

Proceedings of the 11
th

 Annual ERCIM Workshop on

Constraint Solving and Constraint Programming

(CSCLP 2006)

26-28 June 2006

FCT / UNL

Caparica, Portugal

Editors:

Francisco Azevedo

Pedro Barahona

François Fages

Francesca Rossi

Modelling and solving bipolar preference problems

Stefano Bistarelli1, Maria Silvia Pini2 , Francesca Rossi2 and K. Brent Venable2

1 : University “G’ D’Annunzio”, Pescara, Italy

E-mail: bista@sci.unich.it

Istituto di Informatica e Telematica, CNR, Pisa, Italy

E-mail: Stefano.Bistarelli@iit.cnr.it

2 : Department of Pure and Applied Mathematics, University of Padova, Italy

E-mail: {mpini,frossi,kvenable}@math.unipd.it

Abstract. Real-life problems present several kinds of preferences. In this pa-

per we focus on problems with both positive and negative preferences, that we

call bipolar problems. Although seemingly specular notions, these two kinds

of preferences should be dealt with differently to obtain the desired natural be-

haviour. We technically address this by generalizing the soft constraint formalism,

which is able to model problems with one kind of preferences. We show that soft

constraints model only negative preferences, and we define a new mathematical

structure which allows to handle positive preferences as well. We also address the

issue of the compensation between positive and negative preferences, studying

the properties of this operation. Finally, we suggest how constraint propagation

and branch and bound can be adapted to deal with bipolar problems.

1 Introduction

Many real-life problems contain statements which can be expressed as preferences.

Moreover, preferences can be of many kinds: qualitative (as in ”I like A more than B”),

quantitative (as in ”I like A at level 10 and B at level 11”), conditional (as in ”If A

happens, then I prefer B to C”), positive (as in ”I like A, and I like B even more than

A”), or negative (as in ”I don’t like A, and I really don’t like B”). Our long-term goal

is to define a framework where all such kinds of preferences can be naturally modelled

and efficiently dealt. In this paper, we focus on problems which present positive and

negative (quantitative and non-conditional) preferences, that we call bipolar problems.

Positive and negative preferences could be thought as two symmetric concepts, and

thus one could think that they can be dealt with via the same operators and with the

same properties. However, it is easy to see that this would not model what one usually

expects in real scenarios. For example, when we have a scenario with two objects A

and B, if we like both A and B, then the overall scenario should be more preferred

than having just A or B alone. On the other hand, if we don’t like A nor B, then the

preference of the scenario should be smaller than the preferences of A or B alone. Thus

combination of positive preferences should give us a higher (positive) preference, while

combination of negative preferences should give us a lower (negative) preference.

When dealing with both kinds of preferences, it is natural to express also indiffer-

ence, which means that we express neither a positive nor a negative preference over an

object. For example, we may say that we like peaches, we don’t like bananas, and we

are indifferent to apples. A desired behaviour of indifference is that, when combined

with any preference (either positive or negative), it should not influence the overall

preference. For example, if we like peaches and we are indifferent to apples, a dish with

peaches and apples should have overall a positive preference.

Finally, besides combining positive preferences among themselves, and also nega-

tive preferences among themselves, we also want to be able to combine positive with

negative preferences. We strongly believe that the most natural and intuitive way to

do so is to allow for compensation. Confronting positive against negative aspects and

compensating them w.r.t. their strength is one of the core features of decision-making

processes, and is, undoubtedly, a tactic universally applied to solve many real life prob-

lems. For example, if we have a meal with meat (which we like very much) and wine

(which we don’t like), then what should be the preference of the meal? To know that,

we should be able to compensate the positive preference given to meat with the negative

preference given to wine. The expected result is a preference which is between the two,

and which should be positive if the positive preference is ”stronger” than the negative

one.

Soft constraints [3] are a useful formalism to model problems with quantitative

preferences. However, they can model just one kind of preferences. In fact, we will

see that technically they can model just negative preferences. Informally, the reason for

this statement is that preference combination returns lower preferences, which, as men-

tioned above, is natural when using negative preferences. In this paper we start from the

soft constraint formalism, based on c-semirings, to model negative preferences. We then

extend it via a new structure, that models positive preferences, and we set the highest

negative preference to coincide with the lower positive preference; this element mod-

els indifference. We then define a combination operator between positive and negative

preferences to model preference compensation, and we study its properties in relation

to the features of the preference structure. Finally, we consider the problem of finding

optimal solutions of bipolar problems, by suggesting a possible adaptation of constraint

propagation and branch and bound techniques to the generalized scenario. The structure

we introduce to model both positive and negative preferences generalizes the one usu-

ally used for soft constraints. This allows for a natural and smooth extension of search

and propagation algorithms for soft constraints to the bipolar setting.

Besides the possibility to use both kinds of preferences, which is the main aim of this

paper, this generalization allows us also to use preference aggregation operators, such

as the average or the median operators, which do not satisfy the properties required by

the soft constraint formalism.

Parts of this paper have appeared in [4].

2 Background: semiring-based soft constraints

A soft constraint [3] is just a classical constraint [6] where each instantiation of its

variables has an associated value from a (totally or partially ordered) set. This set has

two operations, which makes it similar to a semiring, and is called a c-semiring. A c-

semiring is a tuple 〈A, +,×,0,1〉 such that: A is a set and 0,1 ∈ A; + is commutative,

associative, idempotent, 0 is its unit element, and 1 is its absorbing element; × is as-

sociative, commutative, distributes over +, 1 is its unit element and 0 is its absorbing

element.

Consider the relation ≤S over A such that a ≤S b iff a+b = b. Then: ≤S is a partial

order; + and × are monotone on ≤S ; 0 is its minimum and 1 its maximum; 〈A,≤S〉
is a lattice and, for all a, b ∈ A, a + b = lub(a, b). Moreover, if × is idempotent, then

〈A,≤S〉 is a distributive lattice and × is its glb. Informally, the relation ≤S gives us a

way to compare (some of the) tuples of values and constraints. In fact, when we have

a ≤S b, we will say that b is better than a.

Given a c-semiring S = 〈A, +,×,0,1〉, a finite set D (the domain of the variables),

and an ordered set of variables V , a constraint is a pair 〈def, con〉 where con ⊆ V

and def : D|con| → A. Therefore, a constraint specifies a set of variables (the ones

in con), and assigns to each tuple of values of D of these variables an element of the

semiring set A. Given a subset of variables I ⊆ V , and a soft constraint c = 〈def, con〉,
the projection of c over I , written c ⇓I , is a new soft constraint 〈def ′, con′〉, where

con′ = con ∩ I and def(t′) =
∑

{t|t↓con′=t′} def(t). In particular, the scope, con′, of

the projection constraint contains the variables that con and I have in common, and thus

con′ ⊆ con. Moreover, the preference associated to each assignment to the variables

in con′, denoted with t′, is the highest (
∑

is the additive operator of the c-semiring)

among the preferences associated by def to any completion of t′, t, to an assignment

to con.

A soft constraint satisfaction problem (SCSP) is just a set of soft constraints over a

set of variables.

A classical CSP is just an SCSP where the chosen c-semiring is: SCSP = 〈{false,

true}, ∨,∧, false, true〉. On the other hand, fuzzy CSPs [10, 8] can be modeled in the

SCSP framework by choosing the c-semiring: SFCSP = 〈[0, 1], max, min, 0, 1〉. For

weighted CSPs, the semiring is SWCSP = 〈ℜ+, min, +, +∞, 0〉. Here preferences

are interpreted as costs from 0 to +∞, which are combined with the sum and compared

with min. Thus the optimization criterion is to minimize the sum of costs. For proba-

bilistic CSPs [7], the semiring is SPCSP = 〈[0, 1], max,×, 0, 1〉. Here preferences are

interpreted as probabilities ranging from 0 to 1, which are combined using the product

and compared using max. Thus the aim is to maximize the joint probability.

Given an assignment to all the variables of an SCSP, we can compute its preference

value by combining the preferences associated by each constraint to the subtuples of

the assignments referring to the variables of the constraint. For example, in fuzzy CSPs,

the preference of a complete assignment t, written pref(t), is the minimum preference

given by the constraints. In weighted constraints, it is instead the sum of the costs given

by the constraints. An optimal solution of an SCSP is then a complete assignment t

such that there is no other complete assignment t′′ with pref(t) <S pref(t′′).

3 Negative preferences

The structure we use to model negative preferences is exactly a c-semiring, as defined

in Section 2. In fact, in a c-semiring the element which acts as indifference is 1, since

∀a ∈ A, a × 1 = a. Notice that such element, denoted as 1 is not necessarily number

1 and in general it can be any element or number (0,1,100,X). This element is the best

in the ordering, which is consistent with the fact that indifference is the best preference

we can express when using only negative preferences.

Moreover, in a c-semiring, combination goes down in the ordering, since a × b ≤
a, b. This can be naturally interpreted as the fact that combining negative preferences

worsens the overall preference.

This interpretation is very natural when considering, for example, the weighted

semiring (R+, min, +, +∞, 0). In fact, in this case the real numbers are costs and thus

negative preferences. The sum of different costs is worse in general w.r.t. the ordering

induced by the additive operator (that is, min) of the semiring.

Let us now consider the fuzzy semiring ([0, 1], max, min, 0, 1). According to this

interpretation, giving a preference equal to 1 to a tuple means that there is nothing

negative about such a tuple. Instead, giving a preference strictly less than 1 (e.g., 0.6)

means that there is at least a constraint which such tuple doesn’t satisfy at the best.

Moreover, combining two fuzzy preferences means taking the minimum and thus the

worst among them.

From now on, we will use a standard c-semiring to model negative preferences,

denoted as: (N, +n,×n,⊥n,⊤n).

4 Positive preferences

When dealing with positive preferences, we want two main properties to hold: combi-

nation should bring to better preferences, and indifference should be lower than all the

other positive preferences. These properties can be found in the following structure.

Definition 1. A positive preference structure is a tuple (P, +p,×p,⊥p,⊤p) such that

– P is a set and ⊤p,⊥p∈ P ;

– +p, the additive operator, is commutative, associative, idempotent, with ⊥p as its

unit element (∀a ∈ P, a +p ⊥p= a) and ⊤p as its absorbing element (∀a ∈
P, a +p ⊤p = ⊤p);

– ×p, the multiplicative operator, is associative, commutative and distributes over

+p (a×p (b +p c) = (a×p b) +p (a×p c)), with ⊥p as its unit element and ⊤p as

its absorbing element1.

Notice that the additive operator of this structure has the same properties as the

corresponding one in c-semirings, and thus it induces a partial order over P in the usual

way: a ≤p b iff a +p b = b. This allows to prove that +p is monotone over ≤p and that

it is the least upper bound in the lattice (P,≤p).
On the other hand, the multiplicative operator has different properties. More pre-

cisely, the best element in the ordering (⊤p) is now its absorbing element, while the

worst element (⊥p) is its unit element. This reflects the desired behavior of the combi-

nation of positive preferences.

Theorem 1. Given the positive preference structure (P, +p,×p, ⊥p, ⊤p), consider the
relation ≤p over P . Then:

1 The absorbing nature of ⊤p can be derived from the other properties.

– ×p is monotone over≤p. That is, for any a, b ∈ P such that a ≤p b, then a×p d ≤p

b ×p d, ∀d ∈ P .

– For any pair a, b ∈ P , a ×p b ≥p a +p b ≥p a, b.

Proof. Since a ≤p b iff a+p b = b, then b×p d = (a+p b)×p d = (a×p d)+p (b×p d).
Thus a ×p d ≤p b ×p d. Also, a ×p b = a ×p (b + ⊥p) = (a ×p b) + (a ×p ⊥p)
= (a ×p b) + a. Thus a ×p b ≥p a (the same for b). Finally: a ×p b ≥ a, b. Thus

a ×p b ≥ lub(a, b) = a +p b. Q.E.D.

In a positive preference structure, ⊥p is the element modelling indifference. In fact,

it is the worst one in the ordering and it is the unit element for the combination operator

×p. These are exactly the desired properties for indifference w.r.t. positive preferences.

The role of ⊤p is to model a very high preference, much higher than all the others.

In fact, since it is the absorbing element of the combination operator, when we combine

any positive preference a with ⊤p, we get ⊤p and thus a disappears.

As a first example of a positive preference structure, consider P1 = (R+, max,

+, 0, +∞), where preferences are positive reals. The smallest preference that can be

assigned is 0. It represents the lack of any positive aspect and can thus be regarded as

indifference. Preferences are aggregated taking the sum and are compared taking the

max.

Another example is P2 = ([0, 1], max, max, 0, 1). In this case preferences are reals

between 0 and 1, as in the fuzzy semiring for negative preferences. However, the com-

bination operator is max, which gives, as a resulting preference, the highest one among

all those combined.

As an example of a partially ordered positive preference structure consider the

Cartesian product of the two described above: (R+×[0, 1], 〈max, max〉, 〈+, max〉, 〈0,

0〉, 〈+∞, 1〉). Positive preferences, here, are ordered pairs where the first element is a

positive preference of type P1 and the second one is a positive preference of type P2.

Consider for example the (incomparable) pairs (8, 0.1) and (3, 0.8). Applying the mul-

tiplicative operator will give pair (11, 0.8) which, as expected, is better than both pairs

since both max(8, 3, 11) = 11 and max(0.1, 0.8, 0.8) = 0.8.

5 Bipolar preference structures

Once we are given a positive and a negative preference structure, a first, naive, way

to combine them is by performing the Cartesian product of the two structures. For

example, if we have positive structure (P, +p,×p, ⊥p, ⊤p) and negative structure

(N, +n,×n, ⊥n, ⊤n) the Cartesian product would be (P × N, 〈+p, +n〉, 〈×p,×n〉,
〈⊥p,⊥n〉, 〈⊤p,⊤n〉). In this setting, given a solution, it will be associated with a pair

〈p, n〉, where p is the overall positive preference and n is the overall negative preference.

Such pair is an element of the carrier of the new structure. Clearly, the new structure is

not a positive nor a negative preference structure, and, in fact, some pairs will be nei-

ther clearly positive nor negative. The ordering induced over the pairs is the well known

Pareto ordering, which declares as incomparable any two solutions defeating each other

on one component. Although simple, this criterion is not satisfactory in practice since it

may induce a lot of incomparability among the solutions. This drawback can be traced

to the inability of compensating positive and negative preferences. Such ability is, in-

stead, one of the key features of another, more sophisticated, bipolar structure which

we will now describe.

Definition 2. A bipolar preference structure is a tuple (N, P, +,×,⊥, 2,⊤) where

– (P, +|P ,×|P , 2,⊤) is a positive preference structure;
– (N, +|N ,×|N ,⊥, 2) is a c-semiring;
– + : (N ∪ P)2 −→ (N ∪ P) is such that an + ap = ap for any an ∈ N and

ap ∈ P ; this operator induces as partial ordering on N ∪P : ∀a, b ∈ P ∪N , a ≤ b

iff a + b = b;

– × : (N ∪P)2 −→ (N ∪P) is an operator (called the compensation operator) that,

for all a, b, c ∈ N ∪ P , satisfies the following properties:

• commutativity: a × b = b × a;

• monotonicity: if a ≤ b, then a × c ≤ b × c.

In the following, we will write +n instead of +|N and +p instead of +|P . Similarly

for ×n and ×p. Moreover, we will sometimes write ×np when operator × will be

applied to a pair in (N × P).
Bipolar preference structures generalize c-semirings. In fact, a c-semiring is just

a bipolar preference structure with a single positive preference: the indifference ele-

ment, which, in such a case, is also the top element of the structure. Similarly, bipolar

preference structures generalize positive structures. In fact, the latter are just bipolar

preference structures with a single negative preference: the indifference element. By

symmetry, in such cases the indifference element coincides with the bottom element of

the structure.

Given the way the ordering is induced by + on N ∪P , easily, we have ⊥≤ 2 ≤ ⊤.

Thus, there is a unique maximum element (that is, ⊤), a unique minimum element

(that is, ⊥); the element 2 is smaller than any positive preference and greater than

any negative preference, and it is used to model indifference. The shape of a bipolar

preference structure is shown in the following figure:

p+,
P p

N +
n n,

Despite the ordering suggested by the figure, which places all positive preferences

strictly above negative preferences, our framework does not prevent from using the

same scale to represent both positive and negative preferences. Such a case can be

easily handled by using two isomorphisms: one between an instance of the scale and

the positive preference structure, and another one between another instance of the same

scale and the negative preference structure. The same holds also when one wishes to

use partially overlapping scales.

A bipolar preference structure allows us to have different ways to model and reason

about positive and negative preferences. In fact, we can have different lattices (P,≤p)

and (N,≤n). For example, we can have a richer structure for one kind of preference.

This is common in real-life problems, where negative and positive statements are not

necessarily expressed using the same granularity. For example, we could be satisfied

with just two levels of negative preferences, while requiring ten levels of positive pref-

erences. Nevertheless, our framework allows to model cases in which the two structures

are isomorphic, as well.

It is easy to show that the combination of a positive and a negative preference is a

preference which is higher than, or equal to, the negative one and lower than, or equal

to, the positive one. The following theorems hold when a bipolar preference structure

(N, P, +,×,⊥, 2,⊤) is given.

Theorem 2. For all p ∈ P and n ∈ N , n ≤ p × n ≤ p.

Proof. For any n ∈ N and p ∈ P , 2 ≤ p and n ≤ 2. By monotonicity of ×, we have:

n×2 ≤ n× p and n× p ≤ 2× p. Hence: n = n× 2 ≤ n× p ≤ 2× p = p. Q.E.D.

This means that the compensation of positive and negative preferences must lie in

one of the chains between the two combined preferences. Notice that all such chains

pass through the indifference element 2. Possible choices for combining strictly posi-

tive with strictly negative preferences are thus the average or the median operator.

Moreover, by monotonicity, we can show that if ⊤×⊥ = ⊥, then the result of the

compensation between any positive preference and the bottom element is the bottom

element, and if ⊤ × ⊥ = ⊤, then the compensation between any negative preference

and the top element is the top element.

Theorem 3. Given bipolar preference structure (N, P, +,×,⊥, 2,⊤):

– if ⊤×⊥ = ⊥, then ∀p ∈ P , p ×⊥ = ⊥;

– if ⊤×⊥ = ⊤, then ∀n ∈ N , n ×⊤ = ⊤.

Proof. Assume ⊤ ×⊥ = ⊥. Since for all p ∈ P , p ≤ ⊤, then, by monotonicity of ×,

p ×⊥ ≤ ⊤×⊥ = ⊥, hence p ×⊥ = ⊥.

Assume ⊤ × ⊥ = ⊤. Since for all n ∈ N , ⊥ ≤ n, then, by monotonicity of ×,

⊤ = ⊤×⊥ ≤ ⊤× n, hence ⊤× n = ⊤. Q.E.D

A bipolar structure may satisfy the following (additional) property:

[P1] : ∀p ∈ P ′, ∃n ∈ N ′ s.t. p × n = 2 and viceversa (1)

where,

– if ⊤×⊥ = 2, P ′ = P and N ′ = N ,

– if ⊤×⊥ = p ∈ P − {2}, P ′ = P − {⊤} and N ′ = N ,

– if ⊤×⊥ = n ∈ N − {2}, P ′ = P and N ′ = N − {⊥}.

In Property P1, if ⊤ × ⊥ = p ∈ P − {2}, then P ′ = P − {⊤}, since in this

case there is no element that combined with ⊤ produces the indifference element. In

fact, ∀n ∈ N , ⊥ ≤ n, and so, by monotonicity of ×, 2 < p = ⊤ × ⊥ ≤ ⊤ × n.

Analogously, if ⊤×⊥ = n ∈ N −{2}, then N ′ = N −{⊥}, since there is no element

that combined with ⊥ produces the indifference element.

5.1 Examples of bipolar preference structures

In the following table each row corresponds to a bipolar preference structure.

N,P +p, ×p +n, ×n ×np ⊥, 2, ⊤

R−, R+ max, sum max, sum sum −∞, 0, +∞

[−1, 0], [0, 1] max, max max, min sum −1, 0, 1

[0, 1], [1, +∞] max, prod max, prod prod 0, 1, +∞

The structure described in the first row uses positive real numbers as positive prefer-

ences and negative reals as negative preferences. Compensation is obtained by summing

the preferences, while the ordering is given by the max operator. In the second struc-

ture we have positive preferences between 0 and 1 and negative preferences between -1

and 0. The compensation between positive preferences is max, between negative pref-

erences is min and between positive and negative preferences is sum and the order is

given by max. In the third structure we use positive preferences between 1 and +∞ and

negative preferences between 0 and 1. Compensation is obtained by multiplying the

preferences and ordering is again via max. If ⊤ × ⊥ ∈ {⊤,⊥}, then compensation in

the first and in the third structure is associative.

5.2 Associativity of preference compensation

In general, the compensation operator × may be not associative. Here we list some

sufficient conditions for the non-associativity of the × operator.

Theorem 4. Given a bipolar preference structure (P, N, +,×,⊥, 2,⊤), if

– ⊤×⊥ = c ∈ (N ∪ P) − {⊤,⊥};
– or ∃p ∈ P − {⊤} and n ∈ N − {⊥} such that p × n = 2 and at least one of the

following conditions holds:

• ×p or ×n is idempotent;

• ∃p′ ∈ P − {p,⊤} such that p′ × n = 2 or ∃n′ ∈ N − {n,⊥} such that

p × n′ = 2;

• ⊤ ×⊥ = ⊥ and ∃n′ ∈ N − {⊥} such that n × n′ = ⊥;

• ⊤ ×⊥ = ⊤ and ∃p′ ∈ P − {⊤} such that p × p′ = ⊤;

• ∃a, c ∈ N ∪ P such that a × p = c iff c × n 6= a (or ∃a, c ∈ N ∪ P such that

a × n = c iff c × p 6= a),

then operator× is not associative:

Proof. – If c ∈ P − {⊤}, then ⊤ × (⊤ × ⊥) = ⊤ × c = ⊤, while (⊤ × ⊤) ×
⊥ = ⊤ × ⊥ = c. If c ∈ N − {⊥}, then ⊥ × (⊥ × ⊤) = ⊥ × c = ⊥, while

(⊥×⊥) ×⊤ = ⊥×⊤ = c.

– Assume that ∃p ∈ P − {⊤} and n ∈ N − {⊥} such that p × n = 2.

• If ×p is idempotent, then p × (p × n) = p × 2 = p, while (p × p) × n =
p × n = 2. Similarly if ×n is idempotent.

• If ∃p′ ∈ P − {p,⊤} such that p′ × n = 2, then (p × n) × p′ = p′, while

p × (n × p′) = p. Analogously, if ∃n′ ∈ N − {n,⊥} such that p × n′ = 2.

• If ⊤ × ⊥ = ⊥, then, by Theorem 3, p × ⊥ = ⊥. If ∃n′ ∈ N − {⊥} such

that n × n′ = ⊥, then (p × n) × n′ =2 × n′ = n′, while p × (n × n′) =
p ×⊥ = ⊥ 6= n′.

• If ⊤×⊥ = ⊤, then, by Theorem 3, n ×⊤ = ⊤. If ∃p′ ∈ P − {⊤} such that

p×p′ = ⊤, then (n×p)×p′ =2×p′ = p′, while n×(p×p′) =n×⊤ = ⊤ 6= p′.

• If c × n 6= a, then (a × p) × n = c × n 6= a, but a × (p × n) = a × 2 = a.

Analogously if c × p 6= a.

Q.E.D.

Notice that these sufficient conditions refer to various aspects of a bipolar pref-

erence structure: properties of the operators, shape of the orderings of P and N , the

relation between × and the other operators. Since some of these conditions often occur

in practice, it is not reasonable to require associativity of ×.

For example, × is not associative when the combination between ⊤ and ⊥ is differ-

ent from ⊤ or ⊥, or when the combination operator of either the positive or the negative

preferences is idempotent. This result depends on the fact that the proposed framework

allows to choose the result of the compensation between ⊤ and ⊥, and the operators

×n and ×p, as long as the monotonicity of × is respected.

In Theorem 4 it is shown that if either ×p or ×n is idempotent, then × is not asso-

ciative. However, there are also cases in which both ×p and ×n are not idempotent, and

still × is not associative. For example, this happens when there are two different pref-

erences that combined with the same preference give the indifference element. Another

sufficient condition for the non-associativity of the compensation operator concerns the

presence of at least two negative (resp. positive) preferences different from ⊥ (resp. ⊤),

such that their combination is ⊥ (resp. ⊤). Consider, for example, a bipolar preference

structure where N=[-50,0], P=[0,100], += max, × = bounded-sum, ⊥= −50, 2 = 0,

and ⊤ = 100. In this case, preferences such as 50 and 60 are not equal to the top (100)

but their bounded sum obtains 100. As expected, −10+ (50+ 60) = −10+ 100 = 90,

while (−10 + 50) + 60 = 40 + 60 = 100. Another case that lead to non associativity

of × is when there are two preference values that don’t behave like inverse elements in

ordinary algebra.

6 Bipolar preference problems

Once we have defined bipolar preference structures, we can define a notion of bipolar

constraint, which is just a constraint where each assignment of values to its variables is

associated to one of the elements in a bipolar preference structure.

Definition 3. Given a bipolar preference structure (N, P, +,×,⊥, 2,⊤), a finite set

D (the domain of the variables), and an ordered set of variables V , a constraint is a

pair 〈def, con〉 where con ⊆ V and def : D|con| → (N ∪ P).

A bipolar CSP (V, C) is then just a set of variables V and a set of bipolar constraints

C over V .

There could be many ways of defining the optimal solutions of a bipolar CSP. Here

we propose a simple one which compensates only preferences of complete instantia-

tions. This avoids problems due to the possible non-associativity of the compensation

operator, since compensation never involves more than two preference values. Thus the

preference of a solution does not depend on the order in which the preferences of its

constraints are aggregated.

Definition 4. A solution of a bipolar CSP (V, C) is a complete assignment to all vari-

ables in V , say s, and an associated preference which is computed as follows: pref(s) =
(p1 ×p . . .×p pk)× (n1 ×n . . .×n nl), where pi ∈ P for i := 1, . . . , k and nj ∈ N for

j := 1, . . . , l and ∃〈def, con〉 ∈ C such that pi = def(s ↓con) or nj = def(s ↓con).
A solution s is an optimal solution if there is no other solution s′ with pref(s′) >

pref(s).

In this definition, the preference of a solution s is obtained by combining all the

positive preferences associated to its projections over the constraints, by using ×p, com-

bining all the negative preferences associated to its projections over the constraints, by

using ×n, and then, combining the two preferences obtained so far (one positive and

one negative) by using the operator ×np.

If × is associative, then other definitions of solution preference could be used while

giving the same result. In fact, any combination of aggregation and compensation, ap-

plied to the preferences of the constraints of the problem, would lead to the same overall

preference, and thus to the same solution ordering.

6.1 An example of bipolar CSP

Consider the scenario in which we want to buy a car. We have some preferences over

the car’s features. In terms of color, we like red, we are indifferent to white, and we hate

black. Also, we like convertible cars a lot and we don’t care much for SUVs. In terms

of engines, we like diesel. However, we don’t want a diesel convertible.

We may decide to represent positive preferences via positive integers and negative

preferences via negative integers. Moreover, we may decide to maximize the sum of

all kinds of preferences. This can be modelled by a preference structure where N =
[−∞, 0], P = [0, +∞], + =max, ×=sum, ⊥ = −∞, 2 = 0,⊤ = +∞.

We have three variables: variable T (type) with domain {convertible, SUV}, vari-

able E (engine) with domain {diesel, gasoline}, and variable C (color) with domain

{red, white, black}. For the preferences over the colors, we define a constraint c1 =
〈def1, {C}〉 where, for example, we set def1(red) = +10, def1(black) = −10, and

def1(white) = 0. We also have a constraint over car types, say c2 = 〈def2, {T }〉
where we set def2(convertible) = +20 and def2(SUV) = −3. The constraint over

engines can then be c3 = 〈def3, {E}〉, where we can set def3(diesel) = +10 and

def3(gasoline) = 0. Finally, the last preference can be modelled by a constraint c4 =
〈def4, {T, E}〉, where we can set def4(convertible, diesel) = −20 and def4(a, b) = 0
for (a, b) 6=(convertible, diesel). The following figure shows the structure of such a

bipolar CSP.

red
black
white

+10
−10
 0

C

SUV

convertible +20
−3

E

T (convertible,diesel) −20

diesel
gasoline

+10
0

Notice that we have set the preference values in a way that models the intuitive

strength of the preferences described informally in the example. Moreover, we have

used the value 0 to model indifference.

Consider, now, solution s1 =(red,convertible,diesel): pref(s1) = (def1(red) ×
def2(convertible) × def3(diesel)) × def4(convertible, diesel) = (10 + 20 + 10) +
(−20) = 20. Analogously, we can compute the preference of all other solutions and

see that the optimal solution is (red, convertible, gasoline) with global preference of 30.

Consider now a different bipolar preference structure, which differs from the previ-

ous one only for ×p, which is now max. Now solution s1 has preference pref(s1) =
(def1(red)×def2(convertible)×def3(diesel))×def4(convertible, diesel) = max(10,

20, 10) + (−20) = 0. It is easy to see that now an optimal solution has preference 20.

There are two of such solutions: one is the same as the optimal solution above, and the

other one is (white,convertible, gasoline). The two cars have the same features except

for the color. A white convertible is just as good as a red convertible because we de-

cided to aggregate positive preference by taking the maximum elements rather than by

summing them.

6.2 Solving bipolar CSPs

Bipolar problems are NP-hard, since they generalize both classical and soft constraints,

which are already known to be difficult problems [3]. Preference problems based on

c-semirings can be solved via a branch and bound technique, possibly augmented via

soft constraint propagation, which may lower the preferences and thus allow for the

computation of better bounds [3].

In bipolar CSPs, we have both positive and negative preferences. We propose to use

an algorithm similar to Branch and Bound algorithm (BnB) [6] used for unipolar pref-

erences. Being able to do so is a good point since it allows to handle bipolar preferences

without much additional effort.

Following BnB, whenever a solution is found, its preference, if higher that those

found before, is kept as a lower bound, L, for the optimal preference in the maximiza-

tion task. Moreover, for each partial solution t an upper bound, ub(t), is computed by

overestimating the best preference of a solution extending t. If ub(t) ≤ L, i.e. the pref-

erence of the best solution in the subtree below t is worse than the preference of the

best solution found so far, then the subtree below t is pruned.

Our algorithm is different from standard BnB in that it allows the compensation

operator to be non-associative. This may require to consider some total completions of

t in order to compute ub(t).

More precisely, we adapt BnB to compute, at each search node k corresponding

to a partial assignment t, an upper bound to the preferences of all the solutions in the

k-rooted subtree as follows.

– If × is not associative, then each node is associated to a positive and a negative pref-

erence, say p and n, which are obtained by aggregating all preferences of the same

type obtained in the instantiated part of the problem. Next all the best preferences

(which may be positive or negative) in the uninstantiated part of the problem are

considered. By aggregating those of the same type, we get a positive and a negative

preference, say p′ and n′, which can be combined with the ones associated to the

current node. This produces the following upper bound ub = (p×p p′)× (n×n n′),
where p′ = p1 ×p . . . ×p pw, n′ = n1 ×n . . . ×n ns, with w + s = r, where r is

the number of uninstantiated variables/constraints. Hence ub can be computed via

r − 1 aggregation steps and one compensation step.
– If × is associative, then we don’t need to postpone compensation until all con-

straints have been considered. This means that we can keep just one preference

value for each search node, v = p × n, that can be positive or negative, which is

obtained by aggregating all preferences (both positive and negative) obtained in the

instantiated part of the problem. The same can be done considering the best prefer-

ences in the uninstantiated part of the problem, obtaining a value v′. Thus, ub can

now be written as ub = v × v′, where v′ = a1 × . . . × ar, where ai ∈ N ∪ P

is the best preference found in a constraint of the uninstantiated part of the prob-

lem. Thus now ub can be computed via at most r − 1 steps among which there

can be many compensation steps. A compensation can generate the indifference

element 2, which is the unit element for the compensation operator. Thus, when 2

is generated, the successive computation step can be avoided.

Algorithm 1 shows the pseudocode of the procedure we propose to compute the

upper bound within the BnB algorithm. The input is a partial assignment t to a subset

X = {x1 . . . , xk} of the set of variables V = {x1, . . . xn} and the bipolar CSP, P ′,

obtained from the initial bipolar CSP by reducing the domains of the variables in X to

the sigleton corresponding to their assignment in t.

For every constraint c =< def, con >∈ C, constraint c ⇓X,t obtained by projecting

c on X and considering only the subtuple t ↓X∩con is considered. We will denote c ⇓X,t

with c′ and we will denote with C ′ the union set of all such constraints. Note that, by the

definition of projection constraint (Section 2), c ⇓X,t associates to subtuple t ↓X∩con

the best preference associated by def to any of its completions to variables in con.

If × is not associative, then the algorithm computes the aggregation p(t) of all

the best preferences that are positive, i.e., the preferences obtained on each constraint

c+ ∈ C′ such that defc+(t ↓X∩con
c+

) ∈ P and the aggregation n(t) of all the best

preferences that are negative, i.e. the preferences obtained on each constraints c− ∈ C′

such that defc−(t ↓X∩con
c−

) ∈ N . The final step compensates between p(t) and n(t)
and returns the result, ub(t), of this compensation.

If × is associative then the algorithm aggregates directly the best preferences that

can be positive or negative and it returns the result of this aggregation, i.e. ub(t).
If ×n is idempotent, then, to improve this upper bound, we can propagate negative

preferences as it is done in soft constraints [3, 5]. In fact, such a propagation may lower

Algorithm 1: Upper Bound computation

Input: t: assignment to variables in X = {x1, . . . , xk}
P ′: bipolar CSP;

Output: ub(t): preference;

foreach c ∈ C do

compute c′ = c ⇓X,t

C′ ← ∪c∈Cc′;

if × is not associative then

p(t)←
∏

p
{c+∈C′}

defc+(t ↓con
c+

);

n(t)←
∏

n
{c−∈C′}

defc−(t ↓con
c−

);

ub(t)← p(t)× n(t)

else

ub(t)←
∏

{c′∈C′}
defc′(t ↓conc′

);

return ub(t);

the negative values while not changing the semantics of the problem. Due to monotonic-

ity of × and ×n, the upper bound may become smaller and allow for more pruning.

Notice that, if ×n is idempotent, then × cannot be associative (see Theorem 4). Hence,

we can perform propagation only when × is not associative and ×n idempotent. In this

case, since compensation among positive and negative preferences is performed only at

the end (when all the variables are instantiated), only negative preferences associated to

domain values can be lowered through propagation.

Propagation can be achieved by a standard Arc Consistency (AC) algorithm for

soft constraints [6] with an adapted Revise function. For simplicity, we assume to have

only binary soft constraints and we will denote with cij the soft constraint defined

on variables xi and xj . As usual, AC starts initializing a queue, containing pairs of

variables, adding pair (xi, xj) and pair (xj , xi) for every constraint cij in the problem.

While the queue is not empty, a pair, (xi, xj) is popped from the queue and function

Revise is applied to it. If Revise causes some changes (i.e., it lowers the preference of

some value of the domain of xi) then all pairs containing xi, but not xj , are pushed in

the queue. The Revise function is shown in Algorithm 2.

Revise takes in input a pair of variables (xi, xj), the domains of the variables, Dxi

and Dxj
with the functions, defi and defj , associating preferences to the values in the

domains, and the soft constraint cij . The output is the domain of the first variable of the

pair, Dxi
, with a possibly revised preference function associating lower preferences to

some values of the domain. The preference associated to an element, ti, in the domain of

xi is changed as described above. If × is not associative, the revision occurs only if the

preference associated to ti is negative (defi(ti) ∈ N), the highest preference associated

to any tuple of cij in which xi = ti is negative (
∑

tj∈Dxj
defij(titj) ∈ N) and all

the preferences associated to elements in the domain of xj are negative (defj(tj) ∈
N, ∀tj ∈ D(xj)).

Algorithm 2: Revise

Input: pair of variables (xi, xj),

soft constraint cij =< {xi, xj}, defij >,

Domain of xi, Dxi
and preference function defi : Dxi

→ N ∪ P ,

Domain of xj , Dxj
and preference function defj : Dxj

→ N ∪ P

Output: Domain Dxi
, and function defi arc-consistent w.r.t. xj

foreach ti ∈ Dxi
do

if (× not associative and ×n idempotent and defi(ti) ∈ N and

defj(tj) ∈ N,∀tj ∈ Dxj
and

∑
tj∈Dxj

defij(titj) ∈ N) then

p(ti)← defi(ti)×
∑

tj∈Dxj

(defij(titj)× defj(tj))

if p(ti) < defi(ti) then
defi(ti)← p(ti);

7 Related work

Bipolar reasoning and preferences have recently attracted interest in the AI community.

In [5], fair preference structures are introduced. In such a structure, which is an

ordered set with an operation, ⊕, the key concept is that of difference of two elements.

In particular, a structure is said to be fair if for each pair of ordered elements, α ≤
β, there exists a maximal element, γ, such that α ⊕ γ = β called the difference of

β and α. Although there is some similarity with the behaviour of our compensation

operator, in [5], the setting is unipolar and the goal is mainly algorithmic (extension of

arc consistency to Valued CSPs), rather than concerned with modelling new types of

preferences.

In [1, 2] a bipolar preference model based on a fuzzy-possibilistic approach is de-

scribed. The main differences with the framework presented in this paper are the fact

that only fuzzy preferences are considered and that negative preferences are interpreted

as violations of constraints. In particular, the approach followed to combine negative

and positive preferences in [1, 2] is that of giving precedence to the negative preference

optimization and resorting to positive preferences only to distinguish among the opti-

mals found in the first step. Positive and negative preferences are, thus, kept separate

and no compensation is allowed.

In [9] the authors consider totally ordered unipolar and bipolar preference scales.

In this paper we present a method to deal with partially ordered bipolar scales. When

the preference set is totally ordered, operators ×n and ×p described here correspond

respectively to the t− norm and t− conorm used in [9]. Moreover, in [9] an operator,

the uninorm, similar to the compensation operator but with the restriction of always

being associative is considered. Due to the associativity requirement, our compensation

operator is more general and may not be a uninorm when restricted to totally ordered

scales.

8 Future work

We plan to develop a solver for bipolar CSPs, which should be flexible enough to ac-

commodate for both associative and non-associative compensation operators. We also

intend to consider the presence of uncertainty in bipolar problems, possibly using pos-

sibility theory and to develop solving techniques for such scenarios. Another line of

future research is the generalization of other preference formalisms, such as multicri-

teria methods and CP-nets, to deal with bipolar preferences and to study the relation

between bipolarization and importance tradeoffs. Finally, we plan to consider the pos-

sible connections between our work and non-monotonic concurrent constraints.

References

1. S. Benferhat, D. Dubois, S. Kaci, and H. Prade. Bipolar representation and fusion of prefer-

ences in the possibilistic logic framework. In KR 2002. Morgan Kaufmann, 2002.

2. S. Benferhat, D. Dubois, S. Kaci, and H. Prade. Bipolar possibility theory in prefrence

modeling: representation, fusion and optimal solutions. Information Fusion, an International

Journal on Multi-Sensor, Multi-Source Information Fusion, 2006.

3. S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint solving and optimiza-

tion. Journal of the ACM, 44(2):201–236, mar 1997.

4. S. Bistarelli, M. S. Pini, F. Rossi, and K. B. Venable. Bipolar preference problems. In

ECAI-06 (poster), 2006.

5. M. Cooper and T. Schiex. Arc consistency for soft constraints. AI Journal, 154(1-2):199–

227, 2004.

6. R. Dechter. Constraint processing. Morgan Kaufmann, 2003.

7. H. Fargier and J. Lang. Uncertainty in constraint satisfaction problems: a probabilistic ap-

proach. In ECSQARU 93, volume 747 of LNCS. Springer, 1993.

8. H. Fargier, T. Schiex, and G. Verfaille. Valued Constraint Satisfaction Problems: Hard and

Easy Problems. In IJCAI-95, pages 631–637. Morgan Kaufmann, 1995.

9. M. Grabisch, B. de Baets, and J. Fodor. The quest for rings on bipolar scales. Int. Journ. of

Uncertainty, Fuzziness and Knowledge-Based Systems, 2003.

10. Zs. Ruttkay. Fuzzy constraint satisfaction. In 3rd IEEE International Conference on Fuzzy

Systems, pages 1263–1268, 1994.

