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Abstract. In sequential majority voting, preferences are aggregatedby a se-
quence of pairwise comparisons (also called an agenda) between candidates. The
result of each comparison is determined by a weighted majority vote between the
agents. In this paper we consider the situation where the agents may not have
revealed all their preferences. This is common in real-lifesettings, due to privacy
issues or an ongoing elicitation process. We study the computational complexity
of determining the winner(s), given that some preferences may not yet be revealed
and the agenda is not yet known or decided. We show that it is easy to determine
if a candidate must win whatever the agenda. On the other hand, it is hard to know
whether a candidate can win in at least one agenda for at leastone completion of
unrevealed preferences. This is also true if the agenda is balanced (that is, each
candidate must win the same number of pairwise competitionsto win overall).
We also consider the case of fixed agendas. We show that in thiscase it is easy to
determine if a candidate can win in the fixed agenda for at least a completion or
for every completion of unrevealed preferences.

1 Introduction

A general method for aggregating preferences in a multiagent systems is running an
election between the different options using a voting rule.Unfortunately, eliciting pref-
erences from agents to be able to run such an election is a difficult, time-consuming and
costly process. Agents may also be unwilling to reveal all their preferences for privacy
reasons. Fortunately, we can often determine the outcome a long time before all the
preferences have been revealed [3]. For example, it may be that one candidate has so
many votes that he will win whatever happens with the remaining votes. Being able to
determine if a candidate must win is useful as we can stop eliciting preferences.

In addition to uncertainty about the agents’ preferences, we may have uncertainty
about how the voting rule will be applied. For instance, in sequential majority vot-
ing (sometimes called the “Cup” or “tournament” rule), deeply investigated in Social
Choice Theory [7, 6], preferences are aggregated by a sequence of pairwise compar-
isons (also called an “agenda”). The order of these comparisons may not yet be fixed or
may not be known. Nevertheless, we may still be able to determine information about
the outcome. For example, it may be that one candidate cannotwin however the vot-
ing rule is applied. This is useful, for example, if we want toknow if the chair can
manipulate the election to make their favored candidate win.



In this paper we study the computational complexity of determining the possible
and necessary winners in sequential majority voting with weighted agents, when pref-
erences may be incomplete and we may not know the agenda. We show that determining
if a candidate must win in every agenda is polynomial. However, determining if a can-
didate can win in at least one completion of the unrevealed preferences and at least one
agenda is NP-hard. This problem remains hard if the agenda isbalanced. Because the
choice of the agenda is under the control of the chair, our results can be interpreted in
terms of difficulty of manipulation by the chair (as in, e.g.,[1]). We also consider the
case of fixed agendas and we show that in this context it is polynomial to determine if a
candidate can win in the fixed agenda for at least a completionor for every completion
of unrevealed preferences.

This paper is an extended version of [9].

2 Background

Preferences and profiles.We assume that each agent’s preferences are specified by a
total order (TO) (that is, by an asymmetric, irreflexive and transitive order) over a set
of candidates (denoted byΩ). However, an agent may choose to only partially reveal
his total order. More precisely, given two candidates, sayA, B ∈ Ω, an agent specifies
exactly one of the following:A < B, A > B, orA?B, whereA?B means that the rela-
tion betweenA andB has not yet been revealed. We assume that an agent’s preferences
are transitively closed. That is, if they declareA > B, andB > C then they also have
A > C. A weighted profileis a sequence of total orders describing the preferences for
n agents, each of which has a given weight. A weighted profile isincompleteif one or
more of the preference relations is incomplete. For simplicity, we assume that the sum
of the weights of agents is odd. An (incomplete)unweighted profileis one in which each
agent has weight1. Given an weighted profileP , its corresponding unweighted profile
U(P ) is the weighted profile obtained fromP by replacing every ordering expressed by
an agent with weightki by ki agents with weight1 expressing the identical ordering.

Majority graphs. Given an (incomplete) weighted profileP , themajority graphM(P )
induced byP is the directed graph whose set of vertices isΩ and where an edge from
A to B (denoted byA >m B) denotes a strict weighted majority of voters who prefer
A to B. A majority graph is said to be complete if, for any two vertices, there is a di-
rected edge between them. Notice that, ifP is incomplete,M(P ) may be incomplete as
well. Moreover, ifM(P ) is incomplete, the set of all complete majority graphs extend-
ing M(P ) corresponds to a (possibly proper) superset of the set of complete majority
graphs induced by all possible completions ofP . This is due to correlations between
votes which might prevent a given graph from being implementable.

Example 1.Consider the incomplete weighted profileP composed by three agentsa1,
a2 anda3 with weights resp.1, 2 and2 wherea1 statesA > B > C, a2 statesB >
A, A?C, B?C anda3 statesA > B, A?C, C > B. The majority graph induced byP ,
calledM(P ), is the graph with three nodesA, B andC and only one edgeA >m B.



Sequential majority voting.Given a set of candidates, the sequential majority voting
rule is defined by a binary tree (also called anagenda) with one candidate per leaf.
Each internal node represents the candidate that wins the pairwise election between the
node’s children. The winner of every pairwise election is computed by the weighted
majority rule, whereA beatsB iff there is a weighted majority of votes statingA > B.
The candidate at the root of the agenda is declared the overall winner. Given a complete
profile, candidates which win whatever the agenda are calledCondorcet winners.

Winners from majority graphs.Four types of potential winner have been defined [5].
Given and an incomplete majority graphG induced by an incomplete profileP , con-
sider a candidateA. Then

– A is aweak Condorcet winnerfor G (A ∈ WC(G)) iff there is a completion ofG
such thatA wins in every agenda;

– A is astrong Condorcet winnerfor G (A ∈ SC(G)) iff for every completion ofG,
A wins in every agenda;

– A is aweak possible winnerfor G (A ∈ WP (G)) iff there exists a completion of
G and an agenda for whichA wins;

– A is astrong possible winnerfor G (A ∈ SP (G))) iff for every completion ofG
there is an agenda for whichA wins.

When the majority graph is complete, strong and weak Condorcet winners coincide
(that is,SC(G) = WC(G)). Similarly, strong and weak possible winners coincide
in this case (that is,SP (G) = WP (G)). In [5], it is proved thatWP (G), SP (G),
WC(G), andSC(G) can all be computed in polynomial time.

3 Profiles, majority graphs and weights

These notions of possible and Condorcet winner are based on an incomplete majority
graph. It is, however, often more useful and meaningful to start directly from the in-
complete profile inducing the majority graph. Given an incomplete profile, there can
be more completions of its induced majority graphs than majority graphs induced by
completing the profile. The problem is that the incomplete majority graph throws away
information about how individual agents have voted. For example, we lose information
about correlations between votes. Such correlations may prevent a candidate from being
able to win.

Example 2.Consider an incomplete profileP with just one agent and three candidates
(A, B, andC), where the agent declares onlyA > B. Then the induced majority graph
M(P ) has only one arc fromA to B. In this situation,B is a weak possible winner
(that is,B ∈ WP (M(P ))), since there is a completion of the majority graph (whereB
beatsC andC beatsA), and an agenda whereB wins (we first compareA with C, C
wins, and thenC with B, whereB wins). However, there is no way to complete profile
P and set up the agenda soB wins. It is therefore rather misleading to considerB as a
potential winner.



Hence, unlike [5], we will define possible and Condorcet winners starting directly
from profiles, rather than the induced majority graphs.

As in [2], we will consider weighted votes. Although human elections are often un-
weighted, the addition of weights makes voting schemes moregeneral. Weighted vot-
ing systems are used in a number of real-world settings like shareholder meetings, and
elected assemblies. Weights are useful in multiagent systems where we have different
types of agents. Weights are also interesting from a computational perspective.

First, as we argue here, computing the weak/strong possible/Condorcet winners with
unweighted votes is always polynomial. If there a bounded number of candidates, there
are only a polynomial number of different ways to complete the profile or majority
graph. There are also only a polynomial number of different agendas. All the possibil-
ities can therefore be tested in polynomial time. On the other hand, adding weights to
the votes may introduce computational complexity. For example, as we will show later,
computing weak possible winners becomes NP-hard when we addweights. Second, as
argued in [2] for manipulation, if it is hard to compute possible winners with weighted
votes, it will also be hard to compute the probability of winning in the unweighted case
when there is uncertainty about how the votes have been cast.Thus, the weighted case
informs us about the unweighted case in the presence of uncertainty about the votes.

4 Possible and Condorcet winners from profiles

Given an incomplete weighted profile, we introduce the following notions of weak/strong
possible/Condorcet winners.

Definition 1. LetP be an incomplete weighted profile andA a candidate.

– A is a weak Condorcet winnerfor P (A ∈ WC(P )) iff there is a completion ofP
such thatA is a winner for all agendas;

– A is a strong Condorcet winnerfor P (A ∈ SC(P )) iff for every completion ofP ,
and for every agenda,A is a winner;

– A is a weak possible winnerfor P (A ∈ WP (P )) iff there exists a completion of
P and an agenda for whichA wins;

– A is a strong possible winnerfor P (A ∈ SP (P )) iff for every completion ofP
there is an agenda for whichA wins;

It is easy to see that, when the profile is complete, strong andweak Condorcet
winners coincide. The same holds also for strong and weak possible winners.

Example 3.Consider the profileP given in Example 1. We have thatSC(P ) = SP (P )
= ∅, WC(P ) = {A, C} andWP (P ) = {A, B, C}. More precisely,A andC are
weak Condorcet winners, since there are completions ofP where they win in all the
agendas. In fact,A wins in all the agendas in the completion ofP wherea1 states
A > B > C, a2 statesC > B > A anda3 statesA > C > B, while C wins
in all the agendas in the completion ofP wherea1 statesA > B > C, a2 states
C > B > A anda3 statesC > A > B. The outcomeB is not a weak Condorcet
winners, since there are no completions where it wins in every agenda. However,B is



a weak possible winner, since there is a completion ofP and an agenda where it wins.
Such a completion is the one wherea1 statesA > B > C, a2 statesB > C > A
anda3 statesC > A > B, and the agenda is the one where at firstA competes with
C and then the winner competes withB. Notice that in this example the sets of weak
and strong possible and Condorcet winners obtained considering the completions of
P coincide with the corresponding ones obtained consideringthe completions of the
majority graph induced byP . However, as shown in Example 2, this is not true in
general.2

5 Comparing the notions of winners

We now make a comparison between the notions of winners defined in [5] and those
defined above in this paper. Since in [5] weights were not considered, we first consider
unweighted profiles. Given an incomplete unweighted profileP and the incomplete
majority graphG induced byP , that is,G = M(P ), we know that the completions of
G are a (possibly proper) superset of the set of complete majority graphs induced by all
possible completions ofP . This simple observation leads to the following results.

Theorem 1. Given an incomplete unweighted profileP ,

– WP (M(P )) ⊇ WP (P );
– SP (M(P )) ⊆ SP (P );
– WC(M(P )) = WC(P );
– SC(M(P )) = SC(P ).

Proof. – WP (M(P )) ⊇ WP (P ).
If a candidateA belongs toWP (P ), there is a completion ofP , sayP ′, and an
agenda, such thatA wins. ThusA ∈ WP (G′) whereG′ is the complete majority
graph induced byP ′. SinceG′ is one of all the possible completions ofM(P )),
thenA ∈ WP (M(P )).

– SP (M(P )) ⊆ SP (P ).
If a candidate is a possible winner for every completion ofG, it is also a possible
winner for the majority graphs induced by the completions ofP , since they are a
subset of the set of all the completions ofM(P ).

– WC(M(P )) = WC(P ).
The same reasoning used in the first part of this proof can be used here to show
that WC(M(P )) ⊇ WC(P ). We can also prove thatWC(M(P )) ⊆ WC(P ).
In fact, if a candidateA belongs toWC(M(P )), then there must be one or more
completions of the majority graph where A has only outgoing edges. Among such
completions, there is for sure one which derives from a completion of the profile in
which allA?C becomeA > C (for all C). Thus, setting this is sufficient to makeA
a weak Condorcet winner and does not give any transitivity problems in the profile.

– SC(M(P )) = SC(P ).
The same reasoning used in the second part of this proof can beused here to show
thatSC(M(P )) ⊆ SC(P ). We can also prove thatSC(M(P )) ⊇ SC(P ). In fact,
if a candidate belongs toSC(P ), then it is a Condorcet winner, i.e., it beats every



other candidate, for every completion ofP . Thus it must beat every other candidate
in the certain part. Thus in the (possibly incomplete) majority graphM(P ) induced
by P there are only outgoing edges from this candidate, and so this candidate must
belong toSC(M(P )). 2

Notice that there are cases in which the subset relationWP (M(P )) ⊇ WP (P ) is
strict. In fact, a candidate can be a possible winner for a completion ofM(P ) which is
not induced by any completion ofP , as shown previously in Example 2.

We next consider weighted profiles. Although weighted profiles were not consid-
ered in [5], the same notions defined in that paper can be givenalso for majority graphs
induced by weighted profiles. We will now show that the same results as in Theo-
rem 1 hold also in this more general setting. To do this, we first show that, given
an incomplete weighted profileP and its corresponding unweighted profileU(P ),
SC(P ) = SC(U(P )) andWC(P ) = WC(U(P )).

Theorem 2. Given an incomplete weighted profileP ,

– M(P ) = M(U(P ));
– SC(P ) = SC(U(P ));
– WC(P ) = WC(U(P )).

Proof. – M(P ) = M(U(P )).
We show that∀A, B ∈ Ω, A >m B in M(P ) iff A >m B in M(U(P )) and
A?mB (i.e., A 6>m B andB 6>m A) in M(P ) iff A?mB in M(U(P )). Given
candidatesA andB, A >m B in M(P ) iff there arej agents with total weights
Tj > (

∑n

i=1
ki)/2 statingA > B in P . This happens iff there areTj agents with

weights1 statingA > B in U(P ), i.e., there is a majority of agents statingA > B
in U(P ). This means thatA >m B in M(U(P )).
Given candidatesA andB, A?mB in M(P ) iff there is no weighted majority of
agents inP all statingA > B or all statingB > A. This means that inU(P ) there
is no majority of agents all statingA > B or all statingB > A. ThusA 6>m B and
B 6>m A in M(U(P )), i.e.,A?mB in M(U(P )).

– SC(P ) = SC(U(P )).
(⇐) It follows from the fact that the set of completions ofU(P ) is a superset of the
set of the completions ofP .
(⇒) Assume thatA 6∈ SC(U(P )). ThenA has notm − 1 outgoing edges (where
m = |Ω|) in M(U(P )) [5]. Hence, sinceM(P ) = M(U(P )), A has notm − 1
outgoing edges inM(P ). Hence there is a candidateB s.t.B >m A or B?mA in
M(P ). If B >m A in M(P ), then for every completion ofP we haveB > A,
and thusA cannot win in every agenda. IfB?mA in M(P ), then there exists a
completion ofP where we replace everyA?B with B > A, whereA may not win.
Thus it is not true thatA wins for every completion and for every agenda.

– WC(P ) = WC(U(P )).
(⇒) It follows from the fact that the set of completions ofU(P ) is a superset of the
set of the completions ofP .
(⇐) Assume thatA ∈ WC(U(P )). ThenA has no ingoing edges inM(U(P ))
[5]. Hence, sinceM(U(P )) = M(P ), A has no ingoing edges inM(U(P )). Thus



if we replace, for everyB, A?B in P with A > B, there we obtain a completion of
P whereA wins for every agenda. ThusA ∈ WC(P ). 2

We are now ready to compare the notions of winners in the weighted case.

Theorem 3. Given an incomplete weighted profileP , we have:

– WP (M(P )) ⊇ WP (P );
– SP (M(P )) ⊆ SP (P );
– SC(M(P )) = SC(P );
– WC(M(P )) = WC(P ).

Proof. We recall thatU(P ) is the corresponding unweighted profile obtained from
P . Since the set of the completions ofP is a subset of the set of completions of
U(P ), we have thatWP (P ) ⊆ WP (U(P )) andSP (P ) ⊇ SP (U(P )). Now, since
M(P ) = M(U(P )) by Theorem 2, and sinceSP (G) andWP (G) depend only on
the majority graphG under consideration, we have thatWP (M(P )) ⊇ WP (P ) and
SP (M(P )) ⊆ SP (P ). To prove thatSC(P ) = SC(M(P )), we may notice that
SC(P ) = SC(U(P )) by Theorem 2,SC(U(P )) = SC(M(U(P ))) by Theorem 1,
andSC(M(U(P )) = SC(M(P )) by Theorem 2 and by the fact thatSC(G) depends
only on the majority graphG considered. The same reasoning allows us to conclude
thatWC(P ) = WC(M(P )). 2

6 Complexity of determining winners

We now turn our attention to study the complexity of determining possible and Con-
dorcet winners. We start by showing that computing weak and strong Condorcet win-
ners is polynomial in the number of agents and candidates.

Theorem 4. Given an incomplete weighted profileP , the setsWC(P ) andSC(P ) are
polynomial to compute.

Proof. By Theorem 3,WC(P ) = WC(M(P )) andSC(P ) = SC(M(P )). More-
over, by Theorem 2 we know thatM(P ) = M(U(P )), whereU(P ) is the corre-
sponding unweighted profile obtained fromP . ThusWC(P ) = WC(M(U(P ))) and
SC(P ) = SC(M(U(P ))). In [5] the authors show that, given any majority graphG
obtained from an unweighted profile, it is polynomial to computeWC(G) andSC(G).
Thus it is polynomial to computeWC(M(U(P ))) andSC(M(U(P ))). 2

The same result has been proved in [4] for unweighted incomplete profiles.
We now consider weak possible winners. We show that, computing weak possible

winners is intractable in general.

Theorem 5. Given an incomplete weighted profileP with 3 or more candidates, de-
ciding if a candidate is a weak possible winner forP is NP-complete.



Proof. We give a reduction from the number partitioning problem. Wehave a bag of
integers,ki with sum2k and we wish to decide if they can be partitioned into two bags,
each with sumk. We want to show that a candidateB is a weak possible winner if
and only if such a partition exists. We construct an incomplete profile over three candi-
dates (A, B, andC) as follows. We have1 vote forB > C > A of weight1, 1 vote
B > A > C of weight2k − 1, and 1 voteC > B > A of weight2k − 1. At this point,
the weight of votes such thatB is ahead ofA is 4k− 1, the weight of votes such thatB
is ahead ofC is 1, and the weight of votes such thatC is ahead ofA is 1. We also have,
for eachki, a partially specified vote of weight2ki in which we know just thatA > B.
As the total weight of these partially specified votes is4k, we are sureA beatsB in the
final result by 1 vote. The partially specified votes can be completed to makeA > B,
B > C, andC > A iff there is a partition of sizek. Suppose there is such a partition.
Then let the votes in one bag beA > B > C and the votes in the other beC > A > B.
Then,A beatsB, B beatsC andC beatsA, all by 1 vote. On the other hand, suppose
there is a way to cast the votes to give the resultA beatsB, B beatsC andC beatsA.
All the uncast votes rankA aboveB. In addition, at least half the weight of votes must
rankB aboveC, and at least half the weight of votes must rankC aboveA. SinceA
is aboveB, C cannot be both aboveA and belowB. Thus precisely half the weight of
votes ranksC aboveA and half ranksB aboveC. Thus we have a partition of equal
weight. Now, asA beatsB, B is a possible winner for the considered completion of the
profile iff B beatsC andC beatsA. Thus,B is a weak possible winner iff there is a
partition of sizek. 2

Note that computing weak possible winners from an incomplete majority graph
is polynomial [5]. Thus, adding weights to the votes and computing weak possible
winners from the incomplete profile instead of the majority graph makes the problem
intractable. On the other, adding weights to the votes did not make weak and strong
Condorcet winners hard to compute.

7 Weak fair possible winners

In [5] the notion of fair winner in sequential majority voting is introduced. In particular:
given a complete profileP , a candidateA is said to be afair possible winnerfor P iff
there is a balanced agenda in whichA wins. If the number of candidates is a power of
two, a balanced agenda is a balanced binary tree in which every candidate needs to win
the same number of pairwise comparisons to win overall. If the number of candidates
is not a power of two, each candidate has at most one bye. The motivation to consider
fair possible winners is to avoid situations in which weak candidates, that can beat only
a small number of candidates, end up winners of the election.In [5] it has been shown
that testing whether a candidate is a fair possible winner over weighted majority graphs
is NP-hard.

We consider again this notion of fairness, applied to the newnotion of possible
winner.



Definition 2. Let P be an incomplete weighted profile andA a candidate.A is a fair
weak possible(FWP) winner forP iff there exists a completion ofP and a balanced
agenda such thatA wins.

Given the proof of Theorem 5, it is easy to see that determining such winners is
difficult. However, this result cannot be derived from the analogous one in [5], since we
don’t have weights in the majority graph.

Theorem 6. Given an incomplete weighted profileP with 3 or more candidates, de-
ciding if a candidate is a fair weak possible winners forP is NP-complete.

Proof. It follows from the proof of Theorem 5, since every agenda with 3 candidates is
represented by a balanced agenda.2

8 Fixed agendas

Until now we have assumed that the agenda is unknown. However, it is also interesting
to suppose the agenda is fixed and known. Such a case has not been considered in [5].
Thus, we first consider this case starting from incomplete majority graphs.

Consider a fixed agendaa, sincea is fixed, we no longer care about Condorcet and
possible winners, and we merely focus ona-winners, that is the winners of sequential
majority vote w.r.t. agendaa. Thus, given an agendaa, an incomplete majority graphG
and a candidateA, we will have only two kinds ofa-winners to consider, that we will
call weaka-winners (WAW (G)) and stronga-winners (SAW (G)).

Definition 3. Leta be an agenda,G an incomplete majority graph, andA a candidate.

– A is a weaka-winner for G (A ∈ WAW (G)) iff, there exists a completion ofG
for whichA wins in the fixed agendaa.

– A is a stronga-winner for G (A ∈ SAW (G)) iff, for every completion ofG, A
wins in the fixed agendaa.

We now present an algorithm, calledWin for determining the set of weaka-winners
from an incomplete majority graph, and an algorithm, calledStrongWinfor determining
the stronga-winner from an incomplete majority graph. We will represent an agendaa
with a binary a treeT with a root,root(T ), a left subtree,left(T ), and a right subtree,
right(T ).

Algorithm Win takes in input a treeT representing an agendaa, an incomplete
majority graphG, and it returns a set of candidatesW , which is the set of weaka-
winner, i.e., the set of candidates that can win in the agendaa for some completion
of G. If root(T ) is not empty, and bothleft(T ) and right(T ) are empty, then the
algorithm returnsroot(T ), otherwise, the setW1 (resp.,W2) is initialized with the set
of candidates that can win in some completion ofG in the left (resp., right) subtree of
T . Next, the setW is initialized with the candidates ofW1 ∪ W2. Then, the algorithm
removes fromW everys ∈ W1 (resp.,r ∈ W2) that is worse than all the other elements
r of W2 (resp.,s of W1) in G, i.e., the candidatess ∈ W1 (resp.r ∈ W2) such that



Algorithm 1 : Win
Input : T : a tree,G: an incomplete majority graph;
Output : W : set of candidates;
if root(T ) 6= nil and left(T ) = right(T ) = nil then

W ← root(T );

else
W1 ←Win(left(T ),G);
W2 ←Win(right(T ),G);
W = W1 ∪W2;
foreach s ∈W1 do

if s <m r, ∀r ∈ W2 then
W ←W \ {s}

foreach r ∈W2 do
if r <m s, ∀s ∈ W1 then

W ←W \ {r}

return W ;

s <m r, ∀r ∈ W2 (resp., such thatr <m s, ∀s ∈ W1). Finally it returns the setW , that
will contain the set of weaka-winners.

Algorithm StrongWintakes in input a treeT representing an agendaa, an incom-
plete majority graphG, and it returns the setS that contains only the stronga-winner
of G. It initializes the setS with the empty set, and it assigns toW the set of candidates
returned by the procedureWinapplied to the treeT and to the majority graphG. If this
set has cardinality equal to1, then it returnsW , otherwise it returns the empty set.

Algorithm 2 : StrongWin
Input : T : a tree,G: an incomplete majority graph;
Output : S: set of candidates;
S← ∅;
W ←Win(T, G);
if |W | = 1 then

S ←W ;
return S;

Example 4.We now show how to determine weak and stronga-winners given a fixed
agendaa applying AlgorithmsWin andStrongWin. Consider the set of candidatesΩ =
{A, B, C, D, E, F, H, I}. Consider the agendaa over Ω defined by the treeT
with left(root(T )) = Win(Win({C}, {D}), Win({E}, {F})) andright(root(T ))
= Win(Win({A}, {B}), Win({I}, {H})). Consider also the incomplete majority
graphG with edgesA >m B, A >m C, A >m D, A >m E, A >m I, E >m F , and
I >m H . Then,Win andStrongWinreturn{A}. This means that the candidateA is the



unique weak and stronga-winner forG. If, instead, we consider the incomplete major-
ity graph obtained fromG removing the edge betweenA andI, then the set of weak
a-winners returned byWin is {A, C, D, E, I}, while the set returned byStrongWinis
the empty set.2

Theorem 7. Given an agendaa and and incomplete majority graphG the setsWAW (G)
andSAW (G) are polynomial to compute.

Proof. Given an agendaa, the setsWAW (G) andSAW (G) are polynomial to com-
pute, since they can be computed by applying the polynomial AlgorithmsWinStrongWin
to the tree representinga and to the incomplete majority graphG. 2

9 Related work

Contizer and Sandholm prove that deciding if preference elicitation is over (that is,
determining if the remaining votes can be cast so a given candidate does not win) is
NP-hard for the STV rule [3]. For other common voting rules like plurality, Borda and
the sequential majority rule, they show that it is polynomial to decide if preference
elicitation is over.

Konczak and Lang show that it is polynomial to compute possible and necessary
winners for positional scoring voting rules like the Borda and plurality rule, as well as
for a non-positional rule like Condorcet [4]. They argue that elicitation is over when
the set of possible winners contains just the necessary winner. They also argue that if
computing possible (resp., Condorcet) winners is polynomial, then constructive (resp.,
destructive) manipulation of the election is polynomial.

Pini et al.prove that, for the STV rule, computing the possible and necessary win-
ners is NP-hard [8]. In fact, they show it is NP-hard even to approximate these sets
within some constant factor in size. They also give a preference elicitation procedure
which focuses just on the set of possible winners. Langet al. consider determining
the winner for the sequential majority voting rule in the presence of uncertainty about
the votes and agenda [5]. As mentioned earlier, the major difference is that this work
starts from incomplete majority graphs whilst we start fromincomplete profiles. The
incomplete majority graph throws away information about the individual votes. For this
reason, it may suggest candidates can win when they cannot.

Finally, Conitzer and Sandholm show that, if the agenda is fixed, determining the
weak winners is polynomial, but randomizing the agenda makes deciding the proba-
bility that a candidate wins (and thus manipulation) NP-hard [2]. They also prove that
constructive manipulation is intractable for the Borda, Copeland, Maximin and STV
rules using weighted votes even with a small number of candidates. However, all of
these rules are polynomial to manipulate destructively except STV.

10 Conclusions

We have considered agents combining preferences using the sequential majority rule.
We have studied the situation where agents may not have revealed all their preferences



(either because we are still eliciting preferences or because of issues like privacy or
communication cost). We have also considered uncertainty in how the voting rule is
applied. In these settings, we have studied the computational complexity of computing
whether a candidate must or can win. The following table summarizes the complexity
results discussed in this paper. The table has one cell for each of the several notions of
winners. Each row considers the same notion based either on an incomplete majority
graph, on an incomplete profile. The new results are those appearing in the second
column of the table and in the last two rows of the first column.The other results in the
first column were presented in [5].

maj.graph profile
WP P NP-hard
WC P P
SC P P

FWP NP-hard (with weighted maj.graph)NP-hard
WAW P -
SAW P -

Notice that the complexity of determining fair weak possible winners, with or with-
out weights for the agents, was still open before the NP-hardness result given here. In
fact, the only existing result was for unweighted agents andmajority graphs in which the
edges are labelled with weights. Such labels could represent, for example, the amount
of disagreement between the agents. In this paper, edges in majority graphs are not la-
belled with weights, but are simply directed according to the majority weight of votes.

These results are useful in determining if preference elicitation is over. They are also
useful to determine how difficult it is for the chair to control the election. As future work
we want to determine the computational complexity of findingstrong possible winners
from incomplete weighted profiles. For incomplete majoritygraphs such a computation
is polynomial [5], we want to check if there is the same complexity also considering
incomplete weighted profiles. Another interesting direction for future work is deciding
which candidate or candidates are most likely to win. This isrelated to probabilistic
approaches to voting theory. Another interesting direction is to study other forms of
uncertainty in the application of the voting rule (e.g. if wehave uncertain weights in a
scoring rule, or if the chair can choose between a certain setof voting rules).
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