Advances in Preference Handling

Although preferences have traditionally been studied in fields such as eco-
nomic decision making, social choice theory, and Operations Research, they
have nowadays found significant interest in computational fields such as Artifi-
cial Intelligence, Databases, and Human-computer interaction. This broadened
scope of preferences leads to new types of preference models, new problems for
applying preference structures, and new kinds of benefits. Explicit preference
modelling provides a declarative way to choose among alternatives, whether
these are solutions of problems to solve, answers of data-base queries, decisions
of a computational agent, plans of a robot, and so on. Preference-based sys-
tems allow finer-grained control over computation and new ways of interactivity,
and therefore provide more satisfactory results and outcomes. Preference mod-
els may also provide a clean understanding, analysis, and validation of heuristic
knowledge used in existing systems such as heuristic orderings, dominance rules,
and heuristic rules. Preferences are studied in many areas of Artificial Intelli-
gence such as knowledge representation, multi-agent systems, constraint satis-
faction, decision making, decision-theoretic planning, and beyond. Preferences
are inherently a multi-disciplinary topic, of interest to economists, computer
scientists, operations researchers, mathematicians and more.

This workshop is intended as a multidisciplinary event that brings together
researchers from these different fields and allows them to exchange experiences
and to discuss advanced methods for preference handling. It thus continues a
series of multidisciplinary workshops on preference handling (a AAAI-02 work-
shop, a Dagstuhl-Seminar in 2004, and an IJCAI-05 workshop) which have been
all very successful.

We have received 32 submissions to this workshop which confirms a contin-
ued interest in research on preference handling. The program committee has
selected 21 papers for the two-day workshop. The selected papers do not only
cover advances in theoretical topics such as preference elicitation, preference rep-
resentation, preference aggregation, voting theory, multi-criteria optimization,
data-base queries, but also interesting applications in areas such as mechanism
design, planning and reasoning about actions, and recommender systems.

We welcome all participants of the multidisciplinary ECAI 2006 workshop
on advances in preference handling and hope that this event will not only stim-
ulate new ideas and insights in preference handling, but also lead to a broader
understanding of the possible applications of this emerging domain.
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Winner Determination in Sequential Majority Voting
with Incomplete Preferences

J. Lang} ML.S. Pini?F. Rossi} K. Venable* and T. Walsh °

Abstract. Voting rules map collections of preference orderings over
a set of candidates (one for each voter) to candidates. Now, in many
contexts, we have to consider the case where either the voters’ pref-
erences or the voting rule itself are incompletely specified. We con-
sider here the family of voting rules consists of sequential majority
comparisons, where the winner is computed from a series of majority
comparisons along a binary tree. We address the computation of the
winner of such voting rules, when the preferences and/or the binary
tree are incompletely specified.

1 INTRODUCTION

Voting rules map collections of preference orderings over a set of
candidates (one for each voter) to candidates. When the voter’s pref-
erences and the voting rule are fully specified, the computation of
the winner is generally easy (except for a few voting rules, see e.g.
[2, 7, 12]). Now, in many contexts, we have to consider the case
where either the voters’ preferences or the voting rule itself are in-
completely specified.

Considering the application of voting rules to incomplete prefer-
ences is particularly relevant in the following situations:

e some voters have expressed their preference profile and some oth-
ers have not yet done it; in that case, the collective preference pro-
file is a collection consisting of n1 complete preference relations
and n — n1 empty preference relations.

all voters have expressed their preferences on a given subset of
candidates, and now new candidates are introduced, about which
the voters’ preferences are unknown.

voters are allowed to express their preferences in an incremen-
tal way: they left some comparisons between candidates unspeci-
fied, because either they don’t know or they don’t want to compare
some candidates (we comment further on the various possible in-
terpretations of incomplete preferences).

preferences have been only partially elicited and/or are expressed
in a language for compact preference representation such as CP-
nets [3] which induce partial preference relations in the general
case.

Voting with incomplete preferences was considered in [8], which
addressed the computation of the candidates winning in some (resp.
all) of the complete extensions of the partial preference profiles (for
a given voting rule). A closely related issue is vote elicitation (4],
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which consists in determining, given a set of individual profiles for
a subset of voters who have already expressed their votes, whether
(a) the outcome of the vote can be determined without needing any
further information and (b) which information must be asked to
which voter.

Considering partially specified voting rules is particularly relevant
for making manipulation by coalitions of voters more difficult (see
for instance [5] where the introduction of some uncertainty in the
application of voting rules makes manipulations computationally
harder). They are also relevant for addressing the issue of the
manipulation of an election by the chairman, since the latter may
have the power of removing the uncertainty on the voting rule.

A well-known family of voting rules consists of sequential ma-
Jority comparisons, where the winner is computed from a series of
majority comparisons along a binary tree.

In this paper we study the impact of the above two kinds of incom-
pleteness on the application of such voting rules. Incompleteness of
the voters’ preferences leads to applying such sequential majority
comparisons to an incomplete majority graph. Incompleteness of the
voting rule itself leads to applying sequential majority comparisons
with an unknown (or partially defined) tree.

In Section 2 we recall some basics on voting theory and sequential
majority comparisons. In Section 3 we deal with incompleteness in
the voting rule. We study the computational difficulty of computing
candidates that win for any some binary tree (called possible win-
ners), and we notice that a candidate win for every binary tree if and
only if it is a Condorcet winner. Then, in Section 4 we focus on a
particular subclass of binary trees: we are interested only in fair se-
quences, where the number of competitions for each candidate is as
balanced as possible. We show that, although winner determination
in this context looks hard, it is however possible, for a given candi-
date A, to build in polynomial time a tree featuring a bounded level
of imbalance where A wins, if such a tree exists. In Section 5 we
cope with the other form of uncertainty, occurring when the agents
reveal their preferences only partially. In this new scenario we extend
the notions of possible winners and Condorcet winners to those of
weak and strong possible/Condorcet winners, and we address com-
putational issues for the determination of these winners.

2 BACKGROUND

Preferences and profiles. We assume that each agent’s prefer-
ences are specified via a (possibly incomplete) total order (TO) over
the set of possible candidates, that we will denote by 2. Given two
candidates A and B, an agent will specify exactly one of the follow-
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graph. When a Condorcet winner A exists, all these sets coincide
with the singleton {A}.

3 COMPUTING POSSIBLE WINNERS FROM A
COMPLETE MAJORITY GRAPH

Clearly, determining whether a candidate is a Condorcet winner can
be done in time linear in the size of the majority graph (that is,
quadratic in the number m of candidates, since the majority graph
can be obtained with a time complexity O(m? x n)).

A constructive characterization of possible winners is already
known in the literature®: possible winners coincide with the elements
in the top cycle of the majority graph (see for instance [11]). (The top
cycle of a majority graph (F is the set of maximal elements of the re-
flexive and transitive closure G* of G). Although the result is not
original, we give a new proof of it (in particular because it shows
how to build a tree for which a given possible winner wins).

Theorem 1 (see e.g. [11, 9]) Given a complete majority graph G, a
candidate A is a possible winner iff for every other candidate C,
there exists a path from A to C' in G.

Proof: (=) Assume that A is a possible winner and that 7" is one of
the competition trees where A wins.

For every node z of T let us denote with label(x) the candidate
represented by x, with w(x) the child of  such that label(w(z)) =
label(x) and with [(z) the other child. Notice that in the majority
graph there is the edge label(x) — label(l(x)).

Take any candidate C' different from A. We will now show how to
find a path from A to C' in G.

Consider procedure P(C,T'(z)) such that T is a tree with root
z and C' is a candidate, that finds a path from label(x) to C'in the
majority graph if C is a label of one or more nodes in 7. If C' €
T(I(x)), there exists arc label(z) — label(l(x)) in G, so procedure
P adds this arc to the path and then calls procedure P(C,T(I(z))),
else, if C' € T'(w(zx)), P just calls P(C,T(w(z))). The base case
for P is when we call P(C, T (x)) and label(l(z)) = C. In this case
P adds arc label(z) — C whichisin G.

It is sufficient to call P(C,T) for every C different from A to
find a path from A to any other candidate.

6 It is a folklore result, mentioned in many places [11, 9]. We couldn’t fi nd
the exact place where it fi rst appears.
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(<=) On the other hand, if A has a path to all other candidates, then
it is a possible winner. In order to show this, we give the following
algorithm, called Tree, which obtains a tree where A wins, starting
from the paths from A to all other candidates.

Algorithm Tree. Consider all paths starting from A of length 2
or more, assuming that all candidates are reachable from A. Take
one of such paths, say p = (A = B1 — Bz — ... — By).
Consider the trees T;, for ¢ = 2,...,k, defined as follows:
Ty = Bg;fori =2,...,k—1, TOOt(T.;) = B, left(Tl) = B,
right(T;) = Tiy1. Let us now consider tree 77, which will be the
starting point for the tree 7" to be built. We will now augment 7" by
considering the other paths from A. For each of them, let us take the
latest element B such that B is one node of 7. Then we build the
tree corresponding to the path portion from B to the end, and we
attach it to 7" where B appears as a leaf. We do the same with the
other paths until all of them have been considered. At the end, we
have a competition tree rooted at A. We now take all paths from A
of length 1, and we add competitions between A and each of these
outcomes. Thus we have a competition tree where A is the root and
all candidates appear. Q.E.D.

As noted above, possible winners coincide with elements in the
top cycle tc(G) of G, defined as the set of maximal elements of the
transitive closure G* of G: z € tc(QG) if for all y # =z, (z,y) is
in G*. This means that, for all y # =, there is a path from z to y
in (3, as required by Theorem 1. Thus the characterization given by
theorem 1 is equivalent to the top cycle characterization. However,
Algorithm Tree provides a constructive way to build a tree where the
possible winner wins.

Corollary 1.1 Given a complete majority graph and a candidate A,
checking whether A is a possible winner and, if so, finding a tree
where A wins, is polynomial in the number of the candidates.

Proof: Because path finding in a graph is polynomial, we can check
in polynomial time whether A is a possible winner ot not, and if it
is, then a tree can be generated in polynomial time using algorithm
Tree. In fact, T'ree considers at most m — 1 paths starting from A,
and each path is considered at most once. Q.E.D.

Example 5. Assume that, given a majority graph G over candi-

dates A, B2, Bs, and C, candidate A is a possible winner and that
only C' beats A. Then, for Theorem 1, there must be a path in G
from A to every other candidate. Assume A — By, — Bs — C
is a path from A to C in G. Figure 3 shows the competition tree
obtained applying algorithm T'ree to such path.O

We end this section by two obvious remarks. First, the set of possi-
ble winners is a singleton { A} if and only if A is a Condorcet winner.
Second, if the majority graph (7 is transitive, then the dominating
candidate is a Condorcet winner. Notice that a candidate can be a
Condorcet winner even if (G is not transitive: consider for example
the following majority graph G = {A >, D, A > B, A >,
C,B >n C,C >n D,D >, B}. In this case A is a Condorcet
winner even if there is a cycle connecting the candidates B, C' and
D.

4 FAIR POSSIBLE WINNERS

Possible winners, as we have defined them, are candidates which win
in at least one competition tree. However, such a tree may be very
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Figure 3. Competition tree corresponding to path A — By — Bz — C
in Example 5.
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unbalanced, thus representing a tournament where the winner may
compete with few other candidates. This may be considered unfair.

In the following, we will consider a competition fair if it is repre-
sented by a balanced competition tree, and we will call such winners
fair possible winners. Notice that a Condorcet winner is a fair possi-
ble winner, since it wins in all trees, thus also in balanced ones.

We will show that a candidate is a fair possible winner when the
nodes of the majority graph can be covered by a tree with a certain
shape, i.e. when the nodes of the majority graph are the terminal
nodes of a competition tree with a certain shape. Such (non-binary)
trees will be called balancing trees, and are defined inductively as
follows:

e 71 is the tree with only one node labeled with 1.

o Ty, with k = 27, is the tree with 2° nodes built by taking two
instances, t1 and o, of tree Thi—1, renumbering the labels of the
nodes of 5 by adding a constant equal to 2°~" to their labels, and
connecting ¢; and ¢2 by setting the root of ¢2 as a child of the root
of t1 .

If 2071 < k < 27, then T}, is just Ty: where we remove all nodes
labeled with numbers higher than k.

Theorem 2 Given a complete majority graph G with k nodes, and
a candidate A, if there is a balancing tree Ty covering all nodes of
G with root A, then A is a fair possible winner.

Proof: Assume there is a balancing tree T}, satisfying the statement
of the theorem. We will show that it is possible to define, starting
from T}, a balanced competition tree Bj, where A wins. The defini-
tion of By, is given by induction:

e [3; coincides with the node covered by the node of T}, with label
1.

B, with & = 2%, is the tree with 2° leaves built defining two
instances of the balanced trees Bo:—1, b1 and bz, obtained renum-
bering the nodes of by by adding 2° 7! to their number, by setting
as the root of By, the root of Ty and by putting b1 and b2 as its
children.

If 2271 < k < 2%, then By is just By: where we remove all
nodes with number higher than k. Then for every node x that is
the unique child of its father, then we set the left child of x as the
left child of the father of « and the right child of x as the the right
child of the father of = and then we remove x.

QE.D.

92

Example 6. Consider the majority graph GG over candidates A, B,
C and D depicted in Figure 4. Since such majority graph is covered
by balancing tree T4 with root A, we can conclude that A is a fair
possible winner.O

Majority graph
(AisPW)

Balanced tree
(A s fair PW)

Balancing tree T

Figure 4. From a majority graph to a balanced tree via balancing tree.

e

Notice that the set of possible winners contains the set of fair
possible winners, which in turn contains the set of Condorcet win-
ners. However, while there could be no Condorcet winner, there is
always at least one fair possible winner (because there exist balanc-
ing trees). Thus, a voting rule accepting only fair possible winners is
well-defined.

Based on the conjecture that finding fair possible winners is diffi-
cult, we propose a way to find in polynomial time, given a possible
winner A, a tree, with a bounded level of imbalance, in which A
wins.

Given a candidate A and a competition tree 7" rooted at A, we
define D(T, A) as the length of the path in the tree 7" from the root
to the only leaf labelled A. Moreover, we call A(A) the maximum
D(T, A) over all competition trees 7" where A wins.

Given a possible winner A, we will now show that A(A) is related
to the possibility for A of being a Condorcet winner, or to win in a fair
competition. If A(A) = m — 1, then A is a Condorcet winner, and
viceversa. In fact, this means that there is a tree where A competes
against everybody else, and wins. This can be seen as an alternative
characterization of Condorcet winners. Moreover, we will now show
that, if A is a possible winner, there exists a competition tree where
A wins with level of imbalance at most m — A(A) — 1. Notice that
there could also be trees, in which A wins, more balanced than this
one.

Theorem 3 Given a complete majority graph G and a possible win-
ner A, there is a competition tree with level of imbalance smaller
than or equal to m — A(A) — 1, where A wins.

Proof: Since A beats A(A) candidates, we can easily build a
balanced competition tree BT involving only A and the candidates
beaten by A. Then we have to add the remaining m — A(A) — 1
candidates to BT'. Since A is a possible winner, there must be a path
from one of the candidates beaten by A to each of the remaining
candidates. Thus applying algorithm T'ree to BT and such remain-
ing candidates, in the worst case, we will add a subtree of depth
m— A(A)—1rooted at one of the nodes beaten by A in BT. Q.E.D.



Theorem 4 Given a complete majority graph G and a possible win-
ner A, we can build in polynomial time a competition tree where A
wins with level of imbalance equal to m — A(A) — 1.

Proof: The procedure illustrated in the proof of Theorem 3 is clearly
polynomial. In fact BT can be built in linear time in A(A) since A
beats every candidate of BT and thus the order of the competitions
among the other candidates in BT can be set in any way respecting
the balance constraint. Moreover, as noted above, the complexity of
Tree is polynomial. Q.E.D.

If we think that unfair tournaments are not desirable, we can con-
sider those possible winners for which there are competition trees
which are as balanced as possible. The theorem 3 helps us in this
respect: if A is a possible winner, knowing A(A) we can compute
an upper bound to the minimum imbalance of a tree where A wins.
For example, if A(A) = m — 3, we know that there is a tree with an
imbalance level 2 (since m — A(A) — 1 = 2) where A wins. In gen-
eral, if A(A) > k, then there is a tree with imbalance level smaller
or equal than m — k — 1, hence the higher A(A) is, the lower is the
upper bound to the level of imbalance of a tree where A wins.

It is thus important to be able to compute A(A). This is an easy
task. In fact, once we know that a candidate A is a possible winner,
A(A) coicides with the number of outgoing edges from A in the
majority graph.

Theorem 5 Given a majority graph G and a possible winner A,
A(A) is the number of outgoing edges from A in G.

Proof: If A has k outgoing edges, no competition tree where A wins
can have A appearing at depth larger than k. In fact, to win, A must
win in all competitions scheduled by the tree, so such competitions
must be at most k. Thus A(A) < k.

Moreover, it is possible to build a competition tree where A
wins and appears at depth k. Let us first consider the linear tree,
Ty, in which A competes against all and only the Dq,..., Dy
candidates which it defeats directly in (. Clearly in such tree,
Tv, D(Th,A) = k. However T1 may not contain all candidates.
In particular it will not contain candidates defeating A in G. We
will now consider, one after the other, each candidate C' such that
C — A in (. For each such candidate we will add a subtree to the
current tree. The current tree at the beginning is 74. Let us consider
the first C' and the path, which we know exists, which connects A
toC,say A - By — By... —» B, — C.letj € {1,...,h}
be such that Bj belongs to the current tree and Vi > j, B; does
not belong to the current tree. Notice that such candidate B; always
exists, since any path from A must start with an edge to one of
, Dy candidates. We then attach to the current tree the
subtree corresponding to the path B; — ... — (C at node Bj
obtaining a new tree in which only new candidates have been added.
After having considered all candidates defeating C' in A, the tree
obtained is a competition tree, in which A wins and has depth
exactly k. Thus A(A) = k. Q.E.D.

If a candidate has the maximum number of outgoing edges in the
majority graph (i.e., it is a Copeland winner), we can give a smaller
upper bound on the amount of imbalance in the fairest/most balanced
tree in which it wins.

Theorem 6 [f a candidate A is a Copeland winner, then the imbal-
ance of a fairest/most balanced tree in which A wins is smaller or
equal than log(m — A(A) —1).
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Proof: If A is Copeland winner then every candidate beating A
must be beaten by at least one candidate beaten by A. Consider
balanced tree BT as defined in the proof of Theorem 3 rooted at A
and involving all and only the candidates beaten by A. In the worst
case all the remaining m — A(A) — 1 candidates are beaten only
by the same candidate in BT, say B’. In such case, however, we
can add to BT a balanced subtree with depth log(m — A(A) — 1)
rooted at B’, involving all the remaining candidates. Q.E.D.

5 COMPUTING THE WINNERS FROM AN
INCOMPLETE MAJORITY GRAPH

In the setting considered so far, agents define all their preferences
over candidates, thus the majority graph is complete; uncertainty
comes only from the tree, i.e., from the voting rule itself. Another
source of uncertainty comes from the fact that the agents’ prefer-
ences may only be partially known. In this case, the majority graph
can be incomplete. We would like to reason about the winners in such
a scenario. Therefore, in this section we assume to have an incom-
plete majority graph, i.e., a graph where some edges are missing.

To cope with this new setting, we need to extend the notions of
possible and Condorcet winners as follows. In particular, we will call
a strong Condorcet winner a candidate which is a Condorcet winner
for all completions of the majority graph. On the other hand, a weak
Condorcet winner is a Condorcet winner for at least one completion
of the majority graph. When the majority graph is complete, strong
and weak Condorcet winners coincide, and coincide also with the
notion of Condorcet winners given above. Similar notions are strong
possible winners and weak possible winners.

We will then give characterizations of these new kinds of winners
that allow us to find their set or an approximation of them in linear
or polynomial time.

More formally,

Definition 1 Let G be an incomplete majority graph and A a candi-
date.

e A is a weak possible winner for GG iff there exists a completion of
the majority graph and a tree for which A wins.

e A is a strong possible winner for G iff for every completion of the
majority graph there is a tree for which A wins.

e A is a weak Condorcet winner for G iff there is a completion of
the majority graph for which A is a Condorcet winner:

e A is a strong Condorcet winner for GG iff for every completion of
the majority graph, A is a Condorcet winner.

We denote by W P(G), SP(G), WC(G) and SC(G) the sets of,
respectively, weak possible winners, strong possible winners, weak
Condorcet winners and strong Condorcet winners for G. We have the
following inclusions:

SC(G) C WC(G) N SP(G)
WC(G)USP(G) C WP(G)

We now give a characterization for each of the four notions above.
Theorem 7 Given an incomplete majority graph G and a candidate
A, A is a strong possible winner if and only if for every other candi-

date B, there is a path from A to B in G.

Proof:



(«<=) Suppose that for each B # A there is a path from A to B
in GG. Then these paths remain in every completion of GG. Therefore,
using Theorem 1, A is a possible winner in every completion of G,
i.e., it is a strong possible winner. (=) Suppose there is no path from
A to B in G. Let us define the following three subsets of the set of
candidates Q: R(A) is the set of candidates reachable from A in G
(including A); R™!(B) is the the set of candidates from which B is
reachable in G (including B); and Others = Q\(R(A)UR™"(B)).
Because there is no path from A to B in G, we have that R(A) N
R™!(B) = 0 and therefore { R(A), R™!(B), Others} is a partition
of 2. Now, let us build the complete tournament G as follows:

Step 1 G =G,

Step 2 forallz € R(A)andally € R™*(B), add (y, ) to G;

Step 3 forall 2z € R(A) andall y € Others, add (y,z) to G;

Step 4 forall 2 € Othersandall y € R™'(B), add (y,z) to G;

Step 5 for all x, y belonging to the same element of the partition: if
neither (z, y) nor (y,z) in in 7 then add one of them (arbitrarily)
inG.

Let us first show that (7 is a complete tournament. If z € R(A) and
y € R '(B), then (z,y) ¢ G (otherwise there would be a path
from A to Bin G). If x € R(A) and y € Others, then (z,y) ¢ G,
otherwise y would be in R(A). If z € Others andy € R™'(B),
then (z,y) ¢ G, otherwise = would be in R™'(B). Therefore,
whenever x and y belong to two distinct elements of the partition, G
contains (y,z) and not (x,y). Now, if x and y belong to the same
element of the partition, by Step 5, G contains exactly one edge
among {(x,), (y,z)}. Therefore, (i is a complete tournament.
Let us show now that there is no path from A to B in G. Suppose
there is one, that is, there exist zo = A,z1,...,2m-1,2m = B
such that {(z0,21), (21,22), ..., (Zm_1,2m)} C G. Now, for all
x € R(A) and all y such that (z,y) € G, by constructin of G we
necessarily have y € R(A). Therefore, for all i < m, if z; € R(A)
then z;y1 € R(A). Now, since zo = A € R(A), by induction we
have z; € R(A) for all 4, thus B € R(A), which is impossible.
Therefore, there is no path from A to B in G.Thus, Gisa complete
tournament with no path from A to B, which implies that A is not a
possible winner w.r.t. G. Lastly, by construction, G contains G. So
Gisa complete extension of GG for which A is not a possible winner.
This shows that A is not a strong possible winner for G. Q.E.D.

Let GG be an asymmetric graph, €2 the set of candidates, and A €
. Let us consider the following algorithm:

begin
3 := {A}U {X]| there is a path from A to X in G};
G' =G,
Repeat
forall (Y,Z) € ¥ x (Q\X)
doif (Z - Y) ¢ G
then add (Y — 7) to G’
end if
end do;
forall 7 € Q\ 3
do
if there is a path from A to Z in G’
thenadd Z to X
endif
end do
Until X =0Q

orthereisno (Y, Z) € X x (Q\X)s.t. (Z —Y) e G
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Return 3.

Let us call f(G, A) the set X returned by the algorithm on G and
A. Then we have the following result:

Theorem 8 f(G, A) = Qifand only if A is a weak possible winner
Jor G.

Proof: We first make the following observation: the graph G’ ob-
tained at the end of the algorithm is asymmetric and extends G. It
is asymmetric because it is asymmetric at the start of the algorithm
(since G is) and then, when an edge Y — Z is added to G’ when
Z — Y is not already in G’.

Now, assume f(G, A) = Q. Let G” be a tournament extending
G’ (and, a fortiori, ). Such a G’ exists (because G’ is asymmetric).
By construction of G, there is a path in G’ from A to every node
of f(G,A) \ {A}, hence to every node of Q \ {A}; since G”
extends G, this holds a fortiori for G”’, hence A is a possible winner
in G” and therefore a weak possible winner for (. Conversely,
assume f(G,A) = X # Q. Denote © = Q \ X. Then, for all
(V.Z) e Ex O wehave Z — Y € G'. Now, Z € © means that
noedge 7 — Y (for 7 € ® and Y € ) was added to G'; hence,
forevery Y € Y and Z € O, we have that Z — Y € G’ if and
only if Z — Y € G. This implies that for all (Y, 7Z) € ¥ x © we
have 7 — Y € (G, therefore, in every tournament G extending (3,
every candidate of © beats every candidate of X, and in particular
A. Therefore, there cannot be a path in G’ from A to a candidate in
7, which implies that A is not a possible winner in G”. Since the
latter holds for every tournament G” extending G, a is not a weak
possible winner for G. Q.E.D.

Since the algorithm computing f(G, A) runs in time o(|Q|?), we
get, as a corollary, that weak possible winners can be computed in
polynomial time.

Given an asymmetric graph &, O is said to be a dominant subset
of G if and only if for every Z € © and every X € 2\ © we have
(Z,X) € G.

Then we have an alternative characterization of weak possible
winners:

Theorem 9 A is a weak possible winner with respect to G if and
only if A belongs to all dominant subsets of G.

Proof: Suppose there exists a dominant subset © of G such that
A ¢ ©O. Then there can be no extension of GG in which there is a
path from A to a candidate 7 € ©. Hence A is not a weak possible
winner for (. Conversely, suppose that A is not a weak possible
winner for G. Then the algorithm for computing f(G, A) stops with
f(G,A) #£ Qand Q\ f(G, A) being a dominant subset of GG. Since
A€ f(G,A),Q\ f(G,A) is a dominant subset of GG to which A
does not belong. Q.E.D.

In the following we will characterize the weak/strong Condorcet
winner and then we will use this characterization for stating that it is
linear to compute the exact set of weak/strong Condorcet winners.

Theorem 10 Given an incomplete majority graph G and a candi-
date A, A is the strong Condorcet winner iff A has m — 1 outgoing
edges in G.



Proof: Follows directly from the fact that, given a majority graph, A
is a Condorcet winner iff A has only outgoing edges in G. Q.E.D.

Theorem 11 Given an incomplete majority graph G and a candi-
date A, A is a weak Condorcet winner iff A has no ingoing edges in

G.

Proof: If A has no ingoing edges, then it has only outgoing or miss-
ing edges. If we replace the missing edges of A with outgoing arcs,
and we complete the other missing edges arbitrarly, we have a com-
pletion of G such that, for every knock-out competition based on G,
A wins. Thus A is weak Condorcet winner.

If there is an ingoing edge to A then for every completion G’ of
G this ingoing edge is present, therefore A cannot be a Condorcet
winner in G’. Q.E.D.

Given an incomplete majority graph, the set of weak/strong Con-
dorcet winners can therefore be computed in polynomial time from
the majority graph’.

We end up this Section by giving the bounds on the number of
weak/strong possible/Condorcet winners.

Theorem 12 Let |QQ| = m. The following inequalities hold, and for
each of them the bounds are reached.

SC(G)
00<\WC(G
e 0<|SP(G)
e 1< |WP(G

Proof: The point for strong Condorcet winner is obvious. For
weak Condorcet winners, if (¢ is the empty graph, all candidates are
weak Condorcet winners; if G is a complete tournament without
a Condorcet winner, there is no weak Condorcet winner. For
strong possible winners: if we take a complete graph containing
X1 > Xo > ... > X;» > X1 (whatever the remaining edges), the
top cycle is €2, therefore there are m possible winners. For the lower
bound: if we take (5 to be the empty graph, then for each candidate
X it is possible to find a completion of G for which X is not a
possible winner, the upper bound m is reached when it is reached
P(@G)| (or for |WC(G)|); the lower bound 1 is obtained for
any complete graph with a Condorcet winner. Q.E.D.

g
<m
<m

| <
)
|
7)

6 CONCLUSION AND FUTURE WORK

We have considered scenarios where several agents express their
preferences over a set of alternatives and their preferences are ag-
gregated by sequential majority rules. We have investigated how to
overcome the problem of determining the winner in this scenario that
is affected by the uncertainty of majority voting rule that can lead a
non-transitive ordering over candidates and so to a not clear defini-
tion of the winner and by the uncertainty derived by the fact that
some agents can reveal only partially their preferences.

We have defined particular classes of winners: possible and Con-
dorcet winners in the case of complete information concerning the

7 Notice that, although they seem to coincide at fi rst glance, the notions of
weak/strong Condorcet winner and the notions of possible/necessary Con-
dorcet winners in [8] are different, because the input is not the same (in-
complete profi les in [8], an incomplete majority graph here), and that sum-
marizing an incomplete profi le by an incomplete majority graph can induce
a loss of information.
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preferences given by the agents and weak/strong possible and Con-
dorcet winner in the case of incomplete preferences. Then we have
found interesting characterizations of these classes that have allowed
us to compute them or an approximation of them in linear or polyno-
mial time both assuming to have complete preferences and assuming
to have incomplete ones.

Moreover we have characterized another class of possible winners,
i.e. the fair possible winners, that are possible winners that can win
only in balanced sequences of knockout competitions and we have
shown that is polynomial to find for a possible winner the minimum
level of imbalance of the trees where it wins.

In the future we want to investigate how the chairman that decides
the sequence of knock-out competitions can interfere and manipulate
the winner determination both in the case of complete preferences of
agents and in the case of incomplete ones.
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