
Elicitation Strategies for Fuzzy Constraint Problems with Missing Preferences:
an Experimental Study

M. Gelain*, M.S. Pini*, F. Rossi*, K. Venable* and T. Walsh**
∗ University of Padova, Italy, E-mail:{mgelain,mpini,frossi,kvenable}@math.unipd.it

∗∗ NICTA and UNSW Sydney, Australia,
Email: Toby.Walsh@nicta.com.au

Abstract

Fuzzy constraints are a popular approach to handle prefer-
ences and over-constrained problems. We consider here situ-
ations where some of the preferences may be missing. This
models, for example, settings where agents are distributed, or
have privacy issues, or where there is an ongoing preference
elicitation process. We study how to find a solution which is
optimal irrespective of the missing preferences, eliciting pref-
erences from the user if necessary. Our goal is to ask the user
as little as possible. To solve this task, we define a combined
solving and preference elicitation scheme with a large num-
ber of different instantiations which we test on randomly gen-
erated problems. Our experimental results show that some of
the algorithms are very good at finding a necessarily optimal
solution while asking only a very small fraction of the miss-
ing preferences to the user. We also test the algorithms on
hard constraint problems with possibly missing constraints.
The aim now is to find feasible solutions irrespective of the
missing constraints.

Introduction
Constraint programming is a powerful paradigm for solv-
ing scheduling, planning, and resource allocation problems.
A problem is represented by a set of variables, each with
a domain of values, and a set of constraints. A solution
is an assignment of values to the variables which satisfies
all constraints and which optionally maximizes/minimizes
an objective function. It is usually assumed that the data
(variables, domains, constraints) is completely known be-
fore solving starts. This is often unrealistic. In web appli-
cations and multi-agent systems, the data is frequently only
partially known and may be added to a later date by, for
example, elicitation. Data may also come from different
sources at different times. In multi-agent systems, agents
may release data reluctantly due to privacy concerns.

Incomplete soft constraint problems can model such sit-
uations by allowing some of the preferences to be missing.
An algorithm has been proposed and tested to solve such in-
complete problems (Gelain et al. 2007). The goal is to find
a solution that is guaranteed to be optimal irrespective of the
missing preferences, eliciting preferences if necessary until
such a solution exists. Two notions of optimal solution are
considered:possibly optimal solutions are assignments that
are optimal inat least one way of revealing the unspecified
preferences, whilenecessarily optimal solutions are assign-

ments that are optimal inall ways that the unspecified prefer-
ences can be revealed. The set of possibly optimal solutions
is never empty, while the set of necessarily optimal solutions
can be empty.

If there is no necessarily optimal solution, the algorithm
proposed in (Gelain et al. 2007) uses branch and bound to
find a ”promising solution” (specifically, a complete assign-
ment of the best possible completion of the current prob-
lem) and elicits the missing preferences related to this as-
signment. This process is repeated till there is a necessarily
optimal solution. Although this algorithm behaves reason-
ably well, it make some specific choices about solving and
preference elicitation that may not be optimal in practice,as
we shall see in this paper. For example, the algorithm only
elicits missing preferences after running branch and bound
to exhaustion. As a second example, the algorithm elicits all
missing preferences related to the candidate solution. Many
other strategies are possible. We might elicit preferencesat
the end of every complete branch, or even at every node in
the search tree. When choosing the value to assign to a vari-
able, we might ask the user (who knows the missing prefer-
ences) for help. Finally, we might not elicit all the missing
preferences related to the current candidate solution. Forex-
ample, we might just ask the user for the worst preference
among the missing ones.

In this paper we consider a general algorithm scheme
which generalizes that proposed in (Gelain et al. 2007). It
is based on three parameters:what to elicit, when to elicit
it, and who chooses the value to be assigned to the next
variable. We test 16 different instances of the scheme on
randomly generated fuzzy constraint problems. We show
that some algorithms are very good at finding necessarily
optimal solution without eliciting too many preferences. We
also test the algorithms on problems with hard constraints.
Finally, we consider problems with fuzzy temporal con-
straints, where problems have more specific structure.

In our experiments, besides computing the percentage of
elicited preferences, we also compute the user’s effort when
we ask for their help in the search process. For instance,
when we ask the user for the worst preference, we are asking
them to do some work for us. This effort is therefore also
an important measure. Our results show that the choice of
preference elicitation strategy is crucial for the performance
of the solver. While the best algorithms need to elicit as



little as 10% of the missing preferences, the worst one need
much more. The performance of the best algorithms also
shows that we only need to ask the user a very small amount
of additional information to be able to solve problems with
missing data.

Several other approaches have addressed similar issues.
For example, open CSPs (Faltings and Macho-Gonzalez
2002; 2005) and interactive CSPs (Lamma et al. 1999)
work with domains that can be partially specified. As a sec-
ond example, in dynamic CSPs (Dechter and Dechter 1988)
variables, domains, and constraints may change over time.
However, the incompleteness considered in (Faltings and
Macho-Gonzalez 2005; 2003) is on domain values as well
as on their preferences. We assume instead, as in (Gelain
et al. 2007), that all values are given at the beginning, and
that only some preferences are missing. Because of this as-
sumption, we don’t need to elicit preference values in order,
as in (Faltings and Macho-Gonzalez 2005). In (Braziunas
and Boutilier 2006) preference elicitation is performed inthe
generalized additive independence model, that compactly
represents both linear utility functions and graphical mod-
els like UCP-nets (Boutilier, Bacchus, and Brafman 2001).
Our paper, differently from (Braziunas and Boutilier 2006),
is based on the soft constraint formalism, and thus it does
not force the user to express his preferences via utility func-
tions. However, we are not able to handle also qualitative
preferences.

Background
Incomplete Soft Constraints problems (ISCSPs) (Gelain
et al. 2007) extend Soft Constraint Problems (SCSPs)
(Bistarelli, Montanari, and Rossi 1997) to deal with partial
information. We will focus on a specific instance of this
framework in which the soft constraints are fuzzy. Given a
set of variablesV with finite domainD, anincomplete fuzzy
constraint is a pair〈idef, con〉 wherecon ⊆ V is the scope
of the constraint andidef : D|con| −→ [0, 1] ∪ {?} is the
preference function of the constraint associating to each tu-
ple of assignments to the variables incon either a preference
value ranging between 0 and 1, or?. All tuples mapped into
? by idef are calledincomplete tuples, meaning that their
preference is unspecified. A fuzzy constraint is an incom-
plete fuzzy constraint with no incomplete tuples.

An incomplete fuzzy constraint problem (IFCSP) is a pair
〈C, V,D〉 whereC is a set of incomplete fuzzy constraints
over the variables inV with domainD. Given an IFCSPP ,
IT (P ) denotes the set of all incomplete tuples inP . When
there are no incomplete tuples, we will denote a fuzzy con-
straint problem by FSCP.

Given an IFCSPP , a completion of P is an IFCSPP ′

obtained fromP by associating to each incomplete tuple in
every constraint an element in[0, 1]. A completion ispartial
if some preference remains unspecified.C(P ) denotes the
set of all possible completions ofP andPC(P ) denotes the
set of all its partial completions.

Given an assignments to all the variables of an IFCSP
P , pref(P, s) is the preference ofs in P , defined as
pref(P, s) = min<idef,con>∈C|idef(s↓con) 6=?idef(s↓con).
It is obtained by taking the minimum among the known pref-

erences associated to the projections of the assignment, that
is, of the appropriated sub-tuples in the constraints.

In the fuzzy context, a complete assignment of values
to all the variables is an optimal solution if its preference
is maximal. The optimality notion of FCSPs is general-
ized to IFCSPs via the notions ofnecessarily and possibly
optimal solutions, that is, complete assignments which are
maximal in all or some completions. Given an IFCSPP ,
we denote byNOS(P ) (resp.,POS(P )) the set of neces-
sarily (resp., possibly) optimal solutions ofP . Notice that
NOS(P ) ⊆ POS(P ). Moreover, whilePOS(P ) is never
empty,NOS(P ) may be empty. In particular,NOS(P ) is
empty whenever the revealed preferences do not fix the re-
lationship between one assignment and all others.

In (Gelain et al. 2007) an algorithm is proposed to find
a necessarily optimal solution of an IFCSP based on a char-
acterization ofNOS(P ) andPOS(P ). This characteriza-
tion uses the preferences of the optimal solutions of two
special completions ofP , namely the0-completion ofP ,
denoted byP0, obtained fromP by associating preference
0 to each tuple ofIT (P ), and the1-completion ofP , de-
noted byP1, obtained fromP by associating preference1
to each tuple ofIT (P ). Notice that, by monotonicity of
min, we have thatpref0 ≤ pref1. Whenpref0 = pref1,
NOS(P ) = Opt(P0); thus, any optimal solution ofP0 is a
necessary optimal solution. Otherwise,NOS(P ) is empty
andPOS(P ) is a set of solutions with preference between
pref0 andpref1 in P1. The algorithm proposed in (Gelain
et al. 2007) finds a necessarily optimal solution of the given
IFCSP by interleaving the computation ofpref0 andpref1

with preference elicitation steps, until the two values coin-
cide. Moreover, the preference elicitation is guided by the
fact that only solutions inPOS(P ) can become necessarily
optimal. Thus, the algorithm only elicits preferences related
to optimal solutions ofP1.

A general solver scheme
We now propose a more general schema for solving IFCSPs
based on interleaving branch and bound (BB) search with
elicitation. This schema generalizes the concrete solver pre-
sented in (Gelain et al. 2007), but has several other instanti-
ations that we will consider and compare experimentally in
this paper. The scheme uses branch and bound. This con-
siders the variables in some order, choosing a value for each
variable, and pruning branches based on an upper bound (as-
suming the goal is to maximize) on the preference value of
any completion of the current partial assignment. To deal
with missing preferences, branch and bound is applied to
both the 0-completion and the 1-completion of the problem.
If they have the same solution, this is a necessarily optimal
solution and we can stop. If not, we elicit some of the miss-
ing preferences and continue branch and bound on the new
1-completion.

Preferences can be elicited after each run of branch and
bound (as in (Gelain et al. 2007)) or during a BB run while
preserving the correctness of the approach. The algorithm
schema we propose is based on the following parameters:

1. Who chooses the value of a variable: the algorithm can
choose the values in decreasing order either w.r.t. their



preference values in the1-completion (Who=dp) or in the
0-completion (Who=dpi). Otherwise, the user can sug-
gest this choice. To do this, he can consider all the prefer-
ences (revealed or not) for the values of the current vari-
able (lazy user, Who=lu for short); or he considers also
the preference values in constraints between this variable
and the past variables in the search order (smart user,
Who=su for short).

2. What is elicited: we can elicit the preferences of all the
incomplete tuples of the current assignment (What=all) or
only the worst preference in the current assignment, if it
is worse than the known ones (What = worst);

3. When elicitation takes place: we can elicit preferences at
the end of the branch and bound search (When=tree), or
during the search, when we have a complete assignment
to all variables (When =branch) or whenever a new value
is assigned to a variable (When = node).

By choosing a value for each of the three above parame-
ters in a consistent way, we obtain 16 different algorithms,as
summarized in the figure below, where the circled instance
is the concrete solver used in (Gelain et al. 2007).

IFCSP-SCHEME(P ,Who,What,When)
Q← P0

smax, prefmax← BB(P0,−)
Q′,s1,pref1← BBE(P, 0, Who, What, When, smax, prefmax)
If (s1 6= nil)

smax ← s1, prefmax ← pref1, Q← Q′

ReturnQ, smax, prefmax

Figure 1: Algorithm IFCSP-SCHEME.

Figures 1 and 2 show the pseudo-code of the general
scheme for solving IFCSPs. There are three algorithms:
ISCSP-SCHEME, BBE and BB. ISCSP-SCHEME takes as
input anIFCSP P and the values for the three parame-
ters: Who, What andWhen. It returns a partial comple-
tion of P that has some necessarily optimal solutions, one
of these necessarily optimal solutions, and its preference
value. It starts by computing via branch and bound (algo-
rithm BB) an optimal solution ofP0, saysmax, and its pref-
erenceprefmax. Next, procedureBBE is called. IfBBE
succeeds, it returns a partial completion ofP , sayQ, one of
its necessarily optimal solutions, says1, and its associated
preferencepref1. Otherwise, it returns a solution equal to
nil. In the first case the output of IFCSP-SCHEME coin-
cides with that of BBE, otherwise IFCSP-SCHEME returns
P0, one of its optimal solutions, and its preference.

Procedure BBE takes as input the same values as IFCSP-
SCHEME and, in addition, a solutionsol and a preference

lb representing the current lower bound on the optimal pref-
erence value. FunctionnextV ariable, applied to the1-
completion of the IFCSP, returns the next variable to be as-
signed. The algorithm then assigns a value to this variable.
If the Boolean functionnextV alue returns true (if there is
a value in the domain), we select a value forcurrentV ar
according to the value of parameterWho.

FunctionUpperBound computes an upper bound on the
preference of any completion of the current partial assign-
ment: the minimum over the preferences of the constraints
involving only variables that have already been instantiated.

If When = tree, elicitation is handled by procedure
Elicit@tree, and takes place only at the end of the search
over the1-completion. The user is not involved in the
value assignment steps within the search. At the end of the
search, if a solution is found, the user is asked either to re-
veal all the preferences of the incomplete tuples in the so-
lution (if What=all), or only the worst one among them (if
What=worst). If such a preference is better than the best
found so far, BBE is called recursively with the new best
solution and preference.

If When = branch, BB is performed only once. The user
may be asked to choose the next value for the current vari-
able being instantiated. Preference elicitation, which ishan-
dled by functionElicit@branch, takes place during search,
whenever all variables have been instantiated and the user
can be asked either to reveal the preferences of all the in-
complete tuples in the assignment (What=all), or the worst
preference among those of the incomplete tuples of the as-
signment (What=worst). In both cases the information gath-
ered is sufficient to test such a preference value against the
current lower bound.

If When = node, preferences are elicited every time a new
value is assigned to a variable and it is handled by procedure
Elicit@node. The tuples to be considered for elicitation
are those involving the value which has just been assigned
and belonging to constraints between the current variable
and already instantiated variables. If What = all, the user is
asked to provide the preferences of all the incomplete tuples
involving the new assignment. Otherwise if What = worst,
the user provides only the preference of the worst tuple.

Theorem 1. Given an IFCSP P and a consistent set of
values for parameters When, What and Who, Algorithm
IFCSP-SCHEMEalways terminates, and returns an IFCSP
Q ∈ PC(P ), an assignment s ∈ NOS(Q), and its prefer-
ence in Q.

If When = tree, then we elicit after each BB run, and it is
proven in (Gelain et al. 2007) that IFCSP-SCHEME never
elicits preferences involved in solutions which are not pos-
sibly optimal. This is a desirable property, since only possi-
bly optimal solutions can become necessarily optimal. How-
ever, the experiments will show that solvers satisfying such
a desirable property are often out-performed in practice.

Problem generator and experimental design
We generate IFCSPs via a generator with the following pa-
rameters:

• n: number of variables;



BBE (P ,nInstV ar, Who, What, When, sol, lb)
sol′← sol, pref ′← lb
currentV ar ← nextV ariable(P1)
While (nextV alue(currentV ar, Who))

If (When = node)
P, pref ← Elicit@Node(What, P, currentV ar, lb)

ub← UpperBound(P1, currentV ar)
If (ub > lb)

If (nInstvar = number of variables in P )
If (When = branch)

P, pref ← Elicit@branch(What, P, lb)
If (pref > lb)

sol← getSolution(P1)
lb← pref(P1, sol)

else
BBE(P, nInstV ar + 1, Who, What, When, sol, lb)

If (When=tree and nInstV ar = 0)
If(sol = nil)
sol← sol′, pref ← pref ′

else
P, pref ← Elicit@tree(What, P, sol, lb)
If(pref > pref ′)

BBE(P, 0, Who, What, When, sol, pref)
elseBBE(P, 0, Who, What, When, sol′, pref ′)

Figure 2: Algorithm BBE.

• m: cardinality of the variable domains;

• d: density, that is, the percentage of binary constraints
present in the problem w.r.t. the total number of possible
binary constraints that can be defined onn variables;

• t: tightness, that is, the percentage of tuples with prefer-
ence0 in each constraint and in each domain w.r.t. the
total number of tuples (m2 for the constraints, since we
have only binary constraints, andm in the domains);

• i: incompleteness, that is, the percentage of incomplete
tuples (that is, tuples with preference?) in each constraint
and in each domain.

Given values for these parameters, we generate IFCSPs as
follows. We first generaten variables and thend% of the
n(n−1)/2 possible constraints. Then, for every domain and
for every constraint, we generate a random preference value
in (0, 1] for each of the tuples (that arem for the domains,
andm2 for the constraints); we randomly sett% of these
preferences to0; and we randomly seti% of the preferences
as incomplete.

Our experiments measure thepercentage of elicited pref-
erences (over all the missing preferences) as the generation
parameters vary. Since some of the algorithm instances re-
quire the user to suggest the value for the next variable, we
also show theuser’s effort in the various solvers, formally
defined as the number of missing preferences the user has to
consider to give the required help.

Besides the 16 instances of the scheme described
above, we also considered a ”baseline” algorithm that
elicits preferences of randomly chosen tuples every time
branch and bound ends. All algorithms are named by
means of the three parameters. For example, algo-
rithm DPI.WORST.BRANCH has parameters Who=dpi,

What=worst, and When=branch. For the baseline algorithm,
we use the name DPI.RANDOM.TREE.

For every choice of parameter values, 100 problem in-
stances are generated. The results shown are the average
over the 100 instances. Also, when it is not specified other-
wise, we setn = 10 andm = 5.

Results
Incomplete fuzzy CSPs. The names of all the algorithms
and the corresponding line symbols are shown below:

Figure 3 shows the percentage of elicited preferences
when we vary respectively the incompleteness, the density,
and the tightness. For reasons of space, we show only the
results for specific values of the parameters. However, the
trends observed here hold in general. It is easy to see that
the best algorithms are those that elicit at the branch level.
In particular, algorithm SU.WORST.BRANCH elicits a very
small percentage of missing preferences (less than 5%), no
matter the amount of incompleteness in the problem, and
also independently of the density and the tightness. This al-
gorithm outperforms all others, but relies on help from the
user. The best algorithm that does not need such help is
DPI.WORST.BRANCH. This never elicits more than about
10% of the missing preferences. Notice that the baseline al-
gorithm is always the worst one, and needs nearly all the
missing preferences before it finds a necessarily optimal so-
lution. Notice also that the algorithms with What=worst
are almost always better than those with What=all, and that
When=branch is almost always better than When=node or
When=tree.

Figure 4 (a) shows the user’s effort as incompleteness
varies. As predictable, the effort grows slightly with the
incompleteness level, and it is equal to the percentage of
elicited preferences only when What=all and Who=dp or
dpi. For example, when What=worst, even if Who=dp or
dpi, the user has to consider more preferences than those
elicited, since to point to the worst preference value the user
needs to check all of them (that is, those involved in a partial
or complete assignment). DPI.WORST.BRANCH requires
the user to look at 60% of the missing preferences at most,
even when incompleteness is 100%.

Figure 4 (b) shows the percentage of elicited preferences
over all the preferences (white bars) and the user’s effort
(black bars), as well as the percentage of preferences present
at the beginning (grey bars) for DPI.WORST.BRANCH.
Even with high levels of incompleteness, this algorithm elic-
its only a very small fraction of the preferences, while asking
the user to consider at most half of the missing preferences.

Figure 4 (c) shows LU.WORST.BRANCH, where the
user is involved in the choice of the value for the next vari-
able. Compared to DPI.WORST.BRANCH, this algorithm
is better both in terms of elicited preferences and user’s
effort (while SU.WORST.BRANCH is better only for the
elicited preferences). We conjecture that the help the user



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90  95  100

el
ic

ite
d 

pr
ef

er
en

ce
s

incompleteness

(a) d=50%, t=10%

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10  15  20  25  30  35  40  45  50  55  60  65  70  75  80

el
ic

ite
d 

pr
ef

er
en

ce
s

density

(b) t=35%, i=30%

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80

el
ic

ite
d 

pr
ef

er
en

ce
s

tightness

(c) d=50%, i=30%

Figure 3: Percentage of elicited preferences in incompletefuzzy CSPs.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90  95  100

us
er

’s
 e

ffo
rt

incompleteness

(a) d=50%, t=10% (b) d=50%, t=10% (c) d=50%, t=10%

Figure 4: Incomplete fuzzy CSPs: user’s efforts and best algorithms.

 0

 1

 2

 3

 4

 5

 6

 7

 5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90  95  100

el
ic

ite
d 

pr
ef

er
en

ce
s 

(%
)

incompleteness

(a) d=50%, t=10%

 0

 1

 2

 3

 4

 5

 6

 7

 8

 10  15  20  25  30  35  40  45  50  55  60  65  70  75  80

el
ic

ite
d 

pr
ef

er
en

ce
s 

(%
)

density

(b) t=10%, i=30%

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80

el
ic

ite
d 

pr
ef

er
en

ce
s 

(%
)

tightness

(c) d=50%, i=30%

Figure 5: Elicited preferences in incomplete CSPs.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 5  10  15  20  25  30  35  40  45  50  55  60  65  70  75  80  85  90  95  100

us
er

’s
 e

ffo
rt

incompleteness

(a) d=50%, t=10% (b) d=50%, t=10%

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10  20  30  40  50  60  70  80  90  100

so
lu

tio
n 

qu
al

ity

elicited preferences

(c) solution quality

Figure 6: Incomplete CSPs: (a) user’s effort and (b) best algorithm. Solution quality for incomplete fuzzy CSPs in (c).



gives in choosing the next value guides the search towards
better solutions, thus resulting in an overall decrease of the
number of elicited preferences.

Although we are mainly interested in the amount of elici-
tation, we also computed the time to run the 16 algorithms.
The best algorithms in this respect need about 200 ms for
problems with 10 variables and 5 elements in the domains,
no matter the amount of incompleteness. Most of the algo-
rithms need less than 500 ms.

These algorithms have a useful anytime property, since
they can be stopped even before their end obtaining a pos-
sibly optimal solution with preference value higher than the
solutions considered up to that moment. Figure 6 (c) shows
how fast the various algorithms reach optimality. They
axis represents the solution quality during execution, nor-
malized to allow for comparison among different problems.
The algorithms that perform best in terms of elicited pref-
erences, such as DPI.WORST.BRANCH, are also those that
approach optimality fastest. We can therefore stop such al-
gorithms early and still obtain a solution of good quality in
all completions.

Incomplete hard CSPs. We also tested these algorithms
on hard CSPs. In this case, preferences are only 0 and 1,
and necessarily optimal solutions are complete assignments
which are feasible in all completions. The problem genera-
tor is adapted accordingly. The parameter What now has a
specific meaning: What=worst means asking if there is a 0
in the missing preferences. If there is no 0, we can infer that
all the missing preferences are 1s.

Figure 5 shows the percentage of elicited preferences for
CSPs in terms of amount of incompleteness, density, and
tightness. Notice that the scale on they axis varies to include
only the highest values. The best algorithms are those with
What=worst, where the inference explained above takes
place. It is easy to see a phase transition at about 35% tight-
ness, which is when problems pass from being solvable to
having no solutions. However, the percentage of elicited
preferences is below 20% for all algorithms even at the peak.

Figure 6 (a) shows the user’s effort for the case of CSPs.
Overall, the best algorithm is again DPI.WORST.BRANCH,
whose performance is shown in Figure 6 (b) in detail.

Incomplete temporal fuzzy CSPs. We also performed
some experiments on fuzzy simple temporal problems
(Khatib et al. 2007). These problems have constraints of
the form a ≤ x − y ≤ b modelling allowed time inter-
vals for durations and distances of events, and fuzzy pref-
erences associated to each element of an interval. We have
generated classes of such problems following the approach
in (Khatib et al. 2007), adapted to consider incompleteness.
While the class of problems generated in (Khatib et al. 2007)
is tractable, the presence of incompleteness makes them in-
tractable in general. Figure 7 shows that even in this domain
it is possible to find a necessarily optimal solution by ask-
ing about 10% of the missing preferences, for example via
algorithm DPI.WORST.BRANCH.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10  20  30  40  50  60  70  80  90  100

el
ic

ite
d 

pr
ef

er
en

ce
s

incompleteness

Figure 7: Percentage of elicited preferences in incomplete
fuzzy temporal CSPs.

Future work
We plan to consider incomplete weighted constraint prob-
lems as well as different heuristics for choosing the next
variable during the search. Moreover, we intend to build
solvers based on local search or variable elimination meth-
ods. Finally, we want to add elicitation costs and to use them
also to guide the search, as done in (Wilson, Grimes, and
Freuder 2007) for hard CSPs.

References
Bistarelli, S.; Montanari, U.; and Rossi, F. 1997.
Semiring-based constraint solving and optimization.JACM
44(2):201–236.
Boutilier, C.; Bacchus, F.; and Brafman, R. I. 2001. UCP-
networks: A directed graphical representation of condi-
tional utilities. InUAI ’01, 56–64. Morgan Kaufmann.
Braziunas, D., and Boutilier, C. 2006. Preference elicita-
tion and generalized additive utility. InAAAI. AAAI Press.
Dechter, R., and Dechter, A. 1988. Belief maintenance in
dynamic constraint networks. InAAAI, 37–42.
Faltings, B., and Macho-Gonzalez, S. 2002. Open con-
straint satisfaction. InCP, volume 2470 ofLNCS, 356–370.
Springer.
Faltings, B., and Macho-Gonzalez, S. 2003. Open con-
straint optimization. InCP, volume 2833 ofLNCS, 303–
317. Springer.
Faltings, B., and Macho-Gonzalez, S. 2005. Open con-
straint programming.AI Journal 161(1-2):181–208.
Gelain, M.; Pini, M. S.; Rossi, F.; and Venable, K. B.
2007. Dealing with incomplete preferences in soft con-
straint problems. InProc. CP’07, volume 4741 ofLNCS,
286–300. Springer.
Khatib, L.; Morris, P.; Morris, R.; Rossi, F.; Sperduti, A.;
and Venable, K. B. 2007. Solving and learning a tractable
class of soft temporal problems: theoretical and experi-
mental results.AI Communications 20(3).
Lamma, E.; Mello, P.; Milano, M.; Cucchiara, R.; Ga-
vanelli, M.; and Piccardi, M. 1999. Constraint propagation
and value acquisition: Why we should do it interactively.
In IJCAI, 468–477.
Wilson, N.; Grimes, D.; and Freuder, E. C. 2007. A cost-
based model and algorithms for interleaving solving and
elicitation of csps. InProc. CP’07, volume 4741 ofLNCS,
666–680. Springer.


