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Abstract

In sequential majority voting, preferences are aggregated by
a sequence of pairwise comparisons (also called an agenda)
between candidates. The result of each comparison is deter-
mined by a weighted majority vote between the agents. In
this paper we consider the situation where the agents may not
have revealed all their preferences. This is common in real-
life settings, due to privacy issues or an ongoing elicitation
process. We study the computational complexity of deter-
mining the winner(s), given that some preferences may not
yet be revealed and the agenda is not yet known or decided.
We show that it is easy to determine if a candidate must win
whatever the agenda. On the other hand, it is hard to know
whether a candidate can win in at least one agenda for at least
one completion of unrevealed preferences. This is also true if
the agenda is balanced (that is, each candidate must win the
same number of pairwise competitions to win overall).

Introduction
A general method for aggregating preferences in a multi-
agent systems is running an election between the different
options using a voting rule. Unfortunately, eliciting pref-
erences from agents to be able to run such an election is a
difficult, time-consuming and costly process. Agents may
also be unwilling to reveal all their preferences for privacy
reasons. Fortunately, we can often determine the outcome
a long time before all the preferences have been revealed
(Conitzer & Sandholm 2002b). For example, it may be that
one candidate has so many votes that he will win whatever
happens with the remaining votes. Being able to determine
if a candidate must win is useful as we can stop eliciting
preferences.

In addition to uncertainty about the agents’ preferences,
we may have uncertainty about how the voting rule will be
applied. For instance, in sequential majority voting (some-
times called the “Cup” or “tournament” rule), preferences
are aggregated by a sequence of pairwise comparisons (also
called an “agenda”). The order of these comparisons may
not yet be fixed or may not be known. Nevertheless, we may
still be able to determine information about the outcome.
For example, it may be that one candidate cannot win how-
ever the voting rule is applied. This is useful, for example,
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if we want to know if the chair can manipulate the election
to make their favoured candidate win.

In this paper we study the computational complexity of
determining the possible and necessary winners in sequen-
tial majority voting with weighted agents, when preferences
may be incomplete and we may not know the agenda. We
show that determining if a candidate must win in every
agenda is polynomial. However, determining if a candidate
can win in at least one completion of the unrevealed pref-
erences and at least one agenda is NP-hard. This problem
remains hard if the agenda is balanced.

Background
Preferences and profiles. We assume that each agent’s
preferences are specified by a (possibly incomplete) total
order (TO) (that is, by an asymmetric, irreflexive and tran-
sitive order) over a set of candidates (denoted by Ω). Given
two candidates, say A,B ∈ Ω, an agent specifies exactly
one of the following: A < B, A > B, or A?B, where
A?B means that the relation between A and B has not yet
been revealed. We assume that an agent’s preferences are
transitively closed. That is, if they declare A > B, and
B > C then they also have A > C. A weighted profile
is a sequence of total orders describing the preferences for
n agents, each of which has a given weight. A weighted
profile is incomplete if one or more of the preference re-
lations is incomplete. For simplicity, we assume that the
sum of the weights of agents is odd. An (incomplete) un-
weighted profile is one in which each agent has weight 1.
From any weighted profile P , we can build the correspond-
ing unweighted profile P ′ by replacing every ordering ex-
pressed by an agent with weight ki by ki agents with weight
1 expressing the identical ordering.

Majority graphs. Given an (incomplete) weighted profile
P , the majority graph M(P ) induced by P is the directed
graph whose set of vertices is Ω and where an edge from
A to B (denoted by A >m B) denotes a strict weighted
majority of voters who prefer A to B. A majority graph is
said to be complete if, for any two vertices, there is a di-
rected edge between them. Notice that, if P is incomplete,
M(P ) may be incomplete as well. Moreover, if M(P ) is in-
complete, the set of all complete majority graphs extending
M(P ) corresponds to a (possibly proper) superset of the set



of complete majority graphs induced by all possible comple-
tions of P . This is due to correlations between votes which
might prevent a given graph from being implementable.

Example 1 Consider the incomplete weighted profile P
composed by three agents a1, a2 and a3 with weights resp.
1, 2 and 2 where a1 states A > B > C, a2 states B >
A,A?C,B?C and a3 states A > B,A?C,C > B. The ma-
jority graph induced by P , called M(P ), is the graph with
three nodes A, B and C and only one edge A >m B.

Sequential majority voting. Given a set of candidates,
the sequential majority voting rule is defined by a binary tree
(also called an agenda) with one candidate per leaf. Each
internal node represents the candidate that wins the pairwise
election between the node’s children. The winner of every
pairwise election is computed by the weighted majority rule,
where A beats B iff there is a weighted majority of votes
stating A > B. The candidate at the root of the agenda is
declared the overall winner. Given a complete profile, can-
didates which win whatever the agenda are called Condorcet
winners.

Winners from majority graphs. Four types of potential
winner have been defined (Lang et al. 2007). Given and
an incomplete majority graph G induced by an incomplete
profile P , consider a candidate A. Then

• A is a weak Condorcet winner for G (A ∈ WC(G))
iff there is a completion of G such that A wins in every
agenda;

• A is a strong Condorcet winner for G (A ∈ SC(G)) iff
for every completion of G, A wins in every agenda;

• A is a weak possible winner for G (A ∈ WP (G)) iff there
exists a completion of G and an agenda for which A wins;

• A is a strong possible winner for G (A ∈ SP (G))) iff
for every completion of G there is an agenda for which A
wins.

When the majority graph is complete, strong and weak
Condorcet winners coincide (that is, SC(G) = WC(G)).
Similarly, strong and weak possible winners coincide in this
case (that is, SP (G) = WP (G)). In (Lang et al. 2007), it
is proved that WP (G), SP (G), WC(G), and SC(G) can
all be computed in polynomial time.

Profiles vs. majority graphs
These notions of possible and Condorcet winner are based
on an incomplete majority graph. It is, however, often more
useful and meaningful to start directly from the incomplete
profile inducing the majority graph. Given an incomplete
profile, there can be more completions of its induced major-
ity graphs than majority graphs induced by completing the
profile. The problem is that the incomplete majority graph
throws away information about how individual agents have
voted. For example, we lose information about correlations
between votes. Such correlations may prevent a candidate
from being able to win.

Example 2 Consider an incomplete profile P with just one
agent and three candidates (A, B, and C), where the agent

declares only A > B. Then the induced majority graph
M(P ) has only one arc from A to B. In this situation, B is
a weak possible winner (that is, B ∈ WP (M(P ))), since
there is a completion of the majority graph (where B beats
C and C beats A), and an agenda where B wins (we first
compare A with C, C wins, and then C with B, where B
wins). However, there is no way to complete profile P and
set up the agenda so B wins. It is therefore rather mislead-
ing to consider B as a potential winner.

Hence, unlike (Lang et al. 2007), we will define possible
and Condorcet winners starting directly from profiles, rather
than the induced majority graphs.

Weighted votes
As in (Conitzer & Sandholm 2002a), we will consider
weighted votes. Although human elections are often un-
weighted, the addition of weights makes voting schemes
more general. Weighted voting systems are used in a number
of real-world settings like shareholder meetings, and elected
assemblies. Weights are useful in multiagent systems where
we have different types of agents. Weights are also interest-
ing from a computational perspective.

First, as we argue here, computing the weak/strong pos-
sible/Condorcet winners with unweighted votes is always
polynomial. If there a bounded number of candidates, there
are only a polynomial number of different ways to complete
the profile or majority graph. There are also only a polyno-
mial number of different agendas. All the possibilities can
therefore be tested in polynomial time. On the other hand,
adding weights to the votes may introduce computational
complexity. For example, as we will show later, comput-
ing weak possible winners becomes NP-hard when we add
weights. Second, as argued in (Conitzer & Sandholm 2002a)
for manipulation, if it is hard to compute possible winners
with weighted votes, it will also be hard to compute the
probability of winning in the unweighted case when there
is uncertainty about how the votes have been cast. Thus, the
weighted case informs us about the unweighted case in the
presence of uncertainty about the votes.

Possible and Condorcet winners from profiles
Given an incomplete weighted profile, we introduce the fol-
lowing notions of weak/strong possible/Condorcet winners.

Definition 1 Let P be an incomplete weighted profile and
A a candidate.

• A is a weak Condorcet winner for P (A ∈ WC(P )) iff
there is a completion of P such that A is a winner for all
agendas;

• A is a strong Condorcet winner for P (A ∈ SC(P )) iff
for every completion of P , and for every agenda, A is a
winner;

• A is a weak possible winner for P (A ∈ WP (P )) iff there
exists a completion of P and an agenda for which A wins;

• A is a strong possible winner for P (A ∈ SP (P )) iff for
every completion of P there is an agenda for which A
wins;



It is easy to see that, when the profile is complete, strong
and weak Condorcet winners coincide. The same holds also
for strong and weak possible winners.

We now make a comparison between the notions of win-
ners defined in (Lang et al. 2007) and those defined above
in this paper. Since in (Lang et al. 2007) weights were not
considered, we first consider unweighted profiles. Given an
incomplete unweighted profile P and the incomplete major-
ity graph G induced by P , that is, G = M(P ), we know
that the completions of G are a (possibly proper) superset
of the set of complete majority graphs induced by all possi-
ble completions of P . This simple observation leads to the
following results.

Theorem 1 Given an incomplete unweighted profile P ,

• WP (M(P )) ⊇ WP (P );
• SP (M(P )) ⊆ SP (P );
• WC(M(P )) = WC(P );
• SC(M(P )) = SC(P ).

Proof:
• WP (M(P )) ⊇ WP (P ).

If a candidate A belongs to WP (P ), there is a comple-
tion of P , say P ′, and an agenda, such that A wins. Thus
A ∈ WP (G′) where G′ is the complete majority graph
induced by P ′. Since G′ is one of all the possible com-
pletions of M(P )), then A ∈ WP (M(P )).

• SP (M(P )) ⊆ SP (P ).
If a candidate is a possible winner for every completion
of G, it is also a possible winner for the majority graphs
induced by the completions of P , since they are a subset
of the set of all the completions of M(P ).

• WC(M(P )) = WC(P ).
The same reasoning used in the first part of this proof can
be used here to show that WC(M(P )) ⊇ WC(P ). We
can also prove that WC(M(P )) ⊆ WC(P ). In fact, if
a candidate A belongs to WC(M(P )), then there must
be one or more completions of the majority graph where
A has only outgoing edges. Among such completions,
there is for sure one which derives from a completion of
the profile in which all A?C become A > C (for all C).
Thus, setting this is sufficient to make A a weak Con-
dorcet winner and does not give any transitivity problems
in the profile.

• SC(M(P )) = SC(P ).
The same reasoning used in the second part of this proof
can be used here to show that SC(M(P )) ⊆ SC(P ). We
can also prove that SC(M(P )) ⊇ SC(P ). In fact, if a
candidate belongs to SC(P ), then it is a Condorcet win-
ner, i.e., it beats every other candidate, for every comple-
tion of P . Thus it must beat every other candidate in the
certain part. Thus in the (possibly incomplete) majority
graph M(P ) induced by P there are only outgoing edges
from this candidate, and so this candidate must belong to
SC(M(P )). 2

Notice that there are cases in which the subset relation
WP (M(P )) ⊇ WP (P ) is strict. In fact, a candidate can

be a possible winner for a completion of M(P ) which is
not induced by any completion of P , as shown previously in
Example 2.

We next consider weighted profiles. Although weighted
profiles were not considered in (Lang et al. 2007), the same
notions defined in that paper can be given also for majority
graphs induced by weighted profiles. We will now show that
the same results as in Theorem 1 hold also in this more gen-
eral setting. To do this, we first show that, given an incom-
plete weighted profile P and the corresponding unweighted
profile P ′, SC(P ) = SC(P ′) and WC(P ) = WC(P ′).

Theorem 2 Given an incomplete weighted profile P , let
P ′ the corresponding unweighted profile obtained from P .
Then

• M(P ) = M(P ′);
• SC(P ) = SC(P ′);
• WC(P ) = WC(P ′).

Proof:

• M(P ) = M(P ′).
We show that ∀A,B ∈ Ω, A >m B in M(P ) iff A >m B
in M(P ′) and A?mB (i.e., A 6>m B and B 6>m A) in
M(P ) iff A?mB in M(P ′). Given candidates A and B,
A >m B in M(P ) iff there are j agents with total weights
Tj > (

∑n
i=1 ki)/2 stating A > B in P . This happens iff

there are Tj agents with weights 1 stating A > B in P ′,
i.e., there is a majority of agents stating A > B in P ′.
This means that A >m B in M(P ′).
Given candidates A and B, A?mB in M(P ) iff there is no
weighted majority of agents in P all stating A > B or all
stating B > A. This means that in P ′ there is no majority
of agents all stating A > B or all stating B > A. Thus
A 6>m B and B 6>m A in M(P ′), i.e., A?mB in M(P ′).

• SC(P ) = SC(P ′).
(⇐) It follows from the fact that the set of completions of
P ′ is a superset of the set of the completions of P .
(⇒) Assume that A 6∈ SC(P ′). Then A has not m − 1
outgoing edges (where m = |Ω|) in M(P ′) (Lang et al.
2007). Hence, since M(P ) = M(P ′), A has not m − 1
outgoing edges in M(P ). Hence there is a candidate B
s.t. B >m A or B?mA in M(P ). If B >m A in M(P ),
then for every completion of P we have B > A, and thus
A cannot win in every agenda. If B?mA in M(P ), then
there exists a completion of P where we replace every
A?B with B > A, where A may not win. Thus it is
not true that A wins for every completion and for every
agenda.

• WC(P ) = WC(P ′).
(⇒) It follows from the fact that the set of completions of
P ′ is a superset of the set of the completions of P .
(⇐) Assume that A ∈ WC(P ′). Then A has no ingo-
ing edges in M(P ′) (Lang et al. 2007). Hence, since
M(P ′) = M(P ), A has no ingoing edges in M(P ′).
Thus if we replace, for every B, A?B in P with A > B,
there we obtain a completion of P where A wins for every
agenda. Thus A ∈ WC(P ). 2



We are now ready to compare the notions of winners in
the weighted case.

Theorem 3 Given an incomplete weighted profile P , we
have:

• WP (M(P )) ⊇ WP (P );
• SP (M(P )) ⊆ SP (P );
• SC(M(P )) = SC(P );
• WC(M(P )) = WC(P ).

Proof: Let P ′ be the corresponding unweighted pro-
file obtained from P . Since the set of the completions of
P is a subset of the set of completions of P ′, we have
that WP (P ) ⊆ WP (P ′) and SP (P ) ⊇ SP (P ′). Now,
since M(P ) = M(P ′) by Theorem 2, and since SP (G)
and WP (G) depend only on the majority graph G un-
der consideration, we have that WP (M(P )) ⊇ WP (P )
and SP (M(P )) ⊆ SP (P ). To prove that SC(P ) =
SC(M(P )), we may notice that SC(P ) = SC(P ′) by
Theorem 2, SC(P ′) = SC(M(P ′)) by Theorem 1, and
SC(M(P ′) = SC(M(P )) by Theorem 2 and by the fact
that SC(G) depends only on the majority graph G con-
sidered. The same reasoning allows us to conclude that
WC(P ) = WC(M(P )). 2

Complexity of determining winners
We now turn our attention to study the complexity of deter-
mining possible and Condorcet winners. We start by show-
ing that computing weak and strong Condorcet winners is
polynomial in the number of agents and candidates.

Theorem 4 Given an incomplete weighted profile P , the
sets WC(P ) and SC(P ) are polynomial to compute.

Proof: By Theorem 3, WC(P ) = WC(M(P )) and
SC(P ) = SC(M(P )). Moreover, by Theorem 2 we
know that M(P ) = M(P ′), where P ′ is the correspond-
ing unweighted profile obtained from P . Thus WC(P ) =
WC(M(P ′)) and SC(P ) = SC(M(P ′)). In (Lang et al.
2007) the authors show that, given any majority graph G ob-
tained from an unweighted profile, it is polynomial to com-
pute WC(G) and SC(G). Thus it is polynomial to compute
WC(M(P ′)) and SC(M(P ′)). 2

We now consider weak possible winners. We show that,
computing weak possible winners is intractable in general.

Theorem 5 Given an incomplete weighted profile P with 3
or more candidates, deciding if a candidate is a weak possi-
ble winner for P is NP-complete.

Proof: We give a reduction from the number partitioning
problem. We have a bag of integers, ki with sum 2k and
we wish to decide if they can be partitioned into two bags,
each with sum k. We want to show that a candidate B is a
weak possible winner if and only if such a partition exists.
We construct an incomplete profile over three candidates (A,
B, and C) as follows. We have 1 vote for B > C > A of
weight 1, 1 vote B > A > C of weight 2k − 1, and 1 vote
C > B > A of weight 2k − 1. At this point, the weight
of votes such that B is ahead of A is 4k − 1, the weight of
votes such that B is ahead of C is 1, and the weight of votes

such that C is ahead of A is 1. We also have, for each ki, a
partially specified vote of weight 2ki in which we know just
that A > B. As the total weight of these partially specified
votes is 4k, we are sure A beats B in the final result by
1 vote. The partially specified votes can be completed to
make A > B, B > C, and C > A iff there is a partition of
size k. Suppose there is such a partition. Then let the votes
in one bag be A > B > C and the votes in the other be
C > A > B. Then, A beats B, B beats C and C beats A,
all by 1 vote. On the other hand, suppose there is a way to
cast the votes to give the result A beats B, B beats C and C
beats A. All the uncast votes rank A above B. In addition,
at least half the weight of votes must rank B above C, and at
least half the weight of votes must rank C above A. Since A
is above B, C cannot be both above A and below B. Thus
precisely half the weight of votes ranks C above A and half
ranks B above C. Thus we have a partition of equal weight.
Now, as A beats B, B is a possible winner for the considered
completion of the profile iff B beats C and C beats A. Thus,
B is a weak possible winner iff there is a partition of size k.
2

Note that computing weak possible winners from an in-
complete majority graph is polynomial (Lang et al. 2007).
Thus, adding weights to the votes and computing weak pos-
sible winners from the incomplete profile instead of the ma-
jority graph makes the problem intractable. On the other,
adding weights to the votes did not make weak and strong
Condorcet winners hard to compute.

Weak fair possible winners
In (Lang et al. 2007) the notion of fair winner in sequential
majority voting is introduced. In particular: given a com-
plete profile P , a candidate A is said to be a fair possible
winner for P iff there is a balanced agenda in which A wins.
If the number of candidates is a power of two, a balanced
agenda is a balanced binary tree in which every candidate
needs to win the same number of pairwise comparisons to
win overall. If the number of candidates is not a power of
two, each candidate has at most one bye. The motivation to
consider fair possible winners is to avoid situations in which
weak candidates, that can beat only a small number of can-
didates, end up winners of the election. In (Lang et al. 2007)
it has been shown that testing whether a candidate is a fair
possible winner over weighted majority graphs is NP-hard.

We consider again this notion of fairness, applied to the
new notions of possible winner. In particular, we say that:
given an incomplete weighted profile P , A is a fair weak
possible (FWP) winner for P iff there exists a completion of
P and a balanced agenda such that A wins. Given the proof
of Theorem 5, it is easy to see that determining such winners
is difficult. However, this result cannot be derived from the
analogous one in (Lang et al. 2007), since we don’t have
weights in the majority graph.

Theorem 6 Given an incomplete weighted profile P with 3
or more candidates, deciding if a candidate is a fair weak
possible winners for P is NP-complete.

Proof: It follows from the proof of Theorem 5, since ev-
ery agenda with 3 candidates is represented by a balanced



agenda. 2

Related work
Contizer and Sandholm prove that deciding if preference
elicitation is over (that is, determining if the remaining votes
can be cast so a given candidate does not win) is NP-hard
for the STV rule (Conitzer & Sandholm 2002b). For other
common voting rules like plurality, Borda and the sequen-
tial majority rule, they show that it is polynomial to decide
if preference elicitation is over.

Konczak and Lang show that it is polynomial to compute
possible and necessary winners for positional scoring vot-
ing rules like the Borda and plurality rule, as well as for a
non-positional rule like Condorcet (Konczak & Lang 2005).
They argue that elicitation is over when the set of possible
winners contains just the necessary winner. They also ar-
gue that if computing possible (resp., Condorcet) winners is
polynomial, then constructive (resp., destructive) manipula-
tion of the election is polynomial.

Pini et al. prove that, for the STV rule, computing the
possible and necessary winners is NP-hard (Pini et al. 2007).
In fact, they show it is NP-hard even to approximate these
sets within some constant factor in size. They also give a
preference elicitation procedure which focuses just on the
set of possible winners. Lang et al. consider determining the
winner for the sequential majority voting rule in the presence
of uncertainty about the votes and agenda (Lang et al. 2007).
As mentioned earlier, the major difference is that this work
starts from incomplete majority graphs whilst we start from
incomplete profiles. The incomplete majority graph throws
away information about the individual votes. For this reason,
it may suggest candidates can win when they cannot.

Finally, Conitzer and Sandholm show that, if the agenda
is fixed, determining the weak winners is polynomial, but
randomizing the agenda makes deciding the probability that
a candidate wins (and thus manipulation) NP-hard (Conitzer
& Sandholm 2002a). They also prove that constructive ma-
nipulation is intractable for the Borda, Copeland, Maximin
and STV rules using weighted votes even with a small num-
ber of candidates. However, all of these rules are polynomial
to manipulate destructively except STV.

Conclusions
We have considered agents combining preferences using
the sequential majority rule. We have studied the situation
where agents may not have revealed all their preferences (ei-
ther because we are still eliciting preferences or because of
issues like privacy or communication cost). We have also
considered uncertainty in how the voting rule is applied. In
these settings, we have studied the computational complex-
ity of computing whether a candidate must or can win. The
following table summarizes the complexity results discussed
in this paper. The table has one cell for each of the sev-
eral notions of winners. Each row considers the same notion
based either on an incomplete majority graph, on an incom-
plete profile. The new results are those appearing in the sec-
ond column of the table. The results in the first column were
presented in (Lang et al. 2007).

maj.graph profile
WP P NP-hard
WC P P
SC P P

FWP NP-hard (with weighted maj.graph) NP-hard

Notice that the complexity of determining fair weak possi-
ble winners, with or without weights for the agents, was still
open before the NP-hardness result given here. In fact, the
only existing result was for unweighted agents and majority
graphs in which the edges are labelled with weights. Such
labels could represent, for example, the amount of disagree-
ment between the agents. In this paper, edges in majority
graphs are not labelled with weights, but are simply directed
according to the majority weight of votes.

These results are useful in determining if preference elic-
itation is over. They are also useful to determine how diffi-
cult it is for the chair to control the election. As future work
we want to determine the computational complexity of find-
ing strong possible winners from incomplete weighted pro-
files. For incomplete majority graphs such a computation is
polynomial (Lang et al. 2007), we want to check if there is
the same complexity also considering incomplete weighted
profiles. Moreover, we intend to investigate the complex-
ity of determining winners from incomplete weighted pro-
files when the agenda is fixed. In such a case we can define
new notions of winners: weak winners, i.e., those candi-
dates that win in the fixed agenda for at least a completion
of the incomplete profile and strong winners, i.e., those can-
didates that win in the fixed agenda for every completion of
the incomplete profile. Another interesting direction for fu-
ture work is deciding which candidate or candidates are most
likely to win. This is related to probabilistic approaches to
voting theory. Another interesting direction is to study other
forms of uncertainty in the application of the voting rule (e.g.
if we have uncertain weights in a scoring rule, or if the chair
can choose between a certain set of voting rules).
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