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Abstract Preferences and uncertainty occur in many real-life problems.
The theory of possibility is one non-probabilistic way of dealing with un-
certainty, which allows for easy integration with fuzzy preferences. In this
paper we consider an existing technique to perform such an integration
and, while following the same basic idea, we propose various alternative
semantics which allow us to observe both the preference level and the
robustness of the complete instantiations.

1 Introduction

Preferences and uncertainty occur in many real-life problems. Preferences can
be represented in many ways, both qualitative and quantitative: CP-nets, soft
constraints, utility theory, etc.. Uncertainty, on the other hand, has also been
handled in several different ways. For example it has been treated using proba-
bilistic approaches, and also non probabilistic approaches as possibility theory.
In this paper we are concerned with the notion of uncertainty that comes from
the lack of data or imprecise knowledge and with scenarios where probabilistic
estimates are not available.

The theory of possibility is one non-probabilistic way of dealing with uncer-
tainty, which allows for easy integration with fuzzy preferences. In fact, possi-
bilities are values between 0 and 1 associated to events and which express the
level of plausibility that the event will occur. In our context, we will describe a
real life problem as set of variables with finite domains and a set of constraints
among subsets of the variables. For us, an event will be modeled by the assign-
ment of a value to a variable. A variable will be called uncertain if we cannot
decide its value. In this case, we will associate a possibility degree to each value
in its domain, which will tell how plausible it is that the variable will get that
value.

Fuzzy preferences are values between 0 and 1 that are associated to single or
multiple variable instantiations. In the context of fuzzy constraints, such prefer-
ences are combined using the min operator, and are ordered in such a way that
higher values denote better preferences.

In this paper we consider an existing technique to integrate fuzzy preferences
and uncertainty which uses possibility theory. This technique allows one to em-
bed uncertainty into a fuzzy optimization engine. However, the integration is



too tight since the resulting ordering over complete assignments does not allows
one to discriminate between solutions which are highly preferred but assume
unlikely events and solutions which are not preferred but robust with respect to
uncertainty.

While following the same basic idea of translating uncertainty into fuzzy
constraints, we propose various alternative semantics which allow us to observe
both the preference level and the robustness of the complete instantiations.

2 Fuzzy Constraints

In [2] a soft fuzzy constraint C on variables {x1,...,z,} is associated with a
fuzzy relation R, i.e. a fuzzy subset of Dy x --- x D,, of values that more or
less satisfy C. A membership function pp is associated with relation R and
specifies for each tuple (di,...,d,) € Dy x --- x D, the level of satisfaction
pr(di,...,dy) in a set L, which is totally ordered (e.g. [0,1]). In particular
pr(dy,...,dy) = liftuple (dy,...,d,) totally satisfies C, pg(dy,...,d,) = 0if it
totally violates C, and 0 < pg(dy,...,d,) < 1if it partially satisfies C. Moreover
ur(dy, ..., dy) > pr(d,...,d,) means that tuple (di,...,d,) is better than the
second one. Interpreting the preference degrees as membership degrees leads us
to represent a fuzzy soft constraint by a fuzzy relation.

It is possible to model prioritized constraints using fuzzy relations with an-
other scale V. In detail, a priority degree Pr(C') is attached to each constraint
indicating to what extent it’s imperative that C be satisfied. If Pr(C') = 1 then
it is imperative that C is satisfied, if Pr(C) = 0 it is completely possible to
violate C and Pr(C) > Pr(C’) means that satisfying C is more important than
satisfying C’.

The relation between the violation scale V and the satisfaction scale L is
expressed by the following order-reversing bijection: L = ¢(V') = {c(v),v € V},
where ¢(0) is the top element of L and ¢(1) is the bottom one. Notice that
v > v" in V implies ¢(v) < ¢(v') in L. More precisely, a prioritized constraint
can be represented by pair (C, Pr(C)) and is considered totally satisfied by a
tuple if C is satisfied, and satisfied to degree ¢(Pr(C)) if the tuple violates C.
Hence, ¢(V) represents a satisfaction scale and so C can be represented by a
fuzzy relation such that: pugr(dy,...,d,) = ¢(0) = 1 if (dy,...,d,) satisfies C,
and pr(dy,...,d,) = c(Pr(C)) if (di,...,d,) violates C.

The following operations on fuzzy constraints are defined in [2]:

— The projection of a fuzzy constraint, represented by fuzzy relation R on
variables {z1,...,2x} C V(R) = {x1,...,2,}, is a fuzzy relation RH{= 1>k}
defined on {z1,...,zx} such that:

Hpl{zy,...,ep} (d], ey dk;) = Sup{d=(d1,m,d7,,)|di{"’1“"“"k} =(d1,...,dx)} ,LLR(d)

— The conjunctive combination of two fuzzy constraints, represented by fuzzy
relations R; and R, is a fuzzy relation R; ® R, defined on variables V(R;) U
V(R;) such that:



trior, (i, dp) = min(ug, (di, ..., di) Y ED) g (dy, .. dy) Y B

where pgr,or,(d1,...,dy) evaluates to what extent (d1,...,dy) satisfies both
C@‘ and Cj.

3 Possibility theory: possibility as preference

In [2] it is also explained how it is possible to handle fuzzy soft and prioritized
constraints using principles of possibility theory [3]. A possibility distribution
m, attached to a variable z, is a mapping from a domain D to a totally ordered
set L ([0,1] in general), which expresses to what degree is possible that = = d.
7(d) = 0 means that it is impossible that = d, 7w(d) = 1 means that the value
d is possible for z without any conflicts and so x = d cannot be excluded. In
particular, 7(d) = 1 for all d € D expresses the complete ignorance about z,
because in this case all values d are plausible for & and so it is impossible to
exclude some of them. Whereas, (d) = 1 for a specific value d and 7(d) = 0
otherwise, expresses the complete knowledge about x, because in this case only
the value d is plausible for z.

The fuzzy set of admissible values for  can be viewed as a possibility distri-
bution indicating to what extent a value is considered suitable for x according
to the constraint. Therefore the degree of possibility 7(d) can be seen as the
degree of preference for choosing x = d. In particular, 7(d) = 0 means that d is
a forbidden value of x, while w(d) = 1 means that d is one of the most preferred
values.

Given a possibility distribution 7 attached to x, you can consider events of the
form z € A. The occurrence of such events can be described by possibility and ne-
cessity degrees resp. defined as [2]: IT(A) = supgean(d), N(A) = infogac(n(d))
where c is the order reversing map on L.

The possibility degree of an event x € A, denoted by IT(A), evaluates the
extent to which x € A is possibly true, whereas the dual measure of necessity
of x € A, denoted by N(A), evaluates to what extent the proposition z € A is
certainly true.

More precisely, the possibility degree, II(A), is the maximal membership
degree of the elements that belongs to the intersection between the fuzzy set E
such that 7 = g and the set A:

IT(A) = supge p min(mw(d), pa(d)) = supge am(d).
Notice that IT and N are such that IT(A) = ¢(N(A)), and so N(4) = 1 —

I1(A), and that while IT(A) = 1 means that A is consistent with the constraint
represented by m, N(A) = 1 means that the satisfaction, even partial, of the
constraint represented by 7 implies the occurrence of A. In fact, N(A) = 1 means

1—1II(A) =1, i.e. II(A) =0, which can be rewritten in the following way, using

the definition of IT(A), supggam(d) = 0. This means that 7(d) = 0 Vd ¢ A, and
so the unique plausible values belong to A.



For example, if you have a possibility distribution 7, attached to a variable
x with domain D, = {5,6,7,8}, such that 7n(5) = 0.9, n(6) = 0.4, n(7) =
0.7, m(8) = 0.5, then, if A = {5, 6} is a subset of D,, the possibility degree
of the event © € A is II(A) = supgean(d) = sup{0.9, 0.4} = 0.9, whereas
the necessity degree of the same event, x € A, is N(A) = infagac(n(d)) =
inf{c(n(7)),c(m(8))} = inf{c(0.7), ¢(0.5)} = inf{0.3, 0.5} = 0.3. Calculating

N(A) using the formula N(A) = 1 — II(A) is the same, in fact, N(A) = 1 —
II(A) =1 — supge zm(d) = 1 — sup{0.7,0.5} = 1 — 0.7 = 0.3.

When considering prioritized constraints, the degree of priority a of a con-
straint C is considered as a degree of necessity of the subset modeling the con-
straint, i.e., corresponds to the higher level constraint N(R) > «. Notice that

N(R) > a is the same as infggac(m(d)) > a, that is 7(d) < c(a) Vd & A.

4 Uncertainty Parameters in Fuzzy Constraint
Satisfaction Problems (FCSPs)

Whereas in usual FCSPs all the variables are assumed to be controllable, that
is their value must be decided according to the constraints which relates them
to other variables, in many real-world problems uncertain parameters must be
used. Such parameters are associated with quantities which aren’t under the
user’s direct control. Possibility theory [3] can also be used to handle these
uncertain quantities, indicated by z, using possibility distributions 7z. Such
distributions rank the values according to their level of plausibility mapping
them in a totally ordered scale U as follows: 7 : Dz — U. The interpretation
of possibility distributions for uncontrollable events is different from that of
preferences for controllable decisions. In fact, in the context of uncontrollable
events, the possibility measure IT(A) estimates the extent to which event A is
unsurprising, while the necessity measure N(A) represents the extent to which
A is believed in spite of the uncertainty.

In [2] it is shown how it is possible to replace a hard constraint expressing the
uncontrollability of an event, with a fuzzy constraint without uncontrollability.

Consider, for instance, uncontrollable variable z and a hard constraint C,,
that constrains z and controllable variable x. To satisfy C,, a value for x must
be chosen such that C,, is satisfied whatever the value of z turns out to be. This
means that the satisfaction degree for the value d € D, is the necessity degree
of the event z € (R,, N {d})'P=, given the restriction of the possible values of z
defined by 7, that is:

N(x = dsatisfies Cy,) = C(Supag(R:,,:ﬂ{d})i”: acp.Tz(a)).

This degree evaluates to what extent it is impossible to have a whatsoever
possible value of z violating the constraint. More precisely it is equal to 0 if
there is a totally plausible value a; for z such that the pair (a1, d) violates the
constraint, whereas it is equal to 1 if all values a such that the pair (z,z) = (a, d)
violates C,, are impossible.



A constraint involving a decision variable x and an uncertain parameter z
can be interpreted as the unary fuzzy constraint C, on x defined by the fuzzy
relation R,:

ur, (d) = N(z = dsatisfies Cy,).

Figure 1 shows an example with one decision variable, X, with domain
Dx = {1, 2} and one uncertain parameter, Z, with domain Dy = {0, 1,2, 3,4,5}.
Figure 1 (a) describes the original constraint problem. There is a hard constraint,
Cxz,on X and Z represented by the values assigned by the membership func-
tion u, defined by the fuzzy relation Rxz, to all the possible tuples in Dy x Dy,
and there is the possibility distribution 7z which associates to each possible as-
signment to Z its possibility. Figure 1 (b) shows the result of transforming the
uncertain information on Z into preferences on X applying for each value in Dy
the formula given above, that we rewrite here for clarity:

N(X = dsatisfies Cxz) = c(SUPag(Rry yn{d}) P2 ,acD, T2(a))-

In detail the preference for a value in Dx, e.g. X = 1 is obtained by the
following steps:

— all the pairs in the constraint C'x» containing X = 1 and with preference
= 1 are considered. In this case Rxz N (X =1)={(Z=0,X =1),(Z =
1,X=1,Z=2,X=1),(Z=5X=1)}

— the possibilities associated with the values for Z that do not belong to Rxz N
(X = 1), but belong to Dy, i.e. Z = 3 and Z = 4, are compared using
sup operator: sup(mz(3),mz(4)) = sup(0.8,0) = 0.8. This represents the
maximum possibility associated to an assignment to Z that violates Cyz
when X = 1;

— the new preference that will be associated to X = 1, /(X = 1), is computed
using the order-reversing function ¢, that here is assumed to be ¢(p) = 1 —p,
on the sup calculated in the previous step: ¢(0.8) = 0.2.

This can be generalized to the case of a fuzzy constraint C, represented by
the fuzzy relation R, which relates a set of decision variables X = {z1,...,z,}
to a set of uncertain parameters Z = {z1,..., 2;} with domains Ay, ..., Ag. The
knowledge of the uncertain parameters is modeled with the possibility distribu-
tion 7z defined on Ay = A1 x --- x Aj. The constraint is considered satisfied
by the assignment d = (dy,...,d,) € Dy X --- x D, if, whatever the values of
z=(z1,...,2k), these values are compatible with d, i.e., the set of possible values
for z is included in T'= (R® {(d1, . ..,d,)})}#. Obviously ur(a) = pr(a,d) and

N(dsatisfiesC) = N(z € T) = c(supgea.min(c(ur(a)), 7z(a))).
Notice that N(d satisfiesC) =1 iff Va,7mz(a) >0 = pr(a) =1, i.e. any

value of z which is whatsoever plausible leads to a total satisfaction of constraint

C.



@ (b)

@ 1 (x=1) = c(sup( T, (z=3), m, (z=4)))=

W (220, x=1)1 W (z=0, x=2)=1 =c(sup(0.8 , 0))=c(0.8)=1-0.80.2
W (z=1, x=1)=1 W (z=1, x=2)=1
u(z=2, x=1)=1 u (z=2, x=2)=0 1 (x=2) = c(sup( T, (z=2)))=
U (z=3, x=1)=0 W (z=3, x=2)=1 i
=c(sup(1))=c(1)=0
W (z=4, x=1)=0 W (z=4, x=2)=1 =c(sup(1))=c(1)

K (z=5, x=1)=1 n (z=5, x=2)=1

Figurel. Example with a single decision variable X connected with a single
uncertain parameter Z. Figure (a) shows the original hard constraint C'xz rep-
resented by membership function p, and the possibility distribution 7z describ-
ing the plausibility of Z. Figure (b) shows how the resulting fuzzy constraint on
decision variable X.

The quantity N(d satisfies C') represents the degree of satisfaction of C. If
the uncertain parameters are independent then we can write distribution m,
in terms of the single distributions ., as follows: 7, (a) = minj—i,.. k7., (a;)
Va = (a1,...,ar) € A;X---xAg. Theresult is a new constraint C on the decision
variables X = {x1,...,x,} with fuzzy relation R’ defined by R’ = ((R ® F,)\X)
where F), is the fuzzy set whose membership function is 7, and where R stands
for the complement of R, i.e. u(R) = c(ur).

In general we can use the information on uncertain parameters to change
each constraint C; into a new constraint C| following the procedure described
above. Generally p/5(d) > o means that if it is taken for granted that the ac-
tual value of z has plausibility strictly greater than c(«), then it is sure that
the decision d satisfies C' at least at level a. In fact, u/z(d) > o means that
N(dsatisfies C) > a and then, applying the definition of N(d satisfies(C), it
means c(supgea.min(c(ur(a)),mz(a))) > «, where for hypothesis 7z (a) > c(«).
Applying the order reversing map ¢, you have sup,ca.min(c(ur(a)), 7z(a)) <
c(a), where for hypothesis 7z (a) > ¢(«). This implies min(c(ur(a)),7z(a)) <
c(a) for all a € A,, then, knowing that mz(a) > c(a), min(c(ur(a)), 7z(a))
must be ¢(ur(a)) for all a € A,. Therefore c(ur(a)) < ¢(a) for all a € A,, and
then pp(a) > « for all a € A,. This means that ugr(a,d) > o for alla € A,, i.e.
d satisfies C' at least at level a.

In Figure 2 we show an example with two decision variables X with domain
Dx = {1,2}, Y with domain Dy = {3,4} and an uncertain parameter Z with
domain Dz = {0,1,2,3,4,5}. In Figure 2 (a) we have the original problem with
a ternary constraint Cyyz represented by membership function p defined by
relation R, and the possibility distribution on the values of Dy. Figure 2 (b)



@ M (z=0, x=1, y=3)=0.5 ®
W (z=1, x=1, y=3)=0.4
R (z=2, x=1, y=3)=0.3
R (z=3, x=1, y=3)=0.8
W (z=4, x=1, y=3)=0.9

W (z=5, x=1, y=3)=0

@ 1L (z=0, x=2, y=4)=0.5 Wix=1,y=3)=03

W(z=1,x=2,y=4)=04 | .
W(z=2,x=2,y=4)=0 | T
W (z=3, x=2, y=4)=0.8
M (z=4, x=2, y=4)=0.9
W (z=5, x=2, y=4)=0

Wi(x=2, y=4)=0

Figure2. Example with two decision variables X and Y and a single uncertain
parameter Z. Figure (a) shows the original ternary fuzzy constraint C'xy z repre-
sented by membership function u, and the possibility distribution 7z describing
the plausibility of Z. Figure (b) shows how the resulting binary fuzzy constraint
on decision variables X and Y.

shows the binary constraint on X and Y such that the preferences it associates
to pairs of values of X and Y are obtained from the uncertain information on Z.
The preference of a pair (z,y) where x € Dx and y € D, is computed according
to the formula (given before):

N((z,y) satisfies Cxyz) = c(supzep,min(c(pr(2)), 7z (2))).
To see how it works consider the pair (X =1,Y = 3):

since R is the set of all tuples of constraint Cxyz, R® (X =1,Y = 3) is
the subset of R containing only tuples with X =1 and Y = 3;

T=(R® (X =1,Y = 3))!7 is the projection of R® (X =1,Y = 3) on Z,
in this case T' = {0,1,2,3,4,5};

for each value z in T we compute pr(z) = u(z,1,3) obtaining p(0) = 0.5,
pr(l) =04, ur(2) = 0.3, ur(3) = 0.8, ur(4) = 0.9, pr(5) = 0;

then the order reversing function ¢(p) = 1 — p is applied to all the ur(z)
obtained in the previous step. This gives c(ur(0)) = 0.5, ¢(ur(1)) = 0.6,
c(pr(2)) = 0.7, c(ur(3)) = 0.2, c(ur(4)) = 0.1, c(ur(5)) = 1;

then for each z we take the minimum of ¢(ur(z)) and the possibility 7z (z)
and so for z = 0 we take min(0.5,0) = 0, for z = 1 we take min(0.6,0.8) =
0.6, for z = 2 we take min(0.7,1) = 0.7, for z = 3 we take min(0.2,0.8) = 0.2,
for z = 4 we take min(0.1,0) = 0 and for z = 5 we take min(1,0) = 0;
then the sup operator is applied to the values obtained at the previous step:
sup(0,0.6,0.7,0.2,0,0) = 0.7;



— finally we use function ¢ again obtaining the new preference for pair (X =
1,Y = 3) in the new binary constraint on decision variables X and Y, that
is /(X =1,Y =3) =¢(0.7) =0.3.

To see that the preference associated in the new binary fuzzy constraint to a
pair of values (x,y) is related to whether such pair is consistent or not with all
the plausible values of Z, consider the pair (X = 2,Y = 4) in Figure 2. Notice
that w.r.t. pair (X = 1,Y = 3) the only difference is the preference associated to
the tuple containing Z = 2 for which 7z(2) = 1. In fact, whereas u(2,1,3) = 0.3,
1(2,2,4) = 0. This means that pair (X = 2,Y = 4) is not consistent with a value
for Z, Z = 2, which is maximally possible. Repeating the same reasoning done
before gives pair (X = 2,Y = 4) a new preference equal to 0. This is correct,
since it means that a pair, which is inconsistent with values of Z which have a
high possibility, should have a low preference. If the possibility is 1 (maximal)
for some of the values of the uncertain parameter with which the pair of values
of decision variables is inconsistent, then the new preference associated with a
such pair must be 0.

Summarizing, the method proposed in [2] for managing the uncertainty in a
general Fuzzy CSP, is the following. It starts from a Fuzzy CSP with decisional
variables, uncertain parameters, fuzzy constraints among decisional variables
and constraints that link decisional variables with uncertain parameters. At the
first step the original problem is reduced to another one, in which there aren’t
uncertain parameters. For doing so all constraints, which link uncertain parame-
ters with decisional variables, are changed in fuzzy constraints only among these
decisional variables. The new preference levels of the decisional variables in such
particular constraints are computed applying the specific procedure given above
in this section. At the second step the new problem is composed by only fuzzy
constraints, therefore you can solve it applying usual method for solving fuzzy
CSPs, i.e. using min operator to combine constraints and using max operator to
project them.

An application of this method to a general Fuzzy CSP (for example Fuzzy
CSP proposed in Figure 3) can be seen in Figure 4. The Figure 3 shows a par-
ticular Fuzzy CSP with an uncertain parameter. In this problem there are three
decisional variables X,Y, W and an uncertain parameter Z with these domains:
Dx = Dy ={1,2}, D; = {3,4} and Dz = {5,6}. Moreover we have a ternary
constraint Cyy 7z linking X and Y with Z, which is represented by membership
function p and by possibility distribution 7, and a fuzzy constraint linking X
and W. Figure 4 shows how the method proposed in works on this particular
FCSP. Figure 4 (a) shows the new fuzzy CSP problem with the previous fuzzy
constraint between X and W and with the new fuzzy binary constraint on X
and Y such that the preferences it associates to pairs of values of X and Y
are obtained from the uncertain information on Z after applying the formula
given above. Figure 4 (b) shows all assignments with their final preferences, that
you can find applying usual procedure for solving Fuzzy CSP, i.e. combining
constraints using operator min and projecting them using operator max. More
precisely, final preference degrees are obtained applying min operator between



the preference degree given by the fuzzy (F') constraint Cxz in the original
problem and the preference degree obtained reasoning on uncertain parameter
(U). The solution is found choosing the assignment with the maximum final
preference degree.

FCSP with UNCERTAINTY

U (x=1, w=5)=0.4

Dy =Dy={]’2} M (x=1, w=6)=0.3
D, ={3.4} U (x=2, w=5)=0.9
Dy, =(5.6}  (x=2, w=6)=0.2

W (z=3, x=1, y=1)=0.3
U (z=4, x=1, y=1)=0.5
WU (z=3, x=1, y=2)=0.4
W (z=4, x=1, y=2)=0.6
@ W (z=3, x=2, y=1)=0.5
WU (z=4, x=2, y=1)=0.4
W (z=3, x=2, y=2)=0.1
U (z=4, x=2, y=2)=0.6

Figure3. Example of Fuzzy CSP with uncertainty.

Notice that the final preferences of the assignments may derive from reasoning
on uncertainty parameters (case U) or from reasoning on preferences of the fuzzy
constraints appeared in the original problem (case F'). In the method of Dubois
at al. this kind of information is lost, i.e. you don’t know the origin of the final
preferences.

For example if you have an assignment d with a pair of preferences (0.3,0.8)
and another one d’ with a pair (0.8,0.3), then, according to this method, d is
considered equal to d’, forgetting relevant information, like that in d there is a
low preference F' = 0.3, whereas in d’ there is a very high preference F' = 0.8 and
that d has a high robustness U = 0.8, whereas d’ has a low robustness U = 0.3.

5 New semantics: risky, safe, diplomatic

The method of Dubois at al. in [2], described in detail in section 4, incorporate
uncertainty into fuzzy preferences, but in doing so part of the information is
lost, how shown in the last part of the previous section. This method reduces
the original problem with uncertain parameters to a fuzzy constraint problem
with only decisional variables. Once a solution is found its global preference is
computed only looking at such fuzzy constraints, and it is not possible to tell if
the final preference of the solution is derived from reasoning on uncertainty or
on actual preferences.



FUZZY CSP: Dubois et al. method

(a) (b)

HOELW=5)=04 1 oy y=t, w=5)=min(014:4, ol.J5)= 0.4
HOSLW=6)=03 ) (1) y=1, w=6)=min(0.3, 0.5)= 0.3

M2, w=5)=09 ) (11 y=2, w=5)=min(0.4, 0.6)= 0.4

W2, w=60=02 (1 y=0, w=6)=min(0.3, 0.6)= 03

U (x=2, y=1, w=5)=min(0.9, 0.4)= 0.4

H(x=1,y=D=05 I (x=2, y=1, w=6)=min(0.2, 0.4)= 0.2
ﬁ E:; ij;;gi U (x=2, y=2, w:5):m?n(049, 0.6)=0.6
1 (x=2, y=2)=0.6 M (x=2, y=2, w=6)=min(0.2, 0.6)= 0.2

Solution:
s= (x=2, y=2, w=5) with U (s)=0.6

Figure4. This Figure shows how the method proposed in [2] for solving the
Fuzzy CSP with an uncertain parameter, illustrated in Figure 3, works. Fig-
ure (a) shows the resulting fuzzy constraint on decisional variables X and Y
represented by membership function p obtained applying the procedure given
before. Figure (b) shows all Fuzzy CSP assignments with their preference degrees
obtained applying standard procedure for solving usual fuzzy CSP.

In order to avoid loss of information, we will propose a new method for
solving a Fuzzy CSP with uncertain parameters. The method proposed in [2]
eliminates uncertain parameters creating new fuzzy constraints, as explained in
section 4, but in doing so it forgets the original preferences associated to the tuple
of values of the variables connected with uncertain parameters. We believe that
it’s important to remember these original preferences, and so in our method,
before eliminating uncertain parameters, we project the constraints involving
uncertain parameters on the particular decisional variables connected to these
uncertain parameters. Then we apply the procedure defined in section 4: creation
of a new particular fuzzy constraints after elimination of uncertain parameters
and resolution of the new generated Fuzzy CSP using standard procedure of
solving FCSP. Moreover we think that it’s better to keep separate all kinds of
preferences: those obtained by projection, those obtained by fuzzy constraints
reasoning and those gained by reasoning on uncertainty.

Figure 5 shows an application of this new method on the particular Fuzzy
CSP with uncertainty illustrated in Figure 3, where there are three decisional
variables X, Y, W and an uncertain parameter Z. The uncertain parameter Z
is connected by a ternary constraint, C'xyz, to X and Y, whereas W is linked
to X by a fuzzy constraint Cxw . In Figure 5 (a) there is the new Fuzzy CSP
obtained from Fuzzy CSP in Figure 3 after applying these steps:

— projection of the ternary constraint C'xy z on the decisional variables X and
Y, obtaining a new fuzzy constraint on X an Y, which associates to each
pair of value (z,y) € X x Y a level of preference which is the maximum
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FUZZY CSP: our method (b)

(@ .
K (x=1, w=5)=0.4 | PF U E U
8 (X:l W=6)=0.3 Pu (X=l, y=l7 W=5)=<min(0'5’ 0'4)’ 0'5)>=<0'4’ 05>
(=2, w=5)=09 = M (=1, y=1, w=6)=min(0.5,0.3), 05)>=<0.3,0.5>
H (X=2 W=6)=0.2 ”l' (X=l, y=27 W=5)=<min(0'6’ 0'4)’ 0'6)>=<0'4’ 0.6>
M (x=1, y=2, w=6)=min(0.6, 0.3), 0.6)>=<0.3, 0.6>
W(x=1, y=1)=0.5 18 (x=2, y=1, W=5)=<lllill(0‘5, 0.9), 0.4)>=<0.5, 0.4>
M (x=1, y=2)=0.6 M (x=2, y=1, w=6)=<min(0.5, 0.2), 0.4)>=<0.2, 0.4>
M (x=2, y=1)=0.4 M (x=2, y=2, w=5)=min(0.6, 0.9), 0.6)>=<0.6, 0.6>
W (x=2, y=2)=0.6 W (x=2, y=2, w=6)=<min(0.6, 0.2), 0.6)>=<0.2, 0.6>
Solution:
M (x=1, y=1)=0.5 E U
W (x=1, y=2)=0.6 OS2I it R(9=<06,06>
M (x=2, y=1)=0.5
W (x=2, y=2)=0.6

Figure5. This Figure shows the new method, which we propose in order to solve
the Fuzzy CSP illustrated in Figure 3 with an uncertain parameter. Figure (a)
shows the resulting fuzzy CSP obtained both applying the procedure described
in [2] and projecting the original constraint with uncertain parameter Z, Cxyz,
on the decisional variables X and Y. Figure (b) shows all Fuzzy CSP assignments
with the pair of their preference degrees.

preference of the tuples appeared in the original ternary constraint Cxyz,
which have X =z and Y = y;

— application of the procedure in [2] for reasoning on uncertain parameter.
In the new fuzzy CSP there is no longer uncertain parameter Z, but there
is a new fuzzy constraint between the decisional variables connected in the
original problem to Z. In this new fuzzy constraint the preferences of the
pairs of values of X and Y are computed using the procedure described in
detail in section 4.

In Figure 5 (b) there are all the tuples of assignments, for the FCSP considered,
with a tuple of three preference degrees: the first one (P) is the preference degree
obtained after projecting the constraint Cxyz on the variables X and Y, the
second one (F') is the preference level gained reasoning on fuzzy constraint Cxw
of the original problem and the third one is the preference obtained reasoning on
uncertain parameter Z, i.e. applying the particular procedure proposed in [2].
In the bottom to the Figure 5 (b) there is the solution of my original problem,
which has as preference not a single value, like in [2], but a tuple of values. An
assignment of the decisional variables is preferred to another one according to
one of the semantics that will describe in the next section. In this particular case
the preferred solution is the better one for all these semantics.

Consider the example shown in Figure 2 as a part of a bigger fuzzy constraint
problem. Then the preference associated to tuple (X = 1,Y = 3), projecting
constraint Cxyz on variables X and Y, is sup,ez{p(z,1,3)} = 0.9. However
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the procedure given in [2] assigns to tuple (X = 1,Y = 3) preference p/(X =
1,Y = 3) = 0.3. Hence any solution s of the whole problem which assigns value
1 to X and 3 to Y will have global preference < 0.3 (there might be another
constraint which lowers the preference even further). In this case the preference
related to the uncertain information, x/(X = 1,Y = 3) = 0.3 is lower than the
preference obtained projecting the preferences.

We will now prove that this holds whenever the uncertain parameter has in
its domain a value z with possibility 7z (z) = 1.

Theorem 1. Consider a fuzzy constraint C' on decision variables X = {x1,...,x,}
with domains Dy, ..., Dy, and uncertain parameters Z = {z1,...,zx} with do-
mains A1,...,Ar. The knowledge of the uncertain parameters is modeled with
the possibility distribution 7z defined on Ay = Ay X --- X Ai. Then if there is
at least a tuple a = (ay,...,ax) € Ay X -+ X Ay, such that wz(ai,...,ar) =1
then Vd = (dy,...,d,) € Dx = Dy x --- x D,, we have:

SUP(q,d)e A x D |d=(a,d)* Px =a HR((a;d)) = e(supaea,min(c(pr(a, d), 72(a)))).

Proof. Assume that there is an instantiation ¢’ € Az such that 7z (a’) = 1.
Then min(c(pr(a’,d)), mz(a')) = min(c(pr(a’,d)),1) = c(ur(a’,d)). Let’s in-
dicate S = supgea,min(c(ur(a,d), 7z(a))). Then we have S > c(ur(d’,d)).
This implies that applying the reversing-order c(p) = 1 — p we get ¢(S) <
cle(un(@d)) = junla’,d).

But clearly pr(a’,d) < supi, gye 4, %D d=(a,d) Px —a #r((@;d)) and then ¢(S) <
SUP(q,dye Ay x Dx |d=(a,d)' P X =d nr((a,d)) O.

Note that this theorem holds also in the context of [2] as well as in our
method. It is not redundant in our method even if we perform projection in the
constraint involving uncertain parameters.

Notice that if the uncertain parameters are independent the above theorem
holds if there is at least an a such that a = (ai,...,a;) € Az and 7z, (a;) =
1,7 = 1,...,k. Summarizing the theorem states that if there is at least an
assignment to all the uncertain parameters that has a global possibility of 1,
then the preference on the decision variables d obtained considering the uncertain
information, which from now on we will indicate with P»(d), is always smaller
or equal to that obtained simply projecting on the decision variables, which will
be indicated by P (d).

However if all the assignments a for the uncertain parameters have possibility
0 < mz(a) < 1, Pi(d) can be equal or ordered in either way with respect to Pa(d),
as can be seen in the following example.

For simplicity consider a single decision variable X with domain Dx = {1}
and an uncertain parameter Z with domain Dy = {1,2}. Assume first that
the possibility distribution 7z is such that 7z (1) = 7z(2) = 0.3 and that the
constraint C'xz is such that u(X = 1,7 =1) = (X =1,Z = 2) = 0.5. Then
P (X =1)=0.5and P,(X =1) =0.7. Hence we have P (X = 1) < P»(X = 1).
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If instead 7z (1) = mz(2) = 0.7 then we still have that P; (X = 1) = 0.5 but
Py (X =1)=0.5. Hence (X =1)=P(X =1).

Finally if we consider the case in which (X =1,Z =1) = 0.3 and p(X =
1,Z = 2) = 0.4, while (1) = 0.8 and 75(2) = 0.3, then P;(X = 1) = 0.4 but
Py (X =1)=0.3. Hence (X =1)> P(X =1).

In the original semantics in [2] the final preference of an assignment d is given
taking the min of P;(d) but P»(d). However consider assignment d; associated
with (P1(d1) = 0.8, Po(dy) = 0.3) and assignment do associated with (Py(d2) =
0.3, P2(d2) = 0.8). According to the original semantics first of all d; and d» are
equally preferable. This is true even if the meaning of the pair of preferences,
(Py, Py) is different. While for d; there is a value for the uncertain parameters,
that has a weak possibility of occurring, but such that with d; gives a total
preference of 0.8, for ds there is no such value since the global preference of
any solution containing do will be always < Pj(ds) = 0.3. According to the
semantics we will describe in the next sections, we establish preference orderings
that all favor dy over ds, because dq has a slight chance of giving a better overall
preference of 0.8 and a high possibility of falling into a preference value of 0.3,
while ds forces a solution with a preference no better than 0.3' in all cases.

Moreover the information on whether the minimum comes from P; (prefer-
ences) or P» (uncertainty) is lost.

In this paper we propose new semantics that both allow not to lose the
information on where the preferences are coming from and that discriminate
tuples that are ranked equal in the original semantics, as mentioned above.

We will consider fuzzy constraints as represented in the semiring based ap-
proach for soft constraints. In particular we will deal with the Fuzzy semiring:

Sresp = {[0,1], max, min, 0,1}, which will be used when reasoning on P
and P, separately.

6 The new semantics

In order not to lose the information derived from how the preferences are gen-
erated, from other preferences for P; and from uncertain parameters for P, we
propose three new semantics that are defined on pairs of preferences of type
(Pi(d), P>(d)), where d is an assignment to the decision variables.

Our interpretation is as follows. Given an assignment d to the decision vari-
ables:

— Pi(d) is the preference obtained combining (min) all the projections (max)
of constraints involving the decision variables connected with the uncertain
parameters;

— P5(d) is the preference applying the reasoning described above which elim-
inates the uncertain parameters: in particular it represents to what extent
it is impossible to have a whatsoever possible value of the uncertain param-
eters violating the constraint (on X, Y and Z). This means that 1 — Py(d)

! The preference, in general, might even drop below 0.3.
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gives an idea of the risk of hitting a value of Z that is inconsistent with d,
hence P5(d) can be seen as a measure of the robustness of d.

We propose three different semantics that represent three different attitudes.
Consider two pairs (P;(d), P2(d)) = (a1,b1) and (Py(d), P2(d")) = {(aa, ba).

6.1 Risky Semantics

The first semantics we propose can be seen as a Lex ordering on pairs {(a;, b;),
with the first component as the most important feature. Hence

— if a1 > asg then <a1,b1> >R <(12,b2>;

— if ag > ay then (as,b2) >g (a1,b1);

— if a1 = a9 then
o if by > by then (a1, b1) >g (az,bo);
e if by > by then <a2,b2> >R <a1,b1>;
o if bl = b2 then <a1,b1> = <a2,b2>.

Informally, the idea is to give more importance to the preference level that
can be reached (a higher a;) considering less important a high risk of being
inconsistent (a low robustness b;).

6.2 Safe Semantics

This semantics follows the opposite attitude with the respect to the previous one:
it can be seen as a Lex ordering on pairs (a;, b;), with the second component as
most important feature. Hence:

— if by > by then <(11,b1> >g <(12,b2>;

— if by > by then <a2,b2> >g <a1,b1>;

— if by = by then
e if a1 > ao then {a1,b1) >g (a2, bs);
e if as > ay then (a9, bs) >g (a1, b1);
e if a1 = ao then (a1,b1) = (a2, b2).

Informally, the idea is to give more importance to the robustness level that
can be reached (a higher b;) considering less important having a high preference
(a high a;).

6.3 Diplomatic Semantics

Our third semantics aims at giving the same importance to the two aspects of
a solution: preference and robustness. In order to do that, it is obtained via
the Pareto ordering on pairs (a;,b;), where all the components have the same
importance. Hence:

— if a1 < a9 and by < by then <a1,b1> <p <a2,b2>;
— if ag < a1 and by < by then {as,b2) <p (a1,b1);
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— if a1 = a2 and by = by then {a1,b1) = (a9, bs);
— else (a1,b1) < (a9, bs).

In this definition > stands for incomparability. The idea is that a pair is to
be preferred to another only if it wins both on preference and robustness, leaving
incomparable all the pairs that have one component higher and the other lower.
Contrarily to the diplomatic semantics, the other two semantics produce a total
order over the solutions.

Let us now consider an example that explains the differences between our
semantics and the approach of [2]. Suppose we have two complete assignments,
t1 and to, with preference resp. 0.3 and 0.5, and robustness resp. 0.5 and 0.3.
Then the method of [2] would say that they are equally good, since it would
as representative of both these solutions the minimum of their degrees, that
is, 0.3. On the other hand, for our semantics we have the following ordering:
(0.3,0.5) <g (0.5,0.3) according to Risky; (0.3,0.5) >g (0.5,0.3) according to
Safe; (0.3,0.5) < (0.5, 0.3) according to Diplomatic.

7 Future work

We want to understand if, and under which conditions, our approach is gener-
alizable to other classes of soft constraints. We also want to understand if these
semantics can be modeled via a semiring structure, thus allowing to remain
within the framework of soft constraints also for modeling uncertainty.
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