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Abstract

We consider how to combine the preferences of multiple agdespite the pres-
ence of incompleteness and incomparability in their pesfee orderings. An agent’s
preference ordering may be incomplete because, for exart@ee is an ongoing
preference elicitation process. It may also contain incaralpility, which can be
useful, for example, in multi-criteria scenarios. We foawsthe problem of com-
puting thepossibleand necessarywinners, that is, those outcomes which can be or
always are the most preferred for the agents. Possible arebsary winners are
useful in many scenarios, including preference elicitatibirst we show that com-
puting the sets of possible and necessary winners is in gleaelifficult problem as
it is providing a good approximation of such sets. Then watidie sufficient con-
ditions, related to general properties of the preferenggeggtion function, where
such sets can be computed in polynomial time. Finally, wevshaw possible and
necessary winners can be used to focus preference etinitati
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1 Introduction

We consider a multi-agent setting where each agent spettidaspreferences by means
of an ordering over the possible outcomes. A pair of outcoraesbe ordered, incompa-
rable, in a tie, or the relationship between them may not gedecified. Incomparability

and incompleteness represent very different conceptscobgs may be incomparable
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because the agent does not wish very dissimilar outcomes ¢tornpared. For example,
we might not want to compare a biography with a novel as thteraialong which we
judge them are just too different. Outcomes can also be ipapable because the agent
has multiple criteria to optimize. For example, we might migh to compare a faster
but more expensive laptop with a slower and cheaper onemplateness, on the other
hand, represents simply an absence of knowledge aboutl#t®nship between certain
pairs of outcomes. Incompleteness arises naturally whehawve not fully elicited an
agent’s preferences or when agents have privacy concerigh wrevent them revealing
their complete preference ordering.

As we wish to aggregate together the agents’ preferencesaisingle preference
ordering, we must modify preference aggregation functtordeal with incompleteness.
One possibility is to consider all possible ways in whichitimomplete preference orders
can be consistently completed. In each possible complgtieference aggregation may
give different optimal elements (@rinnerg. This leads to the idea of thpssible winners
(those outcomes which are winners in at least one possibipledion) and theecessary
winners(those outcomes which are winners in all possible compisj}i8].

While voting theory has been mainly interested in pos$ibdr impossibility results
about social choice or social welfare functions, receritéré has been some interest also
in computational properties of preference aggregation918, 6]. It has also been noted
that the complexity of manipulating an election is closedlated to the complexity of
computing possible winners [8, 5].

In this paper we start by considering the complexity of cotmguthe necessary and
the possible winners. We show that both tasks are hard irrgleegen to approximate.

Then we identify sufficient conditions that assure tradiigbiSuch conditions concern
properties of the preference aggregation function, suachamtonicity and independence
to irrelevant alternatives (I1A) [1], which are natural pegties to require.

Possible and necessary winners are useful in many scenadiosling preference
elicitation [3]. For example, elicitation is over when thet sf possible winners coincides
with that of the necessary winners [6]. However, recogmzirnen such a condition is
satisfied is hard in general. In the last part of the paper wevshat, if the preference
aggregation function is IlA, preference elicitation caiue just on the incompleteness
concerning those outcomes which are possible and necessamgrs, allowing us to
ignore all other outcomes and to complete preference aioit in polynomial time.

2 Basic notions

Preferences. We assume that each agent’s preferences are specified \oasly in-
complete) partial order with ties (IPO) over the set of polesoutcomes, that we will
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denote by2. An incomplete partial order is a partial order where sontatian between
pairs of outcomes is unknown. Given two outcomeand B, an agent will specify ex-
actly one of the following:A < B, A > B, A= B, A ~ B, or A?’B, whereA ~ B
means thatd and B are incomparable, and?B that the relation betweeA and B is
unknown, this means that it can be any elemerftef>, <, ~}.

Example 1. Given outcomes|, B, andC', an agent may state preferences sucH as

B, B ~ C,andA > C, oralso justd > B andB ~ C. However, an agent cannot state
preferences suchas > B, B > C,C > A, oralsoA > B, B > C, A ~ C since
neither are POs.

Profiles. A profileis a sequence ot partial orders;, . .., p, over outcomes, one for
each agente {1,...,n}, describing the preferences of the agentsiromplete profile
is a sequence in which one or more of the partial orders igmnpete.

Social welfare and preference aggregation. Social welfare functionfl] are functions
from profiles to partial orders with ties. Given a social vaedf functionf, we define a cor-
respondingreference aggregation functipwrittenpa , which is a function from incom-
plete profiles to sets of partial orders with ties (POs). Bedg, given an incomplete pro-
file ip = (ip1, ..., 1pn), Where thep,’s are IPOs, consider all the profiles, say. . ., p,
obtained fromip by replacing any occurrence 9fin theip;’s with either<, >, =, or ~
which is consistent with a partial order. Let us thenset(ip) = {f(p1),..., f(pr)}-
This set will be called theet of result®f f on profileip.

Example 2. Consider the Pareto social welfare functipdefined as follows [1]: given
a profilep, for any two outcomes! and B, if all agents sayd > B or A = B and at
least one saysl > B in p, thenA > B € f(p); if all agents sayA = B in p, then

A = B € f(p); otherwise,A ~ B € f(p). In Figure 1 we show an example with three
agents and three outcomds B, andC'.

Necessary and possible winners. We extend to the case of partial orders the notions of
possible and necessary winners presented in [8] in the ¢astaborders. Given a social
welfare functionf and an incomplete profile, we definenecessary winnersf f given

ip as all those outcomes which are maximal elements in all P@&ifip) . A necessary
winner must be a winner, no matter how incompleteness idwedgon the incomplete
profile. Analogously, thgossible winnersare all those outcomes which are maximal
elements in at least one of the POgiry(ip). A possible winner is a winner in at least
one possible completion of the incomplete profile.
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Figure 1: An incomplete profilé, its completiong; andp,, the resultsf (p;) and f(p2),
and the combined result( f, ip).

We will write NW ( f,ip) andPW ( f, ip) for the set of necessary and possible winners
of f on profileip. We will sometimes omif and/orip, and just writeVIV and PWW when
they will be obvious or irrelevant.

Example 3. In Example 2,4 and B are the necessary winners, since they are top ele-
ments in all PO (p;), for alli = 1, 2. C'is a possible winner since it wins jf(ps).

Combined result. Unfortunately, the set of results can be exponentiallydaiye will
therefore also consider a compact representation thatlymqmial in size. This may
throw away information by compacting together results iatsingle combined result.
Given a social welfare functiofi and an incomplete profile, consider a graph, whose
nodes are the outcomes, and whose arcs are labeled by nap-®rbpets of <, >, =, ~

}. Labell is on the arc between outcomésand B if there exists a PO ipa(ip) where
A and B are related by. This graph will be called theombined resulof f onip, and
will be denoted byr(f,ip). If an arc is labeled by sdt<, >, = ~}, we will say that it
is fully incomplete Otherwise, we say that it {gartially incomplete The set of labels on
the arc betweenl and B will be calledrel(A, B).

Example 4. The combined result for Example 2 is shown in Figure 1.

3 Possible and Necessary Winners

In this section we show that computing the set of necessatypassible winners of a
social welfare function is, in general, NP-hard even if watniet ourselves to incomplete
buttotal orders. We will consider the following, well known, votingle.
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Single Transferable Vote. In the STV rule each voter provides a total order on can-
didates and, initially, an individual’s vote is allocatextheir most preferred candidate.
The quotaof the election is the minimum number of votes necessary telgeted. If
only one candidate is to be elected then the quota /8| + 1, wheren is the number

of voters. If no candidate exceeds the quota, then, the datalwith the fewest votes is
eliminated, and his votes are equally distributed among#tend choices of the voters
who had selected him as first choice. In what follows we c@rs&T'V elections in which
some total orders, provided by the voters, are incomplete.

In general, given an incomplete profile and a candidatee say ®SSIBLEWINNER
holds iff a is a possible winner of the election.

Theorem 1 Possi bl eW nner is NP-complete.

Proof: In fact, membership of NP follows by giving a completion o&tprofile in
which a wins. Completeness follows from the result th&FECTIVE PREFERENCE(de-
termining if a particular candidate can win an election vatte vote unknown) for STV
is NP-complete [2] Q.E.D.

This result allows us to conclude that, in general, findingsiile winners of an elec-
tions is difficult. However, it should be noticed that for ngamiles used in practice in-
cluding some positional scoring rules [8], answergssi bl eW nner is polynomial.
The complexity of computing possible winners is relateches¢omplexity of manipulat-
ing an election [8]. For instance, it is NP-complete to datee for the Borda, Copeland,
Maximin and STV rules if a coalition can cast weighted voteghsure a given winner
[5]. It follows therefore that with weighted voteBpssi bl eW nner is NP-hard for
these rules.

Given an incomplete profile and a candidateve say NFCESSARWINNER holds iff
a 1S a necessary winner of the election.

Theorem 2 Necessar yW nner is coNP-complete.

Proof: The complement problem is in NP since we can show memberghijiving a
completion of the profile in which sontedifferent toa wins. To show completeness, we
give a reduction from EFECTIVE PREFERENCEWiIth STV in which a appears at least
once in first place in one vote. This restricted form GFECTIVE PREFERENCEIS NP-
complete [2]. Consider an incomplete profilein which n 4 1 votes have been cast,
has at least one first place vote, one vote remains unknowdwarwish to decide it
can win. We construct a new election frdinwith n new additional votes, and one new
candidaté. We putb at the top of each of these new votes, and rank the other catedid

339



Preference aggregation and elicitation: tractabilityhi@ presence of incompleteness and
incomparability

in any order within these votes. We place in last place in the originab + 1 votes,
except for one vote where is in first place (by assumption, one such vote must exist)
where we placé in second place and shift all other candidates down. We wbsbatb

will survive till the last round a$ has at least votes and no other candidate can have
as many till the last round. We also observe that fremains in the election, then the
score given to each candidate by STV remains the same as amigjieal election so the
candidates are eliminated in the same order up till the poistliminated. Ifa is elim-
inated before the last round, the second choice voté i®transferred. Sincénow has

n + 1 votes,b is unbeatable and must win the electiona urvives, on the other hand,
to the last round, we can assumes ranked at the bottom of the unknown vote. All the
other candidates butandb have been eliminated sohasn + 1 votes and is unbeatable.
Hence, ifa is not a possible winner in the original electidnis the necessary winner of
this new election. Thus determining the necessary winn#érisfnew election decides if

a 1S a possible winner of the original election. Q.E.D.

Given these results, we might wonder if it is easy to compuéaaonable approxima-
tion of the sets of possible and necessary winners. Unfatéythis is not the case. The
reduction described in the proof of previous theorem shtvaswe cannot approximate
the set of possible winners within a factor of two. In fact, @@ show that we cannot
approximate efficiently the set of possible winners withily aonstant factor.

Theorem 3 It is NP-hard to return a superset of the possible winnéts,* in which we
guaranteg PW*| < k| PW| for some given positive integér

Proof: We again give a reduction fromAEECTIVE PREFERENCEfor STV in whicha
appears at least once in first place in one vote. Considercamiplete profildI in which

n + 1 votes have been casthas at least one first place vote, one vote remains unknown,
and we wish to decide i& can win. We construct a new election frdlh We makek
copies offl. In theith copylIl;, we subscript each candidate with the integéfe addn

new additional votes, and one new candidat®Ve putb at the top of each of these new
votes, and rank all the other candidates exegjih any order within these votes. The
ranking of the candidates is left unknown but beneath In eachll;, we placeb in last
place except for one vote whedg is in first place (by assumption, one such vote must
exist) where we placé in second place and shift all other candidates down. Finaty
each candidate ifil; not inII; except fora;, we rank then in any order at the bottom of
the the votes ill;. The ranking of the candidates is again left unknown but beneath
b. We observe thai will survive till all but one candidate has been eliminateshii one

of thell;. We also observe that if; remains in the election, then the score given to each
candidate by STV remains the same as in the original elesbdhe candidates ifi; are
eliminated in the same order up till the pointis eliminated. Supposecannot win the

340



Annales du LAMSADE A6

original election. Them,; will always be eliminated before the final round. The second
choice vote fomw is transferred. Sincenow has at least + 1 votes,b is unbeatable and
must win the election. Suppose, on the other hand,dltan win the original election.
Thena; can survive to be the last remaining candidatéljnWe can assumkis ranked

at the bottom of the unknown votes of all the candidates wittnaex: and above all
the candidates with an indexdifferent to:. Thusa; hasn + 1 votes. If we have the
corresponding ranking in the other unknown votesfor ; # ¢ will also survive. Asb
has onlyn votes,b will be eliminated. It is now possible for any of the candegt;
wherel < i < k to win depending on how exactly thgare ranked in the different votes.
Thus the set of possible winners{ig; | 1 < i < k} plusb if a is not a necessary winner
in the original election. Hence, ifis a possible winner in the original election, the size of
the set of possible winners is greater than or equé] tehilst if it is not, the set is of size
1. If we know that PW*| < k| PW |, then| PW*| < k guarantees thaPW| = 1, b is the
necessary winner and hence thas not a possible winner in the original election. Q.E.D.

Similarly, we cannot approximate efficiently the set of resaey winners within some
fixed ratio.

Theorem 4 It is NP-hard to return a subset of the necessary winn&rd;* in which we
guaranteg NW*| > +|NW| whenevetNW| > 0 for some given positive integér

Proof: In the reduction used in the last prodfyIW| = 1 if a is a possible winner in
the original election and O otherwise. But|[¥W| = 1 and|[NW*| > +|NW| then
INW*| = 1. Hence| NW*| = 1iff a is a possible winner. Thus, the size 8#/* will
determine ifa is possible winner. Q.E.D.

4 Combined result

We now consider the problem of computing the combined regvdt show that, while in

general it is difficult, there are some restrictions whidiewlus to compute an approx-
imation of the combined result in polynomial time. In the negction, we will show

how it is possible to compute the set of possible and negessaners starting from this
approximation to the combined result.

Theorem 5 Given an incomplete profile, determining if a label is in tloenbined result
for STV is NP-complete.
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Proof: In fact, a polynomial witness is a completion of the inconplerofile. To show
completeness, we use a polynomial number of calls to thisipnoto determine if a given
candidate is a possible winner. Q.E.D.

¢, From this result we immediately get the following corollar

Corollary 5.1 Given an incomplete profile and a social welfare functiormpating the
combined result is NP-hard.

We now introduce some properties of preference aggregatimtions which allow
us to compute an upper approximation to the combined resydbiynomial time. We
recall that the set of labels of an arc betweémand B in the combined result is called
rel(A, B).

The first property we consider is independence to irreleati@tnatives (11A). A social
welfare function is said to be IIA when, for any pair of outoesal and B, the ordering
betweenA and B in the result depends only on the relation betweleand B given by
the agents [1]. Many preference aggregation functions l&eand this is a desirable
property which is related to the notion of fairness in votihgory [1]. Given a function
which is 1A, to compute the setl( A, B), we just need to ask each agent their preference
over the pairA and B, and then us¢ to compute all possible results betwednand
B. However, if agents have incompleteness betwéemd B, f has to consider all the
possible completions, which is exponential in the numbesugh agents.

Assume now thaff is also monotonic. We say that an outcofde@mproves with
respect toanother outcomel if the relationship betweer and B does not move left
along the following sequences, >, (~ or =), <, <. For example B improves with
respect toA if we pass fromA > B to A ~ B. A social welfare functiory is monotonic
if for any two profilesp andp’ and any two outcomed and B passing fronp to p’ B
improves with respect tal in one agent andp; = p/; for all j # i, then passing from
rf(p) to f(p") B improves with respect td.

Consider now any two outcome$ and B. To computerel(A, B) under IIA and
monotonicity, again, sincg is llA, we just need to consider the agents’ preferences over
the pairA and B. However, now we don’t need to consider all possible congistfor
all agents with incompleteness betweémnd B, but just two completionsA < B and
A > B. Functionf will return a result for each of these two completions, sayB
and Ay B, wherez,y € {<,>,=,~}. Sincef is monotonic, the results of all the other
completions will necessarily be betweerandy in the ordering>, >, (~ or =), <, <.

By taking all such relations, we obtain a supersetd@f A, B), that we callrel*(A, B).
In fact, monotonicity off assures that, if we consider profie< B and we get a certain
result, then considering profiles whe#fes in a better position w.r.tB (that is,A > B,
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A = B, or A ~ B), will give an equal or better situation fot in the result. Thus we
have obtained an approximation of the combined result,weatall cr*( f, ip). We will
now give a characterization of this approximation of the borad result.

Theorem 6 Given two outcomed and B, rel*(A, B) D rel(A, B). Moreover, ifrel*(A, B) =
{<,>,~, =}, then eitherel*(A, B) = rel(A, B) or rel*(A, B) — rel(A, B) = {~,=}.

By following the procedure informally described above sthpproximation can be
computed polynomially, since we only need to consider twogletions.

Theorem 7 Given a preference aggregation functigrwhich is 1A and monotonic, and
an incomplete profilép, computing:r*( f, ip) is polynomial in the number of agents.

5 Computing possible and necessary winners

We will now show how to determine the possible and necessamyess, giverer*(f, ip).
Consider the arc between an outcome A and an outcomec€{if, ip). Then, if this
arc has the labell < C, thenA is not a necessary winner, since there is an outcome
which is better thamd in some result. If this aronly has the label < C, thenA is nota
possible winner since we must hade< C in all results. Moreover, consider all the arcs
between A and every other outcome C. Then, if no such arc basfa< C, then A is

a necessary winner. Notice, however, that in general, duemie of the arcs connecting
A have just a single label < C', A could not be possible winneA could be better than
some outcomes in every completion, but there might be no teirap where it is better
than all of them. We will show that this is not the cas¢ it IIA and monotonic.

We now define Algorithm 1, which, givear*(f,ip), computesNTV and PW, in
polynomial time.

Theorem 8 Givencr*(f,ip), Algorithm 1 terminates iD(m?) time, wherem = |Q)],
returningN = NW andP = PW.

Proof: Algorithm 1 considers, in the worst case, each arc exactbepthus we have
O(m?).

N=NW. By construction ofcr*(f,ip), <¢ rel*(A,C) iff <& rel(A,C). By Algo-
rithm 1, A € N iff VC, <& rel{A, C}, and this implies that there is no result in which

there exists an outconi that beatsA. Thus,A € NW. On the contraryd € NW iff
A £ CVC € (), for all results, from whichA € V.
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Algorithm 1: ComputingNW and PW
Input: er*(f,ip), where f: IIA and monotonic preference aggregation functad
ip: incomplete profile;
Output: P, N: sets of outcomes;
P«
N «— Q;
foreach A € 2 do
L if 3C € Qsuchthat{<} C rel*(4,C) then

| N« N — A4,
if 3C € Qsuchthat{<} = rel*(A,C)then P — P — A;
return P, N;

P = PW. By Algorithm 1, an outcome is i iff there is no other outcome which
beats it in all results. ThuWW C P. To show the other inclusion we considérc P
and we construct a completion g such thatA wins in its result. First, let us point
out that for any outcomel, A € P iff AC € Q, rel(A,C) = {<}. If VC € Q,
<& rel(A, C), then we already know that is N1/, and thus a?1V. Assume now that
3C € Q such that{<} C rel(A, C). Consider now any arc from to another outcome
(", labeled with more than one relation M€’ € Q —{C'}, |rel* (A, C")| = 1, then all the
arcs fromA, exceptAC, are labeled with exactly one label from the sk, ~, =}. In
such a case, we can safely gt to any of its labels other than, since there is, for sure,
a result with that labeling. Moreover, in such a resdilis a winner. Assume, instead,
that there is at least an outcomésuch thatrel*(A, C’) > 1|. This means that there is
at least an agent which has not declared his preferencé8rand that such preference
cannot be induced by transitivity closure. We replad€” with A > C’ everywhere in
the profile, we perform the transitive closure of all the nfiedi / POs, and we applyf.
We will prove that such a procedure will never force to chdabel < on AC. After the
procedurerel(A, C") will contain exactly one label from the seft>, ~,=}. Let us now
considerrel(C’, C). We consider only the cases in whiglel(C’, C')| = 1, since they are
the most restrictive and they imply all others in terms ohsiéivity. Let us assume that,
after the procedured = C". If rel*(C’,C) = {<}, then,C" < C in all results. Due to
monotonicity, we know that;el*(A, C') = {<,=} orrel*(A,C") = {=}. By transitiv-
ity, this would forcerel(A, C) = {<}. However, this is not possible singec P. This
allows us to conclude thatel*(C',C) N {>,~,=}) # 0 and any of such additional la-
bels together wittd = C” can never forcel < C. Clearly, if A > C" or A ~ (', there is
no labeling ofC’C' which can forceA < C'. It should be noticed that any available choice
on C’'C can always be made safely due to the fact that the functiolAisnd that the
transitive closure of the profiles has already ruled outmscgtent choices. By iterating
the procedure until every ? in the incomplete profile is repth we can construct a result
of the function in whichA is a winner. Q.E.D.
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An example of a preference aggregation function which i& bét and monotonic is
the Pareto rule, described in Example 2. Another exampleiéx rule, in which agents
are ordered and, given any two outcomeand B, the relation betweed and B in the
result is the relation given by the first agent in the ordet do@s not declare a tie between
A andB. A third example is the approval voting rule, for which thaatability result has
been already proven in [8] since it is a positional scoring.ru

6 Preference elicitation

One use of necessary and possible winners is in elicitinfepeces [3]. Preference
elicitation is the process of asking queries to agents irrddetermine their preferences
over outcomes.

At each stage in eliciting agents’ preferences, there ist @fspossible and neces-
sary winners. WhetNIW = PW, preference elicitation can be stopped since we have
enough information to declare the winners, no matter howeh®ining incompleteness
is resolved [6]. At the beginningy W is empty andPWW contains all outcomes. As pref-
erences are declarelf,)/’ grows andPWW shrinks. At each step, an outcomefl” can
either pass taVIV or become a loser.

Determining the winners. In those steps wherBW is still larger thanNW, we can
use these two sets to guide preference elicitation and awsetess work. In fact, to
determine if an outcomd € PW — NW is a loser or a necessary winner, it is enough
to ask agents to declare their preferences over all paiodviimg A and another outcome,
say B, in PWW. In fact, any outcome outsidelV is a loser, and thus is dominated by at
least one possible winner.

If the preference aggregation function is IlA, then all thpsirs( A, B) with a defined
preference for all agents can be avoided, since they wilhel in determining the status
of outcomeA. Moreover, IIA allows us to consider just one profile when goiting the
relations betweerl and B in the result, and assures that the result is a precisear]ati
that is, either<, or >, or =, or ~. In the worst case, we need to consider all such pairs.
To determine all the winners, we thus need to know the relatbetweer and B for all
A e PW — NW andB € PW. Again, there are examples where all such pairs must be
considered.

We can thus use Algorithm 2, which (| PW|?) steps eliminates enough incom-
pleteness to determine the winners. At each step, the tigoasks each agent to express
its preferences on a pair of outcomes (via proceduké¢ A, B)) and aggregates such pref-
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erences via functiorf. If function f is polynomially computable, the whole computation
is polynomial in the number of agents and outcomes.

Theorem 9 If fis IIA and polynomially computable, then determining thisagevinners
via preference elicitation is polynomial in the number oéats and outcomes.

Using the results of the previous sections, under certamngitons we know how to
compute efficiently the necessary winners and the possitsieess. Thus Algorithm 2
can be given in input the outputs of Algorithm 1.

Algorithm 2 : Winner determination
Input: PW, NW: sets of outcomeg; preference aggregation function;
Output: W: set of outcomes;
wins: bool,

P — PW; N «— NW,
while P # N do

chooseA € P — N,

wins <« true; Py — P — {A};

repeat

chooseB € Py;

if 3 an agent such that A?8ien

ask(A,B);
L compute f(A,B);
if f(A,B)=(A> B)then
| P—P—{B};
if f(A,B)=(A < B)then
| P— P—{A}; wins — false;

PA — PA — {B},
until f(A,B) # (A< B)orPy#0;
if wins = true then

| N = NU{A}

W «— N;
return W;

It should be noticed that deciding when elicitation is otleat is checking ifP? = N,
is hard in general since, in [6] such a result has been prae®TV.
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7 Related and future work

In [8] preference aggregation functions for combining imgdete total orders are consid-
ered. Compared to our work, we permit both incompletenedsraasomparability, while
they allow only for incompleteness. Second, they consideias choice functions which
return the (non-empty) set of winners. Instead, we consideal welfare functions which
return a complete partial order. Social welfare functione @ finer grained view of the
result. Third, they consider specific voting rules like tharda procedure whilst we have
focused on general properties that ensure tractability.

The results presented in this paper can be useful not jusiimbining preferences
from multiple agents, but also for combining multiple coctilig preferences from a sin-
gle agent. Recent work addressing the combination of melapmplex preferences is
presented in [4] and [7].

We plan to consider the addition of constraints to agentsfgoences. This means
that preference aggregation must take into account théfktysof the outcomes. Thus
possible and necessary winners must now be feasible.

It is also important to consider compact knowledge repradem formalisms to ex-
press agents’ preferences, such as CP-nets and soft ¢otsstfaossible and necessary
winners should then be defined directly from such compacesgmtations, and prefer-
ence elicitation should concern statements allowed ingpeesentation language.

Finally, a possibility distribution over the completionsan incomplete preference
relation between two outcomes can be used to provide addltinformation when com-
puting possible and necessary winners.
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