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Cité des Congrès, Nantes, France

Organized by

Thomas Schiex, Cyril Terrioux and Ioan Todinca (Co-chairs)

Stefano Bistarelli, Hélène Fargier
Georg Gottlob, Javier Larrosa
Jimmy H. M. Lee, Chu Min Li
Pedro Meseguer, Gilles Pesant

Francesca Rossi, Peter van Beek
Willem-Jan van Hoeve, Nic Wilson
Neil Yorke-Smith, Hantao Zhang

and Weixiong Zhang





Uncertainty in Bipolar Preference Problems

Maria Silvia Pini, Francesca Rossi and Brent Venable

Department of Pure and Applied Mathematics, University of Padova, Italy

E-mail: {mpini,frossi,kvenable}@math.unipd.it

Abstract Real-life problems can present several kinds of preferences, and may

also contain some uncertain parts. In this paper we focus on problems with both

positive and negative totally ordered preferences, and with some uncontrollable

variables, which model the uncertainty of the problem. We call such problems

uncertain bipolar problems (UBPs). After defining such problems, we propose to

handle them by extending existing techniques to handle bipolar problems (BPs)

and problems with uncertainty. In particular, we first eliminate the uncertainty of

the problem, transforming a UBP into a BP. Then we solve the BP by associating

to each solution both a degree of preference and a degree of robustness. Suitable

semantics are then defined to order the solutions according to different attitudes

with respect to these two notions.

1 Introduction

Real-life problems present several kinds of preferences. In this paper we focus on pro-

blem which may present both negative and positive preferences [3]. Thus, each partial

instantiation within a constraint will be associated to either a positive or a negative

preference.

For example, when buying a house, we may like very much to live in the country,

but we may also don’t like to have to take a bus to go to work, and be indifferent to the

color of the house. Thus we will give a preference level (either positive, or negative,

or indifference) to each feature of the house, and then we will look for a house which

overall has the best combined preference.

Moreover, many real-life situations contain some form of uncertainty. In this pa-

per we model uncertainty by the presence of so-called uncontrollable variables. This

means that the value of such variables will not be decided by us, but by Nature. A ty-

pical example, in the context of satellite scheduling or weather prediction, is a variable

representing the time when clouds will disappear. Although we cannot choose the value

for such variables, usually we have some information on the plausibility of the different

values. This is modelled in this paper by a possibility distribution over the domains of

such variables.

In this paper we focus on problems with this kind of uncertainty, that present both

positive and negative preferences. We call them uncertain bipolar problems.

We tackle such problems by adapting and extending existing techniques to handle

bipolar problems [3] and problems with preferences and uncertainty [8, 12].

When we have only negative preferences, uncertainty can be eliminated by trans-

forming constraints among controllable and uncontrollable variables into suitable con-

straints on controllable variables only [12].When we consider also positive preferences,
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a similar technique can be used, while maintaining similar properties, despite the fact

that positive and negative preferences are combined by different operators.

The resulting problem is then a bipolar problem (BP) where, however, each partail

instantiation can have both a positive and a negative preference. Such a pair of elements

is then used to associate to each solution an overall preference level and an overall

robustness level.

Compensation of positive with negative preferences can be done via an operator

which is not associative. This does not allow for preference compensation within the

constraints. However, preference compensation can be perfomed at the level of com-

plete solutions, thus allowing us to associate two elements to each solution: a prefe-

rence degree and a robustness degree. Depending on the attitude we have towards risk,

we can then order solutions by using a Pareto or a lexicographic approach over such

two degrees.

2 Background

In this section we give an overview of the background on which our work is based. First,

we present a formalism for representing soft preferences, i.e., the semiring-based soft

constraints [2]. Then, we describe the formalism for modelling bipolar preferences [3].

Finally, we present a formalism for representing uncertain preference problems [12].

2.1 Soft constraints

A soft constraint [2] is a classical constraint [6] where each instantiation of its variables

has an associated value from a (totally or partially ordered) set. This set has two ope-

rations, which makes it similar to a semiring, and is called a c-semiring. A c-semiring

is a tuple (A,+,×,0,1) where: A is a set and 0,1 ∈ A; + is commutative, associa-

tive, idempotent, 0 is its unit element, and 1 is its absorbing element; × is associative,

commutative, distributes over +, 1 is its unit element and 0 is its absorbing element.

Consider the relation ≤S over A such that a ≤S b iff a + b = b. Then: ≤S is a partial

order;+ and × are monotone on ≤S ; 0 is its minimum and 1 its maximum; (A,≤S) is
a lattice and, ∀ a, b ∈ A, a+ b = lub(a, b). Moreover, if× is idempotent, then (A,≤S)
is a distributive lattice and × is its glb. Informally, the relation ≤S gives us a way to

compare (some of the) tuples of values and constraints. In fact, when we have a ≤S b,

we will say that b is better than a.

Given a c-semiring S = (A,+,×,0,1), a fi nite setD (the domain of the variables),

and an ordered set of variables V , a constraint is a pair 〈def, con〉 where con ⊆ V and

def : D|con| → A. Therefore, a constraint specifi es a set of variables (the ones in

con), and assigns to each tuple of values of D of these variables an element of A. A

soft constraint satisfaction problem (SCSP) is just a set of soft constraints over a set

of variables. For example, fuzzy CSPs [10] and weighted CSPS [2] are SCSPs that

can be modeled by choosing resp. c-semirings SFCSP = ([0, 1], max,min, 0, 1) and
SWCSP = (ℜ+, min, sum, +∞, 0).
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2.2 Bipolar preference problems

We present a formalism for handling with positive and negative preferences [3].

Negative preferences. The structure, which is used to model negative preferences

is exactly a c-semiring [2] as described in the previous section. In fact, in a c-semiring

there is an element which acts as indifference, that is 1, since ∀a ∈ A, a×1 = a, and the

combination between negative preferences goes down in the ordering (in fact, a× b ≤
a, b), that is a desired property. This interpretation is very natural when considering,

for example, the weighted c-semiring (R+,min,+,+∞, 0). In fact, in this case the

real numbers are costs and thus negative preferences. The sum of different costs is

worse in general w.r.t. the ordering induced by the additive operator (that is, min) of

the c-semiring. From now on, a standard c-semiring will be used to model negative

preferences, denoted as: (N,+n,×n,⊥n,⊤n).

Positive preferences. When dealing with positive preferences, two main properties

should hold: combination should bring to better preferences, and indifference should

be lower than all the other positive preferences. These properties can be found in the

following structure. A positive preference structure is a tuple (P , +p, ×p, ⊥p, ⊤p) s.
t. P is a set and ⊤p, ⊥p∈P ; +p, the additive operator, is commutative, associative,

idempotent, with ⊥p as its unit element (∀a ∈ P , a+p ⊥p= a) and⊤p as its absorbing
element (∀a ∈ P , a +p ⊤p = ⊤p); ×p, the multiplicative operator, is associative,
commutative and distributes over+p (a×p (b+p c) = (a×p b) +p (a×p c)), with ⊥p
as its unit element and ⊤p as its absorbing element

1.

The additive operator of this structure has the same properties as the corresponding

one in c-semirings, and thus it induces a partial order over P in the usual way: a ≤p b

iff a +p b = b. This allows to prove that +p is monotone (∀a, b, d ∈ P s. t. a ≤p b,
a×p d ≤p b×p d) and that it is the least upper bound in the lattice (P,≤p) (∀a, b ∈ P ,
a×p b ≥p a+p b ≥p a, b).

On the other hand, ×p has different properties w.r.t. ×n: the best element in the

ordering (⊤p) is now its absorbing element, while the worst element (⊥p) is its unit
element. ⊥p models indifference. These are exactly the desired properties for the com-
bination and for indifference w.r.t. positive preferences. An example of a positive prefe-

rence structure is (ℜ+,max,sum,0,+∞), where preferences are positive real numbers

aggregated with sum and compared withmax.

Bipolar preference structure. For handling both positive and negative preferences

in [3] has been defi ned a structure, which is called bipolar preference structure, that

combines the two structures described in sections 2.2 and 2.2. A bipolar preference

structure is a tuple (N , P, +, ×, ⊥,  , ⊤) where, (P, +|P , ×|P ,  , ⊤) is a positive
preference structure; (N,+|N ,×|N ,⊥,  ) is a c-semiring;+ : (N ∪P )2 −→ (N ∪P )
is an operator s. t. an + ap = ap, ∀an ∈ N and ap ∈ P ; it induces a partial ordering on
N ∪ P : ∀a, b ∈ P ∪ N , a ≤ b iff a + b = b; × : (N ∪ P )2 −→ (N ∪ P ) (called the

1 In fact, the absorbing nature of ⊤p can be derived from the other properties.
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compensation operator) is a commutative and monotone (∀a, b, c ∈ N ∪ P , if a ≤ b,

then a× c ≤ b× c) operator.

Bipolar preference structures generalize both c-semirings and positive structures.

In fact, when  = ⊤, we have a c-semiring and, when  = ⊥, we have a positive
structure. Given the way the ordering is induced by + on N ∪ P , easily, we have ⊥≤
 ≤ ⊤. Thus, there is a unique maximum element (that is, ⊤), a unique minimum
element (that is, ⊥); the element  is smaller than any positive preference and greater

than any negative preference, and it is used to model indifference.

A bipolar preference structure allows to have a richer structure for one kind of pre-

ference, that is common in real-life problems. In fact, we can have different lattices

(P,≤p) and (N,≤n). In the following, we will write+n instead of+|N and+p instead

of +|P . Similarly for ×n and ×p. When × is applied to a pair in (N × P ), we will
sometimes write ×np and we will call it compensation operator.

From the monotonicity of the combination operator follows that the combination

of a positive and a negative preference is a preference which is higher than, or equal

to, the negative one and lower than, or equal to, the positive one. Possible choices for

combining strictly positive with strictly negative preferences are thus the average, the

median, the min or the max operator. Moreover, by monotonicity, if ⊤×⊥ = ⊥, then
∀p ∈ P , p×⊥ = ⊥. Similarly, if ⊤×⊥ = ⊤, then ∀n ∈ N , n×⊤ = ⊤.

In general, operator×may be not associative. For example, if the result of⊤×⊥ is

different from⊤ or ⊥, or if there are p ∈ P −{⊤, }, n ∈ N −{⊥, } s.t. p×n =  

and ×n or ×p is idempotent, then × is not associative. Since these conditions often

occur in practice, it is not reasonable to require associativity of ×.

An example of bipolar structure is the tuple (N=[−1, 0], P=[0, 1], +=max, ×,
⊥=−1,  =0, ⊤=1), where × is such that ×p= max, ×n=min and ×np=sum. Negative
preferences are between -1 and 0, positive preferences between 0 and 1, compensation

is sum, and the order is given by max. In this case × is not associative.

Bipolar preference problems. A bipolar constraint is just a constraint where each

assignment of values to its variables is associated to one of the elements in a bipolar

preference structure. Given a bipolar preference structure (N,P,+,×,⊥, ,⊤) a fi nite
set D (the domain of the variables), and an ordered set of variables V , a constraint is a

pair 〈def, con〉 where con ⊆ V and def : D|con| → (N ∪ P ). A bipolar CSP (V,C)
is then just a set of variables V and a set of bipolar constraints C over V . A solution

of a bipolar CSP (V,C) is a complete assignment to all variables in V , say s, with an
associated preference pref(s) = (p1 ×p . . . ×p pk) × (n1 ×n . . . ×n nl), where, for
i := 1, . . . , k pi ∈ P , for j := 1, . . . , l nj ∈ N , ∃〈defi, coni〉 ∈ C such that pi =
defi(s ↓coni) and ∃〈defj, conj〉 ∈ C nj = def(s ↓conj). A solution s is optimal if

there is no other solution s′ with pref(s′) > pref(s). In this defi nition, the preference
of a solution s is obtained by combining all the positive preferences associated to its

projections over the constraints, combining all the negative preferences associated to its

projections over the constraints, and then, combining the two preferences obtained so

far. This defi nition avoids problems due to non-associativity of ×.
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2.3 Fuzzy preferences and uncertainty

In this section we present a formalism for dealing with fuzzy preference problems, in

which there are some uncontrollable variables defi ned by a possibility distribution [12].

Possibility theory. Possibility theory was introduced in [13], in connection with the

fuzzy set theory, to allow reasoning to be carried out on imprecise or vague know-

ledge, making it possible to deal with uncertainties on this knowledge. This theory and

its developments constitute a method of formalizing non-probabilistic uncertainties on

events, i.e., a way of assessing to what extent the occurrence of an event is possible

and to what extent we are certain of its occurrence, without, however, knowing the eva-

luation of the probability of this occurrence. This can happen, for instance, when there

is no similar event to be referred to. Possibility theory, represents the uncertainty on

the occurence of an event in the form of possibility distributions. In what follows we

will consider events represented by an uncontrollable variable taking a value from a

particular subset.

A possibility distribution πx associated to a single valued variable x with domain

D is a mapping from D to a totally ordered scale L (usually [0, 1]) such that ∀d ∈ D,
πx(d) ∈ L and ∃ d ∈ D such that πx(d) = 1, where 1 the top element of the scale L.
The following conventions hold: πx(d) = 0 means x = d is impossibile; πx(d) = 1
means x = d is fully possibile, unsurprizing.

A possibility distribution is similar to a probability density. However, πx(d) = 1
only means that x = d is a plausible situation, which cannot be excluded. Thus, a

degree of possibility can be viewed as an upper bound of a degree of probability. Possi-

bility theory encodes incomplete knowledge while probability accounts for random and

observed phenomena. In particular, the possibility distribution πx can encode: i) com-

plete ignorance about x: πx(d) = 1, ∀d ∈ D; in this case all values d ∈ D are plausible

for x and so it is impossible to exclude any of them and ii) complete knowledge about

x: πx(d̄) = 1, ∃d̄ ∈ D and πx(d) = 0 ∀d ∈ D, d 3= d̄; in this case only the value d̄ is

plausible for x.

Given a possibility distribution πx associated to a variable x, the occurrence of the

event x ∈ E ⊆ D can be defi ned by the possibility and the necessity degrees. The

possibility degree of an event “x ∈ E”, denoted by Π(x ∈ E) or simply by Π(E), is
Π(x ∈ E) = supd∈Eπx(d). It evaluates the extent to which “x ∈ E” is possibly true.
In particular, Π(x ∈ E) = 1 means that the event x ∈ E is totally possible. However

it could also not happen. Therefore in this case we are completely ignorant about its

occurrence. WhileΠ(x ∈ E) = 0means that the event x ∈ E for sure will not happen.

The necessity degree of “x ∈ E”, denoted by N(x ∈ E) or simply by N(E), is
N(x ∈ E) = infd/∈Ec(πx(d)), where c is the order reversing map such that c(p) =
1 − p and EC is the complement of E in D. It evaluates the extent to which “x ∈ E”
is certainly true. In particular, N(x ∈ E) = 1 means that the event x ∈ E is certain,

N(x ∈ E) = 0 means that the event is not necessary at all, although it may happen. In
fact, N(x ∈ E) = 0 iff P (x ∈ EC) = 1.

The possibility and the necessity measures are related by the following formula

Π(E) = 1−N(EC). From this, followsN(E) = 1−Π(EC).
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Uncertainty in soft constraints. Whereas in usual soft constraint problems all the

variables are assumed to be controllable, i.e., their value can be decided according to the

constraints which relate them to other variables, in many real-world problems uncertain

parameters must be used. Such parameters are associated with variables which are not

under the user’s direct control and that can be assigned only by Nature.

In [8], these problems are formalized as a set of variables, that can be controllable

and uncontrollable and a set of fuzzy constraints linking these variables. More preci-

sely, an uncertain soft constraint satisfaction problem (USCSP) is defi ned by a tuple

〈S, Vc, Vu, C〉, where S is a semiring, Vc is the set of controllable variables, Vu is the

set of uncontrollable variables, and C is the set of soft constraints. The soft constraints

in C may involve any subset of variables of Vc ∪Vu. While in a classical soft constraint

problem we can decide how to assign the variables to make the assignment optimal,

in the presence of uncertain parameters we must assign values to the controllable va-

riables guessing what Nature will do with the uncontrollable variables. A solution in

USCSP is an assignment to all its controllable variables. Depending on the assumptions

made on the observability of the uncontrollable variables, different optimality criteria

can be defi ned. For example, an optimal solution for an USCSP can be defi ned as an

assignment of values to the variables in Vc such that, whatever Nature will decide for

the variables in Vu, the overall assignment will be optimal. This corresponds to assume

that the values of the uncontrollable variables are never observable, i.e., that the values

of the controllable variables are decided upon without observing the values of the un-

controllable variables. This is a pessimistic view, and, often, an assignment satisfying

such a requirement does not exist. In such a case, one can relax the optimality condition

to that of having a preference above a certain threshold α in all scenarios. In this case

solving the problem will consist of fi nding the assignments to variables in Vc which

satisfy this property at the level that is highest α. Furthermore, one could be satisfi ed

with fi nding an assignment of values to the variables in Vc such that, for at least one

assignment decided by Nature for the variables in Vu, the overall assignment will be

optimal. This defi nition follows an optimistic view. Other defi nitions can be between

these two extremes.

Moreover, the uncontrollable variables can be equipped with additional informa-

tion on the likelihood of their values. Such information can be given in several ways,

depending on the amount and precision of knowledge we have. In this paper for ex-

pressing such information we will consider possibility distributions. This information

can be used to infer new soft constraints over the controllable variables, expressing the

compatibility of the controllable parts of the problem with the uncertain parameters,

and can be used to change the notion of optimal solution.

In this paper we will consider the approach of guaranteeing a certain preference

level α taking into account the additional information on the uncontrollable variables

provided in the form of possibility distribution.

Unifying fuzzy preferences and uncertainty via possibility theory. An algorithm for

solving uncertain fuzzy CSP keeping separate preference and uncertainty is Algorithm

SP [12], which works as follows.
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It starts from an uncertain fuzzy CSPQ = 〈SFCSP , Vc, Vu, C = Cf ∪Cfu〉, where
Cf is the set of constraints of Q defi ned only on controllable variables, Cfu is the set

of constraints of Q defi ned on both controllable and uncontrollable variables.

It obtains a fuzzy CSP Q′ = 〈SFCSP , Vc, C
′ = Ccontrol ∪ Cu〉, where:

– Ccontrol = Cf ∪ Cp, where Cp is the set of constraints obtained by projecting the
constraints Cfu on the controllable variables.

– Cu is the set of constraints, defi ned only on controllable variables, obtained from

the constraints Cfu applying a specifi c procedure, that is described just down in

this section.

Every constraint in Cu is computed as follows [8]. Consider a fuzzy constraint

C, represented by the fuzzy relation R, which relates a set of controllable variables

X = {x1, . . . , xn}, with domains D1, . . . , Dn, to a set of uncontrollable variables

Z = {z1, . . . , zk} with domains A1, . . . , Ak. Assume the knowledge of the uncon-

trollable variables is modeled with the possibility distribution πZ defi ned on AZ =
A1 × · · · × Ak. Assume the preferential information is instead represented by func-

tion µR : DX × AZ −→ [0, 1], where DX = D1 × · · · × Dn. Value µR(d, a) is
the preference associated to the assignment to controllable and uncontrollable variables

(d, a) = (d1, . . . , dn, a1, . . . , ak). The constraint C is considered satisfi ed2 by assign-

ment d = (d1, . . . , dn) ∈ D1 × · · · ×Dn if, whatever the values of a = (a1, . . . , ak),
these values are compatible3 with d, i.e., if the set of possible values for z is included

in T = {a ∈ AZ |µR(d, a) > 0}. Given assignment d ∈ DX , and µT (a) = µR(d, a),
the preference of d in the new constraint C ′ obtained from C removing uncontrollable

variables is:

µ′(d) = N(d satisfiesC) = N(z ∈ T ) = infa∈AZmax(µT (a), c(πZ (a))) (1)

where c is the order map such that c(p) = 1 − p, ∀p ∈ [0, 1]. The value µ′(d), that
is given by the necessity degree of the event “d satisfi es C”, represents the degree of

satisfaction of C. It is characterized by the following property: µ′(d) ≥ α iff when

πZ(a) > c(α) then µR(d, a) ≥ α, where a is the actual value of z. Informally, the new
preference level of the assignment d obtained reasoning on uncertainty, µ′(d), is greater
or equal than α if and only if the assignments (X = d, Z = a), such that the possibility

πZ(a) is strictly greater than 1 − α, had a preference µR(d, a) greater or equal than α
in the original problem.

For each complete assignment s to Vc, we compute F (s), P (s) and U(s), that are
respectively the minimum preference over the constraints in Cf , Cp and Cu. Finally,

the preference of every complete assignment is given by FP (s) = min(F (s), P (s))
and U .

Once each solution is associated with two values, the satisfaction degree FP and the

robustness U , there are various approaches for ordering solutions which differ on the

attitude toward risk they implement.

2 Here “satisfied”means “at least partially satisfied”.
3 A value a is compatible with d if µR(d, a) > 0.
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Given an USCSP Q, consider a solution s with corresponding satisfaction degree

FP (s) and robustness U(s). Each semantics associates to s the ordered pair 〈as, bs〉 as
follows. Risky (R) and Diplomatic (D) associate to s the pair 〈as, bs〉=〈FP (s), U(s)〉
and Safe (S) the pair 〈as, bs〉=〈U(s), FP (s)〉.

Given two solutions s1 and s2, let 〈a1, b1〉 and 〈a2, b2〉 represent the pairs associated
to the solutions by each semantics in turn, then Risky, Safe and Diplomatic semantics

work as follows.

– Risky and Safe. If a1 > a2 then 〈a1, b1〉 >J 〈a2, b2〉 (and the opposite for a2 > a1).
If a1 = a2 then, if b1 > b2 then 〈a1, b1〉 >J 〈a2, b2〉 (and the opposite for b2 > b1),
while if b1 = b2 then 〈a1, b1〉 = 〈a2, b2〉, where J = R,S

– Diplomatic. If a1 ≤ a2 and b1 ≤ b2 then 〈a1, b1〉 ≤D 〈a2, b2〉 (and the opposite
for a2 ≤ a1 and b2 ≤ b1), if a1 = a2 and b1 = b2 then 〈a1, b1〉 = 〈a2, b2〉, else
〈a1, b1〉 ⊲⊳ 〈a2, b2〉 (⊲⊳ means incomparable).

All semantics, except Diplomatic, can be regarded as a Lex ordering on pairs 〈as, bs〉
with the fi rst component as the most important feature. Diplomatic, instead, is a Pareto

ordering on the pairs. The fi rst semantics, called Risky, considers FP as the most im-

portant feature. Informally, the idea is to give more relevance to the satisfaction degree

that can be reached in the best case considering less important a high risk of being

inconsistent. Hence we are risky, since we disregard almost completely the uncertain

part of the problem. The second semantics, called Safe, represents the opposite attitude

with the respect to the previous one, since it considers U(s) as the most important fea-
ture. Informally, the idea is to give more importance to the robustness level that can be

reached considering less important having a high preference. In particular, in this case

we consider a solution better than another one if its robustness is higher, i.e., if it gua-

rantees an higher number of scenarios with an higher preference. The last semantics,

called Diplomatic, aims at giving the same importance to the two aspects of a solu-

tion: satisfaction degree and robustness. As mentioned above, the Pareto ordering on

pairs 〈as, bs〉 is adopted. The idea is that a pair is to be preferred to another only if it
wins both on preference and robustness, leaving incomparable all the pairs that have

one component higher and the other lower. Contrarily to the Diplomatic semantics, the

other semantics produce a total order over the solutions.

3 Uncertainty in bipolar preference problems

In this section we defi ne bipolar preference problems with uncertainty and we give an

algorithm for translating them in a new kind of bipolar preference problems without

uncertainty. Then we give a way for computing the preference of a solution of these

new problems and we show that the same semantics mentioned in the previous section

can be used here for ordering the solutions.

Uncertain bipolar preference problems are problems that are characterized by a set

of variables, which can be controllable or uncontrollable, and by a set of bipolar con-

straints (see Section 2.2). The domain of every uncontrollable variable is equipped with

a possibility distribution, that specifi es, for every value in the domain, the degree of

plausibility that the variable takes that value.
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Definition 1 (UBCSP).An uncertain bipolar CSP (UBCSP) is a tuple 〈bS, Vc, Vu, bC =
bCf ∪ bCfu〉, where

– bS = (N, P, +, ×, ⊥,  , ⊤) is a bipolar preference structure;
– Vc = {x1, . . . xn} is the set of controllable variables,
– Vu = {z1, . . . zk} is the set of uncontrollable variables with possibility distribu-
tions {π1, . . . πk},

– bC = bCf ∪ bCfu is the set of bipolar constraints, that may involve any subset of
variables of Vc ∪ Vu. More precisely, constraints in bCf involve only on a subset
of controllable variables of Vc, while constraints in bCfu involve both a subset of

variables of Vc and a subset of variables in Vu.

3.1 Removing uncertainty from UBCSPs

We now describe an algorithm, that we call B-SP, for handling with UBCSPs, that ge-

neralizes algorithm SP described in Section 2.3 for fuzzy preferences, to the case of

positive and negative totally ordered preferences. This algorithm takes in input an un-

certain bipolar preference problem BQ = 〈bS, Vc, Vu, BC = BCf ∪ BCfu〉, where
bS = (N, P, +, ×,⊥,  , ⊤),N and P are totally ordered sets w.r.t. the ordering indu-

ced by+ and it returns a new kind of bipolar preference problem without uncertainty. It

is mainly characterized by two steps: in the fi rst one it transforms the given UBCSP in

a new kind of bipolar problem with uncertainty, in order to be able to handle separately

the positive and the negative preferences, and in the second one it removes uncertainty

from this problem.

1st step: translation into a new kind of UBSCP Since we are not assuming that

the compensation operator × of bS is associative, then, for avoiding problems due to

non-associativity, we translate the given UBCSP into a new kind of bipolar preference

problem, that allows to handle separately the positive and the negative preferences of

BQ. In order to get this, we introduce 2-bipolar constraints, that are similar to bipolar

constraints, except that they associate to each assignment not a unique (positive or ne-

gative) value, but a pair of values, that is, a positive and a negative one. We consider

also 2-bipolar CSPs, that are just a set of variables and a set of 2-bipolar constraints

over these variables.

The fi rst step of B-SP regards the translation of every constraint Bc = 〈µ, con〉
in BC into a corresponding 2-bipolar constraint bc =〈bµ, con〉 as follows. For every
assignment d to variables in con, if µ(d) ∈ P , then bµ(d) = (µ(d), ), whereas if
µ(d) ∈ N , then bµ(d) = ( , µ(d)), i.e., if the starting preference of d is positive, then
we put that preference in the fi rst component of the pair, and indifference in the other

component, otherwise, we put starting negative preference in the second component of

the pair and indifference in the other one.

Doing so for every constraint of bC, we obtain an uncertain 2-bipolar CSP bQ =
〈bS, Vc, Vu, bC = bCf ∪ bCfu〉, which is like the uncertain bipolar preference problem
BQ except that every constraints resp. in BCf , and BCfu is translated in the corre-

sponding 2-bipolar constraint resp. in bCf and bCfu. Since now bQ is a problem with

uncertainty that keep separate positive and negative preferences, then we can reason

separately with these two kinds of preferences.
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2nd step: elimination of uncertainty. The next step is characterized by the transla-

tion of the 2-bipolar CSP bQ with uncertainty in a 2-bipolar CSP without uncertainty

bQ′ = 〈bS, Vc, bC
′ = bCf ∪ bCp ∪ bCu〉. This is obtained by eliminating the un-

controllable variables and the 2-bipolar constraints in bCfu relating controllable and

uncontrollable variables and by adding new 2-bipolar constraints only among these

controllable variables. These new constraints, that can be classifi ed in two sets of con-

straints, that we call bCu and bCp, generalize the constraints inCu andCp computed by

SP. We recall that in SP constraints in Cu are obtained by applying a specifi c procedure

for removing uncontrollability and constraints in Cp are computed for recalling the best

preference that can be obtained in the removed constraints.

Constraints in bCu. Every 2-bipolar constraint bc = 〈bµ, con〉 in bCfu, i.e. such that
con ∩ Vc = X and con ∩ Vu = Z is translated into a 2-bipolar constraint bc′ =
〈bµ′, con′〉 in bCu, where con

′ = X , such that for every assignment (d, a) to X × Z ,
with bµ(d, a) = (bµpos(d, a), bµneg(d, a)), bµ

′(d) = (bµ′
pos(d), bµ

′
neg(d)), where

bµ′
pos(d) and bµ

′
neg(d) are obtained by applying a formula similar to the one presented

in Section 2.3 considering resp. bµpos(d, a) and bµneg(d, a) instead of µ(d, a).

Recall that in SP every constraint 〈µ, con〉 in Cfu, i.e. such that con ∩ Vc = X and

con ∩ Vu = Z , is translated in a constraint 〈µ′, con′〉 in Cu, where con
′ = X and for

every assignment d to X , µ′ is defi ned as follows [8]: µ′(d) = infa∈AZmax(µ(d, a),
c(πZ(a))), where c is the order reversing map in [0, 1] such that c(p) = 1−p and where
πZ is the possibility distribution of Z , which has domain AZ . This defi nition depends

on the assumption of commensurability between preferences and possibilities, that can

be done since fuzzy preferences and possibilities are defi ned in the same scale (i.e., in

[0, 1]). It depends also on the fact that the maximum operator is the additive operator of

the fuzzy c-semiring and on the fact that c is an order reversing map in [0, 1] w.r.t. the
ordering induced by the maximum operator such that c(c(p)) = p, ∀p ∈ [0, 1].

Since we want to use a similar formula for both positive and negative preferences,

but the set of positive and negative preferences, i.e., P and N , are not necessarly the

interval [0, 1], we propose to map in [0, 1] the positive and the negative preferences of
every assignment (d, a) ∈ X × Z in every constraint bc ∈ bCfu. We perform this

mapping via functions, that we call resp. fp and fn, that are stricly monotone functions

w.r.t. the ordering ≤S induced by the operator + of bS. More precisely, if P = [a, b]
(resp. N = [a, b]) with a < b, then fp (resp. fn): [a, b] → [0, 1] associates to every

x ∈ [a, b] the value x+|a|
b+|a| ∈ [0, 1]. Then we can apply the formula recalled above,

by replacing the maximum operator with operator + of bS, the map c with a map cS
which reverses the ordering in [0, 1] w.r.t. the ordering ≤S induced by + of bS and by

assuming that operator inf applied to a set A returns the worst element of A w.r.t the

ordering ≤S . Since all the other preferences in the problems are in P and N , then we

map again in P and N the values returned by the formula, by using resp. the inverse

functions f−1
p and f−1

n . f−1
p (resp. f−1

n ): [0, 1] → [a, b] associates to every y ∈ [0, 1]
the value [y(b + |a|) − |a|] ∈ [a, b]. Notice that the fact that fp and fn are stricly

monotone function w.r.t. the ordering≤S induced by the operator+ of bS, implies that

they are invertible and their inverse functions are monotone w.r.t. the same ordering.

More formally, we build the set bCu from bCfu as follows.
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1. Every 2-bipolar constraint bc = 〈bµ, con〉 in bCfu such that con ∩ Vc = X and

con ∩ Vu = Z , is translated in a 2-bipolar constraint with preferences in [0, 1],
bc∗ = 〈bµ∗, con〉, where, for every assignment (d, a) to X × Z , bµ∗(d, a) =
(bµ∗

pos(d, a), bµ
∗
neg(d, a)) and bµ

∗
pos(d, a) = fp(bµpos(d, a)) ∈ [0, 1] and bµ∗

neg(d,
a) = fn(bµneg(d, a)) ∈ [0, 1].

2. Then bc∗ is translated into the 2-bipolar constraint bc∗
′

= 〈bµ∗′

, con∗′

= X〉,
only on controllable variables, where for every assignment d to X , bµ∗′

(d) =
(bµ∗′

pos(d), bµ
∗′

neg(d)) and bµ
∗′

pos(d) and bµ
∗′

neg(d) are computed by following the a

procedure similar to the one described above, that is, bµ∗′

pos(d) = infa∈AZ (bµ
∗
pos(d,

a) + cS(πZ(a))) and bµ∗′

neg(d) = infa∈AZ (bµ
∗
neg(d, a) + cS(πZ(a))), where cS

is an order reversing map w.r.t. ≤S in [0, 1], such that cS(cS(p)) = p.

3. Finally, bc∗
′

is translated in a new 2-bipolar constraint bc′ = 〈bµ′, con′ = X〉 in
bCu where for every assignment d toX , bµ′(d) = (bµ′

pos(d), bµ
′
neg(d)) ∈ P ×N ,

where bµ′
pos(d) = f−1

p (bµ∗′

pos(d)) and µ
′
neg(d) = f−1

n (bµ∗′

neg(d)).

Notice that the property described in Section 2.3 characterizing the preference func-

tion µ′ of every constraint in Cu (i.e., µ
′(d) ≥ α iff when πZ(a) > c(α) then µ(d, a) ≥

α, where a is the actual value of z and c is the order reversing map in [0, 1] s.t.
c(p) = 1− p) holds also in our framework for both bµ′

pos(d) and bµ
′
neg(d) as follows:

– bµ′
pos(d) ≥S β ∈ P iff when πZ(a) > cS(fp(β)), then bµpos(d, a) ≥S β;

– bµ′
neg(d) ≥S α ∈ N iff when πZ(a) > cS(fn(α)), then bµneg(d, a) ≥S α.

Notice also that the procedure above for removing uncontrollability holds both for

positive and negative preferences, since it is not based on the combination operators

(×p and ×n) of positive and negative preferences, which have different behaviours.

Constraints in bCp. Constraints in bCp generalize constraints in Cp of SP. Recall that

constraints in Cp are added to the resulting problem without uncertainty, in order to

avoid having solutions with satisfaction degree F strictly better than the best one in the

original problem. In the case of fuzzy preferences, adding these constraints is useful,

since the aggregation of fuzzy preferences goes down in the ordering. This is also rea-

sonable for the negative preferences whose combination follows the same behaviour.

For the positive preferences, instead, where the combination goes up in the ordering,

is reasonable to save the worst positive preference obtained in the original problem, in

order to avoid to give a solution with positive degree of satisfaction that is strictly lower

than the ones that can be effectively obtained.

Hence, we defi ne the set of constraints bCp as follows. Given a 2-bipolar constraint

bc =< bµ, con > in bCfu, such that con ∩ Vc = X and con ∩ Vu = Z , then the

corresponding 2-bipolar constraint in bCp is bcp =< bµp, conp = X >, and µp is such

that for every assignment d to X , bµp(d) = (bµppos(d), bµpneg (d)) ∈ P × N , where

bµpneg(d) (resp. bµppos(d)) is the best negative (resp. the worst positive) preference
that can be reached for d in bc when we consider the various values a in the domain

of the uncontrollable variables in con, i.e., bµpneg (d) =
∑

n{a∈AZ}
bµneg(d, a) and

bµppos(d) = infp{a∈AZ}
bµpos(d, a), where AZ is the domain of Z ,

∑
n is the opera-

tor +n of the negative preferences applied to more than two negative preferences that
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returns the best negative preference and infp is the operator that, applied to a set of

positive preferences, returns its worst positive preference w.r.t ordering induced by +p.

3.2 Solutions ordering

We solve the problem without uncertainty bQ′ returned by B-SP by associating to

each solution both a degree of satisfaction and a degree of robustness. More preci-

sely, for every solution s of bQ′, i.e. for every complete assignment to Vc, we com-

pute Fpos(s), Ppos(s), Upos(s), that are resp. obtained by combining, via operator×p,

all the positive preferences of the projections of s over the constraints in bCf , bCp
and bCu, and Fneg(s), Pneg(s), Uneg(s), that are resp. obtained by combining, via

operator ×n, all the negative preferences of the projections of s over the constraints
in bCf , bCp and bCu. Hence, we compute two satisfaction levels, a positive one, i.e.,

FPpos(s) = Fpos(s)×pPpos(s) and a negative one, i.e.,FPneg (s) = Fneg(s)×nPneg(s)
and two degrees of robustness, i.e., Upos and Uneg , that characterize resp. the posi-

tive and the negative satisfaction degree. Then we can compensate the two degrees

of satisfactions and the two degrees of robustness. Hence, we associate to every solu-

tion a degree of satisfaction FP (s) = FPpos(s) × FPneg (s) and a robustness degree

U(s) = Upos(s)× Uneg(s). Since every solution is associated to a pair composed by a
satisfaction degree and a robustness degree, in order to compare solutions, we can use

the same semantics (i.e., Risky, Safe and Diplomatic) described in Section 2.3.

Notice that the derived properties presented in [12] continue to hold. The fi rst one

states that, if we fi x possibilities of uncontrollable variables and if we increase prefe-

rences of a given assignment in a constraint in Cfu to controllable variables and uncon-

trollable variables for every value in the domain of the uncontrollable variables, then we

obtain a higher value of robustness. This property holds also in our more general fra-

mework where the robustness of a solution is given by the compensation between Upos
and Uneg . In fact, if we increase preferences of that assignment to controllable varia-

bles, then we obtain values U ′
pos and U

′
neg which are higher than Upos and Uneg , since

we assume that functions fp and fn mapping resp. positive and negative preferences in

[0, 1] are monotone and since ×p and ×n are monotone. Moreover, by monotonicity of

the compensation operator, if U ′
pos and U

′
neg increase, then also robustness U

′ which is

the combination of U ′
pos and U

′
neg increases.

The other property in [12] states that if we fi x preferences in a constraint in Cfu
and if we decreases possibilities of uncontrollable variables, then we obtain an higher

robustness. This continues to hold also in our scenario for both Upos and Uneg since the

proof of this property is based only on the fact that cS is an order reversing map w.r.t.

≤S , i.e., if a1 ≤ a2 then cS(π1) ≥S cS(π2), and on the fact that the combination of
positive preferences and the combination of negative preferences are monotone w.r.t.

≤S . We can conclude as above. Since the compensation operator is monotone then also

our robustness (that is, U = Upos × Uneg), increases.

4 Example

Figure 1 shows an example of an uncertain bipolar CSP, that we call BQ, which is de-

fi ned by 〈bS, Vc = {x, y}, Vu = {z1, z2}, BC = BCf ∪BCfu〉. The bipolar structure
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bS is (N = [−1, 0], P = [0, 1], + = max, ×, ⊥= −1,  = 0, ⊤ = 1), where × is

s. t. ×p = max, ×n = min and ×np = sum. The set of constraints bCfu contains

c1 = 〈µ1, {x, z1}〉 and c2 = 〈µ2, {x, z2}〉, while bCf contains c3 = 〈µ3, {x, y}〉. Fi-
gure 1 shows the positive and the negative preferences within such constraints, as well

as the possibility distributions π1 and π2 over domains of z1 and z2.

Figure 2 (a) shows the uncertain 2-bipolar CSP bQ = 〈bS, Vc = {x, y}, Vu =
{z1, z2}, bC = bCf ∪ bCfu〉 built in the 1st step of B-SP. Figure 2 (b) shows the 2-
bipolar CSP bQ′ = 〈bS, Vc = {x, y}, bC ′ = bCf ∪ bCp ∪ bCu〉, built in the 2nd step
of B-SP. bCf is composed by c3 = 〈µ3, {x, y}〉, bCp by cp1 = 〈µp1, {x}〉 and cp2 =
〈µp2, {x}〉 and bCu by c1

′ = 〈µ′
1, {x}〉 and c2

′ = 〈µ′
2, {x}〉. c1

′ and c2′ are obtained

by using functions fn : N = [−1, 0]→ [0, 1] mapping every value n ∈ [−1, 0] into the
value (n + 1) ∈ [0, 1], f−1

n : [0, 1] → [−1, 0] mapping every value t ∈ [0, 1] into the
value (t− 1) ∈ [−1, 0] and cS mapping every p ∈ [0, 1] in 1− p.

Figure 2 (c) shows all the solutions of our UBCSP BQ that are complete assign-

ments to all the controllable variables (thus x and y). To compute the preference of a

solution s, we need the positive satisfaction degree FPpos(s) (resp., the negative sati-
sfaction degreeFPneg (s)) obtained by combining via×p = max (resp.,×n = min) all

the positive preferences associated to the projections of s in constraints on bCf ∪ bCp,
that are c3, cp1 and cp2. Then we compute the positive robustness Upos(s) (resp., the
negative robustness Uneg(s)) by combining via ×p = max (resp., ×n = min) all the

positive preferences associated to the projections of s in constraints in bCu, i.e., in this

case in c1′ and c2′. Then we obtain a unique satisfaction degree FP (s) for s by com-
pensating (via ×np = sum) FPpos(s) and FPneg(s) and a unique robustness value by
compensating Upos(s) and Uneg(s).

The optimal solution for the Risky semantics is s3 = (y = b, x = a), which
has preference (FP = 0.5, U = −0, 2); for the Safe semantics we have s4 = (y =
b, x = b), which has preference (FP = 0.3, U = 0.1). For the Diplomatic semantics s3
and s4 are equally optimal. Notice that the solutions chosen by the various semantics

differ on the attitude toward risk. In particular, the Risky semantics is risky, since it

disregards almost completely the uncertain part of the problem. In fact, in this example

it chooses the solution that gives an high positive preference in the controllable part,

even if the uncontrollable part, which must be decided by Nature, will give with high

possibility a negative preference. On the other hand, for the Safe semantics is better

to select the solution with a higher robustness, i.e., that guarantees a higher number of

scenarios with a higher preference. In this example, Safe chooses a solution with a lower

preference w.r.t. Risky, but that will have with high possibility a positive preference in

the uncontrollable part.

5 Related and future work

Both bipolar reasoning and preferences, and preferences and uncertainty have recently

attracted some interest in the AI community. In [1] a bipolar preference model based

on a fuzzy-possibilistic approach is described where fuzzy preferences are considered

and negative preferences are interpreted as violations of constraints. In particular, pre-

cedence is given to negative preference optimization, and positive preferences are only
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Figure2. How algorithm B-SP works on the UBSCP of Figure 1.
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used to distinguish among the optimals found in the fi rst phase, thus not allowing for

compensation. In [11] bipolar preference scales are considered and it is defi ned an ope-

rator, the uninorm, which can be seen as a restricted form of compensation but that

is forced to always be associative. Our work deals also with uncertainty and with com-

pensation operators that can be non-associative. In [4, 5, 7, 9] have been defi ned many

approaches with one kind of preferences and uncertainty, but they don’t mix these two

aspects, hence they can’t compare directly preferred assignments and uncertain events.

In this paper we have proposed an algorithm for handling with problems with both

positive and negative preferences, and with some uncontrollable variables, which model

the uncertainty of the problem. After having defi ned such problems, we have proposed

to handle them by extending existing techniques to handle bipolar problems and pro-

blems with uncertainty. We plan to adapt constraint propagation and branch and bound

techniques to deal with uncertain bipolar problems and we intend to develop a solver

for uncertain bipolar CSPs, which should be flexible enough to accommodate for both

associative and non-associative compensation operators.
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