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Abstract

We consider how to combine the preferences of multiple agents despite the pres-
ence of incompleteness and incomparability in their preference orderings. An agent’s
preference ordering may be incomplete because, for example, there is an ongoing
preference elicitation process. It may also contain incomparability, which can be
useful, for example, in multi-criteria scenarios. We focuson the problem of com-
puting thepossibleandnecessarywinners, that is, those outcomes which can be or
always are the most preferred for the agents. Possible and necessary winners are
useful in many scenarios, including preference elicitation. First we show that com-
puting the sets of possible and necessary winners is in general a difficult problem as
it is providing a good approximation of such sets. Then we identify sufficient con-
ditions, related to general properties of the preference aggregation function, where
such sets can be computed in polynomial time. Finally, we show how possible and
necessary winners can be used to focus preference elicitation.

Key words : preference-aggregation, incomparability, incompleteness

1 Introduction

We consider a multi-agent setting where each agent specifiestheir preferences by means
of an ordering over the possible outcomes. A pair of outcomescan be ordered, incompa-
rable, in a tie, or the relationship between them may not yet be specified. Incomparability
and incompleteness represent very different concepts. Outcomes may be incomparable
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because the agent does not wish very dissimilar outcomes to be compared. For example,
we might not want to compare a biography with a novel as the criteria along which we
judge them are just too different. Outcomes can also be incomparable because the agent
has multiple criteria to optimize. For example, we might notwish to compare a faster
but more expensive laptop with a slower and cheaper one. Incompleteness, on the other
hand, represents simply an absence of knowledge about the relationship between certain
pairs of outcomes. Incompleteness arises naturally when wehave not fully elicited an
agent’s preferences or when agents have privacy concerns which prevent them revealing
their complete preference ordering.

As we wish to aggregate together the agents’ preferences into a single preference
ordering, we must modify preference aggregation functionsto deal with incompleteness.
One possibility is to consider all possible ways in which theincomplete preference orders
can be consistently completed. In each possible completion, preference aggregation may
give different optimal elements (orwinners). This leads to the idea of thepossible winners
(those outcomes which are winners in at least one possible completion) and thenecessary
winners(those outcomes which are winners in all possible completions) [8].

While voting theory has been mainly interested in possibility or impossibility results
about social choice or social welfare functions, recently there has been some interest also
in computational properties of preference aggregation [10, 9, 8, 6]. It has also been noted
that the complexity of manipulating an election is closely related to the complexity of
computing possible winners [8, 5].

In this paper we start by considering the complexity of computing the necessary and
the possible winners. We show that both tasks are hard in general, even to approximate.

Then we identify sufficient conditions that assure tractability. Such conditions concern
properties of the preference aggregation function, such asmonotonicity and independence
to irrelevant alternatives (IIA) [1], which are natural properties to require.

Possible and necessary winners are useful in many scenariosincluding preference
elicitation [3]. For example, elicitation is over when the set of possible winners coincides
with that of the necessary winners [6]. However, recognizing when such a condition is
satisfied is hard in general. In the last part of the paper we show that, if the preference
aggregation function is IIA, preference elicitation can focus just on the incompleteness
concerning those outcomes which are possible and necessarywinners, allowing us to
ignore all other outcomes and to complete preference elicitation in polynomial time.

2 Basic notions

Preferences. We assume that each agent’s preferences are specified via a (possibly in-
complete) partial order with ties (IPO) over the set of possible outcomes, that we will
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denote byΩ. An incomplete partial order is a partial order where some relation between
pairs of outcomes is unknown. Given two outcomesA andB, an agent will specify ex-
actly one of the following:A < B, A > B, A = B, A ∼ B, or A?B, whereA ∼ B
means thatA andB are incomparable, andA?B that the relation betweenA andB is
unknown, this means that it can be any element of{=, >, <,∼}.

Example 1. Given outcomesA, B, andC, an agent may state preferences such asA >
B, B ∼ C, andA > C, or also justA > B andB ∼ C. However, an agent cannot state
preferences such asA > B, B > C, C > A, or alsoA > B, B > C, A ∼ C since
neither are POs.

Profiles. A profile is a sequence ofn partial ordersp1, . . . , pn over outcomes, one for
each agenti ∈ {1, . . . , n}, describing the preferences of the agents. Anincomplete profile
is a sequence in which one or more of the partial orders is incomplete.

Social welfare and preference aggregation. Social welfare functions[1] are functions
from profiles to partial orders with ties. Given a social welfare functionf , we define a cor-
respondingpreference aggregation function, writtenpaf , which is a function from incom-
plete profiles to sets of partial orders with ties (POs). Precisely, given an incomplete pro-
file ip = (ip1, . . . , ipn), where theipi’s are IPOs, consider all the profiles, sayp1, . . . , pk,
obtained fromip by replacing any occurrence of? in the ipi’s with either<, >, =, or∼
which is consistent with a partial order. Let us then setpaf (ip) = {f(p1), . . . , f(pk)}.
This set will be called theset of resultsof f on profileip.

Example 2. Consider the Pareto social welfare functionf defined as follows [1]: given
a profilep, for any two outcomesA andB, if all agents sayA > B or A = B and at
least one saysA > B in p, thenA > B ∈ f(p); if all agents sayA = B in p, then
A = B ∈ f(p); otherwise,A ∼ B ∈ f(p). In Figure 1 we show an example with three
agents and three outcomesA, B, andC.

Necessary and possible winners. We extend to the case of partial orders the notions of
possible and necessary winners presented in [8] in the case of total orders. Given a social
welfare functionf and an incomplete profileip, we definenecessary winnersof f given
ip as all those outcomes which are maximal elements in all POs inpaf(ip) . A necessary
winner must be a winner, no matter how incompleteness is resolved in the incomplete
profile. Analogously, thepossible winnersare all those outcomes which are maximal
elements in at least one of the POs inpaf (ip). A possible winner is a winner in at least
one possible completion of the incomplete profile.
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Figure 1: An incomplete profileip, its completionsp1 andp2, the resultsf(p1) andf(p2),
and the combined resultcr(f, ip).

We will write NW (f, ip) andPW (f, ip) for the set of necessary and possible winners
of f on profileip. We will sometimes omitf and/orip, and just writeNW andPW when
they will be obvious or irrelevant.

Example 3. In Example 2,A andB are the necessary winners, since they are top ele-
ments in all POsf(pi), for all i = 1, 2. C is a possible winner since it wins inf(p2).

Combined result. Unfortunately, the set of results can be exponentially large. We will
therefore also consider a compact representation that is polynomial in size. This may
throw away information by compacting together results intoa single combined result.
Given a social welfare functionf and an incomplete profileip, consider a graph, whose
nodes are the outcomes, and whose arcs are labeled by non-empty subsets of{<, >, =,∼
}. Labell is on the arc between outcomesA andB if there exists a PO inpaf (ip) where
A andB are related byl. This graph will be called thecombined resultof f on ip, and
will be denoted bycr(f, ip). If an arc is labeled by set{<, >, =,∼}, we will say that it
is fully incomplete. Otherwise, we say that it ispartially incomplete. The set of labels on
the arc betweenA andB will be calledrel(A, B).

Example 4. The combined result for Example 2 is shown in Figure 1.

3 Possible and Necessary Winners

In this section we show that computing the set of necessary and possible winners of a
social welfare function is, in general, NP-hard even if we restrict ourselves to incomplete
but total orders. We will consider the following, well known, voting rule.
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Single Transferable Vote. In the STV rule each voter provides a total order on can-
didates and, initially, an individual’s vote is allocated to their most preferred candidate.
The quotaof the election is the minimum number of votes necessary to get elected. If
only one candidate is to be elected then the quota is|n/2| + 1, wheren is the number
of voters. If no candidate exceeds the quota, then, the candidate with the fewest votes is
eliminated, and his votes are equally distributed among thesecond choices of the voters
who had selected him as first choice. In what follows we consider STV elections in which
some total orders, provided by the voters, are incomplete.

In general, given an incomplete profile and a candidatea, we say POSSIBLEWINNER

holds iff a is a possible winner of the election.

Theorem 1 PossibleWinner is NP-complete.

Proof: In fact, membership of NP follows by giving a completion of the profile in
whicha wins. Completeness follows from the result that EFFECTIVE PREFERENCE(de-
termining if a particular candidate can win an election withone vote unknown) for STV
is NP-complete [2] Q.E.D.

This result allows us to conclude that, in general, finding possible winners of an elec-
tions is difficult. However, it should be noticed that for many rules used in practice in-
cluding some positional scoring rules [8], answeringPossibleWinner is polynomial.
The complexity of computing possible winners is related to the complexity of manipulat-
ing an election [8]. For instance, it is NP-complete to determine for the Borda, Copeland,
Maximin and STV rules if a coalition can cast weighted votes to ensure a given winner
[5]. It follows therefore that with weighted votes,PossibleWinner is NP-hard for
these rules.

Given an incomplete profile and a candidatea, we say NECESSARYWINNER holds iff
a is a necessary winner of the election.

Theorem 2 NecessaryWinner is coNP-complete.

Proof: The complement problem is in NP since we can show membership by giving a
completion of the profile in which someb different toa wins. To show completeness, we
give a reduction from EFFECTIVE PREFERENCEwith STV in which a appears at least
once in first place in one vote. This restricted form of EFFECTIVE PREFERENCEis NP-
complete [2]. Consider an incomplete profileΠ in which n + 1 votes have been cast,a
has at least one first place vote, one vote remains unknown, and we wish to decide ifa
can win. We construct a new election fromΠ with n new additional votes, and one new
candidateb. We putb at the top of each of these new votes, and rank the other candidates

339



Preference aggregation and elicitation: tractability in the presence of incompleteness and
incomparability

in any order within thesen votes. We placeb in last place in the originaln + 1 votes,
except for one vote wherea is in first place (by assumption, one such vote must exist)
where we placeb in second place and shift all other candidates down. We observe thatb
will survive till the last round asb has at leastn votes and no other candidate can have
as many till the last round. We also observe that ifa remains in the election, then the
score given to each candidate by STV remains the same as in theoriginal election so the
candidates are eliminated in the same order up till the pointa is eliminated. Ifa is elim-
inated before the last round, the second choice vote forb is transferred. Sinceb now has
n + 1 votes,b is unbeatable and must win the election. Ifa survives, on the other hand,
to the last round, we can assumeb is ranked at the bottom of the unknown vote. All the
other candidates buta andb have been eliminated soa hasn + 1 votes and is unbeatable.
Hence, ifa is not a possible winner in the original election,b is the necessary winner of
this new election. Thus determining the necessary winner ofthis new election decides if
a is a possible winner of the original election. Q.E.D.

Given these results, we might wonder if it is easy to compute areasonable approxima-
tion of the sets of possible and necessary winners. Unfortunately this is not the case. The
reduction described in the proof of previous theorem shows that we cannot approximate
the set of possible winners within a factor of two. In fact, wecan show that we cannot
approximate efficiently the set of possible winners within any constant factor.

Theorem 3 It is NP-hard to return a superset of the possible winners,PW ∗ in which we
guarantee|PW ∗| < k|PW | for some given positive integerk.

Proof: We again give a reduction from EFFECTIVE PREFERENCEfor STV in whicha
appears at least once in first place in one vote. Consider an incomplete profileΠ in which
n + 1 votes have been cast,a has at least one first place vote, one vote remains unknown,
and we wish to decide ifa can win. We construct a new election fromΠ. We makek
copies ofΠ. In theith copyΠi, we subscript each candidate with the integeri. We addn
new additional votes, and one new candidateb. We putb at the top of each of these new
votes, and rank all the other candidates exceptai in any order within thesen votes. The
ranking of the candidatesai is left unknown but beneathb. In eachΠi, we placeb in last
place except for one vote whereai is in first place (by assumption, one such vote must
exist) where we placeb in second place and shift all other candidates down. Finally, for
each candidate inΠj not in Πi except foraj , we rank then in any order at the bottom of
the the votes inΠi. The ranking of the candidatesai is again left unknown but beneath
b. We observe thatb will survive till all but one candidate has been eliminated from one
of theΠi. We also observe that ifai remains in the election, then the score given to each
candidate by STV remains the same as in the original electionso the candidates inΠi are
eliminated in the same order up till the pointai is eliminated. Supposea cannot win the
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original election. Thenai will always be eliminated before the final round. The second
choice vote forb is transferred. Sinceb now has at leastn + 1 votes,b is unbeatable and
must win the election. Suppose, on the other hand, thata can win the original election.
Thenai can survive to be the last remaining candidate inΠi. We can assumeb is ranked
at the bottom of the unknown votes of all the candidates with an indexi and above all
the candidates with an indexj different to i. Thusai hasn + 1 votes. If we have the
corresponding ranking in the other unknown votes,aj for j 6= i will also survive. Asb
has onlyn votes,b will be eliminated. It is now possible for any of the candidates,ai

where1 ≤ i ≤ k to win depending on how exactly theai are ranked in the different votes.
Thus the set of possible winners is{ai | 1 ≤ i ≤ k} plusb if a is not a necessary winner
in the original election. Hence, ifa is a possible winner in the original election, the size of
the set of possible winners is greater than or equal tok, whilst if it is not, the set is of size
1. If we know that|PW ∗| < k|PW |, then|PW ∗| < k guarantees that|PW | = 1, b is the
necessary winner and hence thata is not a possible winner in the original election. Q.E.D.

Similarly, we cannot approximate efficiently the set of necessary winners within some
fixed ratio.

Theorem 4 It is NP-hard to return a subset of the necessary winners,NW ∗ in which we
guarantee|NW ∗| > 1

k
|NW | whenever|NW | > 0 for some given positive integerk.

Proof: In the reduction used in the last proof,|NW | = 1 if a is a possible winner in
the original election and 0 otherwise. But if|NW | = 1 and |NW ∗| > 1

k
|NW | then

|NW ∗| = 1. Hence|NW ∗| = 1 iff a is a possible winner. Thus, the size ofNW ∗ will
determine ifa is possible winner. Q.E.D.

4 Combined result

We now consider the problem of computing the combined result. We show that, while in
general it is difficult, there are some restrictions which allow us to compute an approx-
imation of the combined result in polynomial time. In the next section, we will show
how it is possible to compute the set of possible and necessary winners starting from this
approximation to the combined result.

Theorem 5 Given an incomplete profile, determining if a label is in the combined result
for STV is NP-complete.
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Proof: In fact, a polynomial witness is a completion of the incomplete profile. To show
completeness, we use a polynomial number of calls to this problem to determine if a given
candidate is a possible winner. Q.E.D.

¿From this result we immediately get the following corollary.

Corollary 5.1 Given an incomplete profile and a social welfare function, computing the
combined result is NP-hard.

We now introduce some properties of preference aggregationfunctions which allow
us to compute an upper approximation to the combined result in polynomial time. We
recall that the set of labels of an arc betweenA andB in the combined result is called
rel(A, B).

The first property we consider is independence to irrelevantalternatives (IIA). A social
welfare function is said to be IIA when, for any pair of outcomesA andB, the ordering
betweenA andB in the result depends only on the relation betweenA andB given by
the agents [1]. Many preference aggregation functions are IIA, and this is a desirable
property which is related to the notion of fairness in votingtheory [1]. Given a function
which is IIA, to compute the setrel(A, B), we just need to ask each agent their preference
over the pairA andB, and then usef to compute all possible results betweenA and
B. However, if agents have incompleteness betweenA andB, f has to consider all the
possible completions, which is exponential in the number ofsuch agents.

Assume now thatf is also monotonic. We say that an outcomeB improves with
respect toanother outcomeA if the relationship betweenA andB does not move left
along the following sequence:>,≥, (∼ or =), ≤, <. For example,B improves with
respect toA if we pass fromA ≥ B to A ∼ B. A social welfare functionf is monotonic
if for any two profilesp andp′ and any two outcomesA andB passing fromp to p′ B
improves with respect toA in one agenti andpj = p′j for all j 6= i, then passing from
rf(p) to f(p′) B improves with respect toA.

Consider now any two outcomesA andB. To computerel(A, B) under IIA and
monotonicity, again, sincef is IIA, we just need to consider the agents’ preferences over
the pairA andB. However, now we don’t need to consider all possible completions for
all agents with incompleteness betweenA andB, but just two completions:A < B and
A > B. Functionf will return a result for each of these two completions, sayAxB
andAyB, wherex, y ∈ {<, >, =,∼}. Sincef is monotonic, the results of all the other
completions will necessarily be betweenx andy in the ordering>, ≥, (∼ or =), ≤, <.
By taking all such relations, we obtain a superset ofrel(A, B), that we callrel∗(A, B).
In fact, monotonicity off assures that, if we consider profileA < B and we get a certain
result, then considering profiles whereA is in a better position w.r.t.B (that is,A > B,
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A = B, or A ∼ B), will give an equal or better situation forA in the result. Thus we
have obtained an approximation of the combined result, thatwe callcr∗(f, ip). We will
now give a characterization of this approximation of the combined result.

Theorem 6 Given two outcomesA andB, rel∗(A, B) ⊇ rel(A, B). Moreover, ifrel∗(A, B) =
{<, >,∼, =}, then eitherrel∗(A, B) = rel(A, B) or rel∗(A, B)− rel(A, B) = {∼, =}.

By following the procedure informally described above, this approximation can be
computed polynomially, since we only need to consider two completions.

Theorem 7 Given a preference aggregation functionf which is IIA and monotonic, and
an incomplete profileip, computingcr∗(f, ip) is polynomial in the number of agents.

5 Computing possible and necessary winners

We will now show how to determine the possible and necessary winners, givencr∗(f, ip).
Consider the arc between an outcome A and an outcome C incr∗(f, ip). Then, if this
arc has the labelA < C, thenA is not a necessary winner, since there is an outcomeC
which is better thanA in some result. If this arconlyhas the labelA < C, thenA is not a
possible winner since we must haveA < C in all results. Moreover, consider all the arcs
between A and every other outcome C. Then, if no such arc has label A < C, then A is
a necessary winner. Notice, however, that in general, even if none of the arcs connecting
A have just a single labelA < C, A could not be possible winner.A could be better than
some outcomes in every completion, but there might be no completion where it is better
than all of them. We will show that this is not the case iff is IIA and monotonic.

We now define Algorithm 1, which, givencr∗(f, ip), computesNW and PW , in
polynomial time.

Theorem 8 Given cr∗(f, ip), Algorithm 1 terminates inO(m2) time, wherem = |Ω|,
returningN = NW andP = PW .

Proof: Algorithm 1 considers, in the worst case, each arc exactly once, thus we have
O(m2).

N=NW. By construction ofcr∗(f, ip), < 6∈ rel∗(A, C) iff < 6∈ rel(A, C). By Algo-
rithm 1, A ∈ N iff ∀C, < 6∈ rel{A, C}, and this implies that there is no result in which
there exists an outcomeC that beatsA. Thus,A ∈ NW . On the contrary,A ∈ NW iff
A 6< C, ∀C ∈ Ω, for all results, from which,A ∈ N .
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Algorithm 1 : ComputingNW andPW

Input : cr∗(f, ip), where f: IIA and monotonic preference aggregation function and
ip: incomplete profile;
Output : P, N: sets of outcomes;
P ← Ω;
N ← Ω;
foreachA ∈ Ω do

if ∃ C ∈ Ω such that{<} ⊆ rel∗(A, C) then
N ← N − A;

if ∃ C ∈ Ω such that{<} = rel∗(A, C) then P ← P − A;
return P , N ;

P = PW . By Algorithm 1, an outcome is inP iff there is no other outcome which
beats it in all results. Thus,PW ⊆ P . To show the other inclusion we considerA ∈ P
and we construct a completion ofip such thatA wins in its result. First, let us point
out that for any outcomeA, A ∈ P iff 6 ∃C ∈ Ω, rel(A, C) = {<}. If ∀C ∈ Ω,
< 6∈ rel(A, C), then we already know thatA is NW , and thus aPW . Assume now that
∃C ∈ Ω such that{<} ⊂ rel(A, C). Consider now any arc fromA to another outcome
C ′, labeled with more than one relation. If∀C ′ ∈ Ω−{C}, |rel∗(A, C ′)| = 1, then all the
arcs fromA, exceptAC, are labeled with exactly one label from the set:{>,∼, =}. In
such a case, we can safely setAC to any of its labels other than<, since there is, for sure,
a result with that labeling. Moreover, in such a resultA is a winner. Assume, instead,
that there is at least an outcomeC ′ such that|rel∗(A, C ′) > 1|. This means that there is
at least an agent which has not declared his preference onAC ′ and that such preference
cannot be induced by transitivity closure. We replaceA?C ′ with A > C ′ everywhere in
the profile, we perform the transitive closure of all the modified IPOs, and we applyf .
We will prove that such a procedure will never force to chooselabel< onAC. After the
procedure,rel(A, C ′) will contain exactly one label from the set:{>,∼, =}. Let us now
considerrel(C ′, C). We consider only the cases in which|rel(C ′, C)| = 1, since they are
the most restrictive and they imply all others in terms of transitivity. Let us assume that,
after the procedure,A = C ′. If rel∗(C ′, C) = {<}, then,C ′ < C in all results. Due to
monotonicity, we know that,rel∗(A, C ′) = {<, =} or rel∗(A, C ′) = {=}. By transitiv-
ity, this would forcerel(A, C) = {<}. However, this is not possible sinceA ∈ P . This
allows us to conclude that(rel∗(C ′, C) ∩ {>,∼, =}) 6= ∅ and any of such additional la-
bels together withA = C ′ can never forceA < C. Clearly, ifA > C ′ or A ∼ C ′, there is
no labeling ofC ′C which can forceA < C. It should be noticed that any available choice
on C ′C can always be made safely due to the fact that the function is IIA and that the
transitive closure of the profiles has already ruled out inconsistent choices. By iterating
the procedure until every ? in the incomplete profile is replaced, we can construct a result
of the function in whichA is a winner. Q.E.D.
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An example of a preference aggregation function which is both IIA and monotonic is
the Pareto rule, described in Example 2. Another example is the Lex rule, in which agents
are ordered and, given any two outcomesA andB, the relation betweenA andB in the
result is the relation given by the first agent in the order that does not declare a tie between
A andB. A third example is the approval voting rule, for which the tractability result has
been already proven in [8] since it is a positional scoring rule.

6 Preference elicitation

One use of necessary and possible winners is in eliciting preferences [3]. Preference
elicitation is the process of asking queries to agents in order to determine their preferences
over outcomes.

At each stage in eliciting agents’ preferences, there is a set of possible and neces-
sary winners. WhenNW = PW , preference elicitation can be stopped since we have
enough information to declare the winners, no matter how theremaining incompleteness
is resolved [6]. At the beginning,NW is empty andPW contains all outcomes. As pref-
erences are declared,NW grows andPW shrinks. At each step, an outcome inPW can
either pass toNW or become a loser.

Determining the winners. In those steps wherePW is still larger thanNW , we can
use these two sets to guide preference elicitation and avoiduseless work. In fact, to
determine if an outcomeA ∈ PW − NW is a loser or a necessary winner, it is enough
to ask agents to declare their preferences over all pairs involving A and another outcome,
sayB, in PW . In fact, any outcome outsidePW is a loser, and thus is dominated by at
least one possible winner.

If the preference aggregation function is IIA, then all those pairs(A, B) with a defined
preference for all agents can be avoided, since they will nothelp in determining the status
of outcomeA. Moreover, IIA allows us to consider just one profile when computing the
relations betweenA andB in the result, and assures that the result is a precise relation,
that is, either<, or >, or =, or∼. In the worst case, we need to consider all such pairs.
To determine all the winners, we thus need to know the relations betweenA andB for all
A ∈ PW −NW andB ∈ PW . Again, there are examples where all such pairs must be
considered.

We can thus use Algorithm 2, which inO(|PW |2) steps eliminates enough incom-
pleteness to determine the winners. At each step, the algorithm asks each agent to express
its preferences on a pair of outcomes (via procedureask(A, B)) and aggregates such pref-
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erences via functionf . If function f is polynomially computable, the whole computation
is polynomial in the number of agents and outcomes.

Theorem 9 If f is IIA and polynomially computable, then determining the set of winners
via preference elicitation is polynomial in the number of agents and outcomes.

Using the results of the previous sections, under certain conditions we know how to
compute efficiently the necessary winners and the possible winners. Thus Algorithm 2
can be given in input the outputs of Algorithm 1.

Algorithm 2 : Winner determination
Input : PW, NW: sets of outcomes;f : preference aggregation function;
Output : W: set of outcomes;
wins: bool;
P ← PW ; N ← NW ;
while P 6= N do

chooseA ∈ P −N ;
wins← true; PA ← P − {A};
repeat

chooseB ∈ PA;
if ∃ an agent such that A?Bthen

ask(A,B);
computef (A,B);

if f(A, B) = (A > B) then
P ← P − {B};

if f(A, B) = (A < B) then
P ← P − {A}; wins← false;

PA ← PA − {B};
until f(A, B) 6= (A < B) or PA 6= ∅ ;
if wins = true then

N ← N ∪ {A};

W ← N ;
return W ;

It should be noticed that deciding when elicitation is over,that is checking ifP = N ,
is hard in general since, in [6] such a result has been proven for STV.
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7 Related and future work

In [8] preference aggregation functions for combining incomplete total orders are consid-
ered. Compared to our work, we permit both incompleteness and incomparability, while
they allow only for incompleteness. Second, they consider social choice functions which
return the (non-empty) set of winners. Instead, we considersocial welfare functions which
return a complete partial order. Social welfare functions give a finer grained view of the
result. Third, they consider specific voting rules like the Borda procedure whilst we have
focused on general properties that ensure tractability.

The results presented in this paper can be useful not just forcombining preferences
from multiple agents, but also for combining multiple conflicting preferences from a sin-
gle agent. Recent work addressing the combination of multiple complex preferences is
presented in [4] and [7].

We plan to consider the addition of constraints to agents’ preferences. This means
that preference aggregation must take into account the feasibility of the outcomes. Thus
possible and necessary winners must now be feasible.

It is also important to consider compact knowledge representation formalisms to ex-
press agents’ preferences, such as CP-nets and soft constraints. Possible and necessary
winners should then be defined directly from such compact representations, and prefer-
ence elicitation should concern statements allowed in the representation language.

Finally, a possibility distribution over the completions of an incomplete preference
relation between two outcomes can be used to provide additional information when com-
puting possible and necessary winners.
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