Advances in Preference Handling

Although preferences have traditionally been studied in fields such as eco-
nomic decision making, social choice theory, and Operations Research, they
have nowadays found significant interest in computational fields such as Artifi-
cial Intelligence, Databases, and Human-computer interaction. This broadened
scope of preferences leads to new types of preference models, new problems for
applying preference structures, and new kinds of benefits. Explicit preference
modelling provides a declarative way to choose among alternatives, whether
these are solutions of problems to solve, answers of data-base queries, decisions
of a computational agent, plans of a robot, and so on. Preference-based sys-
tems allow finer-grained control over computation and new ways of interactivity,
and therefore provide more satisfactory results and outcomes. Preference mod-
els may also provide a clean understanding, analysis, and validation of heuristic
knowledge used in existing systems such as heuristic orderings, dominance rules,
and heuristic rules. Preferences are studied in many areas of Artificial Intelli-
gence such as knowledge representation, multi-agent systems, constraint satis-
faction, decision making, decision-theoretic planning, and beyond. Preferences
are inherently a multi-disciplinary topic, of interest to economists, computer
scientists, operations researchers, mathematicians and more.

This workshop is intended as a multidisciplinary event that brings together
researchers from these different fields and allows them to exchange experiences
and to discuss advanced methods for preference handling. It thus continues a
series of multidisciplinary workshops on preference handling (a AAAI-02 work-
shop, a Dagstuhl-Seminar in 2004, and an IJCAI-05 workshop) which have been
all very successful.

We have received 32 submissions to this workshop which confirms a contin-
ued interest in research on preference handling. The program committee has
selected 21 papers for the two-day workshop. The selected papers do not only
cover advances in theoretical topics such as preference elicitation, preference rep-
resentation, preference aggregation, voting theory, multi-criteria optimization,
data-base queries, but also interesting applications in areas such as mechanism
design, planning and reasoning about actions, and recommender systems.

We welcome all participants of the multidisciplinary ECAI 2006 workshop
on advances in preference handling and hope that this event will not only stim-
ulate new ideas and insights in preference handling, but also lead to a broader
understanding of the possible applications of this emerging domain.

Ulrich Junker
Werner Kiefling

August 2006

Organization

Program Chairs

Ulrich Junker, ILOG, France
Werner KieBling, University of Augsburg, Germany

Program Committee

Elisabeth André, University of Augsburg, Germany
Wolf Tilo Balke, University of Hannover, Germany
Ronen Brafman, Stanford University, USA

Gerhard Brewka, University of Leipzig, Germany

Kevin C. Chang, University of Urbana-Champaign, USA
Jan Chomicki, University at Buffalo, USA

Paolo Ciaccia, University of Bologna, Italy

Carmel Domshlak, Technion - Israel Institute of Technology, Israel
Jon Doyle, North Carolina State University, USA
Matthias Ehrgott, University of Auckland, New Zealand
Parke Godfrey, York University, Canada

Judy Goldsmith, University of Kentucky, USA

Eric Horvitz, Microsoft Research, USA

Vagelis Hristidis, Florida International University, USA
Thab Ilyas, University of Waterloo, Canada

Ulrich Junker, ILOG, France

Werner KieBling, University of Augsburg, Germany
Jerome Lang, IRIT - Univ. Paul Sabatier, France

Barry O’Sullivan, University College Cork, Ireland
Simon Parsons, Brooklyn College, USA

Patrice Perny, LIP6 - Paris 6 University, France

Pearl Pu, EPFL, Switzerland

Francesca Rossi, University of Padova, Italy

Alexis Tsoukias, LAMSADE, France

ii

Incompleteness and Incomparability in Preference
Aggregation

M.S. Pini, F. Rossi, K. Venable! and T. Walsh 2

Abstract. We consider how to combine the preferences of multiple
agents despite the presence of incompleteness and incomparability
in their preference orderings. An agent’s preference ordering may
be incomplete because, for example, there is an ongoing preference
elicitation process. It may also contain incomparability, which can
be useful, for example, in multi-criteria scenarios. We focus on the
problem of computing the possible and necessary winners, that is,
those outcomes which can be or always are the most preferred for
the agents. Possible and necessary winners are useful in many sce-
narios. For example, preference elicitation need only focus on the
unknown relations between possible winners and can ignore com-
pletely all other outcomes. Whilst computing the sets of possible and
necessary winners is in general a difficult problem, we identify suf-
ficient conditions where we can obtain the necessary winners and an
upper approximation of the set of possible winners in polynomial
time. Such conditions concern either the language for stating prefer-
ences, or general properties of the preference aggregation function.

1 INTRODUCTION

We consider a multi-agent setting where each agent specifies its pref-
erences by means of an ordering over the possible outcomes. Such
an ordering may include both incomparability and incompleteness.
A pair of outcomes can be ordered, incomparable, in a tie, or the
relationship between them may not yet be specified. Incomparabil-
ity and incompleteness represent very different concepts. Outcomes
may be incomparable because the agent does not wish very dissimilar
outcomes to be compared. For example, we might not want to com-
pare a biography with a novel as the criteria along which we judge
them are just too different. Outcomes can also be incomparable be-
cause the agent has multiple criteria to optimize. For example, we
might not wish to compare a faster but more expensive laptop with
a slower and cheaper one. Incompleteness, on the other hand, repre-
sents simply an absence of knowledge about the relationship between
certain pairs of outcomes. Incompleteness arises naturally when we
have not fully elicited an agent’s preferences or when agents have
privacy concerns which prevent them revealing their complete pref-
erence ordering.

We wish to aggregate together the agents’ preferences into a sin-
gle preference ordering. How do we modify preference aggregation
functions to deal with incompleteness? One possibility is to con-
sider all possible ways in which the incomplete preference orders
can be consistently completed. In each possible completion, prefer-
ence aggregation may give different optimal elements (or winners).
This leads to the idea of the possible winners (those outcomes which

1 University of Padova, Italy, email: {mpini,frossi,kvenable } @math.unipd.it
2 NICTA and UNSW Sydney, Australia, email: Toby. Walsh@nicta.com.au

are winners in at least one possible completion) and the necessary
winners (those outcomes which are winners in all possible comple-
tions) [7]. Possible and necessary winners are useful in many sce-
narios including preference elicitation [3]. In fact, elicitation is over
when the set of possible winners coincides with that of the necessary
winners [5]. In addition, as we argue later, preference elicitation can
focus just on the incompleteness concerning those outcomes which
are possible and necessary winners. We can ignore completely all
other outcomes.

Computing the set of possible and necessary winners is in gen-
eral a difficult problem. However, we identify sufficient conditions
that assure tractability. Such conditions concern properties of the
preference aggregation function, such as monotonicity and indepen-
dence to irrelevant alternatives [1], which are desirable and natural
properties to require. Restrictions on the possible results returned
by the preference aggregation function can also ensure that an up-
per approximation on the set of possible winners can be computed
tractably. One such restriction is when the preference aggregation
functions takes in incomparability but never returns it.

Parts of this paper have appeared in [9].

2 BASIC NOTIONS

Preferences. We assume that each agent’s preferences are speci-
fied via a (possibly incomplete) partial order with ties (IPO) over the
set of possible outcomes, that we will denote by 2. An incomplete
partial order is a partial order where some relation between pairs of
outcomes is unknown. Given two outcomes A and B, an agent will
specify exactly one of the following: A < B, A > B, A = B,
A ~ B,or A?B, where A ~ B means that A and B are incompa-
rable, and A7 B that the relation between A and B is unknown, this
means that it can be any element of {=, >, <, ~}.

Example 1. Given outcomes A, B, and C, an agent may state
preferences such as A > B, B ~ (C,and A > C, or also just
A > Band B ~ (. However, an agent cannot state preferences
suchas A > B,B>C,C > A,oralso A>B,B>C,A~C(C
since neither are POs. O

Profiles. A profile is a sequence of n partial orders p1, . . ., pn Over
outcomes, one for each agent ¢ € {1,...,n}, describing the prefer-
ences of the agents. An incomplete profile is a sequence in which one
or more of the partial orders is incomplete.

Social welfare and preference aggregation. Social welfare func-
tions [1] are functions from profiles to partial orders with ties. Given
a social welfare function f, we define a corresponding preference

108

aggregation function, written pa s, which is a function from incom-
plete profiles to sets of partial orders with ties (POs). Precisely,
given an incomplete profile ip = (ip1,...,ipn), Where the ip;’s
are IPOs, consider all the profiles, say pi,...,pk, obtained from
ip by replacing any occurrence of 7 in the ip;’s with either <, >,
=, or ~ which is consistent with a partial order. Let us then set
pays(ip) = {f(p1),.-., f(pr)}. This set will be called the ser of
results of f on profile ip.

Example 2. Consider the Pareto social welfare function f defined
as follows [1]: given a profile p, for any two outcomes A and B, if all
agents say A > B or A = B and at least one says A > B in p, then
A > B € f(p);ifall agentssay A = Binp,then A = B € f(p);
otherwise, A ~ B € f(p). In Figure 1 we show an example with
three agents and three outcomes A, B, and C'. O

ipl ip2 ip3
p AL C A>C A2C
e
pl: A>\7> /§ ip2 ip3 f(p1): Q\i /§ Comb:e;qmuh
B B AZ—C
AX ¢ , A g
p2 >\B A ip2 ip3 f(p2): N\B/M
Figure 1. An incomplete profi le ip, its completions p; and p2, the results

f(p1) and f(p2), and the combined result cr(f, ip).

Necessary and possible winners. We extend to the case of par-
tial orders the notions of possible and necessary winners presented
in [7] in the case of total orders. Given a social welfare function f
and an incomplete profile ip, we define necessary winners of f given
ip as all those outcomes which are maximal elements in all POs in
pays(ip) . A necessary winner must be a winner, no matter how in-
completeness is resolved in the incomplete profile. Analogously, the
possible winners are all those outcomes which are maximal elements
in at least one of the POs in pas(ip). A possible winner is a winner
in at least one possible completion of the incomplete profile.

We will write NW (f,ip) and PW (f,ip) for the set of necessary
and possible winners of f on profile ip. We will sometimes omit f
and/or ip, and just write NW and PW when they will be obvious or
irrelevant.

Example 3. In Example 2, A and B are the necessary winners,
since they are top elements in all POs f(p;), foralli = 1,2. C'isa
possible winner since it wins in f(p2).00

Combined result. Unfortunately, the set of results can be expo-
nentially large. We will therefore also consider a compact represen-
tation that is polynomial in size. This necessarily throws away infor-
mation by compacting together results into a single combined result.
Given a social welfare function f and an incomplete profile ip, con-
sider a graph, whose nodes are the outcomes, and whose arcs are
labeled by non-empty subsets of {<, >, =, ~}. Label [is on the arc
between outcomes A and B if there exists a PO in pa s (ip) where A
and B are related by . This graph will be called the combined result
of f on ip, and will be denoted by cr(f,ip). If an arc is labeled by

set {<, >, =, ~}, we will say that it is fully incomplete. Otherwise,
we say that it is partially incomplete. The set of labels on the arc
between A and B will be called rel(A, B).

Example4. The combined result for Example 2 is shown in Figure
1.0

3 FROM THE COMBINED RESULT TO
WINNERS

We would like to compute efficiently the set of possible and neces-
sary winners, as well as to determine whether a given outcome is a
possible or a necessary winner. In general, even if the social welfare
function is polynomial, incompleteness in the profile may require
us to consider an exponential number of completions. As observed
in [7], determining the possible winners is in NP, and the necessary
winners is in cONP.

We first consider how to compute the possible and necessary win-
ners given the combined result. We will then consider how to com-
pute the combined result.

Consider the arc between an outcome A and an outcome B in the
combined result. Then, if this arc has the label A < B, then A is
not a necessary winner, since there is an outcome B which is better
than A in some result. If this arc only has the label A < B, then A
is not a possible winner since we must have A < B in all results.
Moreover, consider all the arcs between A and every other outcome
C. Then, if no such arc has label A < C, then A is a necessary
winner. Notice, however, that, even if none of the arcs connecting A
have just a single label A < C, A could not be possible winner. A
could be better than some outcomes in every completion, but there
might be no completion where it is better than all of them.

We can thus define the following Algorithm 1 to compute NW
and a superset of PW, that we will call PW ™.

Algorithm 1: Computing NW and PW*
Input: f: preference aggregation function; ip: incomplete
profile;
Qutput: P, N: sets of outcomes;
P —
N «— Q;
foreach O € 2 do
if 30’ € Q such that (O < O) € cr(fip) then
L N—N-0;
if 30" € Q such that (O < O") € cr(fip) and
(OrO") & cr(f,ip) forr € {=,>,~} then P — P — O;
return P, N;

Theorem 1 Algorithm I terminates in O(m?) time, where m = |Q
returning N = NW and P = PW"* D PW.

>

Example 5. Consider the set of results pa s (ip) = (f(p1), f(p2)),
where f(p1) = {A > B,B > C,A > C} and f(p2) = {C >
B,B > A,C > A}. Then the combined result is the graph with
nodes A, B, and C, in which all labels are {>, <}. Since there are
no arcs with only the label <, Algorithm 1 returns P = PW”™ =
{A, B, C}. However, B is not a possible winner, since it does not

winin f(p1) or f(p2).0

109

Example 6. Consider the set of results (f(p1), f(p2)), where
fp) ={A=B,A<CB<C}and f(p2) ={A=C,A<
B,C < B}. Then the combined result is the graph with nodes A,
B, and C, in which the arcs between A and B, and between A and
C are labeled {=, <}, and the arc between B and C' has the label
{<,>}. Here Algorithm 1 would compute N = NW = () and
P =PW* ={A, B,C}. However, A is not a possible winner. O

To summarize, we have shown how to compute the set of neces-
sary winners, as well as a superset of the set of possible winners from
the combined result in time quadratic in the number of outcomes.
Unfortunately, the computation of the combined result requires ap-
plying the preference aggregation function f on ()(4’”””2) possible
completions. In each of the n IPOs of an incomplete profile there
could be up to m? relations which are not revealed. Even if f can
be computed in polynomial time, this is exponential in the number
of both agents and outcomes. In later sections, we will discuss cir-
cumstances under which we can compute an approximation to the
combined result efficiently.

4 A CONSISTENCY TEST FOR THE POSSIBLE
WINNERS

The set P = PW™ computed by Algorithm 1 can be different from
the set of possible winners for two reasons. First, as the algorithm
considers one arc at a time, it is not able to recognize global incon-
sistencies due to violation of the transitivity property. This can be
seen in Example 6, where A is in set P but it is not a possible win-
ner. In fact, there is no way to choose a label for each arc such that
A is a winner and we have a PO. Second, the algorithm starts from
the combined result where we have already thrown away some infor-
mation. Even if we consider only the POs that are consistent with the
combined result, we may still have more POs than returned by the
preference aggregation function. For instance, in Example 5, B is in-
cluded in the set P but is not a possible winner. Thus, if we just use
the combined result, there is no way to compute the set PW exactly.
We can, however, eliminate the first problem by deleting outcomes
which cannot be possible winners because of intransitivity.

PO-Consistency test. To check whether O is a possible winner,
we eliminate O < O’ from the label of each arc connecting O in the
combined result, and test whether the new structure, which we call
the possibility structure of outcome O (or poss(Q)) is consistent
with transitivity. This test can be reduced to testing the consistency
of a set of branching temporal constraints [2]. In branching temporal
reasoning, the possible relations between two events are exactly the
possible labels of arcs in the combined result: <, >, =, ~. Thus a
branching temporal problem is a set of of constraints of the form
xRy, where R C {<, >, =, ~}. It is shown in [2] that checking the
consistency of a branching temporal constraint problem is NP-hard.
Thus, it is in general a difficult problem to check the consistency of
a possibility structure.

Theorem 2 Given the combined result cr(f,ip) and an outcome O,
checking the consistency of the possibility structure poss(QO) is NP-
hard.

Fortunately, however, there are many classes of branching tempo-
ral constraint problems which are tractable, that are likely to occur in
our setting.

Sufficient conditions for a tractable PO-consistency test. One
of the tractable classes is defined by restricting the labels to the set
{<,>,=}. That is, we do not permit incomparability (~) in the
result. If we do this, then a possibility structure is a set of (non-
branching) temporal constraints. This coincides with the temporal
constraint language I', which is defined and shown to be tractable in

[2].

Theorem 3 Given the combined result cr(f,ip), if none of its labels
include incomparability, then checking the consistency of a possibil-
ity structure is polynomial.

This situation occurs when the social welfare function only ever
returns a total order with ties. Examples are any of the social welfare
functions considered in classical voting theory (which take in total
orders and return a total order).

Another case in which it is easy to remove inconsistencies due to
non-transitivity is when the social welfare function is Pareto (see Ex-
ample 2 for its definition), provided that, for each pair of outcomes,
at least one agent declares a preference (that is, <, >, or ~) over
them. In this case, checking if an outcome is a possible winner is
equivalent to checking the consistency of a set of branching tempo-
ral constraints built on the language called I" 4 in [2], which is shown
to be tractable.

Theorem 4 Given the combined result, consider the Pareto social
welfare function and an incomplete profile where each pair of out-
comes is strictly ordered by at least one agent. Then, for every out-
come O, the consistency test of its possibility structure poss(O) is
tractable.

This language allows any subset of {<,>,=,~} among two
events, except those that contain both < and >. By using the Pareto
rule, we are guaranteed that no arc is labeled both < and > in the
combined result. If A < B holds in one result, then it cannot be that
A > B holds in another result, unless no agent expresses a prefer-
ence among A and B, which is false by assumption.

Similar tractability results hold for other classes of branching tem-
poral constraints [2]. If we have a preference aggregation function
such that the labels of the arcs in the combined result belong to one
such class, these tractability results allow us to deduce that checking
consistency of a possibility structure is tractable.

Necessary and possible winners: exact sets and approximations.

Given any set of outcomes S and a combined result C, we can
check each outcome in S for consistency by evaluating the struc-
tures poss(O) for every O € S, and eliminating those outcomes that
are not consistent. We will denote the remaining set of outcomes by
cons(S,C). C will be omitted when obvious. The relationship be-
tween sets NW, PW, PW?™, and cons(PW™), with reference to
cr(f,ip), can be seen in the following figure:

PW cons(PW#) PW#*

For the specific case of the Pareto function, it is possible to prove
that cons(PW?™, er(f,ip)) = PW. Thus the consistency test is
enough to determine the possible winners.

110

Theorem 5 Given the Pareto social welfare function and an incom-
plete profile ip where each pair of outcomes is strictly ordered by at
least one agent, we have cons(PW ™, cr(Pareto,ip)) = PW.

5 TRACTABLE COMPUTATION OF POSSIBLE
AND NECESSARY WINNERS

We have shown how to compute the set of necessary winners (that is,
NW) and an upper approximation of the set of possible winners (that
is, PW™ or cons(PW™)), given the combined result. Unfortunately,
we noticed also that computing the combined result is itself a difficult
problem in general. In this section we identify some properties of
preference aggregation functions which allow us to compute an upper
approximation to the combined result in polynomial time, assuming
that the social welfare function is polynomially computable. This can
then be used to compute possible and necessary winners again in
polynomial time. We recall that the set of labels of an arc between A
and B in the combined result is called rel(A, B).

Computing rel(A, B) when f is IIA. The first property we con-
sider is independence to irrelevant alternatives (ITA). A social wel-
fare function is said to be IIA when, for any pair of outcomes A
and B, the ordering between A and B in the result depends only on
the relation between A and B given by the agents [1]. Many prefer-
ence aggregation functions are IIA, and this is a desirable property
which is related to the notion of fairness in voting theory [1]. Given
a function which is ITA, to compute the set rel(A, B), we just need
to ask each agent their preference over the pair A and B, and then
use f to compute all possible results between A and B. However, if
agents have incompleteness between A and B, f has to consider all
the possible completions, which is exponential in the number of such
agents.

Computing rel(A, B) when f is ITA and monotonic. Assume
now that f is also monotonic. We say that an outcome B improves
with respect to another outcome A if the relationship between A
and B does not move left along the following sequence: >, >,
(~ or =), <, <. For example, B improves with respect to A if
we pass from A > B to A ~ B. A social welfare function f is
monotonic if for any two profiles p and p’ and any two outcomes A
and B passing from p to p’ B improves with respect to A in one
agent i and p; = pj forall j # 4, then passing from f(p) to f(p") B
improves with respect to A.

Consider now any two outcomes A and B. To compute rel(A, B)
under ITA and monotonicity, again, since f is IIA, we just need to
consider the agents’ preferences over the pair A and B. However,
now we don’t need to consider all possible completions for all agents
with incompleteness between A and B, but just two completions:
A < Band B > A.Function f will return a result for each of these
two completions, say Az B and AyB, where z,y € {<,>,=,~}.
Since f is monotonic, the results of all the other completions will
necessarily be between = and y in the ordering >, >, (~ or =), <,
<. By taking all such relations, we obtain a superset of rel(A, B),
that we call rel™ (A, B). In fact, monotonicity of f assures that, if we
consider profile A < B and we get a certain result, then considering
profiles where A is in a better position w.r.t. B (that is, A > B,
A = B,or A ~ B), will give an equal or better situation for A
in the result. Notice that we have obtained set rel™ (A, B) in time
polynomial in the number of agents as we only needed to consider
two completions.

Under the IIA and monotonicity assumptions, we can thus obtain
in polynomial time a structure similar to the combined result, but
with possibly more labels on the arcs. We call ¢r* (f, ip) such a struc-
ture. However, notice that the additional labels in cr™(f, ip), if any,
have a very specific structure. Only arcs with all four labels <, >, ~,
and = can have additional labels, and such labels can only be ~ and

Given the structure cr”(f,ip), we can now use the same tech-
niques that we have described for the combined result to determine
the possible and necessary winners. Thus, we can apply Algorithm 1
to cr*(f,ip). If N’ and P’ are the sets returned by this algorithm, it
is possible to show that N’ = NW and P’ = PW™,

Theorem 6 Given a IIA and monotonic social welfare function f,
and an IPO ip, the sets NW and PW ™ can be computed in polyno-
mial time.

In fact, the possible addition of labels ~ or = to some arcs does not
change the necessary winners computed by the algorithm, as check-
ing for necessary winners only looks for arcs with a label <. The
same holds for determining the possible winners, which depends
on arcs with only label <, which never have additional labels in
cr*(f,ip). Thus we have a polynomial way to compute both NW
and PW*.

Let us now consider the application of the consistency check to
the outcomes in PW ™ based on the structure cr™(f, ip). It is easy to
see that cons(PW ™, cr(f,ip)) C cons(PW™, cr™(f,ip)). In fact,
the new structure may contain more labels than the old one, and thus
it could be possible to select a PO which is not included in the old
structure. Thus we may obtain an upper approximation of PW, but
at the gain of being able to compute it in polynomial time.

A lower approximation of cons(PW™, cr(f,ip)) can be ob-
tained as well. It is enough to consider the structure obtained from
cr*(f,ip) by eliminating labels ~ and = in all arcs where all
four labels (that is, <,>, ~,=) appear. Let us call cr’(f,ip)
such a structure. If we run the consistency check on this struc-
ture, we get the set cons(PW™, er™(f,ip)), which is included in
cons(PW™, er™(f,ip)), but may not contain all possible winners.
However, it certainly contains at least one possible winner, that wins
in one of the two completions we consider.

Thus, if the preference aggregation function is IIA and mono-
tonic, and the conditions for a tractable consistency check are
met, we can compute in polynomial time all the following sets:
NW, PW*, cons(PW*,cr*(f,ip)), cons(PW™*,cr(f,ip)), and
cons(PW™, cr”(f,ip)). The relationship among these sets can be
seen in the following figure:

‘ (f,ip))) cons(PW*, cr(f,ip))

cons(PW*, cr*_(f,ip))

Consider again the Pareto function, which is both monotone and
ITA. In this case, as noticed above, for any pair of outcome A and
B, rel(A, B) cannot contain both A < B and B < A. Thus the
structure cr™ coincides with cr, since the only difference between the
two structures is the possible addition of labels in arcs where both <

111

and > are present. Moreover, we also noticed that the consistency test
can be achieved in polynomial time, and cons(PW™,cr) = PW.
We, thus, have the following result.

Theorem 7 Given the Pareto social welfare function and an IPO
where each pair of outcomes is strictly ordered by at least one agent,
the sets of NW and PW can be determined in polynomial time.

6 PREFERENCE ELICITATION

One use of necessary and possible winners is in eliciting preferences
[3]. Preference elicitation is the process of asking queries to agents
in order to determine their preferences over outcomes.

At each stage in eliciting agents’ preferences, there is a set of pos-
sible and necessary winners. When NW = PW, preference elici-
tation can be stopped since we have enough information to declare
the winners, no matter how the remaining incompleteness is resolved
[5]. At the beginning, NW is empty and PW contains all outcomes.
As preferences are declared, NW grows and PW shrinks. At each
step, an outcome in PW can either pass to NW or become a loser.

Determining the winners. In those steps where PW is still larger
than NW, we can use these two sets to guide preference elicitation
and avoid useless work. In fact, to determine if an outcome A €
PW — NW is a loser or a necessary winner, it is enough to ask
agents to declare their preferences over all pairs involving A and
another outcome, say B, in PW . In fact, any outcome outside PW
is a loser, and thus is dominated by at least one possible winner.

If the preference aggregation function is ITA, then all those pairs
(A, B) with a defined preference for all agents can be avoided, since
they will not help in determining the status of outcome A. Moreover,
ITA allows us to consider just one profile when computing the rela-
tions between A and B in the result, and assures that the result is
a precise relation, that is, either <, or >, or =, or ~. In the worst
case, we need to consider all such pairs. To determine all the win-
ners, we thus need to know the relations between A and B for all
A€ PW — NW and B € PW. Again, there are examples where
all such pairs must be considered.

We can thus use the following Algorithm 2, which in O(| PW|?)
steps eliminates enough incompleteness to determine the winners. At
each step, the algorithm asks each agent to express its preferences on
a pair of outcomes (via procedure ask(A, B)) and aggregates such
preferences via function f. If function f is polynomially computable,
the whole computation is polynomial in the number of agents and
outcomes.

Theorem 8 If f is IIA and polynomially computable, then determin-
ing the set of winners via preference elicitation is polynomial in the
number of agents and outcomes.

Using the results of the previous sections, under certain conditions
we know how to compute efficiently the necessary winners and an
upper approximation of the set of possible winners. Thus Algorithm
2 can be used with such an upper approximation. This means that we
will possibly consider more pairs than needed. For example, if we
use set PW ™ rather than PW, we could examine also those pairs
between elements in PW* — PW and elements in PW ™.

Discovering an agent’s inconsistencies. The consistency test de-
fined in the previous sections applies to the combined result structure
(or its approximations). However, when we have just one agent, and

Algorithm 2: Winner determination

Input: PW, NW: sets of outcomes; f: preference aggregation
function;
Output: W: set of outcomes;
wins: bool;
P+~ PW;N «+ NW,;
while P £ N do
choose A € P — N;
wins «— true; Pa — P — {A};
repeat
choose B € Py,
if 3 an agent such that A?B then

ask(A,B);

compute f(A,B);

if f(A,B) = (A > B) then

| P—P—{B}
if f(A, B) = (A < B) then
| P+ P—{A}; wins «— false;
Pa — Pa — {B};
until f(A,B) # (A< B)orPa#0;
if wins = true then
L N NU{A}h

W «— N;
return W;

the preference aggregation function is the identity, the combined re-
sult coincides with the agent’s preferences. If we relax the assump-
tion that agents provide preferences in the form of a PO or an IPO,
the consistency check in this case determines whether the possibly
incomplete preferences given by the agent are consistent.

Notice that agents only express non-disjunctive information about
their preferences. That is, exactly one of A > B, A < B, A = B,
A ~ B, or A?B. It is easy to see that a set of such preferences is
consistent iff it is consistent also when each A?B is replaced with
A ~ B.Since labels A > B, A < B, A = B,and A ~ B con-
stitute a subset of language I" 4 [2], testing consistency of an agent’s
preferences is always tractable. Notice that the same would hold if we
allow agents to express their preferences with partial incompleteness.
For example, an agent may specify that A and B are either ordered
or incomparable. This would still be within language I'4 and thus
consistency would still be tractable.

This can be useful also in a multi-agent setting, to determine the
consistency of the preferences given so far by each of the agents.
If at some step we realize that some of the agents have provided
inconsistent preferences, we can communicate this to the agents.

Theorem 9 If the agents express their preferences over a pair of
outcomes, say A and B, using one of A > B, A< B, A= B, A~
B or A?B, then testing the consistency of the agents’ preferences is
polynomial.

If the consistency test is successful, we can exploit the information
deduced by the consistency enforcement to avoid asking for prefer-
ences which are implied by previously elicited ones. If instead we
detect inconsistency, then we can help the agent to make their pref-
erences consistent by providing one or more triangles where consis-
tency fails.

112

7 RELATED WORK

In [7] preference aggregation functions for combining incomplete to-
tal orders are considered. Compared to our work, we permit both in-
completeness and incomparability, while they allow only for incom-
pleteness. Second, they consider social choice functions which return
the (non-empty) set of winners. Instead, we consider social welfare
functions which return a complete partial order. Social welfare func-
tions give a finer grained view of the result. Third, they consider spe-
cific voting rules like the Borda procedure whilst we have focused on
general properties that ensure tractability.

While voting theory has been mainly interested in possibility or
impossibility results about social choice or social welfare functions,
recently there has been some interest also in computational properties
of preference aggregation [10, 8, 7, 5]. It is clear in fact that voting
theory can be useful in multi-agent preference aggregation systems.
However, such systems, to be usable in practice, need to know both
what they can do and also how difficult it is to do it.

The results presented in this paper can be useful not just for com-
bining preferences from multiple agents, but also for combining mul-
tiple conflicting preferences from a sigle agent. A recent work ad-
dressing the combination of multiple complex preferences is pre-
sented in [4]. It proposes various semantic optimization techniques
applicable to preference queries. These techniques are based on the
winnow operator, an algebraic operator that picks from a given re-
lation the set of the most preferred outcomes, according to a given
preference formula. In [6] it is proposed another methodology for
combining complex preferences that is based on the SV-semantics,
that is, a semantics characterizing equally good values among the
indifferent ones.

8 FUTURE WORK

A direction for future work involves adding constraints to agents’
preferences. This means that preference aggregation must take into
account the feasibility of the outcomes. Thus possible and necessary
winners must now be feasible.

It is also important to consider compact knowledge representation
formalisms to express agents’ preferences, such as CP-nets and soft
constraints. Possible and necessary winners should then be defined
directly from such compact representations, and preference elicita-
tion should concern statements allowed in the representation lan-
guage.

Finally, a possibility distribution over the completions of an in-
complete preference relation between two outcomes can be used to
have additional information to exploit when computing possible and
necessary winners.

ACKNOWLEDGEMENTS

This work has been supported by Italian MIUR PRIN project “Con-
straints and Preferences” (n. 2005015491).

REFERENCES
(1]
[2]

K. J. Arrow, A. K. Sen, and K. Suzumara, Handbook of Social Choice
and Welfare., North-Holland, Elsevier, 2002.

M. Broxvall and P. Jonsson, ‘Point algebras for temporal reasoning:
Algorithms and complexity’, Artifcial Intelligence, 149(2), 179-220,
(2003).

L. Chen and P. Pu, ‘Survey of preference elicitation methods’, Techni-
cal Report 1C/200467, Swiss Federal Institute of Technology in Lau-
sanne (EPFL), (2004).

[3]

(4]
[5]
[6]

(7]

(8]

[9

[10]

113

Jan Chomicki, ‘Semantic optimization of preference queries’, in CDB,
pp. 133-148, (2004).

V. Conitzer and T. Sandholm, ‘Vote elicitation: Complexity and
strategy-proofness’, in Proc. AAAI/IAAI 2002, pp. 392-397, (2002).
W. KieBling, ‘Preference queries with sv-semantics’, in 11th Interna-
tional Conference on Management of Data (COMMAD 2005), pp. 15—
26. Computer Society of India, (2005).

K. Konczak and J. Lang, ‘Voting procedures with incomplete prefer-
ences’, in Proc. IJCAI-05 Multidisciplinary Workshop on Advances in
Preference Handling, (2005).

J. Lang, ‘Logical preference representation and combinatorial vote’,
Annals of Mathematics and Artifi cial Intelligence, 42(1), 37-71,
(2004).

M. S. Pini, F. Rossi, K. Brent Venable, and T. Walsh, ‘Computing pos-
sible and necessary winners from incomplete partially-ordered prefer-
ences’, in Poster paper in ECAI-06, (2006).

F. Rossi, K. B. Venable, and T. Walsh, ‘mCP nets: representing and
reasoning with preferences of multiple agents’, in AAAI-2004, pp. 322—
327, (2004).

