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Abstract Preferences and uncertainty occur in many real-life problems.
The theory of possibility is one way of dealing with uncertainty, which
allows for easy integration with fuzzy preferences. In this paper we con-
sider an existing technique to perform such an integration and, while
following the same basic idea, we propose to generalize it to other classes
of preferences and to probabilistic uncertainty while maintaining certain
desirable properties.

1 Introduction

Preferences and uncertainty occur in many real-life problems. In this paper we
are concerned with the coexistence of such concepts in the same problem. In
particular, we consider uncertainty that comes from lack of data or imprecise
knowledge.

The theory of possibility [6,10] is one non-probabilistic way of dealing with
uncertainty, which allows for easy integration with fuzzy preferences [3]. In fact,
both possibilities and fuzzy preferences are values between 0 and 1 associated
to events and express the level of plausibility that the event will occur, or its
preference.

In our context, we will describe a real-life problem as set of variables with
finite domains and a set of soft constraints among subsets of the variables. A
variable will be said to be uncertain if we cannot decide its value. In this case,
we will associate a possibility degree to each value in its domain, which will tell
how plausible it is that the variable will get that value.

Soft constraints [2] allow to express preferences over the instantiations of the
variables of the constraints. In particular, fuzzy preferences are values between
0 and 1, which are combined using the min operator, and are ordered in such a
way that higher values denote better preferences. Probabilistic preferences are
similar to fuzzy ones, except that they are combined via multiplication: the goal
is to maximize the product of the preferences. Weighted constraints use instead
preferences representing costs which are combined by summing them: the goal
is to minimize the sum of the weights.

In this paper we consider existing techniques to integrate fuzzy preferences
and uncertainty, which use possibility theory [3,9]. In particular, the approach
in [9] allows one to handle uncertainty within a fuzzy optimization engine, and
at the same time to observe separately the preference level and the robustness
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of the complete instantiations. This approach has certain desirable properties,
that we describe formally.

‘We then generalize the approach, and its properties, in order to use it also for
other classes of soft constraints, not necessarily fuzzy, by pointing out a sufficient
condition for the properties to hold. This allows us to handle the coexistence of
preferences and uncertainty in a more general setting. We also consider uncer-
tainty expressed by a probabilistic distribution rather than a possibilistic one,
and we show that in this setting the same properties hold.

2 Soft constraints

Soft constraints [2] are a very general formalism to describe quantitative prefer-
ences. In general, a soft constraint is just pair (def,con), where con is the set
of variables of the constraint (that is, its scope), and def is a function from the
Cartesian product of the domains of the variables in con to a preference set, say
A. Therefore def defines the constraint, by associating a level of preference from
A to each assignment of values to the variables of the constraint.

Set A can be totally or partially ordered, and its ordering, denoted by <, can
be used to order the assignments of values to variables: assignments correspond-
ing to higher preferences are more preferred. Moreover, a combination operation
x should be defined over A, to combine different constraints and generate the
preference level of an assignment of values to variables which range over the
scopes of several constraints. More precisely, A should have properties similar to
a semiring. We will therefore say that a soft constraint is defined over semiring
A. For more details on semiring-based soft constraints, see [2].

A soft constraint problem is usually denoted by a tuple (S,V,C) where S
is a semiring, V is a set of variables, and C is a set of soft constraints over
S whose scopes are subsets of these variables. An optimal solution of a soft
constraint problem is an assignment of its variables which is optimal according
to the ordering associated to the semiring.

This general description of soft constraints instantiates to several classes of
concrete constraints:

— Fuzzy constraints: when A = [0, 1], < is derived by the maz operator, and the
combination operator is min. This means that a fuzzy constraint associates
an element between 0 and 1 to each instantiation of its variables, that values
closer to 1 denote a higher preference, and that the preferences of two or
more constraints are combined by taking their minimum value.

— Hard constraints: they can also be described by this framework, by just
choosing A = {true, false}, < derived by logical or (thus 1 is better than
0), and combination is logical and.

— Weighted constraints: they are soft constraints where each assignment of
values to variables has a weight, and the goal is to minimize the sum of
the weights: this can be cast by choosing A as the set of possible weights,
by deriving the ordering by the min operator, and by using the sum as the
combination operator.
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— Probabilistic constraints: they are soft constraints where each assignment is
associated to a probability, which informally represents the chance for the
assignment to satify the constraint in the real problem. Constraints are then
combined by multiplying the associated probabilities, and mazx is used to
induce the ordering over preferences: the best solutions have the highest
probability.

The concept of fuzzy constraint, as defined above, was originally based on
the notion of fuzzy set [5,7,10]. A fuzzy set A is a subset of a referential set U
whose boundaries are gradual. More formally: the membership function pa of
a fuzzy set A assigns to each element u € U its degree of membership p4(u)
usually taking values in [0, 1]. If 4 (u) = 1, it means that u belongs to A, while
tta(u) = 0 means that u does not belong to A. If p4(u) is between 0 and 1, then
it means that u € A with degree pa(u).

Fuzzy constraints use the notion of fuzzy sets to describe the level of prefer-
ence of a certain assignment of values to variables. More precisely, a soft fuzzy
constraint [3] C on variables {x1,...,z,} is associated with a fuzzy relation
R, i.e. a fuzzy subset of Dy X --- x D,, of values that more or less satisfy C.
A membership function pp is associated with relation R and specifies for each
tuple (di,...,d,) € D1 X --- x D, the level of satisfaction pr(di,...,d,) in a
set L, which is totally ordered (e.g. [0,1]). In particular, pg(di,...,d,) = 1 if
tuple (di,...,d,) totally satisfies C, pugr(dy,...,d,) = 0 if it totally violates C,
and 0 < pg(dy,...,d,) < 1if it partially satisfies C. Moreover, ur(di, . ..,d,) >
ur(dy, ..., d,) means that tuple (di,...,d,) is better than tuple (d,...,d).

In the following we will use two operations on fuzzy constraints [3]: projec-
tion and combination. The projection of a fuzzy constraint, represented by fuzzy
relation R on variables {z1,...,zx} C V(R) = {x1,...,2,}, is a fuzzy rela-
tion RH#1-%k} defined on {z1,..., 2} such that: ppiter,..epy (di, ... di) =
SUPLa—(dy,....dn)|d 1ok =(dy . dp)} ur(d). The conjunctive combination of two
fuzzy constraints, represented by fuzzy relations R; and R;, is a fuzzy relation
R; ® R; defined on variables V(R;) U V(R;) such that: ur,eg,(d1,...,dy) =
min(pg, (di, ..., d)"VE) up (di,...,dg)"V ) where pgr, g, (di, . .., dx) eval-
uates to what extent (di,...,d) satisfies both C; and C;.

3 Possibility theory

A possibility distribution [10] is the membership function of a fuzzy set A attached
to a single-valued variable z. It is denoted 7, = pa and represents the set of
more or less plausible, mutually exclusive values of z. A possibility distribution
is similar to a probability density. However, 7, (u) = 1 only means that x = u
is a plausible situation, which cannot be excluded. Thus, a degree of possibility
can be viewed as an upper bound of a degree of probability.

Possibility theory encodes incomplete knowledge while probability accounts
for random and accurately observed phenomena. In particular, the complete
ignorance about x is expressed by 7, (u) = 1, for all u € U, since in this case
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all values u are plausible for x and so it is impossible to exclude any of them.
Whereas, 7, (@) = 1 for a specific value @ and 7, (u) = 0 otherwise, expresses the
complete knowledge about z, because in this case only the value @ is plausible
for x.

The possibility of an event “z € E” | E C U, denoted by II(x € E), is formally
I (x € E) = supymin(mg(u), pp(u)) = supyepm:(u).

If an event has possibility equal to 1, it means that it is totally possible.
However, it could also not happen. Therefore it means that we are completely
ignorant about its occurrence. On the contrary, having a possibility equal to 0
means that the event will not happen.

The dual measure of necessity of “r € E”, denoted by N(x € E), evaluates
the extent to which “x € E” is certainly true, i.e. to what extent the propo-
sition “z € E” is implied by the item of information “z € A”: N(z € E) =
infumaz(c(my(u)), pe(u) = infugp(c(rs(v)) = 1— I (x € EY), where c is the
order reversing map such that c¢(p) = 1 — p and E¢ is the complement of E in
U.

N(x € E) = 1 when it is certain that x € E. On the contrary, having
necessity equal to 0 means that the event is not necessary at all, although it
may happen. In fact, N(z € E) =0 iff II(x € E¢) = 1.

4 Uncertainty in soft constraints

Whereas in usual soft constraint problems all the variables are assumed to be
controllable, that is, their value can be decided according to the constraints
which relate them to other variables, in many real-world problems uncertain
parameters must be used. Such parameters are associated with variables which
are not under the user’s direct control and thus cannot be assigned. Only Nature
will assign them.

Formally, we can define an uncertain soft constraint problem as a tuple
(S, Ve, Vi, C), where S is a semiring, V. is the set of controllable variables, V,, is
the set of uncontrollable variables, and C' is the set of soft constraints. The soft
constraints in C' may involve any subset of variables of V, U V,,.

While in a classical soft constraint problem we can decide how to assign the
variables to make the assignment optimal, in the presence of uncertain parame-
ters we must assign values to the controllable variables guessing what Nature will
do with the uncontrollable variables. So, in this paper an optimal solution for
an uncertain soft constraint problem is an assignment of values to the variables
in V. such that, whatever Nature will decide for the variables in V,,, the overall
assignment will be optimal. This is a pessimistic view and other definitions of
solutions can be considered [1].

Moreover, the uncontrollable variables can be equipped with additional in-
formation on the likelyhood of their values. Such information can be given in
several ways, depending on the amount and precision of knowledge we have. In
this paper we will consider two ways of expressing such information: possibilities
and probabilities. This information can be used to infer new soft constraints over
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the controllable variables, expressing the compatibility of the controllable parts
of the problem with the uncertain parameters, and can be used to change the
notion of optimal solution.

The next section describes two existing approaches [3,9] for integrating fuzzy
constraints and uncertainty given by possibilities. In both, the original problem
is replaced by another one without uncontrollable variables and with new soft
constraints depending on the possibilistic distributions. In [9] the two sets of
constraints are kept separate, thus allowing for a fine discrimination between
preferences and robustness to uncertainty.

5 Unifying fuzzy preferences and uncertainty via
possibility theory

In [3] it is shown how it is possible to replace a fuzzy constraint involving at
least one uncontrollable variable with a fuzzy constraint over controllable vari-
ables only. Consider a fuzzy constraint C, represented by the fuzzy relation
R, which relates a set of controllable variables X = {x1,...,2,} to a set of
uncertain parameters Z = {z1,..., 2} with domains A;,..., Ax. The knowl-
edge of the uncertain parameters is modeled with the possibility distribution
7wz defined on Ay = A; x --- x Ai. The constraint C is considered satisfied
by the assignment d = (di,...,d,) € Dy x -+ x D, if, whatever the values of
Z, z = (21,...,2k), d is compatible with z, i.e., the set of possible values for
z is included in T = (R ® {(dy1,...,d,)})*?. Therefore pur(a) = pr(a,d) and
' (d) = py(d) = N(dsatisfiesC) = N(z € T) = infaca,max(pr(a), c(rz(a)))
= c(supgea, min(c(ur(a)),mz(a))). If C' is a hard constraint, then the for-
mula above still applies, and becomes the following one: N(d satisfiesC) =
n g T=(RN{d}) Pz c(mz(a)).
The method proposed in [3], which we call Algorithm DFP (by the name of the
authors), for managing uncertainty in a fuzzy CSP, is the following: It starts from
an uncertain fuzzy CSP, say P. P is then reduced to a fuzzy constraint problem
P': all the constraints which link uncertain parameters to decision variables
are replaced by fuzzy constraints only among the decision variables. The new
preference levels of the decision variables in such new constraints are computed
by applying the specific procedure defining p’. P’ has only fuzzy constraints,
therefore it can be solved by applying the usual method for solving fuzzy CSPs,
i.e. using the min operator to combine the constraints and choosing the complete
assignments with the highest preference.

In [3] the following property is given:

Property 1. p/(d) > « iff, when 7z(a) > ¢(«) then pr(d,a) > «, where a
is the actual value of Z.

Moreover, from the definition of ', the following two properties can also be
proven [9].

Property 2. Given the possibilities of uncertain parameters, defined by 7,
an assignment d to the decision variables X, ..., X, and two preference func-
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tions w1 and pe such that wi(d,a) < wa(d,a) for all a assignments to Z, then
iy (d) < ps(d).

Property 3. Given a preference function p, an assignment d to the decision
variables X1, ..., X, and two possibility distributions m; and 75 on Z, such that
m1(a) > ma(a) for all a, then pf(d) < ph(d), where p is the preference function
obtained considering m;, i=1,2.

By using algorithm DFP, the preference of a complete assignment is the
minimum value among all the preferences of the constraints, both the original
fuzzy constraints and those obtained via the transformation which eliminates the
uncontrollable variables. In other words, the overall preference for a solution is
min(F,U), where F is the minimum of the preferences in the initially given fuzzy
constraints only on decision variables, and U is the minimum of the preferences
of the new fuzzy constraints. This means that a low overall preference may be
caused from a low preference in some of the new fuzzy constraints (when U is less
than F'), that is, a low compatibility with the uncertain events, or also from a
low preference on some fuzzy constraint initially given only on decision variables
(when F' is less than U).

In [9] these two components (F' and U) are kept separate, rather than com-
bined with min. This is done by performing, for each constraint ¢ involving both
decision and uncertain variables (X and Z), a projection over the decision vari-
ables. This will create a new constraint ¢’ over X where, for each assignment
of values to its variables, the preference is computed by assuming the best in
the uncertain parameters. Since preferences are combined via the min opera-
tor, this new constraint will force the overall preference to be no higher than
its best preference. Given an assignment to decision variables, we denote with
P the minimum preference over these new projection constraints. Such a value
P, combined with preference F' given by the initial constraints, defines the new
preference Fp.

The algorithm presented in [9], called algorithm SP (from separation and
projection), is the following:

1. It starts from an uncertain fuzzy CSP with fuzzy constraints C'.

2. All the constraints which link uncertain parameters to decision variables are
replaced by fuzzy constraints only among the decision variables. Let us call
(', such new constraints.

3. It computes the projection constraints, say C,,.

4. For each complete assignment, it computes its overall preference as a pair
(Fp,U), where Fp = min(F,P) and F, P, and U are, respectively, the
minimum preference over C, Cp, and C,,.

Let us consider the following example, where we have a complete assignment
dwith FF =0.3, P =0.9, and U = 0.9, and another one d’ with F' = 0.9, P = 0.9,
and U = 0.3. According to algorithm DFP, d is considered equally preferred to
d' since d and d’ have the same preference min(F,U) = 0.3. However, d and d’
differ on both preference and robustness.
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The approach based on algorithm SP preserves such a difference, by defining
various semantics which exploit both elements of the pair (Fp = min(F, P),U)

to deduce a solution ordering.

Dx=Dy={1,2}
D,={3.4}
Dyw=15.6}

W, (x=1, w=5)=0.4
W, (x=1, w=6)=0.3
W, (x=2, w=5)=0.9
M (x=2, w=6)=0.2

W(z=3, x=1, y=1)=0.3
W(z=4, x=1, y=1)=0.5
W(z=3, x=1, y=2)=0.4
Ww(z=4, x=1, y=2)=0.6
W(z=3,x=2, y=1)=0.5
W(z=4, x=2, y=1)=0.4
W(z=3, x=2, y=2)=0.1
W(z=4, x=2, y=2)=0.6

Figurel. An uncertain soft CSP.

(@)

M (x=1, w=5)=0.4
W(x=1, w=6)=0.3
/GD 1 (x=2, w=5)=0.9
u](x:2, w=6)=0.2
Wx=1,y=1)=0.5
W(x=1, y=2)=0.6
H(x=2, y=1)=0.4
W(x=2, y=2)=0.6
W (x=1, y=1)=0.5
H(x=1, y=2)=0.6
B (=2, y=1)=0.5

B (=2, y=2)-0.6

Figure2. Result of algorithm SP applied to the uncertain soft CSP in Figure

1, seen as an uncertain fuzzy CSP.

Figure 1 shows a soft CSP with uncertainty. There are three decision variables
(X,Y, W), one uncertain variable (Z), and two constraints: C'xy z with function
© and Cxw with function p;. The possibility distribution 7z describes the

plausibility of Z.

Figure 2 (a) shows the fuzzy CSP obtained from the soft CSP in Figure 1
seen as an uncertain fuzzy CSP, after applying step 2 and step 2 of algorithm
SP. In Figure 2 (b) there are all the complete assignments to decision variables

(b)
P F U F U

R{x=1, y=1, w=5)=<min(0.5, 0.4), 0.5)>=<0.4, 0.5>
R{x=1, y=1, w=6)=<min(0.5, 0.3), 0.5)>=<0.3, 0.5>
M (x=1, y=2, w=5)=<min(0.6, 0.4), 0.6)>=<0.4, 0.6>
U (x=1, y=2, w=6)=<min(0.6, 0.3), 0.6)>=<0.3, 0.6>
K (x=2, y=1, w=5)=min(0.5, 0.9), 0.4)>=<0.5, 0.4>
M (x=2, y=1, w=6)=<min(0.5, 0.2), 0.4)>=<0.2, 0.4>
U (x=2, y=2, w=5)=<min(0.6, 0.9), 0.6)>=<0.6, 0.6>
M (x=2, y=2, w=6)=<min(0.6, 0.2), 0.6)>=<0.2, 0.6>
Optimal solution:
Risky, Safe, Diplomatic semantics: FU
5= (x=2, y=2, w=5) with [ (s)=<0.6,0.6>

of the fuzzy CSP, with the overall preference .
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Given an assignment d to the decision variables and the pair (Fp,U) com-
puted as described above, Fp tells us how much d is preferred by the constraints,
while U represents to what extent it is impossible to have a possible value of
the uncertain parameters violating the constraints involving them. This means
that 1 — U gives an idea of the risk of hitting a value of uncertain parameter
that is inconsistent with d, hence U can be seen as a measure of the certainty
(or robustness) of d.

U is computed as in [3], so Properties 1, 2 and 3 still hold. We recall that
these properties state that U can increase in the following two cases: when the
possibilities of the uncertain parameters remain fixed and the preferences of the
constraints involving them increase, or when preferences are fixed but possibili-
ties decrease.

Consider two solutions d and d’ and the corresponding pairs of values (Fp(d),
U(d)) = (a1,b1) and (Fp(d'),U(d")) = (az,bs). The first semantics proposed
in [9], called Risky, can be seen as a Lex ordering on pairs (a;, b;), with the first
component as the most important feature. Informally, the idea is to give more
importance to the preference level that can be reached in the best case (a higher
a;) considering less important a high risk of being inconsistent (a low certainty
bi).

The second semantics, called Safe, follows the opposite attitude with the
respect to the previous one: it can be seen as a Lex ordering on pairs (a;, b;),
with the second component as most important feature. Informally, the idea is
to give more importance to the certainty level that can be reached (a higher b;)
considering less important having a high preference (a high a;).

The third semantics, called Diplomatic, aims at giving the same importance
to the two aspects of a solution: preference and certainty. This is obtained via
the Pareto ordering on pairs (a;, b;), where both components have the same
importance. The idea is that a pair is to be preferred to another only if it wins
both on preference and certainty, leaving incomparable all the pairs that have one
component higher and the other lower. Contrarily to the diplomatic semantics,
the other two semantics produce a total order over the solutions.

In the example in Figure 2, solution (x = 2,y = 2,w = 5) is optimal for all
three semantics. In general, the comparison among the orders induced by the
three semantics of [9] and the one in [3] can be seen in Table 1.

Tablel. Comparison between the ordering in [3] and in [9].

=

Risky | Safe ‘ Dipl.
<,>, =|<,>,=|<,>,=, X
<> | <> ] >
<> | <> <

AV
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6 A generalized approach

The methods described in the previous sections can handle only uncertainty
in fuzzy constraints. In the following of the paper we will extend the method
in [9] to other classes of soft constraints and to probabilistic uncertainty. In
particular, we will consider the combinations of fuzzy, probabilistic, and weighted
soft constraints with either possibilistic or probabilistic uncertainty.

To do this, we now redefine SP for generic soft constraints and generic un-
certainty. Then we will define the extensions above as instances of this general
framework.

We recall that in Fuzzy CSPs with uncertainty the preferences of the new
constraints obtained removing the uncertain parameters are computed via the
formula p/(d) = infaoca,max(ur(d,a), c(rz(a))), where ¢ is the order reversing
map such that ¢(p) = 1 — p and 7z is the possibilistic distribution.

Let us consider any semiring S = {4, +, x,0,1}, where <g is the semiring
ordering on A (we denote incomparability with <ig). The formula above can be
generalized to deal with any semiring as follows:

l/(d) = infacay (NR(da a) +c(rz (a)))
where

— + refer to the one of the semiring operations, and inf is one of the bottom
elements of Az, i.e. an element such that Va’ € Az with @’ # a then a’ >g5 a
or a’ g a.

~ 0,1 ¢ 4

— ¢ is an bijection from [0,1] to [0,1] such that, for each a1,as € [0,1], a1 < as
if and only if c(a1) >g c(az); moreover, c(c(a)) = a for all a. We will say
that ¢ is an order-reversing map w.r.t. semiring S

— 7y is a possibilistic or probabilistic distribution.

Notice that, by generalizing the formula, we do not change the set of values
for the possibilities, which remains [0,1]. When working with other classes of
soft constraints rather than fuzzy CSPs, functions pp associates a preference
from set A to an assignment. In particular, ug is the preference function of the
soft constraint R.

The algorithm SP presented in [9], can be generalized as follows:

1. It starts from an uncertain soft CSP (S, V., V., C);

2. All the constraints which link variables in V,, to variables in V. are replaced
by soft constraints defined by ', described above, only among variables in
V.. Let us call C, such new constraints.

3. All the constraints which link variables in V,, to variables in V. are used to
compute their projection over variables in V.. The constraints obtained in
this way are called C),.

4. For each assignment of the variables in V., it computes its overall preference
as the pair (Fp,U), where Fp = F x P and F, P, and U are, respectively,
the preference of the assignment over the constraints in C', C}, and C,,.
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We recall that, given a soft constraint R, defined on variables X and Z its
projection over X is defined by pp(d) = >, 4, #r(d,a). In the following we
show that properties 1,2, 3 hold for generic soft constraints where the set A of
the semiring is totally ordered.

General Property 1: p/(d) >g « if and only if, when 7wz(a) > ¢(«), then
ur(d,a) >s a.

Proof. Let us recall that p'(d) >g « iff, by definition of i/, infoeca, (ur(d,a)+
c(mz(a))) Zs a.

(=) Assume that infoca, (tr(d, a)+c(mz(a))) >s a. Since infoca, (ur(d, a)+
c(rz(a))) <s (pr(d,a)+c(rz(a))) for all a € Az, then (ug(d,a)+c(rz(a))) >s
a for all @ € Az. By hypothesis mz(a) > c(a). Since ¢ is an order-reversing
map such that c(c(p)) = p, we have c(mz(a)) <s . Since A is totally or-
dered, for any two elements of the semiring we have a + b = a or b, then
pr(d, a) = (pr(d, a) + c(mz(a))) Zs .

(<) Assume that, for every a such that 7z (a) > c(a), we have pg(d,a) >g a.
Then, since ¢(nz(a)) <s « and pg(d,a) >s « for such a, then (ugr(d,a) +
c(rz(a))) >s a. For all a such that 7z(a) < c(a), we have ¢(nz(a)) >s «
and so (ugr(d,a) + c¢(rz(a))) >s «. Thus for all a, (ur(d,a) + c(7z(a))) >s5 a.
Therefore, since the inf among the elements of the semiring is one of these
elements infoca, (Lr(d, a) + c(mz(a))) >g a, ie., p'(d) >s a. O

Notice that, if A is partially ordered, this property doesn’t hold. However,
two slightly weaker properties can be proved.

Weak general Property 1 (£): p/(d) £s « if and only if, when 7z (a) >
c(a), then pr(d,a) £s a.

Proof. Let us recall that p'(d) €5 « iff, by definition of 1/, infoca, (ur(d,a)+
c(rz(a))) £s a.

(=) Assume that infoeca, (tr(d, a) + c(rz(a))) £s o, where £ g means that
can be >g or incomparable g, then (ug(d,a) + c(mz(a))) £s a for all a €
Az. In fact, if (ur(d,a) 4+ c(mz(a))) <s « for some a then infoca, (ur(d,a) +
c(rz(a))) <s «, that is a contradiction. By hypothesis wz(a) > ¢(«). Since c¢ is
an order-reversing map such that ¢(c(p)) = p, we have ¢(mz(a)) <s « and so,
since (ur(d,a) +c(nz(a))) £s afor alla € Az, ur(d,a) £s a. In fact, suppose
ur(d,a) <s a. Then (ugr(d,a) + c(rz(a))) <s a+ « for monotonicity of +, and
since, for idempotency of +, a+ a = «, and so (ugr(d,a) + ¢(rz(a))) <s «a, that
is a contradiction since for hypothesis ugr(d,a) €s a.

(<) Assume that, for every a such that 7z (a) > c¢(a), we have pr(d, a) £ a.
Then, since ¢(nz(a)) <s « and pr(d,a) €s « for such a, then (ur(d,a) +
c(rz(a))) £s . In fact, if (ur(d,a) + ¢(mz(a))) <s a, then we have for mono-
tonicity and idempotency of +, ur(d,a) <s (ur(d, a)+c(rz(a))) <s a+a <g a,
that is a contradiction since pg(d, a) £s a. Moreover, for all a such that 7z (a) <
c(a), we have ¢(rz(a)) >s o and so (ur(d,a) + ¢(wz(a))) >s «. Thus for all a,
(ur(d,a) + c(rz(a))) €£s «. Therefore, since every inf among the elements of
the semiring is one of these elements, infq.ca, (ur(d,a) + c(wz(a))) £s a, ie.,
p(d) £s a. O
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Weak general Property 1 (£): p/(d) £s « if and only if, when 7z (a) >
c(a), then pg(d,a) £s a.

Proof. Very similar to the proof above.

Let us recall that p/(d) £s « iff, by definition of p/, infeca, (ur(d,a) +
c(mz(a))) £s a.

(=) Assume that infoea, (pr(d, a) +c(mz(a))) £s o, where £ g means that
can be >g or incomparable <ig, then (ugr(d,a) + c(nz(a))) £s « for all a €
Az. In fact, if (ur(d,a) + c(nz(a))) <s a for some a then infoea, (ur(d,a) +
c(rz(a))) <s «, that is a contradiction. By hypothesis mz(a) > ¢(«). Since ¢ is
an order-reversing map such that ¢(c(p)) = p, we have ¢(mz(a)) <s « and so,
since (ur(d,a)+c(nz(a))) £s o, pr(d,a) £s c. In fact, suppose pr(d, a) <g a.
Then (ur(d,a)+c(rz(a))) <s a+a for monotonicity of +, and for idempotency
of +, a+a =« and so (ur(d,a) +c(rz(a))) <s «, that is a contradiction since
for hypothesis pgr(d,a) £s a.

(<) Assume that, for every a such that 7z (a) > c¢(a), we have pg(d, a) £ a.
Then, since ¢(mz(a)) <s « and pg(d,a) £s « for such a, then (ur(d,a) +
c(mz(a))) £s a. In fact, if (pr(d,a)+ c(nz(a))) <s @, then we have for mono-
tonicity and idempotency of +, ur(d,a) <s (ur(d,a)+c(rz(a))) <s a+a = a,
that is a contradiction since pg(d, a) £s a. Moreover, for all a such that 7z (a) <
c(a), we have ¢(rz(a)) >s « and so (ur(d,a) + ¢(rz(a))) >s a. Thus for all a,
(ur(d,a) + c(nz(a))) £s a. Therefore, since every inf among the elements of
the semiring is one of these elements, infqca, (pr(d,a) + c(wz(a))) £s a, ie.,
p(d) £s a. O

In the following we will show that properties 2,3 hold for problems with
generic soft constraints and uncertainty described by 7z that can be a possi-
bilistic or a probabilistic distribution.

General Property 2: Given 7z and two preference functions p; and po
such that u1(d,a) <g pa(d,a) for all a assignments to Z, then u}(d) <g phH(d),
where p} is the preference function obtained considering p;, i=1,2.

Proof. We recall that p)(d) = infaea.(p1(d,a) + c(rz(a))) and ph(d) =
in fue A (12(ds @) +c(m2(a))). Since i (d, a) <s pa(dsa), (11 (d, a)+e(mz(a))) <s
(n2(d,a) + ¢(rz(a))) by monotonicity of +. Then we have inf.ca, (u1(d,a) +
c(rz(a))) <s infoeca.(p2(d,a)+c(nz(a))),ie. D <g Eifwecall D = infoeca, D,
where D, = (u1(d,a) + ¢(mz(a))) and E = inf,ca,F,, where E, = (u2(d,a) +
c(rz(a))). If we suppose that D >g E, then since E >g D, for some a,
D >g5 E >g D, for some a, that is a contradiction since D <g D,, for all
a since it is the inf. Thus pf(d) <g ph(d). O

General Property 3: Given a preference function p and two distributions
71 and 7y on Z, such that 7 (a) > ma(a) for all a, then uf(d) <g ph(d), where
i is the preference function obtained considering 7;, i=1,2.

Proof. We recall that p} (d) = infaeca, (11(d, a)+c(m(a))), uo(d) = infoca, (1u(d, a)+

c(mz(a))) and that ¢ is an order-reversing map, that is, if 71 (a) > m2(a), then if
c(m(a)) <g ¢(mz(a)). By monotonicity of +, we can conclude that (u(d,a) +
c(m(a))) <s (u(d,a) + c¢(m2(a))). For the same reasoning explained in the
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proof above infueca, (1(d, a) + c(m1(a))) <g infaca,(u(d,a) + c(m2(a))). Thus
y(d) <s py(d). O

Notice that, if A is partially ordered, general property 2 and 3 assume a
slightly weaker form. The only change in the statement is that pf(d) <g p5(d)
is replaced with pf(d) #s 15(d). The proofs of these properties are equal to the
corresponding ones in the total order case, where the only difference is that you
have replaced infoca, (u(d,a) + c(mi(a))) <s infoca,(u(d,a) + c(m2(a))) with
infaea, (1(d, a) + c(mi(a))) #s infaca, (1(d, a) + c(m2(a))).

Since these properties hold in general, then we can safely and effectively han-
dle problems with many kinds of soft constraints as well as uncertain possibilistic
or probabilistic variables.

The generic semantics are defined like those ones in [9], except that < is
replaced by <g.

7 Uncertain Probabilistic CSPs

In several real-life scenarios, fuzzy constraints are not the ideal setting. In fact,
they suffer for the well-known drawning effect which makes solutions with the
same minimum preference but very different higher preferences not distinguished.

To avoid this problem, it can be useful to combine preferences by multiplying
them rather than taking their minimum value. This is what happens in prob-
abilistic CSPs (PCSPs) [8]. In a PCSP, variable assignments have associated
preferences, and the goal is to maximize the product of all such preferences.
Therefore, the semiring to be used is S = {[0, 1], max, x,0,1}.

To make sure that the desired properties 1, 2, and 3 hold in this setting, we
just need to check whether the assumptions we made are met: [0,1] € A and ¢
is an bijection from [0,1] to [0,1] such that, for each a1,a2 € [0, 1], a1 < a2 if and
only if ¢(a1) >g c¢(az); moreover, ¢(c(a)) = a for all a.

The first assumption is trivially true since A = [0, 1]. As for the second one,
we consider ¢(xz) = 1 — x for all z, which satisfies the order-reversing property.
In fact, given aq1,a2 € [0,1], with a1 < as we have 1 — a; >g 1 — a9, since
maz(l —a, 1 —a2) =1—as.

In this setting, we have

p (d) = mingea,maz(ur(d,a),1 — 7z(a)).

Figure 3 shows the result of applying SP to the problem in Figure 1, seen
as an uncertain PCSP. In this case, the algorithm is instantiated with xg = X,
+s = maz, and ¢(p) = 1—p. In particular, Figure 3 (a) shows the resulting prob-

abilistic CSP obtained by the algorithm, while Figure 3 (b) shows all complete
assignments, together with the associated pair.

8 Uncertain Weighted CSPs

In several situations where neither fuzzy nor probabilistic constraints are ideal,
weighted constraints can be useful to model preferences. For example, this is
usually done when dealing with costs which are naturally combined by a sum.
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a
_( ) L b)
W (x=1, w=5)=0.4 P F U F U
1 (x=1, w=6)=0.3 | M.(x=1, y=1, w=5)=<(0.5 x 0.4), 0.50)>=<0.20, 0.50>
(=1,
1(x=2, w=5)=0.9 | M.(x=1,y=1, w=6)=<(0.5 x 0.3), 0.50)>=<0.15, 0.50>
(x=2,
L(x=2, w=6)=0.2 | M.(x=1, y=2, w=5)=<(0.6 x 0.4), 0.60)>=<0.24, 0.60>
|
1 (x=1, y=2, w=6)=<(0.6 x 0.3), 0.60)>=<0.18, 0.60>
WL y=D=05 | | (x=2, y=1, w=5)=<(0.5 x 0.9), 0.40)>=<0.45, 0.40>

K ,("il’ yiz)i“ (x=2, y=1, w=6)=<(0.5 x 0.2), 0.40)>=<0.10, 0.40>
HOE2,y=D=04 1) (imn) y=0, w=5)=<(0.6 x 0.9), 0.60)>=<0.54, 0.60>
W(x=2, y=2)=0.6

I (x=2, y=2, w=6)=<(0.6 x 0.2), 0.60)>=<0.12, 0.60>

W(x=1, y=1)=0.5 Optimal solution:

_ Ay Risky, Safe, Diplomatic semantics F U
H (=1, y=2)=0.6 5= (x=2, y=2, W=5) with LL(s)=<0.54, 0.60>
K (x=2, y=1)=0.5
W (x=2, y=2)=0.6

Figure3. Result of algorithm SP for the uncertain soft CSP in Figure 1, seen
as an uncertain PCSP.

In this setting, preferences are penalties (or costs) to be added, and the best
solutions are those with the smallest preference. Thus operators + and min are
the instantiation of the operators x and + of the general case. Therefore, the
semiring to be used is S = {R*, min, +, +00,0}.

The three desired property hold if we choose ¢ as the identity map. In fact,
[0,1] € RT. Moreover, ¢ is an order-reversing map w.r.t semiring S. In fact,
given a1, as € [0, 1] such that a; < az, we have a1 >g as since min(az, az) = a;.

The instantiated formula for p is then

p'(d) = mazaca.min(ur(d, a), 7z (a))).

Figure 4 shows how algorithm SP works on weighted CSP with possibilitic
uncertainty, as the one in Figure 1 (where preferences are interpreted as costs).
Figure 3 (a) shows the resulting weighted CSP, while Figure 3 (b) shows all com-
plete assignments, together with the associated pair. In this problem the optimal
solution obtained using the Risky semantics is different from the one obtained
using the Safe semantics, whereas Diplomatic considers them both optimal.

9 Probabilistic or possibilistic uncertainty

In the previous sections we have considered different classes of soft constraints
with uncertainty described via a possibilitic or a probabilistic distribution. Here
we consider the case where a possibilistic distribution is available only for some
uncertain variables, while for others we have a probabilistic distribution.

If there are no constraints connecting both possibilistic and probabilistic
variables, then we can apply the same algorithm as above, and the three proper-
ties hold. However, consider the situation where a constraint involves uncertain
variables over which a possibility distribution is available, and also uncertain
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(a) (b)
W (x=1, w=5)=0.4 P F U F, U
U (x=1, w=6)=0.3 L (x=1, y=1, w=5)=<(0.3+ 0.4), 0.5)>=<0.7, 0.5>
1 ’ -

=2, wes)=09 | MOTL Y=L we6)=(0.3+03),05>=<06,0.5>
I (x=2, w=6)=0.2 W (x=1, y=2, w=5)=<(0.4+ 0.4), 0.6)>=<0.8, 0.6>
U (x=1, y=2, w=6)=<(0.4+0.3), 0.6)>=<0.7, 0.6>
Wil y=1)=0.5 | M2 y=1, w=5)=<(0.4+ 0.9), 0.4)>=<13,0.4>
p'(le ,y=2)=0.6 l.l‘(x=2, y=1, w=6)=<(0.4+ 0.2), 0.4)>=<0.6, 0.4>
p,'(xzz’ y=1)=0.4 W (x=2, y=2, w=5)=<(0.1+ 0.9), 0.6)>=<1.0, 0.6>
W(x=2, y=2)=0.6 | M (x=2,y=2, w=6)=<(0.1+0.2), 0.6)>=<0.3, 0.6>

Optimal solutions:

F U
Risky semantics '
=1, y=1)=0.3 s (x=2, y=2, w=6) with M (5)=<0.3,0.6>
}.LI,(X:l, y=2)=0.4 Safe semantics
Hy(x=2, y=1)=0.4 5= (x=2, y=1, w=6) with W (s)=<0.6,0.4>
HP(X:Z y=2)=0.1 Diplomatic semantics S5, S,

Figure4. Result of algorithm SP for the uncertain soft CSP in Figure 1, seen
as an uncertain weighted CSP.

variables over which we have a probabilistic distribution. In this case, we could
get to the usual setting by replacing possibilities with probabilities, or vice versa.
In [4] it is presented a way to do this. Thus we could use such a method to obtain
only one kind of distribution and then use our approach.

However, transforming a probability into a possibility distribution we loose
information, and solutions have a lower robustness. In fact, using property 3, it
is possible to see that, if we use possibilities, which are higher than probabilities,
we get a smaller robustness value. Thus we can say that the robustness value
obtained in this way is a lower bound to the certainty that the values of the
decision variables are compatible with the uncertain variables. On the other
hand, if we transform possibilities into probabilities, we get smaller values, and
thus by property 3 a higher robustness value, which can be seen as an upper
bound to the certainty degree of a solution.

Thus, in the presence of constraints involving both possibilistic and proba-
bilistic uncertainty, we can still use the same approach except that we work with
upper and lower bounds for the robustness of the solutions.

To be able to use the same three semantics defined above, we need to define
an ordering over intervals, since now the robustness is described by an interval. A
possible ordering defines two intervals incomparable if one is strictly contained
in the other one, and both lower and upper bounds are different. For exam-
ple, (0.2,0.5) is incomparable with (0.1,0.6) but it is not incomparable with
(0.1,0.4), nor with (0.2,0.6). In all other cases, the two intervals are ordered.
More precisely, (I1,u1) is better than (lo, us) if they are different and I; > Il and
Uy Z ug.

Notice that this ordering is partial over the robustness values, while before we
had a total order. This yields more incomparability in the ordering over solutions
induced by each of the semantics. Thus also the Risky and Safe semantics will
induce partial orders.
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10 Future work

We plan to develop a solver that can handle problems with several classes of soft
constraints, together with uncertainty expressed via possibility or probability
distributions. The solver will be able to generate orderings according the three
semantics proposed in this paper as well as others that we will define by following
different optimistic or pessimistic approaches.
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