
Gomory cuts in a hybrid constraint

programming approach

Andrea Lodi1,2, Maria Silvia Pini3, Francesca Rossi3

1 DEIS, University of Bologna, viale Risorgimento 2 - 40136 Bologna - Italy
2 IBM T.J. Watson Research, P.O. Box 218, Yorktown Heights, NY 10598 - USA

alodi@us.ibm.com
3 Department of Pure and Applied Mathematics, University of Padova, Italy.

{frossi,mpini}@math.unipd.it.

Abstract. Recently, many successful hybrid approaches which use both
constraint programming (CP) and operations research (OR) techniques
to solve a problem have been proposed. They usually use OR techniques,
like cutting planes, which are specific to the problem. In this paper we
investigate the use of generic cutting planes (more specifically, Gomory
cuts) in a typical CP-OR hybrid approach. This allows us to have a
general algorithm to be applied to all problem classes. We will show that
our approach is indeed promising: on the class of partial latin square
completion problems, the performance of our algorithm is comparable to
that of a pure CP algorithmand better in several cases. In particular we
will show that the hybrid approach solves many problem instances that
the CP approach is not able to solve in a reasonable amount of time.

1 Introduction

Constraint Programming (CP) [5] and Operations Research (OR) [13] techniques
are both suitable for solving combinatorial search problems. However, they have
complementary advantages and drawbacks. On one hand, CP offers more so-
phisticated modelling tools like global constraints [15], and effective search tree
pruning techniques like constraint propagation [5]. On the other hand, OR pro-
vides better tools for reasoning about optimality via the possibility of considering
relaxed problems, and other pruning facilities like the cutting planes within a
branch and cut strategy.

To overcome the limitations and maintain the advantages of both kinds of
techniques, recently many hybrid approaches have been proposed [7–10, 12] for
solving combinatorial optimization problems. Some of them are based on inter-
leaving a CP depth-first search algorithm with problem relaxation and cutting
planes. More precisely, at each step in a depth-first search, the current problem
is relaxed and solved optimally via the cutting planes. The optimal solution of
the relaxed problem is then used to go back to the CP side with useful infor-
mation for the strategy to choose the next step (that is, the next variable-value
selection).

101

Some existing methods which employ this approach use cutting planes which
are specific to the classes of problems considered. For example, in [8] Travel-
ling Salesmen Problems are relaxed via cutting planes which achieve subtour
elimination.

In this paper, we investigate the use of generic cuts in a hybrid setting. The
reason for doing this is that the resulting algorithm would be general and thus
applicable to all classes of problems. In particular, we consider Gomory cuts to
investigate their convenience in the hybrid approach. It was folklore knowledge
that Gomory cuts were not useful. In [2] it is shown that the way they have been
always applied was wrong. Our goal is to see whether they can be useful in a
hybrid CP-OR environment.

To achieve our goal, we develop an experimental setting where we consider the
completion of the partial latin square problems and we compare the performance
of a hybrid CP-OR algorithm with Gomory cuts, a hybrid CP-OR algorithm
without Gomory cuts, and a pure CP algorithm. We perform several types of
experiments by varying both the parameters of the problems and the features of
the hybrid algorithm.

We will show that the hybrid CP-OR algorithm we propose in this paper,
which uses Gomory cuts in the OR part, is always better than the hybrid ap-
proach without Gomory cuts and for several problem instances outperforms the
pure CP approach. Moreover, it provides the high-level modelling facilities typi-
cal of CP, like global constraints. Such modelling and performance considerations
thus make this hybrid approach more attractive than the pure CP approach.

More precisely, while there is no algorithm which is uniformly better on all
problem instances, our hybrid algorithm with Gomory cuts looks convenient for
critically constrained problems (where it is better than CP in several instances)
or for problems whose constrainedness cannot be known in advance. This algo-
rithm thus combines the modelling capabilities of CP (with compactness given
by global constraints), together with the convenient branch and cut strategies,
typical of OR approaches. Moreover, it does not need to use domain-specific
cuts.

We therefore claim that it can be feasible and convenient to use suitable
generic cutting planes, like Gomory cuts, within a CP-OR hybrid approach. It
remains to be checked whether other generic classes of cutting planes can be
useful in a hybrid CP-OR approach, and whether the same behavior holds also
for other classes of problems.

The article is organized as follows: Section 2 gives the main concepts of CP,
OR, and hybrid CP-OR approaches, Section 3 introduces the algorithms we will
consider in this paper, Section 4 defines the experimental setting, Section 5 gives
the experimental results and discusses them, and Section 6 presents some related
works. Finally, Section 7 concludes the paper by summarizing its main results.

102

2 Background

In this section we will introduce the basic notions about Constraint Programming
and Operations Research that will be used in our algorithms.

2.1 Constraint programming

In our context, a constraint is a relation among some variables with a finite
domain. A constraint problem is just a set of variables, plus a set of constraints
over subsets of them.

Constraint programming [5] is a body of techniques to solve constraint prob-
lems. For the purpose of this paper, we only consider CP techniques based on
depth-first search and constraint propagation.

Depth-first search orders the variables and instantiates them one at a time
in its domain, in a way that is compatible with the constraints and the already
instantiated variables. If a variable cannot be assigned any value, backtracking
occurs and the algorithm tries to instantiate the previous variable with another
value. When all variables are instantiated, we have a solution of the given prob-
lem. If not all variables are instantiated and no more backtracking is possible,
the problem has no solution.

Constraint propagation propagates information from one constraint to an-
other one. Each propagation step considers a small part of the constraint problem
(most of the times just one constraint), and eliminates from the variable domains
of such part some domain elements, which are recognized to be incompatible to
the considered constraints. Then, the new domains (possibly smaller) are used
when considering adjacent constraints. This is repeated until quiescence. For
example, arc-consistency [5] considers one constraint at a time, and eliminates
from the domains of its variables those values which do not have any support in
the domains of the other variables according to this constraint. The new prob-
lem obtained at the end of this process is equivalent to the original one (that is,
it has the same set of solutions) but with possibly smaller domains. Achieving
arc-consistency requires time O(ed2) where e is the number of constraints and d
is the size of the domains. In general, performing constraint propagation where
each step considers a subpart with at most k variables requires O(nk) time.

Since depth-first search in the worst case has to perform as many tries for each
variable as the cardinality of its domain, the smaller the domains the better it
is for such search technique. Thus all depth-first search constraint programming
algorithms use constraint propagation after every variable instantiation. This
usually allows for much pruning within the search tree. The overall complexity
of the search algorithm remains exponential in the size of the problem, but
the average complexity can be improved significantly by the use of constraint
propagation.

Global constraints [3, 15] are non-binary constraints which occur very often in
real-life problems. For this reason, they have been equipped with a compact way
to express them and specialized constraint propagation techniques which exploit
the semantics of the global constraint and have a higher pruning power with

103

respect to arc-consistency. A typical example is alldifferent(X1,...,Xn)

which states that variables X1,..., Xn must have different values. If this constraint
were modelled by a set of n(n− 1)/2 inequalities of the form Xi 6= Xj , and arc-
consistency would be applied, no domain pruning would be achieved, except
in the very special case in which some domain has just one element. On the
contrary, by modelling it as a global constraint, and applying its specialized
propagation algorithm, we can perform a global reasoning on all the n variables,
for example by comparing the cardinality of the domains to n, and thus achieve
more pruning.

Constraint problems can contain both global constraints and other kinds of
constraints. During search, arc-consistency (or another generic constraint prop-
agation algorithm) will be applied to all the constraints, except to global con-
straints for which their specialized propagation algorithm will be used.

2.2 Cutting planes and relaxed problems in OR

An Integer Linear Programming (ILP) problem is a set of linear equalities and
inequalities where variables must have integer values, plus a linear objective
function, to be minimized.

The usual solving technique for ILP problems is called branch and bound
[13]. As in CP, this technique involves visiting the nodes of a search tree. At
each node, the branch strategy is decided on the basis of an optimal solution of
a relaxed version of the current problem. More precisely, the current problem is
relaxed by eliminating the requirement that variables have to be integer, such
relaxed problem is solved optimally, and the solution found is used to decide the
next search step. Since the relaxed problem does not contain all constraints of
the original problem, the value of its optimal solutions is a lower bound of the
value of any optimal solution of the original problem.

Usually a non-integer variable is chosen in the optimal solution of the relaxed
problem, and it is made integer by imposing additional constraints. For example,
if the optimal solution of the relaxed problem contains X = 4.3, we add X ≤ 4
and X ≥ 5 to the original problem and then we follow one of these two paths
according to heuristics. When we find a solution, we continue visiting the search
tree but first we add the constraint that the objective function has to be better
than the value of the current solution.

Cutting planes [13] are linear inequalities of the form αx ≤ α0 which eliminate
some non-optimal solutions. They are added to a relaxed version of the problem
after an optimal solution is found. Thus they remove the optimal solution of
the relaxed problem while not eliminating any optimal solution of the original
problem. The optimal solution of the relaxed problem is used to compute the
cutting planes. Adding the cutting planes allows us to obtain a new relaxed
problem which is closer to the original problem and thus whose optimal solutions
have values which are closer to the value of the optimal solutions of the original
problem. Cutting planes can be iteratively added until the improvement of the
lower bound given by the optimal solution of the relaxed problem is not cost-
effective. At this point, a branching step is performed.

104

Gomory cuts are a class of cutting planes which can be computed by taking
into consideration the values of the variables in a solution and their offset with
respect to an integer. Gomory cuts are generic in the sense that they are appli-
cable to all integer linear programming problems. Other cutting planes, which
are specific to the considered problems, can be used as well. For some classes of
these cuts, there exist polynomial algorithms to find them.

2.3 Hybrid CP-OR approaches

Many hybrid approaches which try to combine the techniques which are typical
of CP with those of OR have been proposed in the literature [7–10, 12]. For the
purpose of this paper, we consider one which relates CP and ILP and can be
described as follows:

1. The problem is modelled using CP tools. This allows to take advantage
of the more sophisticated CP modelling environment. For example, global
constraints can be used to easily model many real-time scenarios.

2. Constraint propagation is performed to reduce the variable domains. If we
have a solution (that is, one value for each variable), we stop and return the
solution.

3. The current problem is transformed into an ILP problem. Of course this
can be done only if the CP problem does not contain constraints which
cannot be modelled by an ILP. Many global constraints can be modelled
within an ILP [14], and also many other classes of constraints. However, a
CP problem could also contain, for example, quadratic constraints, which
cannot be modelled in an ILP.

4. Given the current ILP, the integer constraint is relaxed, and the relaxed
problem is solved with OR techniques, possibly using also cutting planes,
that can be specific for the considered problem, to tighten the relaxation.

5. The optimal solution of the relaxed problem is used to decide the next vari-
able to be instantiated in the CP side, and the value to which it has to be
instantiated. The instantiation is then performed.

6. Go back to step 2.

Summarizing, this algorithm can also be seen as a CP search algorithm where
the next variable-value instantiation is decided using information coming from
an ILP environment.

3 Gomory cuts in a hybrid approach: our algorithms

In this section we will describe the algorithms for solving constraint optimization
problems which we will consider in the following of the paper. In particular, we
will use a pure CP algorithm, a pure ILP algorithm with and without Gomory
cuts, and a hybrid CP-OR algorithm with and without Gomory cuts.

The pure CP algorithm we consider in this paper is a classical depth-first
search algorithm with backtracking, which applies constraint propagation at

105

each search step. At each node of the search tree, arc-consistency is performed
and then an uninstantiated variable among those with the smallest domain is
chosen and instantiated to its smallest value. In the following, this algorithm
will be called CP.

The pure OR algorithm we use is a branch-and-cut algorithm where cutting
planes are used to improve the solution of the relaxed problem. In the following,
this algorithm will be called ILP if it does not use Gomory cuts, and ILP-Gomory

if it uses them.
The hybrid algorithm with Gomory cuts follows the scheme described in

Section 2.3, where arc-consistency is used to propagate constraints. The ILP
version of the CP problem is obtained via the methodology in [14] (for the class
of considered problems this step is always possible), it is solved via the primal
(for the tree root) or dual (for the other nodes) Simplex algorithm, and Gomory
cuts are applied to refine its relaxed optimal solution. The next branch step is
perfomed by considering the variable whose decimal part is closer to 0.5, and
by instantiating it to the closer integer. In the following, this algorithm will be
called H-Gomory. The hybrid algorithm without Gomory cuts is like the one just
explained above, except that it doesn’t apply Gomory cuts. In the following, this
algorithm will be called H.

4 Experimental setting

To compare the behavior of the above described algorithms, we have considered
a specific class of problems: partial Latin Square completion [9]. These problems
are easy to model but occur in a wide variety of real-life scenarios, from conflict-
free wavelength routing in wide-area network, to statistical design, to error-
correcting codes.

A Latin Square (LS) of order n is an n×n matrix such that each cell contains
exactly one of the integers from 1 to n, and each of such integers appears at most
once in any row and any column. A partial Latin Square (PLS) of order n is an
LS of order n where some cells can be empty. A PLS can be completed if it is
possible to fill the empty cells with integers so to obtain a LS.

A PLS completion problem is the problem of starting from a PLS and ob-
taining, if possible, one of its completions. The problem of deciding if a PLS can
be completed is NP-complete [4].

In this section we briefly describe the problem encodings we considered.
In the CP framework, a PLS completion problem is modelled as a constraint

satisfiability problem (CSP). More precisely, a PLS is modelled by using n2

variables xij , corresponding to all the cells cij of the matrix n× n. If a variable
corresponds to an empty cell, its domain is {1, . . . , n}, otherwise it is a singleton
domain containing only one integer (the integer chosen for that cell). Moreover,
we have an alldifferent constraint involving the variables in each row and
each column. That is:

xij ∈ {1, . . . , n} ∀i, j ∈ {1, . . . , n}

106

xij = k ∀i, j such that cij = k
alldifferent(xi1, xi2, . . . , xin) ∀i = 1, . . . , n
alldifferent(x1j , x2j , . . . , xnj) ∀j = 1, . . . , n

In the OR framework, the PLS completion is modelled as an Integer Linear
Programming (ILP) problem, with an objective function to be maximized. The
ILP model contains n3 variables xijk , each corresponding to a cell cij with value
k. A variable xijk has domain {0, 1} if cij is empty. If cij has value k, then
xijk = 1. The constraints model the row and column restrictions, and make
sure that each cell has at most one value. Finally, the objective function, to be
maximized, computes the number of variables which have a value different from
0, which is equal to the number of filled cells. That is:

max
∑n

i=1

∑n

j=1

∑n

k=1
xijk

subject to

∑n

i=1
xijk ≤ 1 ∀j, k∑n

j=1
xijk ≤ 1 ∀i, k

∑n

k=1
xijk ≤ 1 ∀i, j

xijk ∈ {0, 1} ∀i, j, k
i, j, k = 1, 2, ..., n

If in the optimal solution the number of filled cells is equal to n2, then the PLS
can be completed, i.e., a feasible solution exists.

In the algorithm CP we have used the CSP formulation to model the com-
pletion PLS, whereas in the hybrid algorithms, at each search step the current
CSP problem is transformed into an ILP problem by following the same lines as
in [14].

To test our algorithms over PLS completion problems, we have developed a
generator of such problems, which is based on the following parameters: n, the
size of the matrix, and k, the number of filled cells. Starting from this parameters,
we generate a matrix n × n and then we choose randomly the cells to fill, and
the value (over {1,. . . ,n}) to put in each of such cells. Moreover, we make sure
that such partially filled matrix satisfies the definition of a PLS.

5 Experimental results

We have implemented all our algorithms using the ILOG libraries [11]. In partic-
ular, we used Solver 5.6 for algorithm CP and for solving the CSP formulation in
algorithms H and H-Gomory, and we used CPLEX 8.1 for solving the continuous
relaxation of the ILP formulation in the hybrid approaches H and H-Gomory. To
test the influence of Gomory cuts in a pure OR environment, we have also used
CPLEX with two different settings, one requiring the separation of Gomory cuts
(in algorithm ILP-Gomory) and one forbidding Gomory cuts (in algorithm ILP).

All the experiments have been performed on an AMD Athlon 1250 MHz.

107

n k ILP ILP-Gomory

10 2 0.69 2.00
10 5 0.63 3.50
10 7 0.52 4.60

15 3 11.41 73.71
15 7 11.32 95.33
15 11 11.00 96.60

Table 1. Time in seconds to find an optimal solution of PLS completion problems
using ILP and ILP-Gomory. All PLS problems generated are solvable with objective
function at the maximum value, i.e., n

2 − k. This means that all the cells have been
filled. Times are averaged over 10 PLS completion problems.

Table 1 shows the CPU time needed to find an optimal solution for ILP and
ILP-Gomory, for some values of n and k. All experimental results are obtained
by running the algorithms on 10 instances of PLS completion problems, and by
taking the average of the times.

It is easy to see that forcing the separation of Gomory cuts (in ILP-Gomory)
is not convenient for PLS, at least in the standard setting of CPLEX. In fact, for
any n and any k in Table 1, as well as in many other experimental results non
provided here, the performance of ILP is always better than that of ILP-Gomory.

60 62 64 66 68 70 72 74 76
0

50

100

150

200

250

K

T
im

e
 [
s
e
c
]

 N=13 NumRuns=10

CP time
H−Gomory time
H time

Fig. 1. Computing times (averaged over 10 PLSs) of CP, H-Gomory and H to find a
solution for a PLS completion problem, or to discover that there is no completion.

108

Figure 1 compares the behavior of algorithms CP, H-Gomory and H, over PLS
completion problems with n = 13 and k which varies in a way such that PLS in
input has between nearly 35% and 40% of filled cells, that is the critical phase for
algorithm CP. In fact, when we have a PLS with less than 35% or more than 45%
filled cells, CP finds a solution very quickly, whereas in this region it sometimes
takes a very long time. Notice that all the PLS problems represented in Figure
1 are completable, i.e., they always produce a success in the search tree.

Algorithm CP is usually much more convenient than any of the two hybrid
algorithms (H and H-Gomory) for many values of k. However, CP has also very
high peaks, which cannot be found in H-Gomory.

If we compare H and H-Gomory, H-Gomory is always more convenient than
algorithm H which does not use Gomory cuts, since in some cases H needs much
more memory than the available one and so it is not able to find a solution even
if the PLS is completable. Therefore H-Gomory is always better than H, which
means that applying Gomory cuts in the hybrid CP-OR approach is always
useful.

We can conclude that CP is almost always better, but that by using CP we
may run the risk of incurring in a very high peak. Thus we may use CP for
underconstrained PLS’s (filled up to 30-35%) and overconstrained ones (filled for
more than 40-45% of the cells). In the middle region, it is safer to use H-Gomory,
which shows a better behavior offering also a higher-level modelling capabilities,
and a tollerable slow-down with respect to CP while avoiding its high peaks.

Table 2 compares algorithms CP, H and H-Gomory over PLS’s with various
values of n, while Figure 1 considered only n = 13.

It is easy to note again that algorithm H-Gomory is always better than algo-
rithm H. This allows us to claim that applying Gomory cuts in a hybrid CP-OR
approach is better than not applying them. With respect to algorithm CP, the
behavior is rather clear: either CP is able to solve the problem very fast or it is
unable to solve it in a reasonable amount of time (20 minutes of CPU time in the
table), while algorithm H-Gomory is a very reliable approach which consistently
gives quite quick solutions, thus denoting a very robust behavior.

Similar conclusions has been drawn in [9], where a pure CP algorithm and
a hybrid CP-OR algorithm have been compared over PLS problems. However,
their hybrid algorithm did not explore the use of cuts in general nor of Gomory
cuts in particular.

Thus, the use of general purpose cuts like Gomory cuts in hybrid CP-OR
approaches (which was totally disregarded until now in the literature) seems
promising. Indeed, such cuts can be separated rather quickly from current com-
mercial and non-commercial ILP solvers which are also able to manage them in
an efficient way avoiding numerical issues that are sometimes related to their
use. Their effect in our context is twofold: first they improve each continuous
relaxation by allowing a better selection of the branching variable (and value),
second they act as a primal heuristic procedure to obtain feasible solutions for
optimization problems.

109

CP H H-Gomory

choice choice Gomory
n k fails time fails points time fails points time runs

13 69 8.4e+06 328.54 0 7 9.45 0 2 3.60 10

14 68 1.7e+06 68.78 0 42 75.15 0 1 4.79 10

14 80 > 2.8e+07 >20m 0 24 33.55 0 6 15.12 10

15 46 1.4e+07 574.84 ≥ 0 > 488 >10m 0 11 90.04 10

15 72 >3.0e+07 >20m 0 > 384 > 10m 0 7.4 27.79 10

15 75 >3.1e+07 >20m 0 70 155.02 0 0.1 1.972 10

15 76 >3.1e+07 >20m 0 73 163.85 0 47.9 144.78 10

15 77 >3.1e+07 >20m 0 69.3 157.70 0 13 49.01 10

15 85 >3.0e+07 >20m 0 43.8 86.37 0 9.2 34.75 10

15 89 >2.9e+07 >20m 0 50 90.43 0 5 15.78 10

16 82 > 2.9e+07 >20m 0 99 274.18 13 24 130.04 10

16 95 1.9e+07 863.44 ≥ 0 > 467 >10m 0 4.5 39.81 10

16 102 > 2.9e+07 >20m ≥ 0 >516 >10m 0 35 115.79 10

16 109 >8.1e+07 > 1h 0 42 71.25 0 3 12.24 10

16 110 >2.7e+07 >20m 0 4.8 78.57 0 4.8 15.87 10

16 113 >2.6e+07 >20m > 263 >323 > 312(mem) 0 19 54.42 10

16 114 >2.5e+07 >20m 0 46 90.5 0 14 38.35 10

16 115 >2.5e+07 >20m > 50 >260 > 264(mem) 0 0 0.5 10

16 116 >2.6e+07 >20m >1 >50 > 90.85(mem) 0 63.35 10

14 70 246.8 0.013 0 23 42.70 0 6 16.72 10

15 40 2.4 0.06 ≥0 > 36 > 185 (mem) 0 18 156.25 10

15 55 30.8 0.009 ≥ 0 >35 > 115.5 (mem) 0 8 48.95 10

15 70 3.4 0.03 0 72 312.34 0 20 72.93 10

16 70 106.6 0.07 ≥0 >27 >135.5 (mem) 0 15 120.05 10

16 75 86655 3.56 0 50 203.35 0 21 132.34 10

16 85 65 0.07 >0 > 25 > 81 (mem) 0 2 15.57 10
Table 2. Comparison among algorithms CP, H and H-Gomory. ”Mem” means memory
limit exceeded.

6 Related Work

The work which is closest to ours is the one presented in [9], where different
methods to find a solution of PLS completion problems are proposed and exper-
imentally tested. However, their hybrid approach does not focus on forcing the
use of cutting planes to integrate the CP and the OR appraoches. Moreover, the
heuristics to choose the variables and their values are different from ours, and
are probabilistically based on an LP rounding. As in our paper, also in [9] the
conclusion is that none of the methods uniformly dominates the others.

In [6] they tackle the same class of problems but they just use a pure CP
approach to solve them. Experimental results show that their CP approach can
solve some PLS completion problems of order 45 in the phase transition (with
60% of preassigned cells), which [9], as well as our approach, can’t solve with

110

hybrid approach. However, they use specific constraints which are tailored to the
class of considered problems, while we employ generic Gomory cuts.

Another related work integrating constraint programming and integer pro-
gramming is [1], where two algorithms to integrate CP and IP are compared to a
pure CP algorithm and a pure IP one. While one of their two hybrid algorithms
is similar to ours, they use generic cuts, whereas we use Gomory cuts. Moreover,
we consider Latin Square Problems whereas they consider Mutually Orthogo-
nal Latin Squares problem, which are tuples of Latin Squares where all pairs of
corresponding elements in two of the problems are different. Their experiments
show that integrating CP and IP is convenient as the problem size grows.

7 Conclusions

In this paper we considered the class of Partial Latin Square completion problems
and we have studied the behavior of three complete search algorithms on several
instances of such problems. One algorithm follows a pure CP search strategy,
another one is a hybrid CP-ILP algorithm with no Gomory cuts, and a third
one is a hybrid CP-ILP algorithm with Gomory cuts.

Other hybrid CP-OR approaches have been proposed in the past, and several
works have considered Partial Latin Square Problems. However, in this paper
we studied in particular the influence of Gomory cuts in the OR part of the
algorithm.

Gomory cuts are not useful in our pure ILP approach. However, they are
convenient in our hybrid CP-ILP algorithm. In fact, by comparing the algorithm
CP, H, and H-Gomory, our experimental results show that:

– H-Gomory is always better than H;
– H-Gomory is better than CP in several instances in the critically constrained

area, that is, when the problems have from 10% to 40% of the constraints
(filled cells for PLS problems);

– H-Gomory is comparable to CP in the over-constrained region.

Thus, while there is no algorithm which is uniformly better on all problem
instances, the hybrid algorithm with Gomory cuts looks convenient in terms of
solving time especially for critically constrained problems (where it is better than
CP) or for problems whose constrainedness cannot be known in advance. This
algorithm thus combines the modelling capabilities of CP (with compactness
given by global constraints) and its constraint propagation techniques, together
with the convenient branch and cut strategies, typical of OR approaches.

Acknowledgments

We would like to thank Michela Milano and Alessio Guerri for many useful
suggestions and comments on this work.

111

References

1. G. Appa, I. Mourtos and D. Magos. Integrating constraint and integer program-
ming for the orthogonal latin squares problem. CP 2002, 17–32, 2002.

2. E. Balas, S. Ceria, G. Cornuejols and N.Natraj. Gomory cuts revisited. Operations

Research Letters, 19(1):1-9, 1995.
3. N. Beldiceanu and E. Contejean. Introducing Global Constraints in CHIP. Math.

Comput. Model ling, 20(12), 1994.
4. C. J. Colbourn. The complexity of completing partial latin squares. Dicrete Applied

Mathematics, 8:25-30, 1984.
5. R. Dechter. Constraint processing. Morgan Kauffmann, 2003.
6. I. Dotú, A. del Val and M. Cebrián. Redundant Modeling for the Quasigroup

Completion Problem. CP 2003, 288–302, 2003.
7. F. Focacci, A. Lodi and M. Milano. Cost-based domain filtering. Proc. CP 99,

189–203. Springer Verlag, LNCS 1713, 1999.
8. F. Focacci, A. Lodi and M. Milano. Cutting Planes in Constraint Programming:

an hybrid approach. Proc. CP 2000, 187–201. Springer Verlag, LNCS 1894, 2000.
9. C. Gomes and D. Shmoys. Completing Quasigroups or Latin Square: A structured

Graph Coloring Problem. Proc. Computational Symposium on Graph Coloring and

Generalizations, 2002.
10. J. Hooker. Constraint Programming and Integer Programming. Tutorial at CP

2002. URL: http://ba.gsia.cmu.edu/jnh/cornell.ppt.
11. ILOG Solver 5.3 User’s Manual, ILOG Hybrid Cooperating Optimizers 1.3.1 User’s

Guide and Reference, CPLEX 8.1 User’s Manual, 2002.
12. M. Milano. Integration of OR and AI constraint-based techniques

for combinatorial optimization. Tutorial at IJCAI 2001, Seattle. URL:
http://www-lia.deis.unibo.it/Staff/MichelaMilano/

tutorial1IJCAI2001.pdf.
13. C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and

Complexity, Prentice-Hall, 1982.
14. P. Refalo. Linear Formulation of Constraint Programming Models and Hybrid So

lver. Proc. CP 2000, 369–383. Springer Verlag, LNCS 1894, 2000.
15. J.C. Regin. A filtering algorithm for constraints of difference in CSPs. Proc. AAAI-

94, 362–367, 1994.

112

