Soft Constraint Problems with Incompleteness

Mirco Gelain, Maria Silvia Pini, Francesca Rossi, and Kristen Brent Venable

Dipartimento di Matematica Pura ed Applicata, Universita di Padova, Italy
E-mail: {mgelain,mpini,frossi,kvenable} @math.unipd.it

Abstract. We consider soft constraint problems where some of the preferences
may be unspecified. This models, for example, situations with several agents pro-
viding the data, or with possible privacy issues. In this context, we study how to
find an optimal solution without having to wait for all the preferences. In partic-
ular, we define an algorithm to find a solution which is necessarily optimal, that
is, optimal no matter what the missing data will be, with the aim to ask the user
to reveal as few preferences as possible. Experimental results show that in many
cases a necessarily optimal solution can be found by eliciting a small number of
preferences.

1 Introduction

Traditionally, tasks such as scheduling, planning, and resource allocation have been
tackled using several techniques, among which constraint reasoning is one of the win-
ning ones: the task is represented by a set of variables, their domains, and a set of con-
straints, and a solution of the problem is an assignment to all the variables in their do-
mains such that all constraints are satisfied. Preferences or objective functions have been
used to extend such scenario and allow for the modelling of constraint optimization,
rather than satisfaction, problems. However, what is common to all these approaches is
that the data (variables, domains, constraints) are completely known before the solving
process starts.

On the contrary, the increasing use of web services and in general of multi-agent
applications demands for the formalization and handling of data that is only partially
known when the solving process works, and that can be added later, for example via
elicitation. In many web applications, data may come from different sources, which
may provide their piece of information at different times. Also, in multi-agent settings,
data provided by some agents may be voluntarily hidden due to privacy reasons, and
only released if needed to find a solution to the problem.

Recently, some lines of work have addressed these issues by allowing for open set-
tings in CSPs: both open CSPs [7, 9] and interactive CSPs [13] work with domains that
can be partially specified, and in dynamic CSPs [6] variables, domains, and constraints
may change over time. It has been shown that these approaches are closely related. In
fact, interactive CSPs can be seen as a special case of both dynamic and open CSPs
[12].

Here we consider the same issues but we focus on constraint optimization prob-
lems rather than CSPs, thus looking for an optimal solution rather than any solution. In



particular, we consider problems where constraints are replaced by soft constraints, in
which each assignment to the variables of the constraint has an associated preference
coming from a preference set [1]. In this setting, for the purpose of this paper we assume
that variables, domains, and constraint topology are given at the beginning, while the
preferences can be partially specified and possibly added during the solving process.

Constraint optimization has also been considered in the context of open CSPs in
a cost-minimization setting [8]. However, the incompleteness considered is on which
values belong to domains, and not on the preference of tuples.

There are several application domains where such setting is useful. One regards the
fact that quantitative preferences, and needed in soft constraints, may be difficult and
tedius to provide for a user. Another one concerns multi-agent settings, where agents
agree on the structures of the problem by they may provide their preferences on different
parts of the problem at different times. Finally, some preferences can be initially hidden
because of privacy reasons.

Formally, we take the soft constraint formalism when preferences are totally ordered
and we allow for some preferences to be left unspecified. Although some of the prefer-
ences can be missing, it could still be feasible to find an optimal solution. If not, then
we ask the user and we start again from the new problem with some added preferences.

More precisely, we consider two notions of optimal solution: possibly optimal solu-
tions are assignments to all the variables that are optimal in at least one way in which
currently unspecified preferences can be revealed, while necessarily optimal solutions
are assignments to all the variables that are optimal in all ways in which currently un-
specified preferences can be revealed. This notation comes from multi-agent preference
aggregation [14], where, in the context of voting theory, some preferences are missing
but still one would like to declare a winner.

Given an incomplete soft constraint problem (ISCSP), its set of possibly optimal
solutions is never empty, while the set of necessarily optimal solutions can be empty.
Of course what we would like to find is a necessarily optimal solution, to be on the safe
side: such solutions are optimal regardless of how the missing preferences would be
specified. However, since such a set may be empty, in this case there are two choices:
either to be satisfied with a possibly optimal solution, or to ask users to provide some of
the missing preferences and try to find, if any, a necessarily optimal solution of the new
ISCSP. In this paper we follow this second approach, and we repeat the process until
the current ISCSP has at least one necessarily optimal solution.

To achieve this, we employ an approach based on branch and bound which first
checks whether the given problem has a necessarily optimal solution (by just solving
the completion of the problem where all unspecified preferences are replaced by the
worst preference). If not, then finds the most promising among the possibly optimal
solutions (where the promise is measured by its preference level), and asks the user
to reveal the missing preferences related to such a solution. This second step is then
repeated until the current problem has a necessarily optimal solution.

We implemented our algorithm and we tested it against classes of randomly gen-
erated binary fuzzy ISCSPs, where, beside the usual parameters (number of variables,
domain size, density, and tightness) we added a new parameters measuring the percent-
age of unspecified preferences in each constraint and domain. The experimental results



show that in many cases a necessarily optimal solution can be found by eliciting a small
amount of preferences. In particular, in no case the percentage of elicited preferences
exceeded 35% of the total number of missing preferences.

2 Soft constraints

A soft constraint [1] is just a classical constraint [S] where each instantiation of its
variables has an associated value from a (totally or partially ordered) set. This set has
two operations, which makes it similar to a semiring, and is called a c-semiring. More
precisely, a c-semiring is a tuple (A, +, x, 0, 1) such that: A is a set, called the carrier
of the c-semiring, and 0, 1 € A; + is commutative, associative, idempotent, 0 is its unit
element, and 1 is its absorbing element; X is associative, commutative, distributes over
+, 1 is its unit element and O is its absorbing element.

Consider the relation <g over A such thata <g biff a-+b = b. Then: <g is a partial
order; + and x are monotone on <g; 0 is its minimum and 1 its maximum; (A, <g)
is a lattice and, for all a,b € A, a + b = lub(a,b). Moreover, if x is idempotent, then
(A, <g) is a distributive lattice and x is its glb.

Informally, the relation <g gives us a way to compare (some of the) tuples of values
and constraints. In fact, when we have a <g b, we will say that b is better than a. Thus,
0 is the worst value and 1 is the best one.

Given a c-semiring S = (A, +, X, 0, 1), a finite set D (the domain of the variables),
and an ordered set of variables V, a constraint is a pair {def, con) where con C V and
def : Dleonl . A Therefore, a constraint specifies a set of variables (the ones in con),
and assigns to each tuple of values of D of these variables an element of the semiring
set A. A soft constraint satisfaction problem (SCSP) is just a set of soft constraints over
a set of variables.

Many known classes of satisfaction or oprimization problem can be cast in this
formalism. A classical CSP is just an SCSP where the chosen c-semiring is: Scsp =
{{false,true}, V, A, false,true). On the other hand, fuzzy CSPs [15, 11] can be mod-
eled in the SCSP framework by choosing the c-semiring: Spcsp = ([0, 1], maz, min,
0, 1). For weighted CSPs, the semiring is Sywosp = (RT, min, +, +00, 0). Here pref-
erences are interpreted as costs from 0 to 400, which are combined with the sum and
compared with min. Thus the optimization criterion is to minimize the sum of costs.
For probabilistic CSPs [10], the semiring is Spcsp = ([0, 1], mazx, %, 0, 1). Here pref-
erences are interpreted as probabilities ranging from 0 to 1, which are combined using
the product and compared using max. Thus the aim is to maximize the joint probability.

Given an assignment ¢ to all the variables of an SCSP, we can compute its pref-
erence value pref(t) by combining the preferences associated by each constraint to
the subtuples of the assignments referring to the variables of the constraint. More pre-
cisely, pref(P,s) = Il (;gef,conyccdef (s con), Where IT refers to the x operation of
the semiring and s .oy, is the projection of tuple s on the variables in con.

For example, in fuzzy CSPs, the preference of a complete assignment is the mini-
mum preference given by the constraints. In weighted constraints, it is instead the sum
of the costs given by the constraints.

An optimal solution of an SCSP is then a complete assignment ¢ such that there is no
other complete assignment " with pref(t) <g pref(t”). The set of optimal solutions
of an SCSP P will be written as Opt(P).



3 Incomplete Soft Constraint Problems (ISCSPs)

Informally, an incomplete SCSP, written ISCSP, is an SCSP where the preferences of
some tuples in the constraints, and/or of some values in the domains, are not speci-
fied. In detail, given a set of variables V' with finite domain D, and c-semiring S =
(A, +, x,0,1) with a totally ordered carrier, we extend the SCSP framework to incom-
pleteness by the following definitions.

Definition 1 (incomplete soft constraint). Given a set of variables V with finite do-
main D, and a c-semiring (A, +, X, 0, 1), an incomplete soft constraint is a pair {idef,
con) where con C 'V is the scope of the constraint and idef : DI°"l — AU {?} is
the preference function of the constraint. All tuples mapped into ? by idef are called
incomplete tuples.

In an incomplete soft constraint, the preference function can either specify the pref-
erence value of a tuple by assigning a specific element from the carrier of the c-semiring,
or leave such preference unspecified. Formally, in the latter case the associated value is
7. A soft constraint is a special case of an incomplete soft constraint where all the tuples
have a specified preference.

Example 1. Assume a travel agency is planning Alice and Bob’s honeymoon, having
only some information on their preferences. Alice and Bob live in the US, the candidate
destinations are the Maldive islands and the Caribbean, and they can decide to go by
ship or by plane. Going to Maldives by ship would take very long, thus they have a
high preference to go by plane and a low preference to go by ship. Also, they have
been told that a cruise in the Caribbean is very nice. Thus they have a high preference
to go there by ship. However, they don’t have any preference on going there by plane.
We can model this scenario by using the fuzzy c-semiring ([0, 1], max, min, 0, 1), two
variables T (standing for T'ransport) and D (standing for Destination) with domains
D(T) = {p, sh} (p stands for plane and sh for ship) and D(D) = {m,c} (m stands
for Maldives, ¢ for Caribbean), and an incomplete soft constraint (ide f, con) with
con = {T, D} and with preference function as shown in Figure 1. The only incomplete

tuple is (p, ¢).

Definition 2 (incomplete soft constraint problem (ISCSP)). An incomplete soft con-
straint problem is a pair (C,V, D) where C is a set of incomplete soft constraints over
the variables in V with domain D. Given an ISCSP P, we will denote with IT (P) the
set of all incomplete tuples in P.

Definition 3 (completion). Given an ISCSP P, a completion of P is an SCSP P’ ob-
tained from P by associating to each incomplete tuple in every constraint an element
of the carrier of the c-semiring. A completion is partial if some preference remains un-
specified. We will denote with C(P) the set of all possible completions of P and with
PC(P) the set of all its partial completions.

Example 2. Consider again Example 1. Assume that for the considered season the Mal-
dives are slightly preferrable to the Caribbean. Also, Alice and Bob don’t mind trav-
elling by plane and have never travelled by ship. Thus they have a reasonably high



idef(p,c) =7
idef1(p)=0.8 idef(sh,c) = 0.8 idef2(c) = 0.7
idef1(sh) = ? ) ’ idef2(m) = 0.9
idef(p,m) = 0.7

idef(sh,m) = 0.1

idef3(r,c) = 0.3
idef3(su, ¢) =?
idef3(b, ¢) =?
idef3(r, m) = ?
idef3(su, m) = ?
idef3(b, m)=0.2

Fig. 1. An ISCSP.

preference to plane as a way of transport, while they don’t give any preference to ship.
Moreover, as far as accommodations, which can be in a standard room, or a suite, or
a bungalow, assume that a suite in the Maldives is too expensive for the young couple
while a standard room in the Caribbean is not special enough for a honeymoon. To
model this new information we use a variable A (standing for Accommodation) with
domain D(A) = {r, su, b} (r stands for room, su for suite and b for bungalow), and
three constraints: two unary incomplete soft constraints, (idef1,{T'}), (idef2,{D})
and a binary incomplete soft constraint (idef3,{A, D}). Their definition is shown in
Figure 1. The set of incomplete tuples of this problem is I'T(P) = {(sh), (p, ¢), (su, c),
(su,m), (r,m), (b,c)}.

Definition 4 (preference of an assignment). Given an ISCSP P = (C,V, D) and an
assignment s to all its variables we denote with pre f (P, s) the preference of s in P. In
detail, pref(Pa 3) = H<idef,con>€C|idef(slcon)#?idef(slcon)'

The preference of an assignment s in an incomplete problem is thus obtained by
combining the known preferences associated to the projections of the assignment, that
is, of the appropriated subtuples in the constraints. The projections which have unspec-
ified preferences are simply ignored. Given an assignment s to all the varibales, the set
of its projections with unspecified preference is denoted by it(s).

Example 3. Consider the two assignments s; = (p,m,b) and so = (p,m, su), we
have that pref(P, s1)) = min(0.8,0.7,0.9,0.2) = 0.2, while pref(P, s2) = min(
0.8,0.7,0.9) = 0.7. However, while the preference of s; is fixed, since none of its
projections is incomplete, the preference of so may become lower that 0.7 depending
on the preference of the incomplete tuple (su, m).

As shown by the example, the presence of incompleteness generates a partition of
the set of assignments into two sets: those which have a certain preference which is
independent of how incompleteness is resolved, and those whose preference is only an
upperbound, in the sense that it can be lowered in some completions.

Given an ISCSP P, we will denote the first set of assignments as Fized(P) and the
second with Un fized(P). In Example 3, Fized(P) = {s1}, while all other assign-
ments belong to Un fized(P).



In SCSPs we have that an assignment is an optimal solution if its global preference
is undominated. This notion can be generalized to the incomplete setting. In particular,
when some preferences are unknown, we will speak of necessarily and possibly optimal
solutions, that is, assignments which are undominated in all (resp., some) completions.

Definition 5 (necessarily and possibly optimal solution). Given an ISCSP P = {
C,V, D), an assignment s € DWWl is a necessarily (resp, possibly) optimal solution iff
YQ € C(P) (resp., 3Q € C(P) such that) ¥s' € DIV, pref(Q, s') # pref(Q, s).

Given an ISCSP P, we will denote with NOS(P) (resp., POS(P)) the set of nec-
essarily (resp., possibly) optimal solutions of P. Notice that, while POS(P) is never
empty, in general NOS(P) may be empty. In particular, NOS(P) is empty whenever
the available preferences do not allow to determine the relation between an assignment
and all the others.

Example 4. In the ISCSP P of Figure 1, we can easily see that NOS(P) = () since,
given any assignment, it is possible to construct a completion of P in which it is not an
optimal solution. On the other hand, POS(P) contains all assignments not including
tuple (sh, m). In fact, such a tuple has preference 0.1 and it drowns the preference of
any assignment containing it below the preference of fixed solution s; = (p, m, b) (i.e.,
below 0.2). Thus, in all completions, s; dominates any such assignment. Instead, for any
assignment s not including (sh, m), we can complete P in order to make s optimal, for
example by setting the preferences of all the incomplete tuples of s to pref(s, P) and
the preferences of all other incomplete tuples to O.

4 Characterizing POS(P) and NOS(P)

In this section we investigate how to characterize the set of necessarily and possi-
bly optimal solutions of an ISCSP given the preferences of the optimal solutions of
two of the completions of P. In particular, given an ISCSP P defined on c-semiring
(A, +, x,0,1), we consider:

— the SCSP P, € C(P), called the O-completion of P, obtained from P by associat-
ing preference 0 to each tuple of IT(P).

— the SCSP P; € C(P), called the 1-completion of P, obtained from P by associat-
ing preference 1 to each tuple of IT'(P).

Let us indicate respectively with prefy and pref; the preference of an optimal
solution of Py and P;. Due to the monotonicity of X, and since 0 < 1, we have that
prefo < prefi.

In the following theorem we will show that, if prefo > 0, there is a necessarily
optimal solution of P iff prefy = prefi, and in this case NOS(P) coincides with the
set of optimal solutions of F.

Theorem 1. Given an ISCSP P and the two completions Py, Py € C(P) as defined
above, if prefo > 0 we have that:

- NOS(P) # 0 iffprefi = prefo;



- if NOS(P) # () then NOS(P) = Opt(Fp).

Proof. Since we know that prefy < prefi, if prefo # prefi then pref; > prefo.
We prove that, if prefi > prefo, then NOS(P) = (). Let us consider any assignment
s of P. Due to the monotonicity of x, for all P’ € C(P), we have pref(P’,s) <

pref(Py,s) < prefi.

— If pref(Py,s) < prefi, then s is not in NOS(P) since P; is a completion of P
where s is not optimal.

— Ifinstead pref(P1, s) = prefi, then, since pref; > prefo, we have s € Un fized(
P). Thus we can consider completion P| obtained from P; by associating prefer-
ence 0 to the incomplete tuples of s. In P] the preference of s is 0 and the preference
of an optimal solution of P is, due to the monotonicity of x, at least that of s in
Py, thatis prefyo > 0. Thus s € NOS(P).

Next we consider when prefy = pref;. Clearly NOS(P) C Opt(P), since
any assignment which is not optimal in Py is not in NOS(P). We will show that
NOS(P) # () by showing that any s € Opt(Fp) is in NOS(P). Let us assume, on the
contrary, that there is s € Opt(FPp) such that s ¢ NOS(P). Thus there is a comple-
tion P’ of P with an assignment s’ with pref(P’,s") > pref(P’, s). By construction
of Py, any assignment s € Opt(P) must be in Fized(P). In fact, if it had some in-
complete tuple, its preference in Py would be 0, since 0 is the absorbing element of
x. Since s € Fized(P), pref(P’,s) = pref(Py,s) = prefo. By construction of P;
and monotonicity of x, we have pref(P;,s’) > pref(P’,s’). Thus the contradiction
prefi > pref(Py,s’) > pref(P',s') > pref(P’',s) = prefo. This allows us to
conclude that s € NOS(P) = Opt(P). O

In the theorem above we have assumed that pre fo > 0. The case in which prefy =
0 needs to be treated separetly. We consider it in the following theorem.

Theorem 2. Given ISCSP P = (C,V, D) and the two completions Py, Py € C(P) as
defined above, assume prefy = 0. Then:

- ifprefy = 0, NOS(P) = DIVI;
— ifprefi > 0, NOS(P) = {s € Opt(P,)|Vs' € DIVl with pref(Py,s') > 0 we
have it(s) C it(s")}.

The formal proof is omitted for lack of space. However, we give the informal in-
tuition. In words, the theorem above says that, if prefog = 0 and pref; > 0, then an
assignment is a necessarily optimal solution only if it is optimal in P; and if the set of its
incomplete tuples is contained in the set of incomplete tuples of all other assignments
in Unfized(P). Intuitively, if some assignment s’ has an incomplete tuple which is
not part of another assignment s, then we can make s’ dominate s in a completion by
setting all the incomplete tuples of s’ to 1 and all the remaining incomplete tuples of s
to 0. In such a completion s is not optimal. Thus s is not a necessarily optimal solution.

However, if the tuples of s are a subset of the incomplete tuples of all other assign-
ments then it is not possible to lower s without lowering all other tuples even further.
This means that s is a necessarily optimal solution.



We now turn our attention to possible optimal solutions. Given a c-semiring (A, +,
x, 0, 1), it has been shown in [2] that either the X operator is idempotent or it is strictly
monotonic. In the following two theorems we show that such a distinction on the c-
semiring plays a key role in the characterization of POS(P) where P is an ISCSP.

In particular, if x is idempotent, then the possible optimal solutions are the as-
signments with preference in P between prefy and prefy. If, instead, X is strictly
monotonic, then the possibliy optimal solutions have preference in P between prefy
and pref; and dominate all the assignments which have as set of incomplete tuples a
subset of their incomplete tuples.

Theorem 3. Given an ISCSP P defined on a c-semiring with idempotent x and the two
completions Py, Py € C(P) as defined above, if prefy > 0 we have that: POS(P) =
{s € DIVl|prefo < pref(P,s) <prefi}.

Proof. First we show that any s such that prefy < pref(P, s) < pref; isin POS(P).
Let us consider the completion of P, P’, obtained by associating preference pref(P, s)
to all the incomplete tuples of s and 0 to all other incomplete tuples of P. For any other
assignment s’ we can show that it never dominates s:

— s’ € Fized(P) and thus pref(P',s") = pref(Py, s’) < prefo < pref(P,s);
- ¢’ € Unfized(P) and

o it(s") € it(s), then pref(P’,s’) = 0 since in P’ the incomplete tuples in
it(s") which are not in it(s) have been associated to preference 0;

e it(s’) C it(s). By construction of P’ and since x is idempotent and asso-
ciative we have that: pref(P’,s) = (pref(P,s) x (Ijjs)pref(P,s))) =
pref(P.s) and pref(P', ') = (pref (P, s')x (H ey pref (P.s))) = pref(P.
s") x pref (P, s). Since x is intensive, pref(P’,s’) = (pref (P, s") xpref(P,
s)) <pref(P,s) =pref(P',s).

Thus in P’ no assignment dominates s. This means that s € POS(P).

We will now show that if s inPOS(P), prefo < pref(P,s) < prefi. By con-
struction of P; and due to monotonicity of x we have that there is no assignment s with
pref(P,s) > prefi. Thus, to conclude the proof of the theorem, we only need to show
that any assignment s such that pref(P, s) < prefo is notin POS(P). First let us no-
tice that VP’ € C'(P) and for any assignment s we have that pref(P’, s) < pref(P, s)
due to the intensive property of x. Let us now consider any assignment s’ such that
pref(Po, s') = prefo. By construction of Py, any assignment s’ € Opt(P) must be
in Fized(P), otherwise if it had some incomplete tuple its preference in Py would
be 0, since 0 is the absorbing element of x. Since s’ € Fixed(P), pref(P’,s") =
pref(Po,s') = prefo, VP’ € C(P). Thus, VP’ € C(P), pref(P’',s) < pref(P,s) <
prefo = pref(P’,s’). This shows that if pref(P, s) < prefy then s ¢ POS(P). O

Theorem 4. Given an ISCSP P defined on a c-semiring with a strictly monotonic X
and the two completions Py, Py € C(P) as defined above, if prefy > 0 we have that:
an assignment s € POS(P) iff prefo < pref(P,s) < prefi and pref(P,s) =
maxd{ pref(P,s")|it(s") Cit(s)}.



Proof. Let us first show that if assignment s is such that prefy < pref(P,s) < prefi
and pref (P, s) = max{pref(P,s")]it(s") C it(s)} itis in POS(P). We must show
there is a completion of P where s is undominated. Let us consider completion P’
obtained associating preference 1 to all the tuples in i¢(s) and O to all the tuples in
IT(P)\it(s). First we notice that pref(P’, s) = pref (P, s), since 1 is the unit element
of x. Let us consider any other assignment s’. Then we have one of the following:

— it(s’) = (), which means that s’ € Fized(P) and thus pref(P’,s’) = pref(Po,s’)
< prefo < pref(P,s) = pref (P, s);

— at(s") ¢ it(s), which means that there is at least one incomplete tuple of it(s’)
which is associated to 0. Since 0 is the absorbing element of x, pref(P’,s’) = 0
and thus pref(P’,s') < prefo < pref(P’, s);

— at(s") C it(s), in this case pref(P’,s") = pref(P,s’) since all tuples in it(s’)
are associated to 1 in P’. However since pref (P, s) = max{pref (P, s')|it(s") C
it(s)}, pref(P',s") < pref(P',s).

We can thus conclude that s is not dominated by any assignment in P’. Hence s €
POS(P).

Let us now prove the other direction by contradiction. If pref(P, s) < prefo then
we can conclude as in the previous proof. We must prove that if prefo < pref(P,s) <
prefi and pref(P,s) < max{pref(P,s")|it(s’) C it(s)} then s is not in POS(P).
In any completion P’ of P we have that pref(P’, s) = pref(P, s) xit-pref(P’, s) and
pref(P',s") = pref(P,s')xit-pref(P’, s") whereit-pref(P’, s) (resp. it-pref(P’, s’
)) is the combination of the preferences associated to the incomplete tuples in it(s)
(resp. it(s")). Since it(s") C it(s), for any completion P’ we have that it-pref(P’, s) <
it-pref(P’, s"). Moreover, let s” be such that pref (P, s”) = max{pref (P, s')|it(s") C
it(s)}. Then we have that for any completion P/, pref(P’,s") > pref(P’,s) since
pref(P,s") > pref(P,s) and it-pref(P’,s") > it-pref(P’,s) and X is strictly
monotonic. Thus, if prefo < pref(P,s) < prefyandpref(P, s) < max{pref(P,s")|
it(s") Cit(s)}, then s is not in POS(P). O

In constrast to NOS(P), when prefo = 0 we can immediately conclude that
POS(P) = D!Vl independently of the nature of x, since all assignments are opti-
mal in F,.

Corollary 1. Given an ISCSP P = (C,V, D), if prefo = 0, then POS(P) = DIVI.
The results given in this section can be summarized as follows:

— when prefo =0
e not enough information to compute NOS(P) (by Theorem 2);
e POS(P) = DIVl (by Corollary 1);
— when prefo = prefi =0
e NOS(P) = D!Vl (by Theorem 2);
e POS(P) = D!Vl (by Corollary 1) ;
— when 0 = prefy < prefi
e NOS(P) = {s € Opt(P,)|Vs' € DIVl withpref(Py,s’) > 0 we have
it(s) C it(s’)} (by Theorem 2);



e POS(P) = DVl (by Corollary 1);
— when 0 < prefy = prefi
o NOS(P) = Opt(Py) (by Theorem 1);
e if x is idempotent: POS(P) = {s € DIVl|prefy < pref(P,s) < prefi} (by
Theorem 3);
e if x is strictly monotonic: POS(P) = {s € DWVl|prefy < pref(P,s) <
prefi,pref(P,s) = max{ pref (P, s")|it(s") Cit(s)}} (by Theorem 4);
— when 0 < prefy < prefi
e NOS(P) = () (by Theorem 1);
e POS(P) as for the case when 0 < prefy = pref.

5 A solver for ISCSPs

We want to find a necessarily optimal solution of the given problem, if it exists. In most
cases, however, the available information will only allow to determine the set of pos-
sibly optimal solutions. In such cases, preference elicitation is needed to discriminate
among such assignments in order to determine a necessarily optimal one of the new
problem with the elicited preferences. In this section we describe an algorithm, called
Find-NOS, to achieve this task.

Algorithm 1: Find-NOS

Input: an ISCSP P

Output: an ISCSP @, an assignment s, a preference p
Py — P[?/0]

s0, prefo «— BB(Po, —)

S1 < So

pref1 < prefo

Smazx < S0

prefmaz < prefo

repeat

Py — P[?/1]

if prefi > pre fmas then
L Smax < S1

p"'efmaac — prefl
s1, prefi < BB(P1,prefmas)
if s1 # nil then
S — it(s1)
L P « Elicit(P, S)
prefi «— pref(P,s1)
until s1 # nil ;
return P, Smaz, pPrefmaz

Algorithm Find-NOS takes in input an ISCSP P over a totally ordered c-semiring
and returns an ISCSP () which is a partial completion of P, and an assignment s €



NOS(Q) together with its preference p. Given an ISCSP P, Find-NOS first checks if
NOS(P) is not empty, and, if so, it returns P, s € NOS(P), and its preference. If
instead NOS(P) = 0, it starts eliciting the preferences of some incomplete tuples.

In detail, Find-NOS first computes the 0-completion of P, written as P[? /0], called
Py, and applies Branch and Bound (B B) to it. This allows to find an optimal solution
of Py, say sg, and its preference prefo.

In our notation, the application of the BB procedure has two parameters: the prob-
lem to which it is applied, and the starting bound. When B B is applied without a starting
bound, we will write BB(P, —). When the BB has finished, it returns a solution and
its preference. If no solution is found, we assume that the returned items are both nil.

Variables s1 and prefi (resp., Smaz and prefima.) represent the optimal solution
and the corresponding preference of the 1-completion of the current problem (written
P[?/1]) (resp., the best solution and the corresponding preference found so far). At the
beginning, such variables are initialized to so and pre fo.

The main loop of the algorithm, achieved through the repeat command, computes
the 1-completion, denoted by Py, of the current problem. In the first iteration the condi-
tion of the first if is not satisfied since prefi = prefmaz = prefo. The execution thus
proceeds by applying BB to P; with bound prefpq.. = prefo > 0. This allows us
to find an optimal solution of P; and its corresponding preference, assigned to s; and
prefi. If BB fails to find a solution, s1 is nil. Thus the second if is not executed and
the algorithm exits the loop and returns P, Sypqz = So, and pre fiaz = prefo.

If instead BB applied to P; with bound pre fy,q, does not fail, then we have that
prefo < prefi. Now the algorithm elicits the preference of some incomplete tuples,
via procedure Elicit. This procedure takes an ISCSP and a set of tuples of variable
assignments, and asks the user to provide the preference for such tuples, returning the
updated ISCSP. The algorithm calls procedure Elicit over the current problem P and
the set of incomplete tuples of s; in P. After elicitation, the new preference of s; is
computed and assigned to prefi.

Since s # nil, a new iteration begins, and BB is applied with initial bound given
by the best preference between pref1 and pref.q.. Moreover, if prefi > prefmazs
then S.nq. and prefyq. are updated to always contain the best solution and its pref-
erence. Iteration continues until the elicited preferences are enough to make BB fail
to find a solution with a better preference w.r.t. the previous application of BB. At
that point, the algorithm returns the current problem and the best solution found so far,
together with its preference.

Theorem 5. Given an ISCSP P in input, algorithm Find-NOS always terminates and
returns an ISCSP Q) such that Q € PC(P), an assignment s € NOS(Q), and its
preference in Q).

Proof. Ateach iteration, either pre f,, . increases or, if it stays the same, a new solution
will be found since after elicitation the preference of s; has not increased. Thus, either
prefmaz 18 so high that BB doesn’t find any solution, or all the optimal solutions have
been considered. In both cases the algorithm exits the loop.

At the end of its execution, the algorithm returns the current partial completion of
given problem and a solution s,,,, with the best preference seen so far pref,q.. The



repeat command is exited when s; = nil, that is, when BB(P|[?/1], prefma.) fails. In
this situation, pre fy,q. is the preference of an optimal solution of the 0-completion of
the current problem P. Since BB fails on P[?/1] with such a bound, by monotonicity
of the x operator, pref,q; is also the preference of an optimal solution of P[?/1].
By Theorems 1 and 2, we can conclude that NOS(P) is not empty. If prefyq. = 0,
then NOS(P) contains all the assignments and thus also sg. The algorithm correctly
returns the same ISCSP given in input, assignment sq and its preference prefy = 0. If
instead 0 < prefiq2, again the algorithm is correct, since by Theorem 1 we know that
NOS(P) = Opt(P[?/0]), and since Sy,q, € Opt(P[?/0]). O

Notice also that the algorithm performs preference elicitation only on solutions
which are possibly optimal in the current partial completion of the given problem (and
thus also in the given problem). In fact, by Theorems 3 and 4, any optimal solution of
the 1-completion of the current partial completion () is a possibly optimal solution of
Q. Thus no useless work is done to elicit preferences related to solutions which cannot
be necessarily optimal for any partial completion of the given problem. This also means
that our algorithm works independently of the properties of the x operator.

6 Experimental setting and results

We have implemented Algorithm Find-NOS in Java and we have tested it on randomly
generated ISCSPs with binary constraints and based on the Fuzzy c-semiring. To gen-
erate such problems, we use the following parameters:

— n: number of variables;

m: cardinality of the domain of each variable;

d: density of the constraints, that is, the percentage of binary constraints present in
the problem w.r.t. the total number of possible binary constraints that can be defined
on n variables;

t: tightness, that is, the percentage of tuples with preference 0 in each constraint,
w.r.t. the total number of tuples (m? since we have only binary constraints), and in
each domain;

1: incompleteness, that is, the percentage of incomplete tuples (formally, tuples with
preference ?) in each constraint and in each domain.

For example, if the generator is given in inputn = 10, m = 5, d = 50, t = 10, and
1 = 30, it will generate a binary ISCSP with 10 variables, each with 5 elements in the
domain, 22 constraints on a total of 45 = n(n — 1)/2, 2 tuples with preference 0 and 7
incomplete tuples over a total of 25 in each constraint, and 1 missing preference in each
domain.

We have generated classes of ISCSPs by varying one parameter at a time, and fixing
the other ones. The varying parameters are the number of variables, the density, and the
incompleteness. When the number of variables varies (from n = 5 to n = 20, with step
3),wesetm =5,d = 50,t = 10, and i = 30. When we vary the density (from d = 10
to d = 80 with step 5), we set n = 10, m = 5, ¢t = 10, and ¢« = 30. Finally, when we
vary the incompleteness (from ¢ = 10 to ¢ = 80 with step 5), we set n = 10, m = 5,
d =50, and ¢t = 10.



In all the experiments, we have measured the number of tuples elicited by Algorithm
Find-NOS. We also show the percentage of elicited tuples over the total number of
incomplete tuples of the problem in input. For each fixed value of all the parameters,
we show the average of the results obtained for 50 different problem instances, each
given in input to Find-NOS 10 times. This setting is necessary since we have two kinds
of randomness: the usual one in the generation phase and a specific one when eliciting
preferences.

180 100
160
80
140 —~
8 2
o
€ 120 2
= o 60
(ol =
%5 100 1]
[
5 2
o 80
3 S 40
S 6o B
© =
c 2
40 D 5
20
0 . , , 0 ,
5 8 1 . 14 17 20 5 8 17 0
n. of variables

III 1'4
n. of variables
(@

Fig. 2. Number and percentage of elicited preferences, as a function of the number of variables.
Fixed parameters: m = 5, d = 50, t = 10, ¢ = 30.

Figure 2 shows the absolute number and the percentage of elicited preferences when
the number of variables varies. As expected, when the number of variables increases, the
absolute number of elicited preferences increases as well, since there is a growth of the
total number of incomplete tuples. However, if we consider the percentage of elicited
tuples, we see that it is not affected by the increase in the number of variables. In par-
ticular, the percentage of elicited preferences remains stable around 22%, meaning that,
regardless of the number of variables, the agent is asked to reveal only 22 preferences
over 100 incomplete tuples. A necessarily optimal solution can be thus found leaving
88% of the missing preferences unrevealed.

Similar results are obtained when density varies (see Figure 3). We can see that the
absolute number of elicited preferences grows when density increases. The maximum
number of elicited preferences reached is however lower that the maximum reached
when varying the variables (see Figure 2(a)). The reason for this is that the largest prob-
lems considered when varying the number of variables have more incomplete tuples
than the largest obtained when varying the density. In fact, a problem with n = 20,
given the fixed parameters, has around 685 incomplete tuples, 165 of which (about
22%) are elicited. On the other hand, a problem with d = 80, given the fixed param-
eters, has around 262 incomplete tuples, 55 (about 22%) of which are elicited. This is
coherent with the fact that the results on the percentage of elicited preferences when
varying the density and the number of variables are very similar.

The last set of experiments vary the percentage of incompleteness (see Figure 4). As
for density and number of variables, the absolute number of elicited preferences grows
when the percentage of incompleteness increases. The maximum number of elicited



-3
S

=)

o

50
. 80
8 2
o
c 40 %]
e 8
8 2 60
[l =
& 30 o
j5l
el
3 S 40
S 20| B
© =
c g \\‘—‘_0——‘\‘—-4‘—"'_"\’—'—“‘\,/
® 20
10
ol . . ol
10 15 20 25 30 35 40 45 50 55 60 65 70 75 0 10 15 20 25 30 35 40 45 50 55 60 65 70 75 0
ensity density

(a)

Fig. 3. Number and percentage of elicited preferences, as a function of the density. Fixed param-
eters: n = 10, m = 5,t = 10, ¢ = 30.

@

S
=)
=3

N
S

80

n
o

<)
=]

60

40

@
S

n. elicited preferences
B [o]
o o

elicited preferences (%)

n
o

10 1‘5 2IO 5'3 3‘0. 3‘5 4‘0 4‘5 ’:';0 ’:':5 6‘0 6‘5 70 010 1‘5 2IO 5'3 3‘0. 3‘5 4‘0 4‘5 ’:';0 ’:':5 6‘0 6‘5 70
incompleteness incompleteness
(@)

Fig. 4. Number and percentage of elicited preferences, as a function of the incompleteness. Fixed
parameters: n = 10, m = 5, ¢t = 10, ¢ = 30.

preferences reached is close to that reached when varying the variables. However, the
number of incomplete tuples of the problems with ¢ = 70 is around 460 and thus
smaller than that of problems with n = 20. Thus the percentage of elicited preferences
is larger in problems with ¢ = 70. This is confirmed by the corresponding result for the
percentage of elicited preferences, which is shown to be around 35%. Additionally, the
percentage of elicited preferences follows a slightly increasing trend as the percentage
of incompleteness in the problem grows. However, it maintains itself below 35%, which
means that in the worst case, where 70% of the tuples are incomplete, we are able to
find a necessary optimal solution leaving 46% of the total number of tuples unspecified.

These experimental results show that it is indeed possible to find a necessarily op-
timal solution while forcing the user to reveal only a small percentage of the missing
preferences. This is very promising both in terms of elicitation-related costs and also
when concerned with privacy issues.



7

Conclusions and future work

We consider problems modelled via soft constraints with totally ordered and possibly
unspecified preferences, and propose to solve them via an approach based on systematic
search. Experimental results show that a small amount of preferences has to be revelead
before being able to find an optimal solution.

Future work should consider partially ordered preferences and also other ways to

express preferences, such as qualitative ones a la CP nets [4, 3], as well as other kinds of
missing data, such as those considered in dynamic, interactive, and open CSPs. More-
over, other solving approaches can be considered, such as those based on local search
rather than systematic search.

References

1.

2.

11.

15.

S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint solving and optimiza-
tion. Journal of the ACM, 44(2):201-236, mar 1997.

S. Bistarelli, U. Montanari, F. Rossi, T. Schiex, G. Verfaillie, and H. Fargier. Semiring-based
csps and valued csps: Frameworks, properties, and comparison. Constraints, 4(3), 1999.

C. Boutilier, R. I. Brafman, C. Domshlak, H. H. Hoos, and D. Poole. Cp-nets: A tool for
representing and reasoning with conditional ceteris paribus preference statements. J. Artif.
Intell. Res. (JAIR), 21:135-191, 2004.

C. Boutilier, R. I. Brafman, H. H. Hoos, and D. Poole. Reasoning with conditional ceteris
paribus preference statements. In UAI, pages 71-80, 1999.

R. Dechter. Constraint processing. Morgan Kaufmann, 2003.

R. Dechter and A. Dechter. Belief maintenance in dynamic constraint networks. In AAAIL
pages 37-42, 1988.

B. Faltings and S. Macho-Gonzalez. Open constraint satisfaction. In CP, volume 2470 of
Lecture Notes in Computer Science, pages 356-370. Springer, 2002.

B. Faltings and S. Macho-Gonzalez. Open constraint optimization. In CP, volume 2833 of
Lecture Notes in Computer Science, pages 303-317. Springer, 2003.

B. Faltings and S. Macho-Gonzalez. Open constraint programming. Artif. Intell., 161(1-
2):181-208, 2005.

H. Fargier and J. Lang. Uncertainty in constraint satisfaction problems: a probalistic ap-
proach. In M. Clarke, R. Kruse, and S. Moral, editors, Symbolic and Quantitative Ap-
proaches to Reasoning and Uncertainty, European Conference, ECSQARU’93, Granada,
Spain, November 8-10, Proceedings, volume 747 of Lecture Notes in Computer Science,
pages 97-104. Springer, 1993.

H. Fargier, T. Schiex, and G. Verfaille. Valued Constraint Satisfaction Problems: Hard and
Easy Problems. In IJCAI-95, pages 631-637. Morgan Kaufmann, 1995.

S. Macho Gonzdlez, C. Ansétegui, and P. Meseguer. On the relation among open, inter-
active and dynamic csp. In The Fifth Workshop on Modelling and Solving Problems with
Constraints (IJCAI’05), 2005.

. E. Lamma, P. Mello, M. Milano, R. Cucchiara, M. Gavanelli, and M. Piccardi. Constraint

propagation and value acquisition: Why we should do it interactively. In IJCAI, pages 468—
477, 1999.

J. Lang, M. S. Pini, F. Rossi, K. B. Venable, and T. Walsh. Winner determination in sequential
majority voting. In IJCAI, pages 1372-1377, 2007.

7. Ruttkay. Fuzzy constraint satisfaction. In Proceedings 1st IEEE Conference on Evolu-
tionary Computing, pages 542-547, Orlando, 1994.



