
Proceedings of the Seventh International Workshop on
Preferences and Soft Constraints

(Soft-2005)

Held in conjunction with the 11th International Conference
on Principles and Practice of Constraint Programming (CP-2005)

October 1, 2005
Melia Sitges Hotel, Sitges, Spain

Organized by

Simon de Givry and Weixiong Zhang (Co-chairs)

Pedro Barahona, Stefano Bistarelli,
Martin Cooper, Rina Dechter,

Carmel Domshlak, Philippe Jegou,
Jerome Lang, Jimmy H. M. Lee,
Felip Manya, Bertrand Neveu,
Gilles Pesant, Francesca Rossi,

Hana Rudova, Martin Sachenbacher,
Marti Sanchez, Nic Wilson

and Hantao Zhang

Preface

The Seventh International Workshop on Preferences and Soft Constraints
(Soft 2005) continues the series of workshops on soft constraints that were
held in conjunction with the previous CP conferences. The aim of this work-
shop is to provide a forum where researchers in this area can exchange ideas,
discuss new developments and explore possible future directions.

As in 2004, Soft 2005 extends its scope to include formalisms and tech-
niques for dealing with preferences. Preferences are ubiquitous in real life;
most problems are over-constrained and would not be solved if we insist all
their requirements to be strictly met. Instead, many practical problems can
be naturally described via preferences rather than hard statements. The idea
of using soft constraints provides an effective way to extend the conventional
framework of constraints to support the concept of preferences. In parallel
to the framework of soft constraints, other frameworks for expressing pref-
erences have been proposed and developed in recent years in AI and other
related fields. These diverse frameworks have different features and have led
to many results. For example, both qualitative and quantitative preference
frameworks have been studied and used to model and solve real-life problems.

Each of the twelve papers in the following pages was reviewed by at least
two reviewers. These papers reflected upon the diversity of the active topics
that have been actively pursued. Some of the papers dealt with algorithmic
aspects of the existing soft constraint frameworks, in particular by taking
into account the structures of constraint graphs or the semantics of con-
straints, and some of the papers proposed new frameworks for dealing with
constraints, preferences, and uncertainties. Moreover, concrete applications
and solvers were also considered by some authors. We believe that these
papers provide a good coverage of the current research directions that have
been actively pursued and the status of the research activities related to rea-
soning under various soft constraints and preferences. We hope that these
papers can promote future research on soft constraints and preferences.

Positive and negative preferences

Stefano Bistarelli1,2, Maria Silvia Pini3, Francesca Rossi3, and K. Brent
Venable3

1 University “G’ D’Annunzio”, Pescara, Italy
bista@sci.unich.it

2 Istituto di Informatica e Telematica, CNR, Pisa, Italy
Stefano.Bistarelli@iit.cnr.it

3 University of Padova, Italy
{mpini,frossi,kvenable}@math.unipd.it

Abstract Many real-life problems present both negative and positive
preferences. We extend and generalize the existing soft constraints frame-
work to deal with both kinds of preferences. This amounts at adding a
new mathematical structure, which has properties different from a semir-
ing, to deal with positive preferences. Compensation between positive
and negative preferences is also allowed.

1 Introduction

Many real-life problems present both hard constraints and preferences. Moreover,
preferences can be of many kinds:

– qualitative (as in ”I like A better than B”) or quantitative (as in ”I like A
at level 10 and B at level 11”),

– conditional (as in ”If A happens, then I prefer B to C”) or not,
– positive (as in ”I like A, and I like B even more than A”), or negative (as in

”I don’t like A, and I really don’t like B”).

Our long-term goal is to define a framework where all such kinds of prefer-
ences can be naturally modelled and efficiently dealt. In the paper, we focus on
problems which present positive and negative, quantitative, and non-conditional
preferences.

Positive and negative preferences could be thought as two symmetric con-
cepts, and thus one could think that they can be dealt with via the same oper-
ators and with the same properties. However, it is easy to see that this could be
not reasonable in many scenarios, since it would not model what usually happens
in reality.

For example, when we have a scenario with two objects A and B, if we like
both A and B, then the preference of the overall scenario should be even more
preferred than both of them. On the other hand, if we don’t like A nor B, then
the preference of the scenario should be smaller than the preferences of A and
B. Thus combination of positive preferences should give us a higher preference,
while combination of negative preferences should give us a lower preference.

Also, when having both kinds of preferences, it is natural to have also a
element which models ”indifference”, stating that we express neither a positive
nor a negative preference over an object. For example, we may say that we like
peaches, we don’t like bananas, and we are indifferent to apples. The indifferent
element should also behave like the unit element in a usual don’t care operator.
That is, when combined with any preference (either positive or negative), it
should disappear. For example, if we like peaches and we are indifferent to eggs,
a meal with peaches and eggs would have overall a positive preference.

Notice that the assumption that composing two good things will give us even
better thing, and composing two bad things will give us an even worse thing could
be not true in general [7]. So for instance, we may like eating cakes and we may
like eating ice-cream, but we don’t like to eat them both (too heavy). Or, if we
like peaches and we are indifferent to eggs, could be not true that I should like
peaches AND eggs (e.g., think of these two sitting on the same plate).

Finally, besides combining positive preferences among themselves, and also
negative preferences among themselves, we also have the problem of combining
positive with negative preferences. For example, if we have a meal with meat
(which we like very much) and wine (which we don’t like), then what should
be the preference of the meal? To know that, we must combine the positive
preference given to meat to the negative preference given to wine.

Soft constraints [3] are a useful formalism to model problems with quantita-
tive preferences. However, they can model just one kind of preferences. In fact,
we will see that technically they can model just negative preferences. Informally,
the reason for this statement is that preference combination returns lower pref-
erences, as natural when using negative preferences, and the best element in the
ordering behaves like indifference (that is, combined with any other element a, it
returns a). Thus all the levels of preferences modelled by a semiring are indeed
levels of negative preferences.

Our proposal to model both negative and positive preferences consists of the
following ingredients:

– We use the usual soft constraint formalism, based on c-semirings, to model
negative preferences.

– We define a new structure, with properties different from a c-semiring, to
model positive preferences.

– We make the highest negative preference coincide with the lower positive
preference; this element models indifference.

– We define a new combination operator between positive and negative pref-
erence to model preference compensation.

In the framework proposed in [1, 5], positive and negative preferences are
dealt with by using possibility theory [4, 10]. This mean that preferences are
assimilated to possibilities. In this context, it is reasonable to model the negative
preference of an event by looking at the possibility of the complement of such
an event. In fact, in the approach of [5], a negative preference for a value or
a tuple is translated into a positive preference on the values or tuples different
from the one rejected. For example, if we have a variable representing the price

of an apartment with domain {p1 = low, p2 = medium, p3 = high} then a
negative preference stating that a high price (p3) is rejected with degree 0.9
(almost completely) is translated in giving a positive preference 0.9 to p1 ∨ p2.
In our framework, neither positive nor negative preferences are considered as
possibilities. Therefore, we do not relate the negative preference of an event to
the preference of the complement of such an event.

The paper is organized as follows: Section 2 recalls the main notions of
semiring-based soft constraints. Then, Section 3 describes how we model negative
preferences using usual soft constraints, Section 4 introduces the new preference
structure to model positive preferences, and Section 5 shows how to model both
positive and negative preferences. Finally, Section 6 defines constraint problems
with both positive and negative preferences, Section 7 summarizes the results of
the paper and gives some hints for future work.

2 Background: semiring-based soft constraints

A soft constraint [3] is just a classical constraint where each instantiation of
its variables has an associated value from a partially ordered set. Combining
constraints will then have to take into account such additional values, and thus
the formalism has also to provide suitable operations for combination (×) and
comparison (+) of tuples of values and constraints. This is why this formalization
is based on the concept of semiring, which is just a set plus two operations.

A c-semiring is a tuple 〈A,+,×,0,1〉 such that:

– A is a set and 0,1 ∈ A;
– + is commutative, associative, idempotente, 0 is its unit element, and 1 is

its absorbing element;
– × is associative, commutative, distributes over +, 1 is its unit element and

0 is its absorbing element.

Consider the relation ≤S over A such that a ≤S b iff a + b = b. Then it is
possible to prove that:

– ≤S is a partial order;
– + and × are monotone on ≤S ;
– 0 is its minimum and 1 its maximum;
– 〈A,≤S〉 is a lattice and, for all a, b ∈ A, a + b = lub(a, b).

Moreover, if × is idempotent, then 〈A,≤S〉 is a distributive lattice and × is
its glb.

Informally, the relation ≤S gives us a way to compare (some of the) tuples
of values and constraints. In fact, when we have a ≤S b, we will say that b is
better than a.

Given a c-semiring S = 〈A,+,×,0,1〉, a finite set D (the domain of the
variables), and an ordered set of variables V , a constraint is a pair 〈def, con〉
where con ⊆ V and def : D|con| → A. Therefore, a constraint specifies a set

of variables (the ones in con), and assigns to each tuple of values of D of these
variables an element of the semiring set A.

A soft constraint satisfaction problem (SCSP) is a pair 〈C, con〉 where con ⊆
V and C is a set of constraints over V .

A classical CSP is just an SCSP where the chosen c-semiring is: SCSP =
〈{false, true},∨,∧, false, true〉. On the other hand, fuzzy CSPs [8, 9] can be
modeled in the SCSP framework by choosing the c-semiring: SFCSP = 〈[0, 1],
max,min, 0, 1〉.

For weighted CSPs, the semiring is SWCSP = 〈ℜ+,min,+,+∞, 0〉. Prefer-
ences are interpreted as costs from 0 to +∞. Costs are combined with + and
compared with min. Thus the optimization criterion is to minimize the sum of
costs.

For probabilistic CSPs [6], the semiring is SPCSP = 〈[0, 1],max,×, 0, 1〉.
Preferences are interpreted as probabilities ranging from 0 to 1. As expected, they
are combined using × and compared using max. Thus the aim is to maximize
the joint probability.

Given two constraints c1 = 〈def1, con1〉 and c2 = 〈def2, con2〉, their com-
bination c1 ⊗ c2 is the constraint 〈def, con〉 defined by con = con1 ∪ con2 and
def(t) = def1(t ↓

con
con1

) ×def2(t ↓
con
con2

)4. In words, combining two constraints
means building a new constraint involving all the variables of the original ones,
and which associates to each tuple of domain values for such variables a semiring
element which is obtained by multiplying the elements associated by the original
constraints to the appropriate subtuples.

Given a constraint c = 〈def, con〉 and a subset I of V , the projection of c
over I, written c ⇓I , is the constraint 〈def ′, con′〉 where con′ = con ∩ I and
def ′(t′) =

∑
t/t↓con

I∩con
=t′ def(t). Informally, projecting means eliminating some

variables. This is done by associating to each tuple over the remaining variables
a semiring element which is the sum of the elements associated by the original
constraint to all the extensions of this tuple over the eliminated variables.

The solution of a SCSP problem P = 〈C, con〉 is the constraint Sol(P) =
(
⊗

C) ⇓con. That is, to obtain the solution constraint of an SCSP, we combine
all constraints, and then project over the variables in con. In this way we get
the constraint over con which is “induced” by the entire SCSP.

Given an SCSP problem P , consider Sol(P) = 〈def, con〉. A solution of P is
a pair 〈t, v〉 where t is an assignment to all the variables in con and def(t) = v.

Given an SCSP problem P , consider Sol(P) = 〈def, con〉. An optimal so-
lution of P is a pair 〈t, v〉 such that t is an assignment to all the variables in
con, def(t) = v, and there is no t′, assignment to con, such that v <S def(t′).
Therefore optimal solutions are solutions which have the best semiring element
among those associated to solutions. The set of optimal solutions of an SCSP P
will be written as Opt(P).

Figure 1 shows an example of a fuzzy CSP, two of its solutions one of which
(S2) is optimal.

4 By t ↓X

Y we mean the subtuple obtained by projecting the tuple t (defined over the
set of variables X) over the set of variables Y ⊆ X.

D(X)=D(Y)={a,b}

D(Z)={a,b,c}

<a,a> 0.1
<a,b> 0.5
<b,a> 0.5
<b,b> 0.3

<b,c> 0.1

ZX Y
<a,a> 0.9
<a,b> 0.3
<a,c> 0.1
<b,a> 0.8

<b,b> 0.1

solution S1=<a,a,a> 0.1=min(0.1,0.9)

solution S2=<a,b,a> 0.5=min(0.5,0.8)

max(0.5,0.1)=0.5 implies S2>S1

Figure 1. A Fuzzy CSP, two of its solutions, one of which is optimal (S2).

3 Negative preferences

As anticipated in the introduction, we need two different mathematical struc-
tures to deal with positive and negative preferences. For negative preferences, we
use the standard c-semiring, while for positive preferences we need to define a
new structure. Such two structures are connected by a single element, which be-
longs to both, and which denotes indifference. Such an element is the best among
the negative preferences and the worst one among the positive preferences.

The structure used to model negative preferences is a c-semiring, as defined
in Section 2. In fact, in a c-semiring the element which acts as indifference is
the 1, since ∀a ∈ A, a × 1 = a. Element 1 is also the best in the ordering,
so indifference is the best preference we can express. This means that all the
other preferences are less than indifference, thus they are naturally interpreted
as negative preferences. Moreover, in a c-semiring combination goes down in the
ordering, since a × b ≤ a, b. This can be naturally interpreted as the fact that
combining negative preferences worsens the overall preference.

This interpretation is very natural when considering, for example, the weighted
semiring (R+,min,+,+∞, 0). In fact, in this case the real numbers are costs and
thus negative preferences. The sum of different costs is worse in general w.r.t.
the ordering induced by the additive operator (min) of the semiring.

Let us now consider the fuzzy semiring ([0, 1],max,min, 0, 1). According to
this interpretation, giving a preference equal to 1 to a tuple means that there
is nothing negative about such a tuple. Instead, giving a preference strictly less
than 1 (e.g., 0.6) means that there is at least a constraint which such tuple
doesn’t satisfy at the best. Moreover, combining two fuzzy preferences means
taking the minimum and thus the worst among them.

When considering classical constraints via the c-semiring SCSP = 〈{false, true},
∨,∧, false, true〉, we just have two elements to model preferences: true and false.
True is here the indifference, while false means that we don’t like the object. This

interpretation is consistent with the fact that, when we don’t want to say any-
thing about the relation between two variables, we just omit the constraint,
which is equivalent to having a constraint where all instantiations are allowed
(thus they are given value true).

In the following of this paper, we will use standard c-semirings to model
negative preferences, and we will usually write their elements with a negative
index n and by calling N the carrier set, as follows: (N,+n,×n,⊥n,⊤n).

4 Positive preferences

As said above, when dealing with positive preferences, we want two main proper-
ties: that combination brings to better preferences, and that indifference is lower
than all the other preferences. These properties can be found in the following
structure, that we will call a positive preference structure.

Definition 1. A positive preference structure is a tuple (P,+p,×p,⊥p,⊤p) such
that

– P is a set and ⊤p,⊥p∈ P ;
– +p, the additive operation, is commutative, associative, idempotent, with ⊥p

as is its unit element (∀a ∈ P, a+p ⊥p= a) and ⊤p as is its absorbing element
(∀a ∈ P, a +p ⊤p = ⊤p);

– ×p, the multiplicative operation, is associative, commutative and distributes
over +p (a×p (b +p c) = a×p b +p a×p c), ⊥p is its unit element and ⊤p is
its absorbing element.

Notice that the additive operation of this structure has the same properties
as the corresponding one in c-semirings, and thus it induces a partial order over
P in the usual way: a ≤p b iff a +p b = b. Also for positive preferences, we will
say that b is better than a iff a ≤p b. As for c-semirings, this allows to prove
that + is monotone over ≤p and it coincides with the least upper bound in the
lattice (P,≤p).

On the other hand, the multiplicative operation has different properties. More
precisely, the best lement in the ordering (⊤p) is now the absorbing element,
while the worst element (⊥p) is the unit element. This reflects the desired be-
havior of the combination of positive preferences. In fact, we can prove the
following properties.

First, ×p is monotone over ≤p.

Theorem 1. Given the positive preference structure (P,×p,+p,⊥p,⊤p), con-
sider the relation ≤p over P . Then ×p is monotone over ≤p. That is, a×p d ≤p

b×p d, ∀d ∈ P .

Proof. Since a ≤p b, by definition, a +p b = b. Thus, ∀d ∈ P we have that
b×p d = (a+p b)×p d. Since ×p distributes over +p, b×p d = (a×p d)+p (b×p d),
and thus a×p d ≤ b×p d.

Also, combining positive preferences using the multiplicative operator gives
an element which is better or equal in the ordering.

Corollary 1. Given the positive preference structure (P,+p,×p,⊤p,⊥p). For
any pair a, b ∈ P , a×p b ≥p a, b.

Proof. Since ∀a, b ∈ P , a ≥p⊥p and b ≥p⊥p. By monotonicity of ×p we have
a×p b ≥p⊥p ×b = b and b×p a ≥p⊥p ×a = a.

Notice that this is the opposite behaviour to what happens when combining
negative preferences, which brings lower in the ordering.

Since both +p and ×p obtain a higher preference, but +p is the least upper
bound, then the following corollary is an obvious consequence.

Corollary 2. Given the positive preference structure (P,+p,×p,⊥p,⊤p), for
any pair a, b ∈ P , a×p b ≥p a +p b.

In a positive preference structure, ⊥p is the element modelling indifference.
In fact, it is the worst in the ordering and it is the unit element for the combina-
tion operator ×p. These are exactly the desired properties for indifference w.r.t.
positive preferences.

The role of ⊤p is to model a very high preference, much higher than all the
others. In fact, since it is the absorbing element of the combination operator,
when we combine any positive preference a with ⊤p, we get ⊤p and thus a disap-
pears. A similar interpretation can be given to ⊥n for the negative preferences.

5 Positive and negative preferences

In order to handle both positive and negative preferences we propose to combine
the two structures described above as follows.

Definition 2. A preference structure is a tuple (P ∪N,+p,×p,+n,×n,+,×,⊥
,2,⊤) where

– (P,+p,×p,2,⊤) is a positive preference structure;
– (N,+n,×n,⊥,2) is a c-semiring;
– + : (P ∪N)2 −→ P ∪N is an operator such that +|N = +n and +|P = +p,

and such that an + ap = ap for any an ∈ N and ap ∈ P .
– × : (P ∪N)2 −→ P ∪N is an operator such that ×|N = ×n and ×|P = ×p,

which respects properties P1, P2, and P3 defined later in this section.

Notice that a partial order on the structure (P ∪N) is defined by saying that
a ≤ b ⇐⇒ a + b = b. Easily we have ⊥≤ 2 ≤ ⊤. In details, there is a unique
maximum element coinciding with ⊤, a unique minimum element coinciding with
⊥, and the element 2, which is smaller than any positive preferences and greater
than any negative preference, and which is used to model indifference. Such an
ordering is shown in Figure 2.

N

P p
+
p

, +
nn

,

Figure 2. A preference structure.

× is defined by extending the positive and negative multiplicative operator
in order to allow the combination of heterogeneous preferences. Its definition
have to take in account the possibility of a compensation between positive and
negative preferences. Informally, we will define a way to relate elements of P to
elements of N s.t. their combination could compensate and give as a result the
indifference element 2. To do that, we

– Partition both P and N in the same number of classes. Each of the class of P
(N) contains elements which behave similarly when combined with elements
of the “opposite” class in N (P). Such classes will be technically defined by
using an equivalence relation among elements with some specific properties.

– Define and ordering among the classes and a correspondence function map-
ping each class in its opposite. The result are two ordering, one among pos-
itive class and the other among negative ones, that are exactly the same
w.r.t. the correspondence function.

We consider two equivalence relations ≡p and ≡n over P and N respectively.
For any element a of P ∪N let us denote with [a] the equivalence class to which
a belongs. Such equivalence relations must satisfy the following properties:

– |N/ ≡n | = |P/ ≡p | (i.e. ≡n and ≡p have the same number of equivalence
classes).

– [a] ≤≡ [b] iff ∀x ∈ [a] and ∀y ∈ [b], x ≤ y.

– there must exist at least a bijection f such that f : N/ ≡n−→ P/ ≡p and
[a] ≤≡ [b] iff f([a]) ≥≡ f([b]) where [a] and [b] are classes built from negative
preferences.

Notice that for the case where the orders on N and P are total it’s natural
to define the equivalence classes to be intervals, so that ≤≡ is also a total order.

The multiplicative operator of the preference structure, written ×, must sat-
isfy the following properties:

P1. a× b = 2 iff f([b]) = [a];
P2. if [a] ≤≡ [b] then ∀c ∈ P ∪N , a× c ≤ b× c; that is, × is monotone w.r.t. the

ordering ≤≡;
P3. × is commutative.

Summarizing, to define a preference structure, we need the following ingre-
dients:

– P,×p,+p;
– N,×n,+n;
– ⊤,⊥,2;
– ×, defined by giving ≡p,≡n, and f .

Given these properties, it is easy to show that the combination of a positive
and a negative preference is a preference which is higher than, or equal to, the
negative one and lower than, or equal to, the positive one.

Theorem 2. Given a preference structure (P,N,+p,×p,+n,×n,+,×,⊥,2,⊤),
we have that, for any p ∈ P and n ∈ N , n ≤ p× n ≤ p.

Proof. By monotonicity of ×, and since n ≤ 2 ≤ p for any n ∈ N and p ∈ P ,,
we have the following chain: n = n×2 ≤ n× p ≤ 2× p = p.

This means that the compensation of positive and negative preferences must
lie in one of the chains between the two given preferences. Notice that all such
chains pass through the indifference element 2.

Moreover, we can be more precise: if we combine p and n, and we compare
f([n]) to [p], we can discover if p × n is in P or in N , as the following theorem
shows.

Theorem 3. Given a preference structure (P,N,+p,×p,+n,×n,+,×,⊥,2,⊤),
take any p ∈ P and any n ∈ N . Then we have:

– if f([n]) ≤≡ [p], then 2 ≤p p× n ≤p p’
– if f([n]) >≡ [p], then n ≤p p× n ≤p 2.

Proof. If f([n]) ≤≡ [p], then for any element c in f([n]), c ≤p p. By motononicity
of ×, we have 2 = n× c ≤p n× p. Similarly for p× n ≤p 2 when f([n]) >≡ [p].

Notice that the multiplicative operator × might be not associative. In fact,
consider for example the situation with two occurrences of a positive preference p
and one negative preference n such that [p] = f([n]). That is, p and n compensate
completely to indifference. Assume also that×p is idempotent. Then, p×(p×n) =
p × 2 = p, while (p × p) × n = p × n = 2. This depends on the fact that we

are free to choose ×n and ×p as we want, and × concides with them when
used on preferences of the same kind. Certainly, if any one of ×p or ×n is
idempotent, then× is not associative. However, there are also cases in which both
×p and ×n are not idempotent, and still × is not associative. This means that,
when combining all the preferences in a problem, we must choose an association
ordering.

The preference structure we defined allows us to have different ways to model
and reason about positive and negative preferences.In fact, besides the combi-
nation operator, which has different properties by definition, we can also have
different lattices (P,≤p) and (N,≤n). This means that we can have, for example,
a richer structure for positive preferences w.r.t. the negative ones. This is nor-
mal in real-life problems, where not necessarily we want the same expressivity
when expressing negative statements and positive ones. For example, we could
be satisfied with just two levels of negative preferences, but we might want ten
levels of positive preferences. Of course our framework allows us also to model
the case in which the two structures are isomorphic.

Notice that classical soft constraints, as anticipated above, refer only to neg-
ative preferences in our setting. This means that, by using soft constraints, we
can express many levels of negative preference (as many as the elements of the
semiring), but only one level of positive preference, which coincide also with the
indifference element and also with the top element.

6 Bipolar preference problems

We can extend the notion of soft constraint allowing preference functions to
associate to partial instatiations either positive or negative preferences.

Definition 3 (bipolar constraints). Given a preference structure (P,N,+p,
×p,+n,×n,+,×,⊥,2,⊤), a finite set D (the domain of the variables), and an
ordered set of variables V , a constraint is a pair 〈def, con〉 where con ⊆ V and
def : D|con| → P ∪N .

A Bipolar CSP (V,C) is defined as a set of variables V and a set of bipolar
constraints C.

A solution of a bipolar CSP can then be defined as follows.

Definition 4 (solution). A solution of a bipolar CSP (V,C) is a complete
assignment to all variables in V , say s, and an associated preference pref(s) =
(p1 ×p . . . ×p pk) × (n1 ×n . . . ×n nl), where for i := 1, . . . , k pi ∈ P and for
j := 1, . . . , l nj ∈ N and pi = defi(s ↓

V
var(ci)

) where var(ci) are the variables
involved in the constraint ci ∈ C.

In words, the preference of a solution s is obtained by:

1. combining all the positive preferences associated to all its projections using
×p;

2. combining all the negative preferences associated to all its projections using
×n;

3. then, combining the positive preference obtained at steps 1 and the negative
preference obtained at step 2 using ×.

Notice that this way of computing the preference of a solution is by choosing
to combine all the preferences of the same kind together before combining them
with preferences of the other kind. Other choices could lead in general to different
results due to the possible non-associativity of the × operator.

Definition 5 (optimal solution). An optimal solution of a bipolar CSP (V,C)
is a pair 〈s, pref(s)〉 such that s is an assignment to all the variables in V , and
there is no s′, assignment to V , such that pref(s) < pref(s′).

Therefore optimal solutions are solutions which have the best preference
among those associated to solutions. The set of optimal solutions of a bipolar
CSP B will be written as Opt(B).

Figure 3 shows a bipolar constraint which associates positive and nega-
tive preferences to its tuples. In this example we use the weighted c-semiring
(R+,min,+, 0,+∞) for representing the negative preferences. For the positive
preferences, we consider separately two positive preference structures: (R+,max,
+,+∞, 0) and (R+,max,max,+∞, 0). Notice that the indifference element co-
incides with 0 in both the positive and negative preference structures. In the ex-
ample in Figure 3, we assume that every equivalence class is composed by a single
preference, and that function f is the identity. Moreover, when applied to one
positive and one negative preference,× is the arithmetic sum of positive/negative
numbers denoted as +p

n. Therefore we consider two preference structures: the
first one is (R+, R+,max,+,min, +,max − min,+p

n,+∞, 0,+∞), and the
second one is (R+, R+,max,max,min, +,max − min,+p

n,+∞, 0,+∞) where
max − min is the + operator of the structure (induced by the max and min
operators of the positive and negative preferences rispectively).

In Figure 3, preferences belonging to P have index p, while those belonging
to N have index n. The left part of Figure 3 shows the bipolar CSP, while the
right part shows the preference associated to each solution. For example, for
solution (x = a, y = b), we must combine 1p, 10p, and 10n. To do this, we must
compute (1p ×p 10p). If ×p = +, then the result is 11p. If instead ×p = max,
then the result is 10p. Then, such result must be combined with 10n, giving in
the first case 11p × 10n = 1p, and in the second case 10p × 10n = 0.

7 Future work

We have extended the semiring-based formalisms for soft constraints to be able
to handle both positive and negative preferences. We are currently studying
which properties are needed in order to obtain completely specular preference
structure where the times operator × satisfy the associativity property.

We are also studying the correlation between our work and the works on
non-monotonic concurrent constraints [2]. In this framework the language is

aa ... 3

ab ...10

ba ... 0

bb ... 4
p

n

n

x y

a
b b
a ... 1

... 5
 ... 0
 ... 10

p

pn

Solutions

(max, max)(max, +)

aa
p

2
nn n

ab
 p

... 11 10
 n

 = 1
p

0

ba
 n

... 5 = 5
n

5
n

 p
bb = 9p 5 p

... 1 3

 n
... 14 5

 = 2

Figure 3. A bipolar CSP with both positive and negative preferences, and its
solutions.

enlarged with a get operator that remove constraints from the store. It seems
that removing a constraint could be equivalent to adding a positive constraint.

Further work will concern the possible use of constraint propagation tech-
niques in this framework, which may need adjustments w.r.t. the classical tech-
niques due to the possible non-associative nature of the compensation operator.

References

1. S. Benferhat, D. Dubois, S. Kaci, H. Prade. Bipolar representation and fusion of
preferences in the possibilistic logic framework. Proc. KR 2002, 158-169, 2002.

2. E. Best, F.S. de Boer, C. Palamidessi. Partial Order and SOS Semantics for Linear
Constraint Programs. Proc. of Coordination 97, vol. 1282 of LNCS, pages 256-273.
Springer-Verlag, 1997.

3. S. Bistarelli, U. Montanari and F. Rossi. Semiring-based Constraint Solving and
Optimization. Journal of the ACM, Vol.44, n.2, March 1997.

4. D. Dubois, H. Fargier, H. Prade. Possibility theory in constraint satisfaction prob-
lems: handling priority, preference and uncertainty. Applied Intelligence, 6, 287-
309, 1996.

5. D. Dubois, S. Kaci, H. Prade. Bipolarity in reasoning and decision - An introduc-
tion. The case of the possibility theory framework. IPMU 2004.

6. H. Fargier and J. Lang. Uncertainty in constraint satisfaction problems: a prob-
abilistic approach. In Proc. European Conference on Symbolic and Qualita tive
Approaches to Reasoning and Uncertainty (ECSQARU), pages 97–104. Springer-
Verlag, LNCS 747, 1993.

7. S.O. Hansson. The Structure of Values and Norms. Cambridge University Press,
2001.

8. Zs. Ruttkay. Fuzzy constraint satisfaction. In Proc. 3rd IEEE International Con-
ference on Fuzzy Systems, pages 1263–1268, 1994.

9. T. Schiex, H. Fargier, and G. Verfaille. Valued Constraint Satisfaction Problems:
Hard and Easy Problems. In Proc. IJCAI95, pages 631–637. Morgan Kaufmann,
1995.

10. L.A. Zadeh. Fuzzy sets as a basis for the theory of possibility. Fuzzy Sets and
Systems, 13-28, 1978.

