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Abstract. Real-life problems present several kinds of preferences. In this paper

we focus on bipolar problems, that are problems with both positive and negative

preferences. Although seemingly specular notions, these two kinds of preferences

should be dealt with differently to obtain the desired natural behaviour. We tech-

nically address this by generalizing the soft constraint formalism, and by consid-

ering the issue of the compensation between positive and negative preferences. In

particular, we suggest how constraint propagation and branch and bound can be

adapted to deal with bipolar problems.

1 Introduction

Real-life problems present several kinds of preferences. In this paper we focus on bipo-

lar problems, i.e., problems with both positive and negative preferences and we present

an algorithm based on branch and bound techniques for solving them. Parts of this paper

concerning modelling of bipolar problems have appeared in [3].

Positive and negative preferences could be thought as two symmetric concepts, but

this does not happen in real scenarios. In fact, assume, for example, to have a scenario

with two objects A and B. If we like both A and B, i.e., if we give to A and B positive

preferences, then the overall scenario should be more preferred than having just A or

B alone, and so the combination of such a preferences should give an higher positive

preference. Instead, if we dislike both A and B, i.e., if we give to A and B negative pref-

erences, then the overall scenario should be less preferred than having just A or B alone

and so the combination of such a negative preferences should give a lower negative

preference. When dealing with both kinds of preferences, it is natural to express also

indifference, which means that we express neither a positive nor a negative preference

over an object. A desired behaviour of indifference is that, when combined with any

preference, it should not influence the overall preference. Finally, besides combining

positive preferences among themselves, and also negative preferences among them-

selves, we also want to be able to combine positive with negative preferences, allowing

compensation, that must produce a positive or a negative preference. For example, if

we have a meal with meat (which we like very much) and wine (which we don’t like),

then what should be the preference of the meal? To know that, we should be able to

compensate the positive preference given to meat with the negative one given to wine.

In this paper we start from the soft constraint formalism [2] based on c-semirings, to

model negative preferences. We then extend it via a new structure, that models positive

preferences and then we define a combination operator between positive and negative

preferences to model preference compensation. Finally, we propose how to adapt con-

straint propagation and branch and bound techniques for finding optimal solutions of

bipolar problems.
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2 Background: semiring-based soft constraints

A soft constraint [2] is a classical constraint [5] where each instantiation of its variables

has an associated value from a (totally or partially ordered) set. This set has two oper-

ations, which makes it similar to a semiring, and is called a c-semiring. A c-semiring

is a tuple (A, +,×,0,1) where: A is a set and 0,1 ∈ A; + is commutative, associa-

tive, idempotent, 0 is its unit element, and 1 is its absorbing element; × is associative,

commutative, distributes over +, 1 is its unit element and 0 is its absorbing element.

Consider the relation ≤S over A such that a ≤S b iff a + b = b. Then: ≤S is a partial

order; + and × are monotone on ≤S ; 0 is its minimum and 1 its maximum; (A,≤S)
is a lattice and, ∀ a, b ∈ A, a + b = lub(a, b). Moreover, if × is idempotent, then

(A,≤S) is a distributive lattice and × is its glb. Informally, the relation ≤S gives us a

way to compare the tuples of values and constraints. In fact, when we have a ≤S b, we

will say that b is better than a. Given a c-semiring S = (A, +,×,0,1), a finite set D

(the domain of the variables), and an ordered set of variables V , a constraint is a pair

〈def, con〉 where con ⊆ V and def : D|con| → A. Therefore, a constraint specifies a

set of variables (the ones in con), and assigns to each tuple of values of D of these vari-

ables an element ofA. A soft constraint satisfaction problem (SCSP) is just a set of soft

constraints over a set of variables. For example, fuzzy CSPs [7] are SCSPs that can be

modeled by choosing the c-semiring SFCSP = ([0, 1], max, min, 0, 1) and weighted
CSPs [2] are SCSPs that can be modeled by using SWCSP = (ℜ+, min, +, +∞, 0).

3 Negative preferences

The structure we use to model negative preferences is exactly a c-semiring [2] as de-

scribed in the previous section. In fact, in a c-semiring there is an element which acts as

indifference, that is 1, since ∀a ∈ A, a × 1 = a and the combination between negative

preferences goes down in the ordering (in fact, a × b ≤ a, b), that is a desired property.

This interpretation is very natural when considering, for example, the weighted semir-

ing (R+, min, +, +∞, 0). In fact, in this case the real numbers are costs and thus neg-
ative preferences. The sum of different costs is worse in general w.r.t. the ordering in-

duced by the additive operator (that is, min) of the semiring. From now on, we will use

a standard c-semiring to model negative preferences, denoted as: (N, +n,×n,⊥n,⊤n).

4 Positive preferences

When dealing with positive preferences, we want two main properties to hold: combi-

nation should bring to better preferences, and indifference should be lower than all the

other positive preferences. These properties can be found in the following structure.

Definition 1. A positive preference structure is a tuple (P, +p,×p,⊥p,⊤p) such that

P is a set and ⊤p,⊥p∈ P ; +p, the additive operator, is commutative, associative,

idempotent, with⊥p as its unit element (∀a ∈ P, a +p ⊥p= a) and⊤p as its absorbing

element (∀a ∈ P, a +p ⊤p = ⊤p); ×p, the multiplicative operator, is associative,

commutative and distributes over +p (a×p (b +p c) = (a×p b) +p (a×p c)), with ⊥p

as its unit element and ⊤p as its absorbing element1.

1 In fact, the absorbing nature of ⊤p can be derived from the other properties.
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The additive operator of this structure has the same properties as the corresponding one

in c-semirings, and thus it induces a partial order over P in the usual way: a ≤p b iff

a +p b = b. This allows to prove that +p is monotone over ≤p (i.e., ∀a, b ∈ P s. t.

a ≤p b then a ×p d ≤p b ×p d, ∀d ∈ P ) and that it is the least upper bound in the

lattice (P,≤p) (∀a, b ∈ P , a ×p b ≥p a +p b ≥p a, b.). An example of a positive

preference structure is P1 = (R+, max, sum, 0, +∞), where preferences are positive

reals aggregated with sum and compared with max.

5 Bipolar preference structures

For handing both positive and negative preferences we propose to combine the two

structures described in sections 4 and 3 in what we call a bipolar preference structure.

Definition 2. A bipolar preference structure is a tuple (N, P, +,×,⊥, 2,⊤) where

– (P, +|P ,×|P , 2,⊤) is a positive preference structure;
– (N, +|N ,×|N ,⊥, 2) is a c-semiring;
– + : (N ∪ P )2 −→ (N ∪ P ) is s. t. an + ap = ap, ∀an ∈ N and ap ∈ P ; this

operator induces a partial ordering on N ∪P : ∀a, b ∈ P ∪N , a ≤ b iff a + b = b;

– × : (N ∪ P )2 −→ (N ∪ P ) is an operator that, ∀ a, b, c ∈ N ∪ P , satisfies

commutativity (a× b = b× a) and monotonicity property (if a ≤ b, a× c ≤ b× c).

Bipolar preference structures generalize both c-semirings and positive structures. In

fact, when in a bipolar structure 2 = ⊤, we have a c-semiring and, when 2 = ⊥, we
have a positive structure. In the following, we will write +n instead of +|N and +p

instead of +|P . Similarly for ×n and ×p. When operator × will be applied to a pair in

(N×P ), we will sometimes write×np and we will call it compensation operator. Given

the way the ordering is induced by + on N ∪ P , easily, we have ⊥≤ 2 ≤ ⊤. Thus,
there is a unique maximum element (that is, ⊤), a unique minimum element (that is,

⊥); the element 2 is smaller than any positive preference and greater than any negative

preference, and it is used to model indifference. A bipolar preference structure allows

us to have a richer structure for one kind of preference, that is common in real-life

problems. In fact, we can have different lattices (P,≤p) and (N,≤n). For example, we
could be satisfied with just two levels of negative preferences, while requiring several

levels of positive preferences.

It is easy to show that the combination of a positive and a negative preference is a

preference which is higher than, or equal to, the negative one and lower than, or equal

to, the positive one. The following theorem holds when a bipolar preference structure

(N, P, +,×,⊥, 2,⊤) is given.

Theorem 1. For all p ∈ P and n ∈ N , n ≤ p × n ≤ p.

This means that the compensation of positive and negative preferences must lie

in one of the chains between the two combined preferences, that passes through the

indifference element 2. Possible choices for combining strictly positive with strictly

negative preferences are thus the average, the median, the min or the max operator.

In general, the compensation operator × may be not associative. We have defined

a list of sufficient conditions for non-associativity of ×. For example, if ×p or ×n is

idempotent and if there are at least two elements p ∈ P and n ∈ N , that are different
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from 2 s. t. p × n = 2, then × is not associative. Since some of these conditions often

occur naturally in practice, it is not reasonable to require associativity of ×.
In the following table each row corresponds to a bipolar preference structure.

N,P +p, ×p +n, ×n ×np ⊥, 2, ⊤

R−, R+ max, sum max, sum sum −∞, 0, +∞

[−1, 0], [0, 1] max, max max, min sum −1, 0, 1

[0, 1], [1, +∞] max, prod max, prod prod 0, 1, +∞

In the first structure positive preferences are positive real numbers and negative prefer-

ences are negative real numbers, the compensation is given by sum, while the ordering

is given by max. In the second structure positive preferences are between 0 and 1 and

negative preferences between -1 and 0. Again, compensation is sum, and the order is

given by max. In the third structure positive preferences are between 1 and +∞ and

negative preferences between 0 and 1. Compensation is obtained by multiplying the

preferences and ordering is again via max.

6 Bipolar preference problems

Once we have defined bipolar preference structures, we can define a notion of bipolar

constraint, which is just a constraint where each assignment of values to its variables is

associated to one of the elements in a bipolar preference structure.

Definition 3. Given a bipolar preference structure (N, P, +,×,⊥, 2,⊤) a finite set D
(the domain of the variables), and an ordered set of variables V , a constraint is a pair

〈def, con〉 where con ⊆ V and def : D|con| → (N ∪ P ).

A bipolar CSP (V, C) is then just a set of variables V and a set of bipolar constraints C

over V . We propose a way of defining the optimal solutions of a bipolar CSP that avoids

problems due to the possible non-associativity. A solution of a bipolar CSP (V, C) is a
complete assignment to all variables in V , with an associated preference that is com-

puted by combining all the positive preferences associated to its projections over the

constraints, combining all the negative preferences associated to its projections over

the constraints, and then, combining the two preferences obtained so far. If × is as-

sociative, then other definitions of solution preference could be used while giving the

same result. A solution s is an optimal solution if there is no other solution s′ with

pref(s′) > pref(s).

6.1 An example of bipolar CSP

Consider the scenario in which we want to buy a car. We have some preferences over

the car’s features. In terms of color, we like red, we are indifferent to white, and we hate

black. Also, we like convertible cars a lot and we don’t care much for SUVs. In terms

of engines, we like diesel. However, we don’t want a diesel convertible.

We may decide to represent positive preferences via positive integers and nega-

tive preferences via negative integers. Moreover, we may decide to maximize the sum

of all kinds of preferences. This can be modelled by a preference structure where N =
[−∞, 0], P = [0, +∞],+ =max,×=sum,⊥ = −∞, 2 = 0,⊤ = +∞. We nowmodel
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the example above over this bipolar preference structure. We have three variables:

variable T (type) with domain {convertible,SUV}, variable E (engine) with domain

{diesel,gasoline}, and variableC (color)with domain {red,white,black}. For the prefer-
ences over the colors, we define a constraint c1 = 〈def1, {C}〉 where, for example, we
set def1(red) = +10, def1(black) = −10, and def1(white) = 0. We also have a con-

straint over car types, say c2 = 〈def2, {T }〉where we set def2(convertible) = +20 and
def2(SUV) = −3. The constraint over engines can then be c3 = 〈def3, {E}〉, where
we can set def3(diesel) = +10 and def3(gasoline) = 0. Finally, the last preference can
be modelled by a constraint c4 = 〈def4, {T, E}〉, where we can set def4(convertible,
diesel) = −20 and def4(a, b) = 0 for (a, b) 6=(convertible, diesel). The following

figure shows the structure of such a bipolar CSP, where we use value 0 for modelling

indifference.
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Consider, now, solution s1 =(red,convertible,diesel):we have pref(s1) = (def1(red)+
def2(convertible) + def3(diesel)) + def4(convertible, diesel) = (10 + 20 + 10) +
(−20) = 20. We can compute the preference of all other solutions and we can see that

the optimal solution is (red, convertible, gasoline) with global preference of 30.

6.2 Solving bipolar CSPs

Bipolar problems are NP-hard, since they generalise both classical and soft constraints,

which are already difficult problems. However, we can devise algorithms and heuristics

to solve them, hopefully efficiently in the average case. Preference problems based on

c-semirings can be solved via a branch and bound technique, possibly augmented via

soft constraint propagation, which may lower the preferences and thus allow for the

computation of better bounds [2]. In bipolar CSPs, we have positive and negative pref-

erences. Branch and bound techniques can be adapted to compute, at each search node

k, an upper bound ub to the preferences of all the solutions in the k-rooted subtree.

If× is non-associative, then each node is associated to a positive and a negative pref-

erence, say p and n, which is obtained by aggregating all preferences of the same type

in the instantiated part of the problem.An upper bound for the subtree can be computed,

for example, by taking the aggregation of all the best positive and negative preferences

in the non-instantiated part of the problem, say p′ and n′, and by aggregating them to the

positive and negative preferences of the current node. This produces the upper bound

ub = (p ×p p′) × (n ×n n′), where p′ = p1 ×p . . . ×p ps, n′ = n1 ×n . . . ×n nw,

and r = s + w is the number of non-instantiated variables/constraints. Thus ub can be

computed via r − 1 aggregation steps and one compensation step.
If× is associative, however, we don’t need to postpone compensation until all con-

straints have been considered, but we can interleave compensation and aggregation
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while searching for an optimal solution. This means that we can keep just one value

v = p × n for each search node, that can be positive or negative, which is obtained

by aggregating all preferences (both positive and negative) obtained in the instantiated

part of the problem. The same can be done considering the best preferences in the unin-

stantiated part of the problem, obtaining a value v′. Thus, ub can now be written as

ub = v × v′, where v′ = a1 × . . .× ar, where ai ∈ N ∪P is the best preference found

in a constraint of the uninstantiated part of the problem. Thus now ub can be computed

via at most r−1 steps among which there can be many compensation steps. A compen-

sation can generate the indifference 2, which is the unit element for the compensation

operator. Thus, when 2 is generated, the successive computation step can be avoided.

If ub ≤ v, where v is the preference of the best solution so far, we can prune the

k-rooted subtree. To improve this upper bound, we can propagate negative preferences

as it is done in soft constraints [2, 4]. In fact, such a propagation may lower the negative

values while not changing the semantics of the problem. Due to the monotonicity of ×
and ×n, the upper bound may thus become smaller and allow for more pruning. Pos-

itive preference can be propagated as well. However, since ×p returns higher positive

preferences, their propagation produces higher values. This is not helpful in improving

the upper bound, since monotonicity of× implies that a higher upper bound is obtained.

7 Related and future work

Bipolar reasoning and preferences have attracted some interest in the AI community.

in [1], a bipolar preference model based on a fuzzy-possibilistic approach is described,

but positive and negative preferences are kept separate and no compensation is allowed.

In [6] totally ordered unipolar and bipolar preference scales are used, whereas we have

presented a way to deal with partially ordered bipolar scales.
We plan to consider the presence of uncertainty in bipolar problems, possibly using

possibility theory and to develop solving techniques for such scenarios. Another line
of future research is the generalization of other preference formalisms, such as multi-
criteria methods and CP-nets, to deal with bipolar preferences and to study the relation
between bipolarization and importance tredeoffs.
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