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Abstract. The stable marriage problem has a wide variety of practical
applications, including matching resident doctors to hospitals, and stu-
dents to schools. In the classical stable marriage problem, both men and
women express a strict order over the members of the other sex. Here we
consider a more realistic case, where both men and women can express
their preferences via partial orders, i.e., by allowing ties and incompa-
rability. This may be useful, for example, when preferences are elicited
via compact preference representations like soft constraint or CP-nets
that produce partial orders, as well as when preferences are obtained
via multi-criteria reasoning. We study male optimality and uniqueness
of stable marriages in this setting. Male optimality gives priority to one
gender over the other, while uniqueness means that the solution is op-
timal, since it is as good as possible for all the participating agents.
Uniqueness of solution is also a barrier against manipulation. We give an
algorithm to find stable marriages that are male optimal. Moreover, we
give sufficient conditions on the preferences (that are also necessary in
some special case), that occur often in real-life scenarios, which guarantee
the uniqueness of a stable marriage.

1 Introduction

The stable marriage problem (SM) [8] is a well-known collaboration problem.
Given n men and n women, where each expresses a strict ordering over the
members of the opposite sex, the problem is to match the men to the women so
that there are no two people of opposite sex who would both rather be matched
with each other than their current partners. In [6] Gale and Shapley proved
that it is always possible to find a matching that makes all marriages stable,
and provided a quadratic time algorithm which can be used to find one of two
extreme stable marriages, the so-called male optimal or female optimal solutions.
The Gale-Shapley algorithm has been used in many real-life scenarios, such as in
matching hospitals to resident doctors, medical students to hospitals [9], sailors
to ships, primary school students to secondary schools, as well as in market
trading.

In the classical stable marriage problem, both men and women express a
strict order over the members of the other sex. We consider a potentially more



realistic case, where men and women express their preferences via partial orders,
i.e., given a pair of men (resp., women), the women (resp., the men) can strictly
order the elements of the pair, they may say that these elements are in a tie, or
that they are incomparable. This is useful in practical applications when a person
may not wish (or be able) to choose between alternatives, thus allowing ties in
the preference list (or more generally, allowing each preference list to be a partial
order) [10]. For example, in the context of centralized matching scheme, some
participating hospitals with many applicants have found the task of producing
a strictly ordered preference list difficult, and have expressed a desire to use ties
[11]. Ties also naturally occur when assigning students to schools, since many
students are indistinguishable from the point of view of a given school. Another
situation where partial orders are useful is when preferences are elicited with a
compact preference representation formalism like soft constraints [1] or CP-nets
[2] that give partial orders. Another context where partial orders naturally occur
is when preferences are obtained via multi-criteria reasoning.

We study male optimality and uniqueness of solution in this more general
context. Male optimality can be a useful property since it allows us to give prior-
ity to one gender over the other. For example, in matching residents to hospitals
in the US, priority is given to the residents. We present an algorithm, based
on an extended version of the Gale-Shapely algorithm, to find a male optimal
solution in stable marriage problems with partially ordered preferences (SMPs).
This algorithm is sound but not complete: it may fail to find a male-optimal so-
lution even when one exists. We conjecture, however, that the incompleteness is
rare. We also give a sufficient condition on the preference profile that guarantees
to find a male optimal solution, and we show how to find it.

Uniqueness is another interesting concept. For instance, it guarantees that
the solution is optimal since it is as good as possible for all the participating
agents. Uniqueness is also a barrier against manipulation. This is important as
Roth [12] has proved that all stable marriage procedures can be manipulated.
Uniqueness has previously been investigated in stable marriage problems where
only strict orders are allowed [5]. A sufficient condition on the preferences was
identified that ensures uniqueness. It was shown that this class of preferences
is broad and of particular interest in many real-life scenarios [4]. Properties of
preference orderings that satisfy this conditions are vertical heterogeneity and
horizontal heterogeneity. Vertical heterogeneity [5] implies that all the agents of
the same sex have identical preferences over the mates of the opposite sex, i.e.,
there is a common ordering over the mates. This is the standard assumption
of identical preferences with different endowments [4]. The endowments in the
stable marriage model is the desirability by the opposite sex. Horizontal het-
erogeneity [5] implies that each agent has a different most preferred mate. We
show that it is possible to extend these sufficient conditions to SM with partially
ordered preferences. However, for the vertical heterogeneity property, we need
to consider uniqueness up to indifference and incomparability.

A brief overview of some of the theoretical results shown in this paper is
contained in [7].



2 Background

2.1 Stable matching problems

Definition 1 (profile). Given n men and n women, a profile is a sequence of
2n strict total orders (i.e., transitive and complete binary relations), n over the
men and n over the women.

Given a profile, the stable marriage problem (SM) [6] is the problem of finding
a matching between men and women so that there are no two people of opposite
sex who would both rather be married to each other than their current partners.
If there are no such people, the matching is said to be stable.

Definition 2 (feasible partner). Given an SM P , a feasible partner for a
man m (resp., a woman w) is a woman w (resp., a man m) such that there is
a stable marriage for P where m and w are married.

The set of the stable marriages for an SM forms a lattice w.r.t. the men’s
(or women’s) preferences. This is a graph where vertices correspond bijectively
to the stable marriages and a marriage is above another if every man (resp.,
every woman) is married with a woman (resp., man) is at least as happy with
the first marriage as with the second. The top of this lattice is the stable match-
ing, called male-optimal (resp., female optimal), where men (resp., women) are
mostly satisfied. Conversely, the bottom is the stable matching where men’s
(resp., women’s) preferences are least satisfied [8].

Definition 3 (male (resp., female) optimal matching). Given an SM P , a
matching is male (resp., female) optimal iff every man (resp., woman) is paired
with his (resp., her) highest ranked feasible partner in P .

2.2 Gale-Shapley algorithm

The Gale-Shapley (GS) algorithm [6] is a well-known algorithm to solve the
SM problem. At the start of the algorithm, each person is free and becomes
engaged during the execution of the algorithm. Once a woman is engaged, she
never becomes free again (although to whom she is engaged may change), but
men can alternate between being free and being engaged. The following step is
iterated until all men are engaged: choose a free man m, and let m propose to
the most preferred woman w on his preference list, such that w has not already
rejected m. If w is free, then w and m become engaged. If w is engaged to man
m’, then she rejects the man (m or m’) that she least prefers, and becomes,
or remains, engaged to the other man. The rejected man becomes, or remains,
free. When all men are engaged, the engaged pairs are a male optimal stable
matching.

This algorithm needs a number of steps that is quadratic in n (that is, the
number of men), and it guarantees that, if the number of men and women
coincide, and all participants express a strict order over all the members of the
other group, everyone gets married, and the returned matching is stable. Since
the input includes the profiles, the algorithm is linear in the size of the input.



Example 1. Assume n = 3. Let W = {w1, w2, w3} and M = {m1,m2,m3} be
respectively the set of women and men. The following sequence of strict total
orders defines a profile: {m1 : w1 > w2 > w3 (i.e., man m1 prefers woman w1 to
w2 to w3); m2 : w2 > w1 > w3; m3 : w3 > w2 > w1} {w1 : m1 > m2 > m3;
w2 : m3 > m1 > m2; w3 : m2 > m1 > m3}. For this profile, the Gale-Shapley
algorithm returns the male optimal solution {(m1, w1), (m2, w2), (m3, w3)}. On
the other hand, the female optimal solution is {(w1,m1), (w2,m3), (w3, m2)}. 2

The Extended Gale-Shapely algorithm [8] is the GS algorithm [6] where, when-
ever the proposal of a man m to a woman w is accepted, in w’s preference list all
men less desirable than m are deleted, and w is deleted from the preference lists
of all such men. This means that, every time that a woman receives a proposal
from a man, she accepts since only most preferred men can propose to her.

3 Stable matching problems with partial orders

We assume now that men and women express their preferences via partial orders.
The notions given in Section 2 can be generalized as follows.

Definition 4 (partially ordered profile). Given n men and n women, a pro-
file is a sequence of 2n partial orders (i.e., reflexive, antisymmetric and transitive
binary relations), n over the men and n over the women.

Definition 5 (SMP). A stable matching problem with partial orders (SMP) is
just a SM where men’s preferences and women’s preference are partially ordered.

Definition 6 (linearization of an SMP). A linearization of an SMP is an
SM that is obtained by giving a strict ordering to all the pairs that are not strictly
ordered such that the resulting ordering is transitive.

Definition 7 (weakly-stable matching in SMP). A matching in an SMP
is weakly-stable if there is no pair (x, y) such that each one strictly prefers the
other to his/her current partner.

Definition 8 (feasible partner in SMP). Given an SMP P , a feasible part-
ner for a man m (resp., woman w) is a woman w (resp., man m) such that
there is a weakly stable marriage for P where m and w are married.

A weakly stable matching is male optimal if there is no man that can get a
strictly better partner in some other weakly-stable matching.

Definition 9 (male optimal weakly-stable matching). Given an SMP P ,
a weakly stable matching of P is male optimal iff there is no man that prefers to
be married with another feasible partner of P .

In SMs there is always exactly one male-optimal stable matching. In SMPs,
however, we can have zero or more male-optimal weakly stable matchings. More-
over, given an SMP P , all the stable matchings of the linearizations of P are
weakly-stable matchings. However, not all these matchings are male optimal.



Example 2. In a setting with 2 men and 2 women, consider the profile P : {m1 :
w1 ./ w2; m2 : w2 > w1; } {w1 : m1 ./ m2; w2 : m1 ./ m2; }. Then consider the
following linearization of P , say Q: {m1 : w2 > w1; m2 : w2 > w1; } {w1 : m2 >
m1; w2 : m1 > m2; }. If we apply the men-proposing GS to Q, then we obtain the
weakly-stable matching µ1 where m1 marries w2 and m2 marries w1. However,
w1 is not the most optimal woman for m2 amongst all weakly-stable marriages.
In fact, if we consider the linearization Q′, obtained from Q, by changing m1’s
preferences as follows: m1 : w1 > w2, and if we apply the men-proposing GS,
then we obtain the weakly-stable matching µ2, where m1 is married to w1 and
m2 to w2, i.e., m2 is married to a woman who he prefers more than w1, that is,
his partner in µ1. Notice that µ2 is male-optimal, while µ1 is not. 2

4 Finding male optimal weakly-stable matchings

We now present an algorithm, called MaleWeaklyStable 1, that takes as input an
SMP P and, either returns a male optimal weakly-stable marriage for P , or the
string ‘I don’t know’. This algorithm is sound but not complete: if the algorithm
returns a marriage, then it is weakly stable and male-optimal; however, it may
fail to return a male-optimal marriage even if there is one.

We assume that the women express strict total orders over the men. If they
don’t, we simply pick any linearization. The algorithm exploits the extended GS
algorithm [8], and at every step orders the free men by increasing number of
their current top choices (i.e., the alternatives that are undominated). List L
contains the current ordered sequence of free men. More precisely, our algorithm
works as follows. It takes in input an SMP P , and it computes the list L of free
men. At the beginning all the men are unmarried, and thus L contains them all.
Then, we continue to check the following cases on the man m which is the first
element of L, until they do not occur any longer:

– If the set of top choices of m contains exactly one unmarried woman, say
w, m proposes to w and, since we are using the extended GS algorithm, the
proposal is accepted. Then, all men that are strictly worse than m in w’s
preferences are removed from w’s preference list, and w is removed from the
preference lists of these men. Then, m is removed from L and L is ordered
again, since the top choices of some men may now be smaller.

– If m has a single top choice, say w, that is already married, m proposes to
w and w accepts the proposal. Then, she breaks the engagement with her
current partner, say m′, and all men that are strictly worse than m in w’s
preferences are removed from w’s preference list, and w is removed from the
preference lists of these men. Then, m is removed from L, m′ becomes free
and is put back in L, and L is ordered again.

When we exit from this cycle, we check if L is empty or not:

– if L is empty, the algorithm returns the current marriage. Notice that the
current marriage, say (mi, wi), for i = 1, . . . , n, is weakly stable since it is the



Algorithm 1: MaleWeaklyStable
Input: p: a profile;
Output: µ: a weakly stable marriage or the string ‘I don’t know’;
µ← ∅;
L← list of the men of p;
L← ComputeOrderedList(L);
while Top((first(L)) contains exactly one unmarried woman) or (first(L) has a single
top choice already married) do

m← first(L);
if Top(m) contains exactly one unmarried woman then

w ← UnmarriedTop(m);
Add the pair (m,w) to µ;
foreach strict successor m∗ of m on w’s preferences do

delete m∗ from w’s preferences and w from m’s preferences ;

L← L \ {m};
L← ComputeOrderedList(L);

if m has a single top choice already married then
w ← Top(m);
m′ ← µ(w);
Remove the pair (m′, w) from µ;
Add the pair (m,w) to µ;
foreach strict successor m∗ of m on w’s preferences do

delete m∗ from w’s preferences and w from m’s preferences;

L← L ∪ {m′} \ {m};
L← ComputeOrderedList(L);

if (L = ∅) or (AllDiffUnmarried(L)=true) then
Add to µAllDiffUnmarriedMatching(L);
return µ

else
foreach pair of men m and m′ in L with Top(m) ∩ Top(m′) 6= ∅ do

if m > m′ for every w ∈ Top(m) then
for every w ∈ Top(m)∩ Top(m′) remove w from the preferences of m′

L ← ComputeOrderedList(L);
if AllDiffUnmarried(L)=true then

add to µAllDiffUnmarriedMatching(L);
return µ;

return ‘I don’t know’

solution obtained by applying the extended GS algorithm on a linearization
of P where, for every mi with ties or incomparability in current set of top
choices, we have set wi strictly better than all the other women in the top
choice. Moreover, it is male-optimal, since no man is married with a woman
that is strictly better for him in some other weakly stable marriage.

– If L is not empty, it means that the next free man in L has several current
top choices and more than one is unmarried.
• If there is a way to assign to the men currently in L different unmar-

ried women from their current top choices then these men make these
proposals, that are certainly accepted by the women, since every woman
receives a proposal from a different man. Therefore, we add to the cur-
rent marriage these new pairs and we return the resulting marriage. Such
a marriage is weakly stable and male optimal for the reason above.

• If it is not possible to make the above assignment, the algorithm removes
unfeasible women from the current top choices of the men until it is
possible to make the assignment or until all unfeasible women have been



removed. More precisely, it considers a pair of men m and m′ such that
Top(m) ∩ Top(m′) 6= ∅), and it checks if there are unfeasible women in
Top(m′) to remove. If every woman in Top(m) prefers m to m′, then
all the women in Top(m)∩ Top(m′) are unfeasible for m′, and thus all
these women are removed from Top(m′). This could make now possible
to make the assignment. If so, the algorithm adds to the current marriage
these new pairs and returns the resulting marriage; otherwise, it performs
the same reasoning for another pair of men that have some woman in
common in their current top choices until all such pairs of men have
been considered and no marriage has been returned. At this point the
algorithm stops returning the string ‘I don’t know’.

Example 3. Consider the profile {m1 : w1 ./ w2 > w3 > w4 > w5; m2 : w1 ./
w2 > w3 > w4 > w5; m3 : w3 > w5 > w4 > w2 > w1; m4 : w1 ./ w2 > w3 >
w5 > w4; m5 : w4 > w5 > w3 > w2 > w1} {w1 : m1 > m2 > m4 > m3 >
m5; w2 : m5 > m3 > m1 > m2 > m4; w3 : m5 > m1 > m2 > m4 > m3; w4 :
m4 > m3 > m1 > m2 > m5; w5 : m1 > m2 > m3 > m4 > m5}. The algorithm
first computes the ordered list L = [m3, m5, m1, m2, m4]. Then, m3 makes a
proposal to w3, who accepts. Thus m3 is removed from L. Since m3 is at the
bottom of w3’s preferences, no man is removed from the preference list of w3 or
from the male preference lists. Therefore, L = [m5, m1, m2, m4]. m5 next makes
a proposal to w4, who accepts and m5 is removed from L. The new ordered list
L = [m1, m2, m4]. The remaining elements of L are men with more than one top
choice. All these top choices are unmarried, but there is no way to assign them
with different women from their top choices as the three men have only two top
choices. However, in every linearization, m4 is not matched with w1 or w2, due to
w1 and w2’s preferences. In fact, m1 and m2 choose between {w1, w2}, while m4

proposes to his next choice, i.e., w3. Hence, the considered profile is one in which
only two of the three men with multiple top choices are feasible with w1 and w2,
i.e. m1 and m2, and there is a way to assign to these men different unmarried
women in their top choices. Our algorithm returns one of the two male optimal
weakly stable solutions, i.e., {(m3, w5), (m5, w4)(m1, w2)(m2, w1)(m4, w3)}, or
{(m3, w5), (m5, w4)(m1, w1)(m2, w2)(m4, w3)}. 2

The MaleWeaklyStable Algorithm has a time complexity which is O(n
5
2 ). In

fact, the first part has the same complexity of the extended GS algorithm, which
is O(n2). The second part requires performing an all-different check between the
current set of free men and their top choices. Since there are at most n free men
and n top choices for each man, we can build a bipartite graph where nodes are
men and women, and each arc connects a man with one of his unmarried top
choices. We need to find a perfect matching in this graph. This can be done in
O(m

√
n) where m is the number of edges, which is O(n2).

The MaleWeaklyStable Algorithm is sound, but not complete, i.e., if it returns
a matching, then such a matching is male optimal and weakly-stable, but if it
returns the string ’I don’t know’, we don’t know if there is a weakly-stable
matching that is male optimal. A case where our algorithm returns the string ’I



don’t know’ is when L is not empty and there is a free man with more than one
top choice and all his top choices are already married. We conjecture that in this
case there is no male optimal weakly stable matching, since it seems there are
some very specific circumstances for our algorithm to mot return a male optimal
weakly stable matching (i.e., it has to pass through all the conditions we test)
when one exists.
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Fig. 1. Probability that the MaleWeaklyStable algorithm returns a male optimal stable
marriage as we vary the amount of incomparability.

In Figure 1, we tested the MaleWeaklyStable algorithm on some SMPs gen-
erated randomly: each woman totally orders the men uniformly at random; each
man totally orders the women uniformly at random; with probability p, we made
any neighbouring pair in this total order incomparable. Hence, p = 0 means no
incomparability, whilst p = 1 means that all woman are ranked incomparable
by all men. In Figure 1, N is the total number of agents. We tested 1000 stable
marriage problems for N=10 to 50 in steps of 10, and p=0 to 1 in steps of 0.1.
For small instances, our algorithm has a good chance of returning a male opti-
mal weakly stable marriage. For larger instances, the probability that we return
a male optimal weakly stable marriage drops as the amount of incomparability
increases. However, the probability turns around for large p, as the chance that
the top choices are all different increases.

As we noticed above, there are SMPs with no male optimal weakly stable
marriages. We now want to identify a class of SMPs where it is always possible
to find a linearization which has a male optimal stable marriage.

Definition 10 (male-alldifference property). An SMP P satisfies the male-
alldifference property iff men’s preferences satisfy the following conditions:

– all the men with a single top choice have top choices that are different;
– it is possible to assign to all men with multiple top choices an alternative in

their top choices that is different from the one of all the other men of P .

Theorem 1. If an SMP is male-alldifferent, then there is a weakly stable match-
ing that is male optimal and we can find it in polynomial time.



Proof. If an SMP satisfies the male-alldifference property, then, by Definition 10,
we can easily build the matching µ where all the men with a single top choice are
married with their first top choice and all the men with more than one top choice
are married with that alternative in their top choices that satisfies the second
hypothesis of Definition 10. This matching is both weakly-stable and male opti-
mal. It is is weakly stable, since it can be obtained by applying men-proposing
GS on one of the linearizations where, for all the men mi with more than one top
choice, we put µ(mi) strictly better than all the other alternatives. Moreover, by
construction, µ is male optimal, i.e., there is no other weakly stable matching
where a man can obtain a strictly better partner. In fact, all the men with a
single top choice are already married in µ with their best woman, and thus they
cannot obtain a better result, and, by construction, all the men with more than
one alternative in their top are married with one of these alternatives, that is
better than, in a ties with or incomparable to all the other alternatives, and thus
also these men cannot obtain a strictly better woman in any other matching. 2

The MaleWeaklyStable Algorithm exploits this same sufficient condition, plus
some other sufficient condition. Notice that if an SMP satisfies the male-alldifference
property, then, not only is there at least one weakly stable matching that is male-
optimal, but there is an unique stable matching up to ties and incomparability.

5 On the uniqueness of weakly stable matching in SMPs

For strict total orders, [5] gives sufficient conditions on preference for the unique-
ness of the stable matching. We now extend these results to partial orders. Notice
that, if there is an unique stable matching, then it is clearly male optimal. A class
of preference profiles in [5] giving an unique stable matching, when the prefer-
ences are strict total orders, is defined as follows. The set of the men and the set
of the women are ordered sets, the preferences require that no man or woman
prefers the mate of the opposite sex with the same rank order below his/her
own order. Given such a preference ordering, by a recursive argument starting
at the highest ranked mates, any other stable matching would be blocked by the
identity matching, i.e., the matching in which we match mates of the same rank.

Theorem 2. [5] Consider two ordered sets M = (mi) and W = (wi). If the
profile satisfies the following conditions:

∀wi ∈W : mi >wi
mj , ∀j > i (1)

∀mi ∈M : wi >mi
wj , ∀j > i (2)

then there is a unique stable matching µ∗(wi) = mi, ∀i ∈ {1, 2, . . . , N2 }.

Notice that the condition above is also necessary when the economies are
small, i.e., N = 4 and N = 6.

There are two particular classes of preference profiles that generate a unique
stable matching, and that are commonly assumed in economic applications [5].



The first assumes that all the women have identical preferences over the men,
and that all the men have identical preferences over the women. In such a case
there is a common (objective) ranking over the other sex.

Definition 11 (vertical heterogeneity). [5] Consider two ordered sets M =
(mi) and W = (wi). A profile satisfies the vertical heterogeneity property iff it
satisfies the following conditions:

– ∀wi ∈W : mk >wi mj , ∀k < j

– ∀mi ∈M : wk >mi wj , ∀k < j

Example 4. An example of a profile that satisfies vertical heterogeneity forN = 6
is the following. {m1 : w1 > w2 > w3; m2 : w1 > w2 > w3; m3 : w1 > w2 >
w3; } {w1 : m2 > m3 > m1; w2 : m2 > m3 > m1; w3 : m2 > m3 > m1.} 2

Corollary 1. [5] Consider two ordered sets M = (mi) and W = (wi) and a
profile P . If P satisfies the vertical heterogeneity property, then there is a unique
stable matching µ∗(wi) = mi.

When agents have different preferences over the other sex, but each agent
has a different most preferred mate and in addition is the most preferred by
the mate, then the preference profile satisfies horizontal heterogeneity. In this
situation there is a subjective ranking over the other sex.

Definition 12 (horizontal heterogeneity). [5] Consider two ordered sets
M = (mi) and W = (wi). A profile satisfies the horizontal heterogeneity property
iff it satisfies the following conditions:

– ∀wi ∈W : mi >wi
mj , ∀j

– ∀mi ∈M : wi >mi wj , ∀j

Example 5. The following profile over 3 men and 3 women satisfies horizontal
heterogeneity. {m1 : w1 > . . . ; m2 : w2 > . . . ; m3 : w3 > . . . } {w1 : m1 >
. . . ; w2 : m2 > . . . ; w3 : m3 > . . . .} 2

Corollary 2. [5] Consider two ordered sets M = (mi) and W = (wi) and a
profile P . If P satisfies the horizontal heterogeneity property, then there is a
unique stable matching µ∗(wi) = mi.

We now check if the results given above for strictly ordered preferences can
be generalized to the case of partially ordered preferences. Theorem 2 holds also
when the men’s preferences and/or women’s preferences are partially ordered.

Theorem 3. Consider two ordered sets M = (mi) and W = (wi) and a partially
ordered profile P . If P satisfies the conditions 1 and 2 of Theorem 2, then there
is a unique weakly stable matching µ(wi) = mi, ∀i ∈ {1, 2, . . . , N2 }.



Proof. The proof is similar to the proof of Theorem 4. More precisely, to show
that the matching µ is unique, we show that in any linearization the male optimal
and the female optimal matching coincide with µ. For any linearization of p, we
can compute the male optimal matching by using the men-proposing extending
GS. First, m1 makes the proposal to w1 that accepts, since m1 is her best man
in her preferences all the other men are removed from w’s preference ranking
and w is removed from the list of these men. Therefore, w will not receive any
other proposal and thus she remains with m1 until the end of the algorithm.
Hence, µ(m1) = w1. Similarly, we can show that µ(m2) = w2 and so on. Hence,
the male optimal stable matching in every linearization of p is µ(mi) = wi,
∀i ∈ {1, 2, . . . , N2 }. To conclude that µ is unique, we can show with a reasoning
similar to the one performed above, but using the women-proposing extended
GS, instead of the men-proposing extended GS, that for every linearization of p
also the female optimal stable matching is µ. 2

Notice that the condition above is also necessary when the economies are
small. For example, this holds when N = 6 (that is, three men and three women).

We now check if the vertical heterogeneity result (Corollary 1) holds also
when the preferences are partially ordered. We recall that vertical heterogeneity
assumes that all the agents of the same sex have the same strict preference
ordering over the mates of the opposite sex. It is possible to see that, even if
there is only one incomparable element in the ordering given by the men (or the
women), then vertical heterogeneity does not hold and there may be more than
one weakly stable marriage, as shown in the following example.

Example 6. Consider the following profile: {m1 : w1 > w2 ./ w3; m2 : w1 >
w2 ./ w3; m3 : w1 > w2 ./ w3; } {w1 : m1 > m2 > m3; w2 : m1 > m2 > m3;
w3 : m1 > m2 > m3}. In this profile all the agents of the same sex have the

same preference ordering over the mates of the opposite sex, however, there
are two weakly stable matchings, i.e., µ1 = {(m1, w1), (m2, w2), (m3, w3)} and
µ2 = {(m1, w1), (m2, w3), (m3, w2)}. Notice however that these two weakly stable
matchings differ only for incomparable or tied partners. 2

It is possible to show that if all the agents of the same sex have the same
preference ordering over the mates of the opposite sex and there is at least one
incomparable or tied pair, then there is a unique weakly stable matching up to
ties and incomparability.

Let us consider now Corollary 2 regarding the horizontal heterogeneity prop-
erty. From Theorem 3, it follows immediately that Corollary 2 holds also when
partially ordered preferences are allowed.

Corollary 3. Consider two ordered sets M = (mi) and W = (wi) and a par-
tially ordered profile P . If P satisfies the horizontal heterogeneity property, then
there is a unique weakly stable matching µ(wi) = mi, ∀i ∈ {1, 2, . . . , N2 }

Proof. It follows immediately from Theorem 3. 2



For partially ordered preferences, we can guarantee uniqueness of weakly
stable marriages by generalizing the horizontal heterogeneity property.

Definition 13 (p-horizontal heterogeneity). Consider two ordered sets M =
(mi) and W = (wi) that are ordered according to the number of their top choices.
Let us denote with mk the first man in the ordered list with more than one top
choice, if he exists. A partially ordered profile satisfies the p-horizontal hetero-
geneity iff it satisfies the following conditions:

– ∀mi ∈M with mi < mk, mi : wi >mi wj, ∀j;
– ∀mi ∈M with mi ≥ mk,
• mi : wi >mi

(or ./mi
) wj, ∀j < i;

• mi : wi >mi
wj, ∀j > i;

– ∀wi ∈W , with wi < wk, mi >wi
mj , ∀j;

– ∀wi ∈W , with wi ≥ wk,
• wi : mi >wi mj , ∀j > i;
• wi : mi >wi (or ./wi) mj , ∀j < i,

In words, the conditions above require that every man mi (resp., woman wi) with
a single alternative has as unique top choice wi (resp., mi), and that every mi

(resp., wi) with more than one top choice has exactly one unmarried alternative,
i.e., wi (resp., mi).

Corollary 4. Consider two ordered sets M = (mi) and W = (wi) that are
ordered according to the number of their top choices and a partially ordered
profile P . If P satisfies the p-horizontal heterogeneity, then there is a unique
weakly stable matching µ(wi) = mi, ∀i.

Proof. In order to show that that the matching µ(wi) = mi, ∀i, is the unique
weakly stable matching that can be obtained for any linearization of the given
profile, say p, we will show that in every linearization of p, the male optimal
matching and the female optimal matching coincide with the matching µ.

To show that in every linearization of p the male optimal matching is µ, we
apply the extended version of the men-proposing GS to p and we show that
the result is µ independently of how the non-ordered pairs are ordered. If we
apply the extended men-proposing GS algorithm, every man mi, for i < k,
makes a proposal to his best woman wi, that accepts since for her mi is her
best man, and all the other men of wi are deleted from her preference list and
wi is removed from these men’s preference ranking. This means, that when wi
accepts the proposal from mi, then all the remaining men cannot propose to wi
and thus wi remains with mi, and so, for every men mi, with i < k, µ(mi) = wi.
Since we are using the extended version of GS and the sets of men and women
are ordered, every man mi, for i ≥ k, will not have in his preference ranking
any woman wj for j < i, and thus, since the profile satisfies the p-horizontal
heterogeneity, mi : wi >mi

wj , ∀j > i. Therefore, every man mi, for i ≥ k, has
in his top choice only the woman wi and similarly every woman wi has in his
top choice mi. Hence, for every linearization of the p, the matching returned by
the men-proposing GS, that, as we know, is male optimal, is µ(mi) = wi, ∀i.



Similarly, we can show that for every linearization of p the matching returned
by the women-proposing GS, that, as we know, is female optimal, is µ(wi) = mi,
∀i. Hence, we can conclude that µ is the unique weakly stable matching. 2

6 Related work

In this paper, as in [10, 11], we permit non-strictly ordered preferences (i.e., pref-
erences may contain ties and incomparable pairs) and we focus on weakly stable
matchings. However, while in [10, 11], an algorithm is given that finds a weakly
stable matching by solving a specific linearization obtained by breaking arbi-
trarily the ties, we present an algorithm that looks for weakly stable matchings
that are male optimal, i.e., we look for those linearizations that favor one gender
over the other one. Moreover, since there is no guarantee that a male optimal
weakly stable matching exists, we give a sufficient condition on the preference
profile that guarantees to find a weakly stable matching that is male optimal,
and we show how to find such a matching. Other work focusses on providing
sufficient conditions when a certain property is not assured for all matchings.
For example, in [3] a sufficient condition is given for the existence of a stable
roommate matching when we have preferences with ties.

7 Conclusions

We have given an algorithm to find male-optimal weakly-stable solutions when
the men’s preferences are partially ordered. The algorithm is sound but not
complete. We conjecture, however, that incompleteness is rare since very spe-
cific circumstances are required for our algorithm not to return a male optimal
weakly stable matching when one exists. We have then provided a sufficient con-
dition, which is polynomial to check, for the existence of male-optimal weakly-
stable matchings. We have also analyzed the issue of uniqueness of weakly-stable
matchings, providing sufficient conditions, which are likely to occur in real life
problems, that are also necessary in special cases.
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