0:7, f 09ð20Þ ¼ 0:6, f 09ð30Þ ¼ 0:3.

The RFCSP Q 0 ¼ hSFCSP,Vc,C
�,Crobi obtained after SP is shown in Figure 5(b) where:

. C �¼Cc[Cproj;

. Cc¼ {c1, c2, c3, c4, c5, c6};

. Cproj¼ {c7p, c9p},

. Crob¼ {c70, c90}.

The optimal solutions for the semantics presented in Section 7 are: s1¼ (30, 10, 10) for
Risky and Risky-Mix semantics, s2¼ (20, 10, 20) for Safe and Safe-Mix semantics, and s1
and s2 for Diplomatic semantics. Hence, if the conference chair uses Risky or Risky-Mix, he
proposes a partition of the hours that does not cost very much, but is risky. In fact, if there
will be large number of students, he will not be able to accommodate every student in the
training hours. Whereas, if he uses Safe or Safe-Mix, he will guarantee the training hours to
an average number of students. Thus he will pay laboratory rooms for more hours, even if
this increases the cost. If he uses Diplomatic, he will adopt a solution that either is not
expensive, or that guarantees training hours to almost all students who will come.

Summarising, the various semantics propose different optimal solutions depending on
different attitudes to risk with respect to uncertainty. This attitude is very different from
the one of the Mixed semantics that considers equally optimal solutions s1, s2 and
s5¼ (20, 10, 10), even if, as we have just shown, they have very different implications.

9
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Figure 5. An UFCSP and the corresponding RFCSP obtained by applying SP.
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10. Experimental setting and results

We have implemented the solver in Java, and we have tested it on randomly generated

UFCSPs, assuming that constraints in Cu are only binary, while the constraints in Cc[Ccu

can also be non-binary. Preferences different from zero in such constraints have been

randomly generated considering a uniform distribution over the interval (0, 1].
To generate such problems, we have considered the following parameters:

. nc: number of controllable variables;

. nu1: number of uncontrollable variables involved in constraints of Ccu;

. nu2: number of further uncontrollable variables involved in constraints of Cu nCcu;

. m: cardinality of the domain of each variable;

. d¼ (d1, . . . , dk) and a¼ (a1, . . . , ak): di is the density of the constraints of arity ai,

that is, the percentage of constraints of arity ai present in the problem w.r.t. the

total number of possible constraints of that arity that can be defined on

ncþ nu1þ nu2 variables;
. t: tightness, that is, the percentage of tuples with preference 0 in each domain and

in each constraint w.r.t. the total number of tuples.

For example, if the parameters of the generator are nc¼ 3, nu1¼ 3, nu2¼ 4, m¼ 5,

(d1, d2)¼ (50, 30), (a1, a2)¼ (2, 3), t¼ 10, it will generate an UFCSP with three controllable

variables, three uncontrollable variables which are connected to at least a controllable one

and four controllable variables which are not connected to any controllable variable. Since

there are 10 variables, the total number of binary constraints that can be defined is

10(10� 1)/2¼ 45. Since the density of the binary constraints is 50% (d1¼ 50), only 22

binary constraints are generated. The total number of ternary constraints that can be

defined with 10 variables is 10(10� 1)(10� 2)/3¼ 240. However, since the density of the

ternary constraints is 30% (d2¼ 30), then only 72 ternary constraints are generated. Each

variable has five elements in the domain. Thus, in the binary constraints, there are

5� 5¼ 25 preference values and in the ternary constraints there are 5� 5� 5¼ 125

preference values. Since 10% of the preference values should be zero (t¼ 10), in the binary

constraints two preference values are zero, and in the ternary constraints 12 preference

values are zero, while the other preference values are randomly generated considering a

uniform distribution over the interval (0, 1].
In the experiments, which we will show in the following, we have generated classes of

UFCSPs by varying one parameter at a time, and fixing the other ones. The varying

parameters are the number nc of the controllable variables, and the density of constraints

for the various arities. When the number nc of variables varies (from 5 to 30, with step 1),

we set nu1¼ 5, nu2¼ 5, m¼ 4, d¼ (40, 1, 1), a¼ (2, 3, 4) and t¼ 60. When we vary the

density (from d¼ (40, 10, 10), a¼ (2, 3, 4) to new values increased of 5% at every step), we

set nc¼ 15, nu1¼ 5, nu2¼ 5 , m¼ 4 and t¼ 60. This choice of the parameters allows us to

generate problems with size 15–40, which are reasonably constrained.
In the experiments we have measured the time employed by the four versions of BB.

For each fixed value of all the parameters, we show the average time over 10 different

randomly generated instances. All our experiments have been performed on a computer

with AMD64 processor at 2GHz.
We started comparing the performance of SAC and GSAC when varying the

number of controllable variables. Experimental results are shown in Figure 6(a) and (b).

For every value of the controllable variables on the x-axis, there is a bar indicating the time
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employed by the solver. In particular, the low part of the bar, called PRE, shows the amount
of time employed by the Preprocessing phase and GSAC algorithm, the medium part of the
bar, called SP, shows the amount of time employed by the SP algorithm, while the high part
of the bar, calledBB, shows the time needed by theBB procedure. It is possible to see that the
time needed to find an optimal solution applying SAC (Figure 6a) and applying GSAC
(Figure 6b) are very similar.

If instead we vary the constraint density, then SAC, shown in Figure 7(a), is slightly
better than GSAC, shown in Figure 7(b), especially when the constraint density increases,
and mainly in the high part of the bar, that considers the time employed by the BB
procedure. Note that BB is much faster than SP in Figure 7. This depends on having used
a small value of nc (nc¼ 15). If we had done Figure 7 with a larger nc, BB would have taken
more time w.r.t. SP and PRE. In fact, Figure 6 shows that BB takes increasingly more time
than SAC an GSAC as the size of the problem grows. Moreover, Figure 7 shows that an
increase in the density does not change the time distribution among PRE, SP and BB.

We have then considered what type of upper bound performs better, when varying the
number of controllable variables and the constraint density. In both cases (Figure 8a and b)
PastUpperBound, which does not consider future variables in the upper bound computation,
performs much better than PastFutureUpperBound, which also considers future variables.

Figure 7. Comparison between (a) SAC and (b) GSAC when varying the constraint density.

Figure 6. Comparison between (a) SAC and (b) GSAC when varying nc.
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This is probably due to the cost of constraint propagation, which must be done on
non-instantiated variables for PastFutureUpperBound.

Finally, we have considered how the time for the overall algorithm varies in the various
semantics and how it depends on the number of controllable variables (Figure 9a) and on
the density of the constraints (Figure 9b). We have seen that Safe-Mix performs better
than Risky-Mix, Risky, Safe and Diplomatic. This is probably due to the fact that
Safe-Mix performs more pruning, since it considers as a first component the minimum
between the preference and the robustness values, and not only one of these two values.
More precisely, Safe-Mix is the best semantics, followed by Risky-Mix, Risky and Safe,
both w.r.t. performance and effectiveness of pruning. We, however, recall that a crucial
aspect for choosing the semantics in practice is the attitude towards the risk it represents.
The Diplomatic semantics is the worse one in both the considered cases. This could be due
to its very restrictive pruning conditions that allow only for little pruning.

Summarising, in these experiments, the best performance of the solver can be obtained
by using SAC as propagation algorithm, PastUpperBound as method for computing the
upper bound and Safe-Mix as semantics.

11. Related work

We have defined a new way for integrating fuzzy preferences and possibilistic uncertainty
that assumes commensurability between preferences and possibilities scales and that

Figure 8. Comparison between PastUpperBound and PastFutureUpperBound when varying (a) nc
and (b) the constraint density.

Figure 9. Comparison among Risky, Safe, Risky-Mix, Safe-Mix and Diplomatic when varying (a) nc
and (b) the constraint density.
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satisfies some desirable properties. This new method allows us to discriminate the
preference level and the robustness value of a solution, and so to obtain a solution
ordering which better reflects the desirability and the robustness of a solution.

Another approach for handling problems with fuzzy preferences and possibilistic
uncertainty, which assumes commensurability between preferences and possibilities, has
been considered in Dubois et al. (1996). In that work, the notion of robustness is identical
to our notion. However, the semantics they use to order the solutions does not satisfy the
desired properties.

Some other effort has been done to unify preferences and possibilistic uncertainty
(Amgoud and Prade 2004) assuming commensurability. In Amgoud and Prade (2004) two
different approaches for integrating fuzzy preferences and possibilistic uncertainty are
proposed: a pessimistic and an optimistic one. However, both methods propose to mix
robustness and preference level. In our framework, we calculate the degree of preference of
a solution combining some of the preferences of its subtuples in a pessimistic way and the
other in an optimistic way. In fact, given a solution s, its preference degree pref (s) is
obtained by combining via the minimum operator (and thus by using a pessimistic
approach) proj(s), that is computed in optimistic way, and the preference over all the
constraints defined only on controllable variables. Hence, in computing the preference
degree of a solution, we are less pessimistic than the pessimistic approach in (Amgoud and
Prade 2004), where all preferences of the subtuples of the solutions are calculated and
combined in pessimistic way; and less optimistic than the optimistic approach in (Amgoud
and Prade 2004), where all the preferences of the subtuples of the solutions are calculated
and combined in optimistic way.

Another approach that assumes commensurability between preferences and possibi-
lities have been described in Garcia and Sabbadin (2006) in the context of the influence
diagrams. Influence diagrams (Howard and Matheson 2006) are graphical models which
allow to model in a compact form problems of sequential decision making under
uncertainty, where the uncertainty is specified by probability distributions over uncon-
trollable variables. In Garcia and Sabbadin (2006) the structure of influence diagrams have
been extended in order to take into account the possibility distributions, instead of the
classical probabilities, over the uncontrollable variables. Such an extension has been
performed by replacing expected utility, usually used when we have probabilities, by the
pessimistic and optimistic possibilistic expected utility. In this article we have not used
influence diagrams to model and solve USCSPs, but we have adapted and exploited the
soft constraint machinery for modelling and solving fuzzy CSPs. Moreover, we have
considered possibilities only to compute the robustness degree of a solution and not also
its preference degree as instead required by the possibilistic pessimistic and optimistic
expected utility to be able to handle separately the certain part of the problem and the
uncertain one.

Other approaches for reasoning with preferences and uncertainty are the ones in
Dubois, Fargier, and Perny (2002), Fargier and Sabbadin (2003) and Brafman and
Tennenholtz (1996, 1997). However, they do not mix preferences and uncertainty, since
they do not assume commensurability. Moreover, their approaches are based on
the qualitative decision theory, while our procedure is based on the quantitative
decision theory.

Decision problems with uncertainty have been considered, for example, in Stochastic
CSPs (Walsh 2002) and (Fargier, Lang, Martin-Clouaire, and Schiex 1995b). However, in
these approaches they assume that uncertain events are characterised by probability
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distributions, and not by possibility ones. In such approaches the order in which variables
can be considered is not free. However, in Pralet, Schiex and Verfaille (2006a) it has been
defined a formalism that allows more freedom in the elimination order, but such a
formalism does not take into account the possibility information. Possibility distributions
and other forms of knowledge about uncertainty have been instead considered in Pralet,
Schiex and Verfaille (2006b) that provides a generic algebraic framework for modelling
sequential decision making with uncertainties, feasibilities and utilities, where partial
observability is assumed. In Pralet, Schiex and Verfaille (2006b) the main focus is on the
modelling phase than in determining various notions of optimality of the solutions such as
in this article. In Pralet, Schiex and Verfable (2006b) an approach to solve problems with
uncertainty under the form of possibilistic information uses decision trees and it exploits
possibilistic pessimistic and optimistic expected utility, therefore it is different from our
proposal, since we don’t use decision trees and since, as explained before, we do not
consider classical possibilistic pessimistic and optimistic expected utility to handle
possibilities.

Uncertainty and constraints have also been considered in Freuder and Wallace (1998),
where dynamic constraint satisfaction problems have been analysed. Such problems are
CSPs that change intermittently over time, by the loss or gain of values, variables or
constraints. In such a context the goal is to find methods for finding solutions that are
stable, i.e. solutions that are more likely to remain valid after changes that temporarily
alter the set of valid assignments. The setting considered in Freuder and Wallace (1998) is
thus different from the one that we considered in this article, since they do not distinguish
between controllable and uncontrollable variables and since they do not have a fixed set of
constraints, variables and domain, but only a set of variables, constraints and domains
that may change over time. The concept of stability is different from our concept of
robustness. In fact, a solution in Freuder and Wallace (1998) is stable if it remains valid for
the altered problem, while in this article a solution is robust if it guarantees an high level of
preferences in the uncertain part of the problem for a big number of scenarios.

12. Summary and future work

In this article we have defined UFCSPs, i.e. problems with fuzzy preferences and
uncontrollable variables with a possibility distribution over their domains. We
have defined the notion of preference and robustness for the solutions of such problems,
as well as properties that such notions should respect, also in relation to the solution
ordering.

We have then provided an algorithm to remove the uncontrollable part of the problem,
while altering the controllable part in order to loose little information. On the resulting
problem, we have then defined the preference and robustness of a solution of the initial
UFCSP. Different semantics use such two notions to order the solutions according to
different attitudes to risk. We have then discussed how our proposed notions of preference
and robustness, as well as our semantics, satisfy the desired properties.

Following this approach, we have defined a solver for UFCSPs that first removes the
uncontrollable part of the problem, and then finds an optimal solution of the controllable
part according to a chosen semantics. To develop such a solver, we have adapted
constraint propagation and BB techniques to our framework. Finally, we have tested the
solver on randomly generated UFSCPs.
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In this article we have focused on problems with fuzzy preferences and uncertainty. We
plan to extend and formalise the research to other classes of soft constraints, not
necessarily fuzzy. This is partially presented in Pini et al. (2005b). Moreover, we plan to
extend our framework to problems with bipolar preferences (Bistarelli, Pini, Rossi, and
Venable 2006; 2007a). A first step in this research has been shown in (Bistarelli, Pini,
Rossi, and Venable 2007b), and states that the properties hold also in the bipolar context,
when we consider sets of preferences that are totally ordered.

In this article we have handled uncertain problems by assuming to have no
observability of uncertain events before decision. We also intend to analyse the assumption
of full observability of uncertain events just before decision. This has been done for
uncertain problems with uncontrollable variables specified by probability distributions
in (Fargier et al. 1995b). We intend to reason on it in our framework where the
uncontrollable variables are characterised by possibility distributions.
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Notes

1. When þ (respectively �) is applied to a two-element set we will use symbol þ (respectively �) in
infix notation, while, in general, we will use the symbol

P
(respectively

Q
) in prefix notation.

2. By t #XY we mean the projection of tuple t, which is defined over the set of variables X, over the
subset of variables Y�X.

3. We consider only the case with strict inequalities since if rob(s)¼ pref (s), rob(s 0)¼ pref (s 0) (we
are in Case 1), if rob(s)¼ pref (s), rob(s 0)5pref (s 0) (we are in Case 2), and if rob(s)5pref (s),
rob(s 0)¼ pref (s 0) (we are in Case 4).
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Appendix

In the following we will sometimes need to use a preference value that we call controllable
preference. More precisely, we will denote the controllable preference of a solution s with
control(s)¼min{hdef,coni2Cc}

def (s#con).

Proposition 1: The definition of robustness given in Definition 16 satisfies properties 1 and 2.

Proof: We first show that the definition of robustness given in Definition 16 satisfies Property 1.
Consider an UFCSP Q¼hSFCSP,Vc,Vu,�Cc,Ccu, ;i, where, for every constraint, ci¼h f i, conii,

such that coni\Vc¼Xi and coni\Vu¼Zi, with possibility distribution �Zi
, let, f i(d, a)� f i(d 0, a), for

all a assignments to Zi and for d and d 0 assignments to Xi. To prove Property 1 we will show that,
given two solutions s and s 0 of Q, such that s#Xi¼ d and s 0#Xi¼ d 0, then rob(s)� rob(s 0). We recall
that, for every constraint ci¼h f i, conii in the statement of Proposition 1, f 0i(d )¼mina2Azi

�

max( f i(d, a), r(�Zi (a))) and f 0i(d 0)¼mina2Azi
max( f i(d 0, a), r(�Zi (a))), where Azi is the Cartesian

product of the domains of the variables in Zi. Since f i(d, a)� f i(d 0, a) 8a, then max( f i(d, a),
r(�Zi (a)))�max( f i(d 0, a), r(�Zi (a))) 8a. Therefore, mina2Azi

maxð f i1ðd, aÞ, r(�Zi (a)))�max( f i(d, a),
r(�Zi (a)))�max( f i(d 0, a), r(�Zi (a))) 8a. This allows to conclude that, since s#Xi¼ d and s 0 #Xi¼ d 0,
f 0i(s#Xi)¼mina2Azi

max( f i(s#Xi,a), r(�Zi (a)))�mina2Azi
max( f i(s 0 #Xi, a), r(�Zi (a)))¼ f 0i(s 0 #Xi). The

fact that rob(s)¼mini f
0i(s#Xi

) and rob(s 0)¼mini f
0i(s 0 #Xi

) allows us to conclude.
We now show that the definition of robustness given in Definition 16 satisfies Property 2.

Consider two UFCSPs: Q1¼hSFCSP,Vc,Vu, �
1,Cc,Ccu, ;i and Q2 ¼ hSFCSP,Vc,V

0
u,�

2,Cc,Ccu, ;i,
where Vu and V0u are the same set of uncontrollable variables described, however, by different
possibility distributions, wehich we denote respectively with �1 and �2. In particular, for every
constraint, ci¼h f i, conii, such that coni\Vc¼Xi and coni\Vu¼Zi, let �1Zi ðaÞ 	 �2Zi ðaÞ, for all a
assignments to Zi. To prove Property 2 we will show that, given solution s of Q1 and Q2, such that
s#Xi¼ d, we have rob1(s)� rob2(s), where robi is the robustness computed in the problem Qi. As
above, we have that, for every constraint, f 0i1 ðd Þ ¼ mina2Azi

max( f i(d, a), rð�1Zi ðaÞÞÞ and f 0i2 ðd Þ ¼
mina2Azi

max( f i(d, a), rð�2Zi ðaÞÞÞ. Moreover, since r is an order-reversing map, if �1Zi ðaÞ 	�2Zi ðaÞ then
rð�1Zi ðaÞÞ � rð�2Zi ðaÞÞ 8a. Thus, max( f i(d, a), rð�1Zi ðaÞÞÞ �max( f i(d, a), rð�2Zi ðaÞÞÞ 8a. From here we can
conclude as above. œ

Proposition 2: Consider two solutions of an UFCSP, say s1 and s2. If s14Mixed s2, then either s14D s2
or s1fflD s2. Also, s14R1,S1 s2.
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Proof: Let us show the first item. Assume, for the sake of contradiction, that s15D s2. Thus it
must be that either pref (s1)� pref (s2) and rob(s1)5rob(s2), or pref (s1)5pref (s2) and rob(s1)� rob(s2).
In both cases, min(pref (s1), rob(s1))�min(pref (s2), rob(s2)), which is in contradiction with
s14Mixed s2.

Let us show the second item. Since s14Mixed s2, min(pref (s1), rob(s1))4min(pref (s2), rob(s2)) and
thus, s14R1,S1 s2. œ

Proposition 3: The preferential orderings over the solutions of an UFCSP induced by Risky,
Risky-Mix, Safe, Safe-Mix and Diplomatic do not satisfy Property 3.

Proof: Consider an UFCSP Q¼hSFCSP,Vc,Vu, �, Cc,Ccu, ;i. Given two solutions s and s 0 of Q, i.e.
assignments to Vc, we now show that, if 8ai assignments to Vu in Q, ovpref (s, ai)4ovpref (s 0, ai), it can
happen that skJ s

0, where J¼R, R1, S, S1, D.

. Risky and Risky-Mix. For these semantics it can happen that sk s 0.
Let us consider an UFCSP Q¼ hSFCSP,Vc, �, Vu,Cc,Ccu, ;i where Vc¼ {x}, Vu¼ {z, y, t},
the set Cc is empty and the set Ccu is composed by two constraints: c1¼h f1, {x, y, t} i and
c2¼h f2, {x, y, z} i. Let us assume that the domain of x is {s, s 0}, the domain of y, t and z is
{0, 1}, and that the preference functions of c1 and c2 are defined as follows: f1(x¼ s 0, y¼ b,
t¼ c)¼ 1 if b¼ c¼ 0, f1(x¼ s 0, y¼ b, t¼ c)¼ 0 otherwise, f1(x¼ s, y¼ b, t¼ c)¼ 0.5 for all b
and c in {0, 1}, f2(x¼ s 0, y¼ b, z¼ c)¼ 1 if b¼ c¼ 1, f2(x¼ s 0, y¼ b, z¼ c)¼ 0 otherwise,
f2(x¼ s, y¼ b, z¼ c)¼ 0.5 for all b and c in {0, 1}. Moreover, let us assume that the joint
possibility on y and t is such that �yt(y¼ b, t¼ c)¼ 1 if b¼ c¼ 0, �yt(y¼ b, t¼ c)¼ 0.5
otherwise, and that the joint possibility on y and z is such that �yz(y¼ b, z¼ c)¼ 1 if
b¼ c¼ 1, �yz(y¼ b, z¼ c)¼ 0.5 otherwise. Then the overall preferences are: ovpref (x¼ s 0,
y¼ b, z¼ c, t¼ d )¼ 0 for all b, c, and d in {0, 1}, and ovpref (x¼ s, y¼ b, z¼ c, t¼ d )¼ 0.5
for all b, c, and d in {0, 1}, i.e. ovpref (x¼ s, y¼ b, z¼ c, t¼ d )4ovpref (x¼ s 0,
y¼ b, z¼ c, t¼ d ) for all b, c, and d in {0, 1}, hence the solutions s and s 0 satisfy the
hypothesis. The robustness values for the solutions s and s 0 are rob(s)¼ rob(s 0)¼ 0.5 and
the preference degrees are pref (s 0)¼ 1 and pref (s)¼ 0.5. Therefore, s 04R s for Risky, since
pref (s 0)4pref (s), and also s 04R1 s for Risky-Mix since min(pref (s), rob(s))¼min(pref (s 0),
rob(s 0)) and pref (s 0)4pref (s).

. Safe and Diplomatic. For these semantics it can happen that sk s 0.
In fact, let us consider an UFCSP Q¼hSFCSP,Vc, �, Vu,Cc,Ccu, ;i where Vc¼ x, Vu¼ z, Cc

is composed by c1¼h f1, {x}i , Ccu by c2¼h f2, {x, z} i, and where Dz¼ {a1, a2} and
Dx¼ {s, s 0} are respectively the domain of z and x. Let us assume that the possibility
distribution on z is such that �(a1)¼ 1 and �(a2)¼ 0.7. Let us assume, moreover, that
f2(s, a1)¼ 0.4, f2(s, a2)¼ 0.5, f2(s

0, a1)¼ 0.8, f2(s
0, a2)¼ 0.9, f1(s)¼ 0.3 and f1(s

0)¼ 0.2. Then
the overall preferences are: ovpref (s, a1)¼ 0.3, ovpref (s, a2)¼ 0.3, ovpref (s 0, a1)¼ 0.2,
ovpref (s 0, a2)¼ 0.2, i.e. ovpref (s, ai)4ovpref (s 0, ai) 8ai, i¼ 1, 2, hence s and s 0 satisfy the
hypothesis. The robustness values for s 0 and s are rob(s)¼ 0.4, rob(s 0)¼ 0.8 and the
preference degrees are pref (s)¼ 0.3 and pref (s 0)¼ 0.2. Therefore, s5S s

0 for Safe semantics,
and sfflD s 0 for Diplomatic semantics.

. Safe-Mix. For this semantics it can happen that sk s 0.
In fact, let us consider an UFCSP Q¼hSFCSP,Vc,Vu, �, Cc,Ccu, ;i where Vc¼ x, Vu¼ z, Cc

is composed by c1¼h f1, {x} i, Ccu is composed by c2¼h f2, {x, z} i, and where Dz¼ {a1, a2}
and Dx¼ {s, s 0} are respectively the domain of z and x. Let us assume that the possibility
distribution on z is such that �(a1)¼ 1 and �(a2)¼ 0.7. Let us assume, moreover, that
f2(s, a1)¼ 0.5, f2(s, a2)¼ 0.2, f2(s

0, a1)¼ 0.4, f2(s
0, a2)¼ 0.1, f1(s)¼ 0.9 and f1(s

0)¼ 0.9. Then
the overall preferences are: ovpref (s, a1)¼ 0.5, ovpref (s, a2)¼ 0.2, ovpref (s 0, a1)¼ 0.4,
ovpref (s 0, a2)¼ 0.1, i.e. ovpref (s, ai)4ovpref (s 0, ai) 8ai, i¼ 1, 2, hence s and s 0 satisfy the
hypothesis. The robustness values for s 0 and s are rob(s)¼ 0.3, rob(s 0)¼ 0.3 and the
preference degrees are pref (s)¼ 0.5 and pref (s 0)¼ 0.4. Since min(pref (s), rob(s))¼ 0.3¼
min(pref (s 0), rob(s 0)) and rob(s)¼ rob(s 0), then s¼S1 s

0 for Safe-Mix semantics. œ

Proposition 4: Consider an UFCSP Q¼hSFCSP,Vc,Vu, �, Cc,Ccu, ;i. If we compute the constraint
obtained by combining all the constraints in Ccu and, starting directly from such a constraint, we compute
the projection constraint over the controllable variables of Ccu and the robustness constraint, then the
preferential orderings over the solutions of Q induced by Risky and Risky-Mix satisfy Property 3.
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Proof: To prove the proposition we will show that, given two solutions s and s 0 ofQ, i.e. assignments
to Vc, if 8ai assignments to Vu in Q, ovpref (s, ai)4ovpref (s 0, ai), then s4J s

0, where J¼R, R1.

. Risky-Mix. Assume to combine all the constraints of the set Ccu. We thus obtain a single
constraint over the variables in Ccu. We denote with C2 such a constraint and with f2 its
preference function. Assume also to project the constraintC2 over the controllable variables
of Ccu and denote with C1 the obtained constraint, and with f1 its preference function.
Assume also to combine all the constraints in Cc and denote such a constraint with C3 and
with f3 its preference function. Assume to associate to the set of uncontrollable variables of
C2, i.e. to the variables in Vu, a possibility distribution, which we call �, obtained by
performing the joint possibility (Section 5) of all the possibility distributions of the variables
in Vu. Given an assignment s to all the variables of Vc, its preference on constraint C1 is
f1(s)¼ control(s), on C3 is f3(s)¼ proj(s) and on C1 � C3 is min( f1(s), f3(s))¼min(control(s),
proj(s))¼ pref (s). Given an assignment (s, ai), where ai is a complete assignment to variables
of Vu, its preference f2(s, ai), is obtained performing the minimum of the preferences
associated to all the subtuples of (s, ai) by the constraints ofQ involving at least one variable
in Vu and one in Vc. Using this new notation we have that 8s, ai assignments to the variables
in Vc and Vu, ovpref (s, ai)¼min( f1(s), f2(s, ai))¼min(control(s), f2(s, ai)).

We want to show that if ovpref (s, ai)4ovpref (s 0, ai) 8ai, then s	R14R1 s
0, i.e. min(pref (s),

rob(s))4min(pref (s 0), rob(s 0)) or (min(pref (s), rob(s))¼min(pref (s 0), rob(s 0)) and pref (s)4
pref (s 0)). First, we show that if ovpref (s, ai)4ovpref (s 0, ai) 8ai, then pref (s)4pref (s 0). Then,
for proving s4R1 s

0, it is sufficient to prove that min(pref (s)rob(s))	min(pref (s 0), rob(s 0)).

First part. If ovpref (s, ai)4ovpref (s 0, ai) 8ai assignment to the variables in Vu, then
pref (s)4pref (s 0).

In fact, if ovpref (s, ai)4ovpref (s 0, ai) 8ai, then this also holds for ai� such that
proj(s 0)¼ f2(s, ai�). Then we have min(control(s), f2(s, ai�))4min(control(s 0), f2(s

0, ai�))¼
min(control(s 0), proj(s 0))¼ pref (s 0). Since proj(s)	 f2(s, ai�)), then pref (s)¼min(control(s),
proj(s))	min(control(s), f2(s, ai�))4pref (s 0), and so pref (s)4pref (s 0).
Notice that from the result above it follows that: if pref (s)� pref (s 0), then ovpref (s, ai)�
ovpref (s 0, ai), 9ai.

Second part. If ovpref (s, ai)4ovpref (s 0, ai) 8ai assignment to the variables in Vu, then we
have that min(pref (s), rob(s))	min(pref (s 0), rob(s 0)).

The proof is given by contradiction. That is, we will show that if min(pref (s), rob(s))5
min(pref (s 0), rob(s 0)), then there is an assignment a�� such that ovpref (s, a��)� ovpref (s 0, a��).

(1) Assume that min(pref (s), rob(s))¼ pref (s) and min(pref (s 0), rob(s 0))¼ pref (s 0). Since
we are assuming that min(pref (s), rob(s))5min(pref (s 0), rob(s 0)), then it must be
pref (s)5pref (s 0). Then we can conclude by the first part of the proof.

(2) Assume that min(pref (s), rob(s))¼ pref (s) and min(pref (s 0), rob(s 0))¼ rob(s 0). Then,
rob(s 0)� pref (s 0). Since we are assuming that pref (s)5rob(s 0), then, this implies that
pref (s)5pref (s 0). Hence we can conclude as in the previous step.

(3) Assume that min(pref (s), rob(s))¼ rob(s) and min(pref (s 0), rob(s 0))¼ rob(s 0).
Moreover, and without loss of generality,3 let us consider the case in which
rob(s)5pref (s), rob(s 0)5pref (s 0), and thus, rob(s)5rob(s 0)5pref (s 0).
If we consider the UFSCP Q, then rob(s)¼minai(max( f2(s, ai), r(�(ai)))) and
rob(s 0)¼minai(max( f2(s

0, ai), r(�(ai)))). For the sake of notation we will indicate
max( f2(s, ai), r(�(ai))) (respectively max( f2(s

0, ai), r(�(ai))) with mi (respectively m0i).
Let a�� and a�� be the values for the variables in Vu such that rob(s)¼m�� and robðs0Þ ¼ m0��
(i.e. m0�� ¼ maxð f2ðs

0, a��Þ, rð�ða��ÞÞ). Then rob(s)¼m��	 f2(s, a��). Thus, since pre-
f (s)4rob(s), then control(s)4pref (s)4rob(s)¼max( f2(s, a��), r(�(a��)))	 f2(s, a��). This
allows us to conclude that

ovpref ðs, a��Þ ¼ minðcontrol ðsÞ, f2ðs, a��ÞÞ ¼ f2ðs, a��Þ:

We will now show that, for the assignment a��, we have ovpref (s, a��)5ovpref (s 0, a��). In
order to do that we will consider all the possible cases from which m�� and m0�� can
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derive, where m0�� ¼ max( f2(s
0, a��), r(�(a��))).

First of all, since m�� ¼ robðsÞ5 robðs0Þ ¼ m0�� and since m0�� � m0��, then it must be
m�� 5m0��. The cases to be considered are the following:

. m�� ¼ m0�� ¼ rð�ða��ÞÞ. This can never occur since it contradicts m�� 5m0��.

. m��¼ f2(s, a��) and m0�� ¼ f2ðs
0, a��Þ. Thus, f2ðs, a��Þ ¼ m�� 5m0�� ¼ f2ðs

0, a��Þ.

� If m0�� ¼ f2ðs
0, a��Þ5control(s 0), then ovpref (s 0, a��)¼ f2(s

0, a��). Since we know that
ovpref (s, a��)¼ f2(s, a��), then ovpref (s, a��)5ovpref (s 0, a��).
� If m0��¼ f2ðs

0,a��Þ 	 control(s 0), then ovpref (s 0, a��)¼ control(s 0) and ovpref ðs,a��Þ ¼

f2ðs,a��Þ ¼ m��¼ robðsÞ5m0��¼ robðs0Þ5pref ðs0Þ � control ðs0Þ ¼ ovpref ðs0,a��Þ. Again
ovpref (s, a��)5ovpref (s 0, a��).

. m��¼ f2(s, a��) and m0�� ¼ rð�ða��ÞÞ. This case can never occur since it would give the
following contradiction: rð�ða��ÞÞ � m�� ¼ f2ðs, a��Þ5m0�� ¼ rð�ða��ÞÞ.

. m��¼ r(�(a��)) and m0�� ¼ f2ðs
0, a��Þ. Thus we have ovpref(s,a��)¼min(control(s), f2(s,a��))�

min(control(s), r(�(a��)))¼min(control(s), rob(s))¼ (sinceproj(s)	 rob(s))min(control(s),
proj(s), rob(s))¼min(pref(s), rob(s))5min(pref(s0), rob(s0))�min(pref(s0),
f2(s
0,a��))�min(control(s0), f2(s

0,a��))¼ ovpref(s0,a��)).

(4) Assume that min(pref (s), rob(s))¼ rob(s) and min(pref (s 0), rob(s 0))¼ pref (s 0). Again,
we consider only the case with strict inequalities (rob(s)5pref (s), pref (s 0)5rob(s 0))
since all others can be treated as one of the previous cases.
Since rob(s)5pref (s 0), then we have rob(s)5pref (s 0)5rob(s 0). Let m��¼ rob(s) and
m0�� ¼ robðs0Þ as in Case 3. Since rob(s)5pref (s)� control(s), then, as before,
ovpref (s, a��)¼ f2(s, a��).
We will show that ovpref (s, a��)5ovpref (s 0, a��). As in the previous case, in order to do
so, we consider all the possible cases from which m�� and m0�� can derive. First, notice
that from rob(s)5rob(s 0) we get m�� 5m0��. The cases to be considered are the following:

– m�� ¼ m0�� ¼ rð�ða��ÞÞ. We conclude as in the corresponding step of Case 3.
– m��¼ f2(s, a��) and m0�� ¼ f2ðs

0, a��Þ. Then we have ovpref (s, a��)¼ f2(s, a��)¼
m�� ¼ robðsÞ5 pref ðs0Þ5 robðs0Þ ¼ m0�� � m0�� ¼ f2ðs

0, a��Þ. Hence it must be
that: ovpref (s 0, a��)¼min(control(s 0), f2(s

0, a��))	min(pref (s 0), f2(s
0, a��))¼ pref (s 0)4

ovpref (s, a��).
– m��¼ f2(s, a��) andm

0
�� ¼ rð�ða��ÞÞ.We conclude like in the corresponding stepofCase 3.

– If m��¼ r(�(a��)) and m0�� ¼ f2ðs
0, a��Þ, then ovpref (s, a��)¼ f2(s, a��)�m�� ¼ robðsÞ5

pref ðs0Þ5 robðs0Þ � m0�� ¼ f2ðs
0, a��Þ. Hence ovpref (s 0, a��)¼min(control(s 0),

f2(s
0, a��))	min(pref (s 0), f2(s

0, a��))¼ pref (s 0)4ovpref (s, a��).

. Risky. We can conclude that s4R s
0 for Risky semantics, by using the first part of the proof

for Risky-Mix semantics. œ

Proposition 5: The preferential orderings over the solutions of an UFCSP induced by Risky,
Risky-Mix, Safe and Diplomatic satisfy Property 4, while the one induced by Safe-Mix does not satisfy
Property 4.

Proof: Consider an UFCSP Q¼hSFCSP,Vc,Vu, �, Cc,Ccu, ;i. To prove the proposition we will
show that, given two solutions s and s 0 of Q, if rob(s)¼ rob(s 0) and pref (s)4pref (s 0), then s4J s

0,
where J¼R, S, D, R1 . Instead, it could happen that skS1 s

0.

. Risky, Safe and Diplomatic satisfy this property by definition.

. Risky-Mix satisfies this property. s4R1 s
0 means that min(pref (s), rob(s))4min(pref (s 0),

rob(s 0)), or that min(pref (s), rob(s))¼min(pref (s 0), rob(s 0)) and pref (s)4pref (s 0). Since
pref (s)4pref (s 0) and rob(s)¼ rob(s 0), then min(pref (s), rob(s))	min(pref (s 0), rob(s 0)). If we
have min(pref (s), rob(s))4min(pref (s 0), rob(s 0)), then we conclude immediately.
If min(pref (s), rob(s))¼min(pref (s 0), rob(s 0)), then we conclude by observing that
pref (s)4pref (s 0).

. Safe-Mix. In this case it can happen skS1 s
0. Let us recall that s4S1 s

0 means that either
min(pref (s), rob(s))4min(pref (s 0), rob(s 0)), or that min(pref (s), rob(s))¼min(pref (s 0),
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rob(s 0)) and rob(s)4rob(s 0). Assume, for example, that s and s 0 are such that proj(s)¼ 0.9,
control(s)¼ 0.8 and rob(s)¼ 0.5 and proj(s 0)¼ 0.9, control(s 0)¼ 0.7 and rob(s 0)¼ rob(s)¼ 0.5.
Then, s and s 0 satisfy the hypothesis since pref (s)¼min(proj(s)¼ 0.9, control(s)¼
0.8)¼ 0.84pref (s 0)¼min(proj(s 0)¼ 0.9, control(s 0)¼ 0.7,)¼ 0.7. However, s¼S1 s

0, since
min(pref (s)¼ 0.8, rob(s)¼ 0.5)¼ 0.5 is equal to min(control(s 0)¼ 0.7, rob(s 0)¼ 0.5) and
rob(s 0)¼ rob(s)¼ 0.5.

Proposition 6: The preferential orderings over the solutions of an UFCSP induced by Risky, Safe,
Safe-Mix and Diplomatic satisfy Property 5, while the one induced by Risky-Mix does not satisfy
Property 5. œ

Proof: Consider an UFCSP Q¼hSFCSP,Vc,Vu, �, Cc,Ccu, ;i. To prove the proposition we will
show that, given two solutions s and s 0 of Q, if pref (s)¼ pref (s 0) and rob(s)4rob(s 0), then s4J s

0,
where J¼R, S, D, S1. Instead, it could happen that skR1 s

0.

. Risky, Safe and Diplomatic satisfy this property by definition.

. Safe-Mix satisfies this property. If pref (s)¼ pref (s 0) and rob(s)4rob(s 0) then it must be that
min(pref (s), rob(s))	min(pref (s 0), rob(s 0)). If min(pref (s), rob(s))4min(pref (s 0), rob(s 0)),
then we conclude immediately. If min(pref(s), rob(s))¼min(pref (s 0), rob(s 0)) then we
conclude by observing that rob(s)4rob(s 0).

. InRisky-Mix it can happen that skR1 s
0. Consider, for example, solutions s and s 0 such that

proj(s)¼ 0.9, control(s)¼ 0.5 and rob(s)¼ 0.8 and proj(s 0)¼ 0.8, control(s 0)¼ 0.5 and
rob(s 0)¼ 0.7. We have that rob(s)4rob(s 0) and pref (s)¼min(proj(s)¼ 0.9, control(s)¼
0.5)¼ 0.5¼ pref (s 0)¼min(proj(s 0)¼ 0.8, control(s 0)¼ 0.5). However, since min(pref (s)¼
0.5, rob(s)¼ 0.8)¼ 0.5¼min(pref (s 0)¼ 0.5, rob(s 0)¼ 0.7) and pref (s)¼ pref (s 0)¼ 0.5,
then s¼R1 s

0. œ

Theorem 1: For every solution s of an UFCSP, rob(s)� proj(s).

Proof: Consider an UFCSP Q¼hSFCSP,Vc,Vu, �, Cc,Ccu, ;i where Ccu ¼
S

ih f
i, conii, such that

coni\Vc¼Xi and coni\Vu¼Zi, with possibility distribution �Zi and domain AZi
. To prove this

proposition we will show that for every solution s of Q, i.e. for every assignment to Xi, we have
rob(s)� proj(s).

We recall that proj(s)¼mini proji (s) and proji (s)¼maxa2AZi
f i(s, a). We also recall that

rob(s)¼mini f
0i(s), where for every constraint ci¼h f i, conii, f 0i(s)¼mina2Azi

max( f i(s, a), r(�Zi (a))).
By the definition of f 0i(s), f 0i(s)�max( f i(s, a), r(�Zi (a))) 8a, and so this also holds for a such that
�Zi (a)¼ 1. Let us call this a as �a. For such �a we have max( f i(s, �a), r(�Zi ( �a)))¼max( f i(s, �a),
c(1))¼max( f i(s, �a), 0)¼ f i(s, �a). Therefore we have f 0i(s)� f i(s, �a)� proji (s), by the definition of
proji (s). The fact that rob(s)¼mini f

0i(s) and that proj(s)¼mini proji (s) allows us to conclude. œ

Proposition 7: The preferential ordering over the solutions of an UFCSP induced by Mixed semantics
does not satisfy Properties 3, 4 and 5.

Proof: Consider an UFCSP Q¼hSFCSP,Vc,Vu,�Cc,Ccu, ;i.
We first show that Property 3 is not satisfied. To prove this proposition we will show that, given

two solutions s and s 0 of Q, i.e. assignments to Vc, if 8a assignments to Vu, ovpref (s, a)4ovpref (s 0, a),
then it could happen that skMixed s

0. For showing this we can use the same example considered in
the proof of Proposition 4 for Safe-Mix semantics.

We now prove that Property 4 is not satisfied. To prove the proposition we will prove that, given
two solutions s and s 0 of Q, if rob(s)¼ rob(s 0) and pref (s)4pref (s 0), then it could happen that
skMixed s

0. Let us consider any pair of solutions s and s 0 such that pref (s)4pref (s 0)4rob(s 0)¼ rob(s).
Since, by Theorem 1 8s, min(pref (s), rob(s))¼min(control(s), rob(s)), and since min(pref (s),
rob(s))¼min(pref (s 0), rob(s 0), then s¼Mixed s

0.
We now show that Property 5 is not satisfied. To prove the proposition we will show that,

given two solutions s and s 0 of Q, if pref (s)¼ pref (s 0) and rob(s)4rob(s 0), then it could happen that
skMixed s

0. Let, us consider, for example, the solutions s and s 0 satisfying the hypothesis, such that
proj(s)¼ 0.9, control(s)¼ 0.3 and rob(s)¼ 0.4 and proj(s 0)¼ 0.3, control(s 0)¼ 0.3 and rob(s 0)¼ 0.3.
Then min(control(s)¼ 0.3, rob(s)¼ 0.4)¼ 0.3¼min(control(s 0)¼ 0.3, rob(s 0)¼ 0.3)¼ 0.3 and so
s¼Mixed s

0. œ
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Theorem 2: When BB considers a semantics among Risky, Safe, Risky-Mix or Safe-Mix,
overestimations via PastFutureUpperBound, and the pruning conditions of type �, it returns solutions
that are optimal according to the chosen semantics.

Proof: Assume that the best solution found so far in the BB procedure is associated to the pair
hlba, lbbi. Moreover, assume that the partial assignment t is associated to the 4-tuple hai (t), ani (t),
bi (t), bni (t)i. Let us denote uba(t) (resp., ubb(t)) the value obtained computing min(ai (t), ani (t)) (resp.,
min(bi (t), bni (t))). Assume that S is Risky, Safe, Risky-Mix or Safe-Mix.

To prove the theorem, we have to show that, if we consider S, and if we prune the subtree below t
considering the conditions of type �, then hlba, lbbi is, according to S, better than or equal to huba(t),
ubb(t)i. This means, by definition of S, that one of the following conditions must hold: (i)
(lba4uba(t)) or (ii) (lba¼ uba(t) and lbb	 ubb(t)). Let us examine each condition of type � in turn:

. If ai (t)5lba, then uba(t)¼min(ai (t), ani (t))� ai (t)5lba, thus condition (i) holds.

. If ai (t)	 lba and ani (t)5lba, then uba(t)¼min(ai (t), ani (t))� ani (t)5lba, thus condition
(i) holds.

. If ai (t)	 lba, ani (t)¼ lba, and bi (t)5lbb, then uba(t)¼min(ai (t), ani (t))¼ lba and
ubb(t)¼min(bi (t), bni (t))� bi (t)5lbb, thus condition (ii) holds.

. If ai (t)	 lba, ani (t)¼ lba, bi (t)¼ lbb, and bni (t)� lbb, then uba(t)¼min(ai (t), ani (t))¼ lba,
and ubb(t)¼min(bi (t), bni (t))� bni (t)� lbb, thus condition (ii) holds. œ

Theorem 3: When BB considers the Diplomatic semantics, overestimations via
PastFutureUpperBound, and the pruning conditions of type �, it returns solutions that are optimal
according to Diplomatic.

Proof: Consider the same notations used in the first part of the proof of Theorem 2. To prove the
statement, we have to show that, if we prune the subtree below t considering the conditions of type �,
then hlba, lbbi is, according to Diplomatic, better than or equal to huba(t), ubb(t)i, which means,
by definition of Diplomatic, that the following conditions must hold: lba	 uba(t) and lbb	 ubb(t).
Let us examine each condition of type � in turn:

. If ai (t)� lba and bi (t)� lbb, then uba(t)¼min(ai (t), ani (t))� ai (t)� lba and
ubb(t)¼min(bi (t), bni (t))� bi (t)� lbb.

. If ai (t)� lba, bi (t)	 lbb, and bni (t)� lbb, then uba(t)¼min(ai (t), ani (t))� ai (t)� lba and
ubb(t)¼min(bi (t), bni (t))� bni (t)� lbb.

. ai (t)	 lba, ani (t)� lba, and bi (t)� lbb, then uba(t)¼min(ai (t), ani (t))� ani (t)� lba, and
ubb(t)¼min(bi (t), bni (t))� bi (t)� lbb.

. If ai (t)	 lba, ani (t)� lba, bi (t)	 lbb, and bni (t)� lbb, then uba(t)¼min(ai (t),
ani (t))� ani (t)� lba, and ubb(t)¼min(bi (t), bni (t))� bni (t)� lbb. œ
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