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Abstract

Preferences and uncertainty occur in many real-life
problems. The theory of possibility is one way
of dealing with uncertainty, which allows for easy
integration with fuzzy preferences. In this paper
we consider an existing technique to perform such
an integration and, while following the same basic
idea, we propose to generalize it to other classes of
preferences and to probabilistic uncertainty while
maintaining certain desirable properties.

1 Introduction

Preferences and uncertainty occur in many real-life problems.
In this paper we are concerned with the coexistence of such
concepts in the same problem. In particular, we consider un-
certainty coming from lack of data or imprecise knowledge.
The theory of possibility [Dubois and Prade, 1988; Zadeh,
1978] is one non-probabilistic way of dealing with uncer-
tainty, which allows for easy integration with fuzzy prefer-
ences [Dubois et al., 1996]. In fact, both possibilities and
fuzzy preferences are values between 0 and 1 associated to
events and express the level of plausibility that the event will
occur, or its preference.
In our context, we will describe a real-life problem as set
of variables with finite domains and a set of soft constraints
among subsets of the variables. A variable will be said to
be uncertain if we cannot decide its value. In this case, we
will associate a possibility degree to each value in its domain,
which will tell how plausible it is that the variable will get
that value.
Soft constraints [Bistarelli et al., 1997] allow to express
preferences over the instantiations of the variables of the con-
straints. In particular, fuzzy preferences are values between 0
and 1, which are combined using the min operator, and are
ordered in such a way that higher values denote better pref-
erences. Probabilistic preferences are similar to fuzzy ones,
except that they are combined via multiplication: the goal is
to maximize the product of the preferences. Weighted con-
straints use instead preferences representing costs which are
combined by summing them: the goal is to minimize the sum
of the weights.
In this paper we consider existing techniques to integrate
fuzzy preferences and uncertainty, which use possibility the-

ory [Dubois et al., 1996; Pini et al., 2005]. In particular, the
approach in [Pini et al., 2005] allows one to handle uncer-
tainty within a fuzzy optimization engine, and at the same
time to observe separately the preference level and the robust-
ness of the complete instantiations. This approach has certain
desirable properties, that we describe formally.

We then generalize the approach, and its properties, in or-
der to use it also for other classes of soft constraints, not nec-
essarily fuzzy, by pointing out a sufficient condition for the
properties to hold. This allows us to handle the coexistence
of preferences and uncertainty in a more general setting. We
also consider uncertainty expressed by a probabilistic distri-
bution rather than a possibilistic one, and we show that in this
setting the same properties hold.

2 Soft constraints

Soft constraints [Bistarelli et al., 1997] are a very general for-
malism to describe quantitative preferences. In general, a soft
constraint is just pair 〈def, con〉, where con is the set of vari-
ables of the constraint (that is, its scope), and def is a func-
tion from the Cartesian product of the domains of the vari-
ables in con to a preference set, sayA. Therefore def defines
the constraint, by associating a level of preference from A to
each assignment of values to the variables of the constraint.

Set A can be totally or partially ordered, and its ordering,
denoted by ≤, can be used to order the assignments of val-
ues to variables: assignments corresponding to higher prefer-
ences are more preferred. Moreover, a combination operation
× should be defined over A, to combine different constraints
and generate the preference level of an assignment of val-
ues to variables which range over the scopes of several con-
straints. More precisely, A should have properties similar to
a semiring. We will therefore say that a soft constraint is de-
fined over semiring A. For more details on semiring-based
soft constraints, see [Bistarelli et al., 1997].

A soft constraint problem is usually denoted by a tuple
〈S, V, C〉 where S is a semiring, V is a set of variables, and
C is a set of soft constraints over S whose scopes are subsets
of these variables. An optimal solution of a soft constraint
problem is an assignment of its variables which is optimal
according to the ordering associated to the semiring.

This general description of soft constraints instantiates to
several classes of concrete constraints.



In fuzzy constraints, when A = [0, 1], ≤ is derived by
the max operator, and the combination operator is min. This
means that a fuzzy constraint associates an element between 0
and 1 to each instantiation of its variables, that values closer
to 1 denote a higher preference, and that the preferences of
two or more constraints are combined by taking their mini-
mum value.

In hard constraints A = {true, false}, ≤ is derived by
logical or (thus 1 is better than 0), and combination is logical
and.

In weighted constraints, that are soft constraints where
each assignment of values to variables has a weight, and the
goal is to minimize the sum of the weights, by choosingA as
the set of possible weights, ≤ is derived by the min operator,
and the combination is given by the sum.

In Probabilistic constraints, that are soft constraints where
each assignment is associated to a probability, constraints
are combined by multiplying the associated probabilities, and
max is used to induce the ordering over preferences: the best
solutions have the highest probability.

The concept of fuzzy constraint, as defined above, was
originally based on the notion of fuzzy set [Dubois and Prade,
1988; Zadeh, 1978]. A fuzzy set A is a subset of a referen-
tial set U whose boundaries are gradual. More formally: the
membership function µA of a fuzzy set A assigns to each el-
ement u ∈ U its degree of membership µA(u) usually taking
values in [0, 1]. If µA(u) = 1, then u belongs to A, while if
µA(u) = 0, then u does not belong toA. If µA(u) is between
0 and 1, then u ∈ A with degree µA(u).
Fuzzy constraints use the notion of fuzzy sets to de-
scribe the level of preference of a certain assignment of val-
ues to variables. More precisely, a soft fuzzy constraint
[Dubois et al., 1996] C on variables {x1, . . . , xn} is as-
sociated with a fuzzy relation R, i.e. a fuzzy subset of
D1 × · · · × Dn of values that more or less satisfy C. A
membership function µR is associated with relation R and
specifies for each tuple (d1, . . . , dn) ∈ D1 × · · · × Dn the
level of satisfaction µR(d1, . . . , dn) in a set L, which is to-
tally ordered (e.g. [0,1]). In particular, µR(d1, . . . , dn) = 1
if tuple (d1, . . . , dn) totally satisfies C, µR(d1, . . . , dn) =
0 if it totally violates C, and 0 < µR(d1, . . . , dn) <
1 if it partially satisfies C. Moreover, µR(d1, . . . , dn) >
µR(d′1, . . . , d

′
n) means that tuple (d1, . . . , dn) is better than

tuple (d′
1, . . . , d

′
n).

In the following we will use two operations on fuzzy
constraints [Dubois et al., 1996]: projection and combi-
nation. The projection of a fuzzy constraint, represented
by fuzzy relation R on variables {x1, . . . , xk} ⊆ V (R)
= {x1, . . . , xn}, is a fuzzy relation R↓{x1,...,xk} defined
on {x1, . . . , xk} such that: µR↓{x1,...,xk}(d1, . . . , dk) =
sup{d=(d1,...,dn)|d↓{x1,...,xk}=(d1,...,dk)} µR(d). The

conjunctive combination of two fuzzy constraints,
represented by fuzzy relations Ri and Rj , is
a fuzzy relation Ri ⊗ Rj defined on variables
V (Ri) ∪ V (Rj) such that: µRi⊗Rj

(d1, . . . , dk) =

min(µRi
(d1, . . . , dk)↓V (Ri), µRj

(d1, . . . , dk)↓V (Rj)) where
µRi⊗Rj

(d1, . . . , dk) evaluates to what extent (d1, . . . , dk)
satisfies both Ci and Cj .

3 Possibility theory

A possibility distribution [Zadeh, 1978] is the membership
function of a fuzzy set A attached to a single-valued variable
x. It is denoted πx = µA and represents the set of more or
less plausible, mutually exclusive values of x. A possibil-
ity distribution is similar to a probability density. However,
πx(u) = 1 only means that x = u is a plausible situation,
which cannot be excluded. Thus, a degree of possibility can
be viewed as an upper bound of a degree of probability.

Possibility theory encodes incomplete knowledge. In par-
ticular, the complete ignorance about x is expressed by
πx(u) = 1, for all u ∈ U , since in this case all values u are
plausible for x and so it is impossible to exclude any of them.
Whereas, πx(ū) = 1 for a specific value ū and πx(u) = 0
otherwise, expresses the complete knowledge about x, be-
cause only the value ū is plausible for x.

The possibility of an event “x ∈ E”, E ⊆ U ,
denoted by Π(x ∈ E), is formally Π(x ∈ E) =
supumin(πx(u), µE(u)) = supu∈Eπx(u). If an event has
possibility equal to 1, then it is totally possible. However, it
could also not happen. Therefore we are completely ignorant
about its occurrence. On the contrary, having a possibility
equal to 0 then the event will not happen.

The dual measure of necessity of “x ∈ E”, denoted
by N (x ∈ E), evaluates the extent to which “x ∈
E” is certainly true, it is formally N(x ∈ E) =
infumax(c(πx(u)), µE(u)) = infu/∈E(c(πx(u))) = 1 −
Π(x ∈ EC), where c is the order reversing map such that
c(p) = 1 − p and EC is the complement of E in U . N(x ∈
E) = 1 when it is certain that x ∈ E. On the contrary,
having necessity equal to 0 then the event is not necessary
at all, although it may happen. In fact, N(x ∈ E) = 0 iff
Π(x ∈ EC) = 1.

4 Uncertainty in soft constraints

Whereas in usual soft constraint problems all the variables
are assumed to be controllable, that is, their value can be de-
cided according to the constraints which relate them to other
variables, in many real-world problems uncertain parameters
must be used. Such parameters are associated with variables
which are not under the user’s direct control and thus cannot
be assigned. Only Nature will assign them.

Formally, we can define an uncertain soft constraint prob-
lem as a tuple 〈S, Vc, Vu, C〉, where S is a semiring, Vc is the
set of controllable variables, Vu is the set of uncontrollable
variables, and C is the set of soft constraints. The soft con-
straints in C may involve any subset of variables of Vc ∪ Vu.

While in a classical soft constraint problem we can decide
how to assign the variables to make the assignment optimal,
in the presence of uncertain parameters we must assign val-
ues to the controllable variables guessing what Nature will
do with the uncontrollable variables. So, in this paper an op-
timal solution for an uncertain soft constraint problem is an
assignment of values to the variables in Vc such that, what-
ever Nature will decide for the variables in Vu, the overall
assignment will be optimal. This means we can make the as-
sumption that the values of the uncontrollable variables are



never observable. This is a pessimistic view and other defini-
tions of solutions can be considered.

Moreover, the uncontrollable variables can be equipped
with additional information on the likelyhood of their values.
In this paper we will consider two ways of expressing such
information: possibilities and probabilities. This information
can be used to infer new soft constraints over the control-
lable variables, expressing the compatibility of the control-
lable parts of the problem with the uncertain parameters, and
can be used to change the notion of optimal solution.

The next section describes two existing approaches
[Dubois et al., 1996] and [Pini et al., 2005] for integrating
fuzzy constraints and uncertainty given by possibilities. In
both, the original problem is replaced by another one with-
out uncontrollable variables and with new soft constraints de-
pending on the possibilistic distributions. In [Pini et al., 2005]

the two sets of constraints are kept separate, thus allowing for
a fine discrimination between preferences and robustness to
uncertainty.

5 Unifying fuzzy preferences and uncertainty

via possibility theory

In [Dubois et al., 1996] it is shown how it is possible to
replace a fuzzy constraint involving at least one uncontrol-
lable variable with a fuzzy constraint over controllable vari-
ables only. Consider a fuzzy constraint C, represented by
the fuzzy relation R, which relates a set of controllable
variables X = {x1, . . . , xn} to a set of uncertain param-
eters Z = {z1, . . . , zk} with domains A1, . . . , Ak. The
knowledge of the uncertain parameters is modeled with the
possibility distribution πZ defined on AZ = A1 × · · · ×
Ak. The constraint C is considered satisfied by the as-
signment d = (d1, . . . , dn) ∈ D1 × · · · × Dn if, what-
ever the values of Z , z = (z1, . . . , zk), d is compatible
with z, i.e., the set of possible values for z is included
in T = (R ⊗ {(d1, . . . , dn)})↓Z . Therefore µT (a) =
µR(a, d) and µ′(d) = µ′

R(d) = N(d satisfies C) =
N(z ∈ T ) = infa∈AZ

max(µT (a), c(πZ (a))) =
c(supa∈AZ

min(c(µT (a)), πZ(a))).
The method proposed in [Dubois et al., 1996], which we
call Algorithm DFP (by the name of the authors), for manag-
ing uncertainty in a fuzzy CSP, is the following: It starts from
an uncertain fuzzy CSP, say P . P is then reduced to a fuzzy
constraint problem P ′: all the constraints which link uncer-
tain parameters to decision variables are replaced by fuzzy
constraints only among the decision variables. The new pref-
erence levels of the decision variables in such new constraints
are computed by applying the specific procedure defining µ′.
P ′ has only fuzzy constraints, therefore it can be solved by
applying the usual method for solving fuzzy CSPs, i.e. using
the min operator to combine the constraints and choosing the
complete assignments with the highest preference.

In [Dubois et al., 1996] the following property is given:

Property 1. µ′(d) ≥ α iff, when πZ(a) > c(α) then
µR(d, a) ≥ α, where a is the actual value of Z .

Moreover, from the definition of µ′, the following two
properties can also be proven [Pini et al., 2005].

Property 2. Given the possibilities of uncertain param-
eters, defined by πZ , an assignment d to the decision vari-
ables X1, . . . , Xk, and two preference functions µ1 and µ2

such that µ1(d, a) ≤ µ2(d, a) for all a assignments to Z , then
µ′

1(d) ≤ µ′
2(d).

Property 3. Given a preference function µ, an assignment
d to the decision variables X1, . . . , Xk, and two possibility
distributions π1 and π2 on Z , such that π1(a) ≥ π2(a) for all
a, then µ′

1(d) ≤ µ′
2(d), where µ′

i is the preference function
obtained considering πi, i=1,2.
By using algorithm DFP, the preference of a complete as-
signment is the minimum value among all the preferences of
the constraints, both the original fuzzy constraints and those
obtained via the transformation which eliminates the uncon-
trollable variables. In other words, the overall preference for
a solution ismin(F, U), where F is the minimum of the pref-
erences in the initially given fuzzy constraints only on deci-
sion variables, and U is the minimum of the preferences of
the new fuzzy constraints. This means that a low overall pref-
erence may be caused from a low preference in some of the
new fuzzy constraints (when U is less than F ), that is, a low
compatibility with the uncertain events, or also from a low
preference on some fuzzy constraint initially given only on
decision variables (when F is less than U ).
In [Pini et al., 2005] these two components (F and U ) are
kept separate, rather than combined with min. This is done
by performing, for each constraint c involving both decision
and uncertain variables (X and Z), a projection over the de-
cision variables. This will create a new constraint c′′ over
X where, for each assignment of values to its variables, the
preference is computed by assuming the best in the uncertain
parameters. Since preferences are combined via the min op-
erator, this new constraint will force the overall preference to
be no higher than its best preference. Given an assignment
to decision variables, we denote with P the minimum prefer-
ence over these new projection constraints. Such a value P ,
combined with preference F given by the initial constraints,
defines the new preference FP .
The algorithm presented in [Pini et al., 2005], called algo-

rithm SP (from separation and projection), is the following.
It starts from an uncertain fuzzy CSP with fuzzy constraints
C. All the constraints which link uncertain parameters to de-
cision variables are then replaced by fuzzy constraints only
among the decision variables. Let us call Cu such new con-
straints. Hence it computes the projection constraints, sayCp.
At last for each complete assignment, it computes its overall
preference as a pair 〈FP , U〉, where FP = min(F, P ) and
F , P , and U are, respectively, the minimum preference over
C, Cp, and Cu.
Let us consider the following example, where we have a
complete assignment d with F = 0.3, P = 0.9, and U = 0.9,
and another one d′ with F = 0.9, P = 0.9, andU = 0.3. Ac-
cording to algorithmDFP, d is considered equally preferred to
d′ since d and d′ have the same preferencemin(F, U) = 0.3.
However, d and d′ differ on both preference and robustness.
The approach based on algorithm SP preserves such a dif-
ference, by defining various semantics which exploit both el-
ements of the pair 〈FP , U〉 to deduce a solution ordering.
Figure 1 shows a soft CSP with uncertainty. There are three
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Figure 1: An uncertain soft CSP.
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Risky, Safe, Diplomatic semantics:

Figure 2: Result of algorithm SP applied to the uncertain soft
CSP in Figure 1, seen as an uncertain fuzzy CSP.

decision variables (X, Y, W ), one uncertain variable (Z), and
two constraints: CXY Z with function µ and CXW with func-
tion µ1. The possibility πZ describes the plausibility of Z .
Figure 2 (a) shows the fuzzy CSP obtained from the soft
CSP in Figure 1 seen as an uncertain fuzzy CSP, after apply-
ing step 2 and step 2 of algorithm SP. In Figure 2 (b) there
are all the complete assignments to decision variables of the
fuzzy CSP, with the overall preference µt.

Given an assignment d to the decision variables and the
pair 〈FP , U〉 computed as described above, FP tells us how
much d is preferred by the constraints, while U to what extent
it is impossible to have a possible value of the uncertain pa-
rameters violating the constraints involving them. This means
that 1 − U gives an idea of the risk of hitting a value of un-
certain parameter that is inconsistent with d, hence U can be
seen as a measure of the certainty (or robustness) of d.

U is computed as in [Dubois et al., 1996], so Properties 1,
2 and 3 still hold. We recall that these properties state that
U can increase in the following two cases: when the possi-
bilities of the uncertain parameters remain fixed and the pref-
erences of the constraints involving them increase, or when
preferences are fixed but possibilities decrease.

Consider two solutions d and d′ and the corre-
sponding pairs of values 〈FP (d), U(d)〉 = 〈a1, b1〉 and
〈FP (d′), U(d′)〉 = 〈a2, b2〉. The first semantics proposed in
[Pini et al., 2005], called Risky, can be seen as a Lex ordering
on pairs 〈ai, bi〉, with the first component as the most impor-
tant feature. Informally, the idea is to give more importance

to the preference level that can be reached in the best case
(a higher ai) considering less important a high risk of being
inconsistent (a low certainty bi).
The second semantics, called Safe, follows the opposite at-
titude with the respect to the previous one: it can be seen
as a Lex ordering on pairs 〈ai, bi〉, with the second compo-
nent as most important feature. Informally, the idea is to give
more importance to the certainty level that can be reached (a
higher bi) considering less important having a high preference
(a high ai).
The third semantics, called Diplomatic, aims at giving the
same importance to the two aspects of a solution: preference
and certainty. This is obtained via the Pareto ordering on pairs
〈ai, bi〉, where both components have the same importance.
The idea is that a pair is to be preferred to another only if it
wins both on preference and certainty, leaving incomparable
all the pairs that have one component higher and the other
lower. Contrarily to the diplomatic semantics, the other two
semantics produce a total order over the solutions.
In the example in Figure 2, solution (x = 2, y = 2, w = 5)
is optimal for all three semantics.

6 A generalized approach

The methods described in the previous sections can handle
only uncertainty in fuzzy constraints. In the following of the
paper we will extend the method in [Pini et al., 2005] to other
classes of soft constraints and to probabilistic uncertainty. In
particular, we will consider the combinations of fuzzy, proba-
bilistic, and weighted soft constraints with either possibilistic
or probabilistic uncertainty.
To do this, we now redefine SP for generic soft constraints
and generic uncertainty. Then we will define the extensions
above as instances of this general framework.
We recall that in Fuzzy CSPs with uncertainty the pref-
erences of the new constraints obtained removing the un-
certain parameters are computed via the formula µ′(d) =
infa∈AZ

max(µR(d, a), c(πZ (a))), where c is the order re-
versing map such that c(p) = 1−p and πZ is the possibilistic
distribution.
Let us consider any semiring S = {A, +,×, 0, 1}, where

≤S is the semiring ordering on A. The formula above can be
generalized to deal with any semiring as follows:

µ′(d) = Πa∈AZ
(µR(d, a) + c(πZ(a)))

where

• + and × (Π for three or more arguments) refer to the
two semiring operations,

• [0, 1] ⊆ A;

• c is an bijection from [0,1] to [0,1] such that, for each
a1, a2 ∈ [0, 1], a1 ≤ a2 if and only if c(a1) ≥S c(a2);
moreover, c(c(a)) = a for all a. We will say that c is an
order-reversing map w.r.t. semiring S;

• πZ is a possibilistic or probabilistic distribution.

Notice that, by generalizing the formula, we do not change
the set of values for the possibilities, which remains [0, 1].
When working with other classes of soft constraints rather
than fuzzy CSPs, functions µR associates a preference from



set A to an assignment. In particular, µR is the preference
function of the soft constraint R.
The algorithm SP presented in [Pini et al., 2005], can be
generalized as follows:

1. It starts from an uncertain soft CSP 〈S, Vc, Vu, C〉;

2. All the constraints which link variables in Vu to vari-
ables in Vc are replaced by soft constraints defined by
µ′, described above, only among variables in Vc. Let us
call Cu such new constraints.

3. All the constraints which link variables in Vu to variables
in Vc are used to compute their projection over variables
in Vc. The constraints obtained in this way are called
Cp.

4. For each assignment of the variables in Vc, it computes
its overall preference as the pair 〈FP , U〉, where FP =
F ×P and F , P , and U are, respectively, the preference
of the assignment over the constraints in C, Cp, and Cu.

We recall that, given a soft constraint R, defined on vari-
ables X and Z its projection over X is defined by µP (d) =∑

a∈AZ
µR(d, a). In the following we show that properties

1, 2, 3 hold for generic soft constraints where the set A of the
semiring is totally ordered.

General Property 1: µ′(d) ≥S α if and only if, when
πZ(a) > c(α), then µR(d, a) ≥S α.
Notice that this property continues to hold also if πZ is
a probability distribution. However, since probabilities are
smaller than or equal to possibilities, and since the property
contains πZ(a) > c(α), the fact that the property holds with
a possibility distribution.

In the following we will show that properties 2, 3 hold for
problems with generic soft constraints and uncertainty de-
scribed by πZ that can be a possibilistic or a probabilistic
distribution.

General Property 2: Given πZ and two preference func-
tions µ1 and µ2 such that µ1(d, a) ≤S µ2(d, a) for all a as-
signments to Z , then µ′

1(d) ≤S µ′
2(d), where µ′

i is the pref-
erence function obtained considering µi, i=1,2.

General Property 3: Given a preference function µ and
two distributions π1 and π2 on Z , such that π1(a) ≥ π2(a)
for all a, then µ′

1(d) ≤S µ′
2(d), where µ′

i is the preference
function obtained considering πi, i=1,2.

Since these properties hold in general, then we can safely
handle problems with many kinds of soft constraints as well
as uncertain possibilistic or probabilistic variables.

The generic semantics are defined like those ones in [Pini
et al., 2005], except that ≤ is replaced by ≤S .

7 Uncertain Probabilistic CSPs

In several real-life scenarios, fuzzy constraints are not the
ideal setting. In fact, they suffer for the well-known drawning
effect which makes solutions with the same minimum prefer-
ence but very different higher preferences not distinguished.
To avoid this problem, it can be useful to combine prefer-
ences by multiplying them rather than taking their minimum
value. This is what happens in probabilistic CSPs (PCSPs)
[Fargier et al., 1995]. In a PCSP, variable assignments have

associated preferences, and the goal is to maximize the prod-
uct of all such preferences. Therefore, the semiring to be used
is S = {[0, 1], max,×, 0, 1}.
To make sure that the desired properties 1, 2, and 3 hold in
this setting, we just need to check whether the assumptions
we made are met: [0, 1] ⊆ A and c is an bijection from [0,1]
to [0,1] such that, for each a1, a2 ∈ [0, 1], a1 ≤ a2 if and only
if c(a1) ≥S c(a2); moreover, c(c(a)) = a for all a.

The first assumption is trivially true since A = [0, 1]. As
for the second one, we consider c(x) = 1−x for all x, which
satisfies the order-reversing property. In fact, given a1, a2 ∈
[0, 1], with a1 ≤ a2 we have 1−a1 ≥S 1−a2, sincemax(1−
a1, 1 − a2) = 1 − a1.

In this setting, we have

µ′(d) = Πa∈AZ
max(µR(d, a), 1 − πZ(a)).

Figure 3 shows the result of applying SP to the problem
in Figure 1, seen as an uncertain PCSP. In this case, the al-
gorithm is instantiated with ×S = ×, +S = max, and
c(p) = 1 − p. In particular, Figure 3 (a) shows the result-
ing probabilistic CSP obtained by the algorithm, while Fig-
ure 3 (b) shows all complete assignments, together with the
associated pair.
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Figure 3: Result of algorithm SP for the uncertain soft CSP
in Figure 1, seen as an uncertain PCSP.

8 Uncertain Weighted CSPs

In several situations where neither fuzzy nor probabilistic
constraints are ideal, weighted constraints can be useful to
model preferences. For example, this is usually done when
dealing with costs which are naturally combined by a sum.

In this setting, preferences are penalties (or costs) to be
added, and the best solutions are those with the smallest pref-
erence. Thus operators + andmin are the instantiation of the
operators × and + of the general case. Therefore, the semir-
ing to be used is S = {R+, min, +, +∞, 0}.
The three desired property hold if we choose c as the iden-
tity map. In fact, [0, 1] ⊆ R+. Moreover, c is an order-
reversing map w.r.t semiring S. In fact, given a1, a2 ∈ [0, 1]
such that a1 ≤ a2, a1 ≥S a2 sincemin(a1, a2) = a1.



The instantiated formula for µ′ is then

µ′(d) =
∑

a∈Az

min(µR(d, a), πZ(a))).

Figure 4 shows how algorithm SP works on weighted CSP
with possibilitic uncertainty, as the one in Figure 1 (where
preferences are interpreted as costs). Figure 3 (a) shows the
resulting weighted CSP, while Figure 3 (b) shows all com-
plete assignments, together with the associated pair. In this
problem the optimal solution obtained using the Risky seman-
tics is different from the one obtained using the Safe seman-
tics, whereas Diplomatic considers them both optimal.
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Figure 4: Result of algorithm SP for the uncertain soft CSP
in Figure 1, seen as an uncertain weighted CSP.

9 Probabilistic or possibilistic uncertainty

In the previous sections we have considered different classes
of soft constraints with uncertainty described via a possibilitic
or a probabilistic distribution. Here we consider the case
where a possibilistic distribution is available only for some
uncertain variables, while for others we have a probabilistic
distribution.
If there are no constraints connecting both possibilistic and
probabilistic variables, then we can apply the same algorithm
as above, and the three properties hold. However, consider the
situation where a constraint involves uncertain variables over
which a possibility distribution is available, and also uncer-
tain variables over which we have a probabilistic distribution.
In this case, we could get to the usual setting by replacing
possibilities with probabilities, or vice versa. In [Dubois and
Prade., 1998] it is presented a way to do this. Thus we could
use such a method to obtain only one kind of distribution and
then use our approach.
However, transforming a probability into a possibility dis-
tribution we loose information, and solutions have a lower
robustness. In fact, using property 3, it is possible to see that,
if we use possibilities, which are higher than probabilities,
we get a smaller robustness value. Thus the robustness value
obtained in this way is a lower bound to the certainty that
the values of the decision variables are compatible with the
uncertain variables. On the other hand, if we transform possi-
bilities into probabilities, we get smaller values, and thus by

property 3 a higher robustness value, which can be seen as an
upper bound to the certainty degree of a solution.
Thus, in the presence of constraints involving both possi-
bilistic and probabilistic uncertainty, we can still use the same
approach except that we work with upper and lower bounds
for the robustness of the solutions.
To be able to use the same three semantics defined above,
we need to define an ordering over intervals, since now the
robustness is described by an interval. A possible ordering
defines two intervals incomparable if one is strictly contained
in the other one, and both lower and upper bounds are differ-
ent. For example, 〈0.2, 0.5〉 is incomparable with 〈0.1, 0.6〉
but it is not incomparable with 〈0.1, 0.4〉, nor with 〈0.2, 0.6〉.
In all other cases, the two intervals are ordered. More pre-
cisely, 〈l1, u1〉 is better than 〈l2, u2〉 if they are different and
l1 ≥ l2 and u1 ≥ u2.
Notice that this ordering is partial over the robustness val-
ues, while before we had a total order. This yields more in-
comparability in the ordering over solutions induced by each
of the semantics. Thus also the Risky and Safe semantics will
induce partial orders.

10 Future work

We plan to develop a solver that can handle problems with
several classes of soft constraints, together with uncertainty
expressed via possibility or probability distributions. The
solver will be able to generate orderings according the three
semantics proposed in this paper as well as others that we
will define by following different optimistic or pessimistic
approaches.
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