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Abstract. In sequential majority voting, preferences are aggreghied se-
guence of pairwise comparisons (also called an agendagbateandidates. The
result of each comparison is determined by a weighted ntgjeote between the
agents. In this paper we consider the situation where thetageay not have
revealed all their preferences. This is common in realséings, due to privacy
issues or an ongoing elicitation process. We study the ctatipnal complexity
of determining the winner(s), given that some preferencagmot yet be revealed
and the agenda is not yet known or decided. We show that isisteadetermine
if a candidate must win whatever the agenda. On the other, itasitiard to know
whether a candidate can win in at least one agenda for atdeastompletion of
unrevealed preferences. This is also true if the agenddasded (that is, each
candidate must win the same number of pairwise competitiorngin overall).
We also consider the case of fixed agendas. We show that icethésit is easy to
determine if a candidate can win in the fixed agenda for at Eeasmpletion or
for every completion of unrevealed preferences.

1 Introduction

A general method for aggregating preferences in a multiagygstems is running an
election between the different options using a voting rulgfortunately, eliciting pref-
erences from agents to be able to run such an election is euttifime-consuming and
costly process. Agents may also be unwilling to reveal &irthreferences for privacy
reasons. Fortunately, we can often determine the outcornagtime before all the
preferences have been revealed [3]. For example, it maydiette candidate has so
many votes that he will win whatever happens with the remaginbtes. Being able to
determine if a candidate must win is useful as we can stojieiqreferences.

In addition to uncertainty about the agents’ preferencesmay have uncertainty
about how the voting rule will be applied. For instance, iqusntial majority vot-
ing (sometimes called the “Cup” or “tournament” rule), digepvestigated in Social
Choice Theory [7, 6], preferences are aggregated by a sequirpairwise compar-
isons (also called an “agenda”). The order of these conpasisay not yet be fixed or
may not be known. Nevertheless, we may still be able to déterinformation about
the outcome. For example, it may be that one candidate cavindiowever the vot-
ing rule is applied. This is useful, for example, if we wantkiwow if the chair can
manipulate the election to make their favored candidate win



In this paper we study the computational complexity of dateing the possible
and necessary winners in sequential majority voting withgived agents, when pref-
erences may be incomplete and we may not know the agenda.divelsdt determining
if a candidate must win in every agenda is polynomial. Howedetermining if a can-
didate can win in at least one completion of the unrevealetepences and at least one
agenda is NP-hard. This problem remains hard if the ageni@asced. Because the
choice of the agenda is under the control of the chair, owltesan be interpreted in
terms of difficulty of manipulation by the chair (as in, e [d.]). We also consider the
case of fixed agendas and we show that in this context it imjpotyal to determine if a
candidate can win in the fixed agenda for at least a completiéor every completion
of unrevealed preferences.

This paper is an extended version of [9].

2 Background

Preferences and profilesWe assume that each agent’s preferences are specified by a
total order (TO) (that is, by an asymmetric, irreflexive arahsitive order) over a set

of candidates (denoted hy). However, an agent may choose to only partially reveal
his total order. More precisely, given two candidates, 4a € (2, an agent specifies
exactly one of the followingA < B, A > B, or A7B, whereA? B means that the rela-
tion betweem and B has not yet been revealed. We assume that an agent’s predsren
are transitively closed. That is, if they declate> B, andB > C then they also have

A > C. A weighted profilés a sequence of total orders describing the preferences for
n agents, each of which has a given weight. A weighted profiledsmpletdf one or
more of the preference relations is incomplete. For sintglizre assume that the sum

of the weights of agents is odd. An (incompleteeighted profilés one in which each
agent has weight. Given an weighted profil&, its corresponding unweighted profile
U(P) is the weighted profile obtained from by replacing every ordering expressed by
an agent with weight; by k; agents with weight expressing the identical ordering.

Majority graphs. Given an (incomplete) weighted profifg, themajority graphM (P)
induced byP is the directed graph whose set of vertice®iand where an edge from
A to B (denoted byA >,, B) denotes a strict weighted majority of voters who prefer
A to B. A majority graph is said to be complete if, for any two vegcthere is a di-
rected edge between them. Notice thal, it incomplete M (P) may be incomplete as
well. Moreover, if M (P) is incomplete, the set of all complete majority graphs eatten
ing M (P) corresponds to a (possibly proper) superset of the set oplatenmajority
graphs induced by all possible completionsfafThis is due to correlations between
votes which might prevent a given graph from being implerablat

Example 1.Consider the incomplete weighted profiffecomposed by three agenis,
as andag with weights respl, 2 and2 wherea; statesA > B > C, a, StatesB >
A, A?C, B?C andas statesA > B, A?C,C > B. The majority graph induced b#,
calledM (P), is the graph with three nodes B andC and only one edgd >, B.



Sequential majority voting.Given a set of candidates, the sequential majority voting
rule is defined by a binary tree (also called agenda with one candidate per leaf.
Each internal node represents the candidate that wins theigaelection between the
node’s children. The winner of every pairwise election isnpaited by the weighted
majority rule, whered beatsB iff there is a weighted majority of votes stating> B.
The candidate at the root of the agenda is declared the bwémaker. Given a complete
profile, candidates which win whatever the agenda are c@idiorcet winners

Winners from majority graphs.Four types of potential winner have been defined [5].
Given and an incomplete majority graghinduced by an incomplete profilg, con-
sider a candidatd. Then

— Ais aweak Condorcet winndor G (A € WC(Q)) iff there is a completion o
such thatd wins in every agenda,;

— Ais astrong Condorcet winndor G (A € SC(Q)) iff for every completion ofG,
A wins in every agenda;

— Ais aweak possible winndor G (A € W P(G)) iff there exists a completion of
G and an agenda for which wins;

— A is astrong possible winneior G (A € SP(Q))) iff for every completion ofG
there is an agenda for whichwins.

When the majority graph is complete, strong and weak Cordavininers coincide
(that is, SC(G) = WC(G)). Similarly, strong and weak possible winners coincide
in this case (that isSP(G) = WP(G)). In [5], it is proved thatW P(G), SP(G),
WC(G), andSC(G) can all be computed in polynomial time.

3 Profiles, majority graphs and weights

These notions of possible and Condorcet winner are based oicamplete majority
graph. It is, however, often more useful and meaningful #otstirectly from the in-
complete profile inducing the majority graph. Given an inptete profile, there can
be more completions of its induced majority graphs than nitgjgraphs induced by
completing the profile. The problem is that the incompletgomity graph throws away
information about how individual agents have voted. Fomnaxie, we lose information
about correlations between votes. Such correlations neept a candidate from being
able to win.

Example 2.Consider an incomplete profilé with just one agent and three candidates
(A, B, andC), where the agent declares oly> B. Then the induced majority graph
M (P) has only one arc fromd to B. In this situation,B is a weak possible winner
(thatis,B € W P(M(P))), since there is a completion of the majority graph (whBre
beatsC andC beatsA), and an agenda wherg wins (we first comparel with C, C
wins, and therC with B, whereB wins). However, there is no way to complete profile
P and set up the agenda sbwins. It is therefore rather misleading to consideas a
potential winner.



Hence, unlike [5], we will define possible and Condorcet wirsnstarting directly
from profiles, rather than the induced majority graphs.

As in [2], we will consider weighted votes. Although humaactlons are often un-
weighted, the addition of weights makes voting schemes meneral. Weighted vot-
ing systems are used in a number of real-world settings hiaeeholder meetings, and
elected assemblies. Weights are useful in multiagent sysstehere we have different
types of agents. Weights are also interesting from a corntipatd perspective.

First, as we argue here, computing the weak/strong po&Sithelorcet winners with
unweighted votes is always polynomial. If there a boundedhler of candidates, there
are only a polynomial number of different ways to complete ghofile or majority
graph. There are also only a polynomial number of differgralas. All the possibil-
ities can therefore be tested in polynomial time. On the otfa@d, adding weights to
the votes may introduce computational complexity. For exlamas we will show later,
computing weak possible winners becomes NP-hard when wevaidhts. Second, as
argued in [2] for manipulation, if it is hard to compute pddsiwinners with weighted
votes, it will also be hard to compute the probability of wimgin the unweighted case
when there is uncertainty about how the votes have beenTdass, the weighted case
informs us about the unweighted case in the presence oftaimgrabout the votes.

4 Possible and Condorcet winners from profiles

Given an incomplete weighted profile, we introduce the foiig notions of weak/strong
possible/Condorcet winners.

Definition 1. Let P be an incomplete weighted profile adda candidate.

— Ais aweak Condorcet winndor P (A € WC(P)) iff there is a completion oP
such that4 is a winner for all agendas;

— A s astrong Condorcet winndor P (A € SC(P)) iff for every completion oP,
and for every agend& is a winner;

— Ais aweak possible winnefor P (A € W P(P)) iff there exists a completion of
P and an agenda for whicA wins;

— A is astrong possible winneor P (A € SP(P)) iff for every completion of
there is an agenda for whicH wins;

It is easy to see that, when the profile is complete, strongvesak Condorcet
winners coincide. The same holds also for strong and weasiljesvinners.

Example 3.Consider the profilé given in Example 1. We have th&8C (P) = SP(P)
= 0, WC(P) = {A,C} andWP(P) = {A, B,C}. More precisely,A andC are
weak Condorcet winners, since there are completion8 ofhere they win in all the
agendas. In factd wins in all the agendas in the completion Bfwherea, states
A > B > C, ay statesC > B > A andas statesA > C > B, while C wins
in all the agendas in the completion 6f wherea; statesA > B > C, a, States
C > B > A andas statesC > A > B. The outcomeB is not a weak Condorcet
winners, since there are no completions where it wins inyeagenda. However3 is



a weak possible winner, since there is a completioR @nd an agenda where it wins.
Such a completion is the one where statesA > B > C, ao statesB > C > A
andas statesC' > A > B, and the agenda is the one where at fitstompetes with
C and then the winner competes with Notice that in this example the sets of weak
and strong possible and Condorcet winners obtained camnsidthe completions of
P coincide with the corresponding ones obtained considdtiegcompletions of the
majority graph induced byP. However, as shown in Example 2, this is not true in
generald

5 Comparing the notions of winners

We now make a comparison between the notions of winners dkitngs] and those
defined above in this paper. Since in [5] weights were notidensd, we first consider
unweighted profiles. Given an incomplete unweighted prdfiland the incomplete
majority graphG induced byP, that is,G = M (P), we know that the completions of
G are a (possibly proper) superset of the set of complete magraphs induced by all
possible completions d?. This simple observation leads to the following results.

Theorem 1. Given an incomplete unweighted profife

- WP(M(P)) 2 WP(P);
- SP(M(P ))CSP( );
- WC(M(P)) = WC(P);
— SC(M(P)) = SC(P).

Proof. — WP(M(P)) D WP(P).

If a candidateA belongs tolW P(P), there is a completion oP, say P/, and an
agenda, such that wins. ThusA € W P(G’) whereG' is the complete majority
graph induced by”’. SinceG’ is one of all the possible completions df (P)),
thenA € WP(M(P)).

— SP(M(P)) C SP(P).
If a candidate is a possible winner for every completioizoft is also a possible
winner for the majority graphs induced by the completion$o&ince they are a
subset of the set of all the completionsidf( P).

- WC(M(P)) =WC(P).
The same reasoning used in the first part of this proof can ée bsre to show
thatWC(M(P)) > WC(P). We can also prove thaV C (M (P)) € WC(P).
In fact, if a candidated belongs toW C (M (P)), then there must be one or more
completions of the majority graph where A has only outgoidges. Among such
completions, there is for sure one which derives from a cetigoi of the profile in
which all A?7C' becomeA > C (for all C'). Thus, setting this is sufficient to make
a weak Condorcet winner and does not give any transitivitppl@ms in the profile.

— SC(M(P)) = SC(P).
The same reasoning used in the second part of this proof casdaehere to show
thatSC (M (P)) C SC(P). We can also prove th&tC' (M (P)) 2 SC(P). In fact,
if a candidate belongs t6C(P), then it is a Condorcet winner, i.e., it beats every



other candidate, for every completionBf Thus it must beat every other candidate
in the certain part. Thus in the (possibly incomplete) majagraphM (P) induced
by P there are only outgoing edges from this candidate, and seémdidate must
belong toSC(M(P)). O

Notice that there are cases in which the subset reldiidi M (P)) D WP(P) is
strict. In fact, a candidate can be a possible winner for aptetion of M (P) which is
not induced by any completion @t, as shown previously in Example 2.

We next consider weighted profiles. Although weighted pesfilvere not consid-
ered in [5], the same notions defined in that paper can be gigerfor majority graphs
induced by weighted profiles. We will now show that the sansulte as in Theo-
rem 1 hold also in this more general setting. To do this, we filow that, given
an incomplete weighted profil® and its corresponding unweighted profllg P),
SC(P)=SC(U(P))andWC(P) = WC(U(P)).

Theorem 2. Given an incomplete weighted profilg

~ M(P) = M(U(P));
— SC(P) = SC(U(P));
~ WC(P) = WC(U(P)).

Proof. — M(P)= M(U(P)).
We show thatvA,B € 2, A >,, Bin M(P) iff A >,, Bin M(U(P)) and
A?,B (e, A #, BandB %, A)in M(P) iff A?,,B in M(U(P)). Given
candidatesA and B, A >,, B in M (P) iff there arej agents with total weights
T; > (37, k;i)/2 statingA > B in P. This happens iff there afE; agents with
weights1 statingA > B in U(P), i.e., there is a majority of agents statidg> B
in U(P). This means thatl >,,, Bin M (U(P)).
Given candidates! and B, A?,, B in M (P) iff there is no weighted majority of
agents inP all statingA > B or all statingB > A. This means that itV (P) there
is no majority of agents all stating > B or all statingB > A. ThusA »#,, B and
B ¥, Ain M({U((P)),i.e., A?,Bin M(U(P)).

- SC(P) = SC(U(P)).
(<) It follows from the fact that the set of completionsléf P) is a superset of the
set of the completions aP.
(=) Assume thatd ¢ SC(U(P)). ThenA has notn — 1 outgoing edges (where
m = |2|) in M(U(P)) [5]. Hence, sinceM (P) = M(U(P)), A has notm — 1
outgoing edges i/ (P). Hence there is a candidakes.t. B >,, A or B?,, A in
M(P). If B >,, Ain M(P), then for every completion aP we haveB > A,
and thusA cannot win in every agenda. B7,, A in M (P), then there exists a
completion ofP where we replace every?” B with B > A, whereA may not win.
Thus it is not true tha#l wins for every completion and for every agenda.

- WC(P)=WwWCU((P)).
(=) It follows from the fact that the set of completionslét P) is a superset of the
set of the completions af.
(<) Assume thatd €¢ WC(U(P)). Then A has no ingoing edges ih/ (U (P))
[5]. Hence, sincéV/ (U (P)) = M (P), A has no ingoing edges it/ (U (P)). Thus



if we replace, for every3, A?B in P with A > B, there we obtain a completion of
P whereA wins for every agenda. Thus € WC(P). D

We are now ready to compare the notions of winners in the vieibtase.

Theorem 3. Given an incomplete weighted profife we have:

- WP(M(P)) 2 WP(P);
— SP(M(P)) € SP(P);
- SC(M(P)) =S ()
- WC(M(P)) = WC(P).

Proof. We recall thatU (P) is the corresponding unweighted profile obtained from
P. Since the set of the completions &f is a subset of the set of completions of
U(P), we have thaW P(P) C WP(U(P)) andSP(P) O SP(U(P)). Now, since
M(P) = M(U(P)) by Theorem 2, and sinc€P(G) andW P(G) depend only on
the majority graphG under consideration, we have tH&tP(M (P)) > W P(P) and
SP(M(P)) € SP(P). To prove thatSC(P) = SC(M(P)), we may notice that
SC(P) = SC(U(P)) by Theorem 25C(U(P)) = SC(M(U(P))) by Theorem 1,
andSC(M(U(P)) = SC(M(P)) by Theorem 2 and by the fact that(G) depends
only on the majority graplt; considered. The same reasoning allows us to conclude
thatiWwC(P) = WC(M(P)). O

6 Complexity of determining winners

We now turn our attention to study the complexity of deteiimgnpossible and Con-
dorcet winners. We start by showing that computing weak armhg Condorcet win-
ners is polynomial in the number of agents and candidates.

Theorem 4. Given an incomplete weighted profife the setd¥/’ C(P) andSC(P) are
polynomial to compute.

Proof. By Theorem 3WC(P) = WC(M(P)) andSC(P) = SC(M(P)). More-
over, by Theorem 2 we know that/(P) = M(U(P)), whereU(P) is the corre-
sponding unweighted profile obtained frafh ThusW C(P) = WC(M (U(P))) and
SC(P) = SC(M(U(P))). In [5] the authors show that, given any majority gragh
obtained from an unweighted profile, it is polynomial to cangd?V C(G) andSC(G).
Thus it is polynomial to computd”C(M (U (P))) andSC(M (U(P))). O

The same result has been proved in [4] for unweighted incetagrofiles.
We now consider weak possible winners. We show that, comguieak possible
winners is intractable in general.

Theorem 5. Given an incomplete weighted profife with 3 or more candidates, de-
ciding if a candidate is a weak possible winner #diis NP-complete.



Proof. We give a reduction from the number partitioning problem. Nsge a bag of
integersk; with sum2k and we wish to decide if they can be partitioned into two bags,
each with sumk. We want to show that a candidaieis a weak possible winner if
and only if such a partition exists. We construct an incongppeofile over three candi-
dates 4, B, and() as follows. We havé vote forB > C' > A of weight1, 1 vote

B > A > C of weight2k — 1, and 1 vote”' > B > A of weight2k — 1. At this point,
the weight of votes such th&t is ahead ofd is 4k — 1, the weight of votes such th&t

is ahead of” is 1, and the weight of votes such th@tis ahead ofA is 1. We also have,
for eachk;, a partially specified vote of weigBk; in which we know just thatd > B.

As the total weight of these partially specified voteg/iswe are surel beatsB in the
final result by 1 vote. The partially specified votes can bemgeted to maked > B,

B > C,andC > A iff there is a partition of sizé&. Suppose there is such a partition.
Then let the votes in one bag Be> B > C and the votes in the other l6é> A > B.
Then, A beatsB, B beatsC' andC beatsA, all by 1 vote. On the other hand, suppose
there is a way to cast the votes to give the reduliteatsB, B beatsC' andC beatsA.

All the uncast votes ranK aboveB. In addition, at least half the weight of votes must
rank B aboveC, and at least half the weight of votes must rarlaboveA. Since A

is aboveB, C' cannot be both abové and belowB. Thus precisely half the weight of
votes ranks” aboveA and half ranksB aboveC'. Thus we have a partition of equal
weight. Now, asA beatsB, B is a possible winner for the considered completion of the
profile iff B beatsC' andC beatsA. Thus, B is a weak possible winner iff there is a
partition of sizek. O

Note that computing weak possible winners from an inconepiagjority graph
is polynomial [5]. Thus, adding weights to the votes and cotimg weak possible
winners from the incomplete profile instead of the majoritg@h makes the problem
intractable. On the other, adding weights to the votes didnmake weak and strong
Condorcet winners hard to compute.

7 Weak fair possible winners

In [5] the notion of fair winner in sequential majority vogjis introduced. In particular:
given a complete profilé’, a candidated is said to be dair possible winnefor P iff
there is a balanced agenda in whigtwins. If the number of candidates is a power of
two, a balanced agenda is a balanced binary tree in whicly eaedidate needs to win
the same number of pairwise comparisons to win overall.dfrtimber of candidates
is not a power of two, each candidate has at most one bye. Theation to consider
fair possible winners is to avoid situations in which weaRkdidates, that can beat only
a small number of candidates, end up winners of the eledtidg] it has been shown
that testing whether a candidate is a fair possible winner eighted majority graphs
is NP-hard.

We consider again this notion of fairness, applied to the netion of possible
winner.



Definition 2. Let P be an incomplete weighted profile arida candidate A is a fair
weak possibldFWP) winner forP iff there exists a completion d? and a balanced
agenda such thatl wins.

Given the proof of Theorem 5, it is easy to see that determgisirch winners is
difficult. However, this result cannot be derived from thalagous one in [5], since we
don't have weights in the majority graph.

Theorem 6. Given an incomplete weighted profife with 3 or more candidates, de-
ciding if a candidate is a fair weak possible winners fois NP-complete.

Proof. It follows from the proof of Theorem 5, since every agenddawitandidates is
represented by a balanced agenda.

8 Fixed agendas

Until now we have assumed that the agenda is unknown. Howieigalso interesting
to suppose the agenda is fixed and known. Such a case has natdrestdered in [5].
Thus, we first consider this case starting from incomplet@ritg graphs.

Consider a fixed agenda sinceq is fixed, we no longer care about Condorcet and
possible winners, and we merely focus@winners, that is the winners of sequential
majority vote w.r.t. agenda. Thus, given an agenda an incomplete majority grapf
and a candidatd, we will have only two kinds ofi-winners to consider, that we will
call weaka-winners (¥ AW (G)) and strongi-winners CAW (G)).

Definition 3. Leta be an agendals an incomplete majority graph, and a candidate.

— Ais aweaka-winnerfor G (A € WAW (G)) iff, there exists a completion ¢f
for which A wins in the fixed agenda

— A is astronga-winnerfor G (A € SAW(Q)) iff, for every completion of7, A
wins in the fixed agenda

We now present an algorithm, callgdn for determining the set of weakwinners
from an incomplete majority graph, and an algorithm, caB&ngWirfor determining
the strongz-winner from an incomplete majority graph. We will repretsen agenda
with a binary a tre€” with a root,root(T'), a left subtreele ft(T"), and a right subtree,
right(T).

Algorithm Win takes in input a tred’ representing an agenda an incomplete
majority graphG, and it returns a set of candidatds, which is the set of weak-
winner, i.e., the set of candidates that can win in the agenfiat some completion
of G. If root(T') is not empty, and botlieft(T") andright(T') are empty, then the
algorithm returns-oot(T'), otherwise, the séf’; (resp.,Ws) is initialized with the set
of candidates that can win in some completiorGoin the left (resp., right) subtree of
T'. Next, the setV is initialized with the candidates d¥; U IW,. Then, the algorithm
removes froniV everys € Wi (resp., € Ws) that is worse than all the other elements
r of Wy (resp.,s of W) in G, i.e., the candidates € W; (resp.r € Ws) such that



Algorithm 1: Win
Input: T: atree,G: an incomplete majority graph;
Output: W: set of candidates;
if root(T) # nil andleft(T) = right(T) = nil then
| W «—root(T),
else

Wi — Win(left(T), G);

Wy — Win(right(T), G);

W = Wi U Ws;

foreach s € W; do

L if s <m r,Vre Wsthen

L W =W\ {s}

foreachr € W, do
if r<m s, Vse W;then
| WeW\{r}

re_turn w;

s <m 1, ¥r € Wy (resp., such that <,,, s, Vs € W1). Finally it returns the séi’, that
will contain the set of weak-winners.

Algorithm StrongWintakes in input a tred representing an agendaan incom-
plete majority graptiz, and it returns the se&f that contains only the strongwinner
of G. Itinitializes the set5 with the empty set, and it assignsiio the set of candidates
returned by the proceduk®in applied to the tred” and to the majority grap&v. If this
set has cardinality equal fig then it returnd¥, otherwise it returns the empty set.

Algorithm 2 : StrongWin
Input: T a tree,G: an incomplete majority graph;
Output: S: set of candidates;
S —0;
W — Win(T, G);
if |W|=1then
L S<W;
return S;

Example 4.We now show how to determine weak and strangiinners given a fixed
agenda: applying Algorithmswin andStrongWin Consider the set of candidat@s=
{A, B, C, D, E, F, H, I}. Consider the agenda over {2 defined by the treq
with left(root(T)) = Win(Win({C}, {D}), Win({E}, {F})) andright(root(T))

= Win(Win({A}, {B}), Win({I}, {H})). Consider also the incomplete majority
graphG with edgesA >,, B,A >,, C,A>,, D,A>,, E,A>,, I, E >, F,and

I >,, H. ThenWinandStrongWirreturn{ A}. This means that the candidates the



unique weak and strongwinner forG. If, instead, we consider the incomplete major-
ity graph obtained frontz removing the edge betweeh and!, then the set of weak
a-winners returned bWinis {A,C, D, E, I'}, while the set returned b$trongWinis
the empty setd

Theorem 7. Given an agenda and and incomplete majority gragh the setdV AW (G)
and SAW (G) are polynomial to compute.

Proof. Given an agenda, the setdV AW (G) and SAW (G) are polynomial to com-
pute, since they can be computed by applying the polynonigaithmsWinStrongWin
to the tree representingand to the incomplete majority grajgh O

9 Related work

Contizer and Sandholm prove that deciding if preferencdgtation is over (that is,
determining if the remaining votes can be cast so a givenidateldoes not win) is
NP-hard for the STV rule [3]. For other common voting rulé®Iplurality, Borda and
the sequential majority rule, they show that it is polyndntiiadecide if preference
elicitation is over.

Konczak and Lang show that it is polynomial to compute pdesiimd necessary
winners for positional scoring voting rules like the Bordalglurality rule, as well as
for a non-positional rule like Condorcet [4]. They arguettbkcitation is over when
the set of possible winners contains just the necessaryawiiiiney also argue that if
computing possible (resp., Condorcet) winners is polymbrtien constructive (resp.,
destructive) manipulation of the election is polynomial.

Pini et al. prove that, for the STV rule, computing the possible and s&agy win-
ners is NP-hard [8]. In fact, they show it is NP-hard even tprapimate these sets
within some constant factor in size. They also give a prefegeelicitation procedure
which focuses just on the set of possible winners. Lah@l. consider determining
the winner for the sequential majority voting rule in the gece of uncertainty about
the votes and agenda [5]. As mentioned earlier, the majéerdifice is that this work
starts from incomplete majority graphs whilst we start frmmomplete profiles. The
incomplete majority graph throws away information aboaetitidividual votes. For this
reason, it may suggest candidates can win when they cannot.

Finally, Conitzer and Sandholm show that, if the agenda edfixetermining the
weak winners is polynomial, but randomizing the agenda malexiding the proba-
bility that a candidate wins (and thus manipulation) NPeh2}. They also prove that
constructive manipulation is intractable for the Bordap€land, Maximin and STV
rules using weighted votes even with a small number of catdgl However, all of
these rules are polynomial to manipulate destructivelepk&TV.

10 Conclusions

We have considered agents combining preferences usingthueistial majority rule.
We have studied the situation where agents may not haveleevaéhtheir preferences



(either because we are still eliciting preferences or beeani issues like privacy or
communication cost). We have also considered uncertainhoiv the voting rule is

applied. In these settings, we have studied the computdttmmplexity of computing

whether a candidate must or can win. The following table sanwas the complexity
results discussed in this paper. The table has one cell &r &ahe several notions of
winners. Each row considers the same notion based eithem arcamplete majority

graph, on an incomplete profile. The new results are thoseaajy in the second
column of the table and in the last two rows of the first coluiime other results in the
first column were presented in [5].

maj.graph profile
WP P NP-harg
wcC P P
SC P P
FWP |NP-hard (with weighted maj.graphP-hard
WAW P -
SAW P -

Notice that the complexity of determining fair weak possiinners, with or with-
out weights for the agents, was still open before the NP+essl result given here. In
fact, the only existing result was for unweighted agentsraapbrity graphs in which the
edges are labelled with weights. Such labels could repteferexample, the amount
of disagreement between the agents. In this paper, edgeajarity graphs are not la-
belled with weights, but are simply directed according ®1tiajority weight of votes.

These results are useful in determining if preferencetation is over. They are also
useful to determine how difficult it is for the chair to corltifee election. As future work
we want to determine the computational complexity of findstrgng possible winners
from incomplete weighted profiles. For incomplete majogitsgphs such a computation
is polynomial [5], we want to check if there is the same comityealso considering
incomplete weighted profiles. Another interesting directior future work is deciding
which candidate or candidates are most likely to win. Thieelated to probabilistic
approaches to voting theory. Another interesting direci®to study other forms of
uncertainty in the application of the voting rule (e.g. if Wave uncertain weights in a
scoring rule, or if the chair can choose between a certaiofsadting rules).
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