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Abstract. CP-Nets are a framework for dealing with qualitative prefees,

both conditional and unconditional. They have received teofoattention re-

cently, and many extensions have been provided. In paatictiie framework

of constrained CP-Nets aims to choose, amongst the sodutian satisfy a set of
constraints, the preferred one.

While the semantics of CP-Nets allows for cycles (and, iddegclic CP-Nets

occur in real-life problems), current algorithms are netals able to select the
preferred solution in the presence of cycles. This meansatihough there might
exist feasible solutions, current algorithms are unabieulucky instances) to
provide a preferred solution, and they simply fail, proaglino answer to the
user.

In this work, we propose FCP-Net, that is, a framework thatsaan objective

function to a constrained CP-Net. The objective functisséatial in many con-
straint applications) is able to convey quantitative infation into the CP-Net.
Besides the higher expressivity of FCP-Nets, we are ableduige a single,

best preferred solution in all feasible instances (thosetiith there is at least a
solution), paving the way to a wider use of CP-Nets in prat@pplications.

1 Introduction

Preferences occur naturally in many real-world problentserg are many kinds of
preferences, for example, quantitative (“I prefer ice ores level 0.8”) or qualitative
(“I prefer meat to fish”). Moreover, preferences can be uddmmal (“I prefer fish”)
or conditional (“If there is white wine, | prefer fish to meatQualitative preferences
are often easier to express: expressing a specific quarditavel of preference values
to every element of a problem could be tedious and difficultfie user. Moreover, it
is natural to allow the user to express, if she wants, herepeetes in a way that is
conditioned by other preferences.

An elegant formalism to represent conditional and qualigapreferences i€P-
nets[5, 9, 3]. CP-nets model statements of qualitative and dawdil preference which
are interpreted under the Ceteris Paribus (that is, “a# blsing equal”) assumption.
CP-Nets can contain unconditional preferences,iliket > fish, that means that, all
else being equal, | prefer meat to fish. Such a preferencensdlyimg about two dinners
that differ for the dessert: it states that between two idahtneals differing only for



the main course, | prefer the one with meat. There are alsditomal preferences, as
in meat : red > white, that asserts that, given two meals that differ only in thredki
of wine served and both containing meat, the meal with a red & preferable to the
meal with a white wine.

Most earlier work has concentrated on the acyclic model.dxample, inacyclic
CP-netone can determine the most preferred outcome in linear &y@® [while find-
ing the optimal in CP-nets containing cycles is, in gené&;hard [6].

Unluckily, the presence of cycles in a CP-net occurs ofteeal-life situations. A
cycle can also be intrinsic in the description of the prefees. For example, it may be
natural to give preferences over wine depending on the naairse, and vice versa. This
may be interpreted as the fact that the two features arelgguglortant but dependent
on each other [13]. Consider, for instance, a diner who heldose either red or white
wine, and either fish or meat. Given red wine, he prefers nagat,conversely, given
meat he prefers red wine. On the other hand, given white Wiaegrefers fish, and
conversely, given fish he prefers white wine. This gives asistant cyclic CP-Net, and
there is no acyclic CP-net giving rise to the same prefer®oneoutcomes [12].

Also, cyclic CP-nets emerge naturally when there is a sehtefrdependent vari-
ables, none of which is more important than the other. Fomgie, [10] note that
such dependency can emerge naturally among web-page cemtpdn their web-
personalization tool.

In some cases, a cycle may denote inconsistent or contraglioformation, that
nevertheless happens in the real world. For example, a ayaleappear from the ag-
gregation of preferences of several agents.

Various works propose methods for dealing with cyclic CBsnbut a completely
satisfactory solution is yet to come. In the original pragdS] cyclic networks do not
always have a preferred assignment. The only answer igthia is an inconsistency in
the preferences, and the user is forced to revise her statsermed make them consis-
tent. In following works, CP-nets are combined with conistreeasoning [4], and only
feasible outcomes are compared through the statements @RHNet. Further research
found out that even in some cyclic networks there may be adwminated outcome and
corresponding algorithms have been proposed. But, theralso instances in which a
cycle of outcomes exists, and no outcome outside the cyctérddes any outcome in
the cycle. In such a case no answer is given, and the algofitisn

A new approach [13] tries to give an answer by giving a différgemantics for a
constrained CP-net. In constrained CP-nets a feasiblemattsapproximately optimal
if no feasible outcome that differs only for one value is éettn this way, if a hard
constraint cuts the cycles, one can find an approximateiynapbutcome. Moreover,
the authors propose how to encode preferences into cantstrahich lets them find the
approximately optimal outcome by solving a constraintsfatition problem. Although
very smatrt, this proposal does not always work: there miglhtylzles that are not cut by
constraints, and in this case no (approximately optima}aue is found. Also, even
when the cycle is cut by constraints, it is not always clkehy the selected outcome
should be considered as the best within the outcomes in ttle.cy

Consider the following example (Figure 1a). Romeo and talie planning a trip.

Romeo prefers a luxury hotel if it is on the seasidea(: luxz > luzx), but for him a



non-luxury hotel is better in case there is no s@& (. luz > lux). Juliet wants to go
to the sea if the hotel is not luxuryuz : sea > 3ea), but chooses not to go to the
sea (e.g., mountain) if the hotel is luxudu{ : Sea > sea). The preferences of both
spouses make perfectly sense, taken singularly, but teeréieadful cycle when they
are put togethetuzsea - lursea = lursea = luasea = luxsea (Figure 1b). Now,
the original semantics [5] says that the two spouses shasddss how to make the net-
work acyclic, and one of the two will probably have to drop afdis/her preferences,
favouring the other. Let us add a constraint that breaksytble there is no luxury hotel
on the sea. The relaxed semantics [13] says that the onlyxippetely optimal solu-
tion isluzsea, since there is no chain of improving flips frdmzsea to other solutions,
passing only on feasible assignments. Indeed, this ansvisatier than no answer, but
will Romeo accept this explanation, or will he argue to supfite optionuzsea?

@) % (b)

lux: sea > sea lux sea

lux: sea > sea -
lux sea

R

lux sea
Ol

sea: lux > lux

sea: lux > lux
Fig. 1. Romeo and Juliet example.

Moreover, there are worse instances: the constraints mightemove elements
from the cycle. In this case, neither the original, nor tHexed semantics is able to
give an answer: they both fail.

Picture the following situation. The user defines throughstiints the feasible re-
gion, and happily finds that there are solutions. Since thgieas are many, and she
cannot scan through all of them, she decides to state foyrheall preferences (possi-
bly, together with those of other users, involved in the sieci process). She adopts
CP-Nets, and takes one of the available (exact or approgjsatmantics [5, 4, 13], to-
gether with the corresponding algorithm. To her disappoértt, now no solution is
feasible any longer: she has either to revise her prefesgmdgch might mean find an
agreement with the other users about which preferencedtsheuelaxed), or to accept
that all feasible solutions are equally preferred.

In this paper we propose a pragmatic way to deal with sucltiitos. We believe
that, since the user spends time and effort in formalisis¢hler preferences, throwing



away all preferences is not a satisfactory answer. In somescaignalling that prefer-
ences should be revised is not enough. Selecting answeesdieg on feasibility will
not always be acceptable. We believe that cycles shouldenavbided at all costs, but
they should be considered as sets of equally preferred ma@ts¢as was already hinted
in the original paper [5]). But we need a wayliteak ties

Also, a practical need in many applications is to be able &3wa about numeric
values. Indeed, qualitative preferences are easy to expttesn there is no quantitative
information, but when some guantitative information isegiyconcealing it would be
unwise. In all constraint languages there are modules #rddpn optimisation, typi-
cally through the branch-and-bound algorithm; we think thanique framework able
to deal both with qualitative and quantitative informatigould be very handy.

We propose a framework taking into consideration both tpiate and quantitative
information. Qualitative information is given through QRts, widely studied and ap-
preciated framework. Quantitative information is usedreall ties in case the CP-Net
alone is unable to select one (or more) preferred outcomesadtpt hard constraints
in our language, to let the user express impossibility,desspreferences. We have an
objective function to perform optimisation, ubiquitousd® languages.

In many practical applications there are functions to bénuped. They might be
less important than qualitative preferences: indeed gfuber wants to express quali-
tative preferences, it is probably because he/she is utalgeovide numeric values,
and deems numeric parts less important. But quantitatigéepnces very often ex-
ist, and they are the perfect candidate for breaking tiesulrShakespearian example,
Romeo and Juliet, unable to make a preferred choice, coigd tiae cost information,
and choose the less expensive option amongst the equdkyainée choices. We do not
give up qualitative information when there is no preferretcome, but we select the
best outcome (according to an objective function) amorgsboptions that are equally
preferred according to the CP-net.

To handle constrained cyclic CP-nets and to satisfy thesgoahtioned above, i.e.,
to discriminate among various outcomes that are all optanebrding to the definition
above, and to find a weaker optimal outcome, when no optimaboue is found, we
will introduce a new formalism, callecbnstrained FCP-negwhere “F” stands for ob-
jective function). Such a formalism extends the classioaktrained CP-net formalism,
by considering, besides hard constraints and the quadtatipect of the CP-net, also a
gquantitative aspect, given by an objective function, thay melate some of the variables
of the CP-net.

Other formalisms have been defined to introduce a quarBtaspect in the classi-
cal CP-net formalism. However, we will show in the related’kveection that all these
formalisms are different from our framework.

The rest of this paper is organized as follows: Section 2 ides/necessary back-
ground. Section 3 describes constrained FCP-nets and tienraf lex optimality.
Section 4 presents the algorithm that we propose to handigtrained FCP-net, that
takes as input a constrained FCP-net and it returns the Exalputcomes. Section 5
presents related work. We conclude in Section 6 with a disonsf future work.



2 Background

We now give the necessary background. In particular, wegiit the basic notions of
the CP-nets [5] and constrained CP-nets [13].

2.1 CP-net

CP nets were introduced in [5] as a tool for compactly anditirily representing
qualitative preference relations. CP-nets are a graphioalel for representing condi-
tional and qualitative preferences. They exploit condailopreferential independence
by structuring an agent’s preferences under the ceterisygaassumption. Informally,
CP nets are sets of conditional ceteris paribus (CP) predergtatements. Many philoso-
phers and Al researchers [11] have argued that many of oferprees are of this type.
CP nets bear some similarity to Bayesian networks. Botlzatdirected graphs where
each node stands for a domain variable, and assume a setuvéffeX, . . ., X, } with
finite, discrete domain®(X;), ..., D(X,,). For each featur&(;, each user specifies
a set ofparentfeaturesPa(X;), that can affect her preferences over the valueX of
This defines a dependency graph in which each nddeasPa(X;) as its immediate
predecessors. Given this structural information, the eseficitly specifies her pref-
erence over the values &f; for each complete outcome dfu(X;). This preference
is assumed to take the form of total or partial order [5, 13rav(X;). For example,
consider a CP-Net whose features dreB andC' with binary domains containing
andf, if F'is the name of the feature, and with the CP preference statsras follows:
a>=a,a:b>=ba:b>=bb:é>cb:c> ¢ Forexample, the conditional statement
a: b - b states that givedl = a, thenB = b is better thanB = b.

The semantics of CP nets depends on the notion of a worseipné flvorsening
flip is a change in the value of a variable to a value which is lestemed by the CP
statement for that variable. For example, in the CP net alagsing fromubce to abce
is a worsening flip since wheA = q, b is better tharb. We say that one outcomeis
better thananother outcomg (written o = () iff there is a chain of worsening flips
from « to §. Such a definition induces a preorder over the outcomes.

For generic CP-nets has been shown that finding optimal més@nd testing for
optimality in this ordering is PSPACE-complete [12]. Howevin acyclic CP-nets,
there is only one optimal outcome and this can be found iralitiene [5, 3]. We simply
sweep through the CP-net, following the arrows in the depeaglgraph and assigning
at each step the most preferred value in the preference Edalenstance, in the CP-net
above, we would choos¢ = a and thenB = b, and thus”' = ¢. The optimal outcome
is thereforenbe.

Determining if one outcome is better than another accorttnthis ordering (a
dominance query) is NP-hard even for acyclic CP-nets. Whi&table special cases
exist, there are also acyclic CP-nets in which there are repiially long chains of
worsening flips between two outcomes. In the CP-net of thengi@ the outcomebe
is worse thanubc, in fact there is a chain of worsening flipgc = abé >~ abe.



2.2 Constrained CP-net

Our work builds on the nice procedure to handle hard comgr@m CP-nets presented
in [13]; we give some background on their semantics.

The idea is to translate the CP-statements of the CP-ned isgbof hard constraints
such that the solutions of these hard constraints (callptiflity constraints”) are the
optimal solutions of the CP-nets. Consider a set of CPsimtes N which define a
partial order- over the elements in the domain of a variablender the conditiog of
an assignment of values to other variables. Then, for eastabf statements, the corre-
sponding optimality constraintis — V,(x = a;), where the:;’s are the undominated
elements of the partial order. The optimality constraintspt(/N) corresponding to
the entire sefV are the optimality constraints corresponding to all thestements in
N. Moreover, an outcome is optimal in the ordering induced IPanetV iff it is a
satisfying assignment fapt (V) [13].

For example, the CP-statements- a anda A b : ¢ = ¢ map to the hard constraints
a and(a A b) — c respectively. In the case of boolean variables, these @ntt map
directly to SAT clauses, so SAT is a convenient technologgédving these problems.

3 Constrained CP-net with objective function

We now introduce a formalism that generalizes the classicalof the CP-net, by al-
lowing both the presence of hard constraints and of an atgefttnction.

Definition 1 (constrained FCP-net).A constrained FCP-net is a tupl@/y, Vu, N,
H, F) whereVy and Vy are two sets of variables (non necessarily disjoif¥)s a
CP-Net over variables iV, H is a set of hard constraints over variablesl, and
F : Assignmentd/yUVy ) — R is an objective function, where AssignméhtsU Vi)
is the set of all the possible assignments to the variabléginu V).

Definition 2 (complete outcome)A complete outcome in a constrained FCP-{iéy,
Vu, N, H, F) is an assignment to all the variables¥y U V.

Definition 3 (Solution). A complete outcome in a constrained FCP-(iét, Vi, N,
H, F) is feasible iff it satisfies all the constraints i (i.e., iff H(s) is true). Such an
outcome is also called solutionof the FCP-Net.

Definition 4 (Non-dominated solution).A solutions of a constrained FCP-nét/y,
Vi, N, H, F) is non-dominated iffi solutions’ s.t.s” > s.

Example 1.Consider the CP-Net in Figure 2, let us calNt on the boolean variables
Vv = {4, B,C}. The complete set of outcomes is represented in Figure Jewnhe
arrows show the dominance relations. Assume also to havigjaeiconstraint over the
same variables (thus, in this instantg, = Vi), that states:(a A b A ¢): this constraint
makes infeasible the outcomeéc.

The values of the objective functidn are represented in Figure 3 next to the com-
plete outcome. For examplg(abc) = 5 andf(abc) = 7. ]
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Amongst the (possibly many) feasible outcomes, we have lextsthe preferred
ones in the CP-Net and with respect to the objective funclite problem is that the
CP-Net and the objective function could propose differefitions: we have to select
the ones to be presented to the decision maker. In the peeeicample, the CP-Net
is unable, alone, to provide a preferred solution becausgbeotyclé. The objective
function alone suggests solutiahé, with an optimal value 028, but this is hardly the
solution intended by the user: in fact, it is the worst pdss#imlution according to the
CP-Net (sincezbc is not even feasible).

Different strategies could be used; in this work we focusexiclographic combina-
tions, in which the various criteria are sorted for impodan

One could decide that the objective function is the most irtgoa criterion. This
case is very simple: one can simply solve the constrainech@gattion problem obtained
by dropping the CP-Net, and then choose, amongst the sadutith the same, optimal
value of objective function, the preferred one accordingh® CP-Net. But we could
get very bad solutions with respect to the CP-Net (as theéquewexample showed).

A more challenging problem is the dual one: the CP-Net is rmop®rtant, and only
in cases where it fails to propose a clear winner, we discde the potential solutions
through the objective function. This is also, probably, seenantics that the decision
maker is more inclined to accept: after he defined formakydneference table, he will
probably want to exploit the CP-Net at its best. IntuitivéhyFigure 3 we have a cycle
of solutions that are dominated only by other solutions endfcle. Thus, the intended
solution should be searched for in the cycle. Within the eyele select the best solution
with respect to the objective function: outcomte.

Definition 5 (lex optimal solution). Given a constrained FCP-nét = (Viy, Vg, N,
H, F), a solutions is lex optimal iff one of the following items holds:

— sis non-dominated ands’ non-dominated solution d?, F'(s) > F(s');

! And the cycle is not cut by constraints, so the relaxed sersfit3] does not provide a solu-
tion either.



Fig. 3. Complete outcomes of the FCP-net in Figure 2.

— P does not admit non-dominated solutions and, for any salutipif s’ > s then
(s =" ANF(s) > F(s)).

The first condition says that a solution is lex-optimal ifsta non-dominated solu-
tion in the CP-Net and, among the non-dominated solutidisthe one with the high-
est value of the objective function. Moreover, there candses in which the CP-Net
does not provide a non-dominated solution, but we haegdde of solutions, where
each solution in the cycle dominates the others (and evelf)itén such a case, the
usual CP-Net semantics fails to propose a preferred salufibe second condition of
Definition 5 says that, if there are no non-dominated sohgi@ solutions is a lex-
optimal solution if, whenever it is dominated by some salntd’, it also dominates’
(i.e., they are in the same cycle) and, moreover, it is betitkr respect to the objective
function F.

One interesting property of lex-optimal solutions is thatder reasonable assump-
tions, in a constrained FCP-Net there exists exactly onepainal solution (provided
that the constraints are satisfiable). This property arsaesery practical need: even
if the CP-Net is not consistent, it is possible to find a unigeferred solution, which
avoids two potential problems of the CP-Nets. The first is tha CP-Net could leave
too many solutions, amongst which the decision maker hasdose. The second, even



worse, is that there is no solution to choose, and the dexmsaker has to revise his/her
preferences.

Theorem 1. Consider a constrained FCP-nét = (Vy,Vy, N, H, F). If the set of
constraintsH admits at least a solution, and the functigns injective, then there is
exactly one lex-optimal solution 8.

Proof. Suppose that the constrained CP-Net has a non-empfy aehon-dominated
solutions. Since the set of solutions is finite ghid limited, f admits a maximum value
onthe sefl, call it f(m). Sincef is injective, the maximum is unique. By Definition 5,
m is a lex-optimal solution. Sinc¢(m) is the maximum, any other feasible solution
s € Lis f(s) < f(m), and thus it is not lex-optimal.

Suppose now that the set of non-dominated solutions of thet@ined CP-Net is
empty. By Definition 4, this can happen either if there arealat®ons (which is false,
by hypothesis) or if all solutions are dominated. Considduton s: it is dominated
iff there exists a solutior’ = s. In its turn,s’ is dominated iff there is some solution
s” = s'. Since the set of solutions is finite, and no solution is nomithated, there must
be a cycle. If such cycle is dominated by some solutibthat is not in the cycle, then
we can use the same argument used above to show*tbatongs to a cycle. Consider
now a cycleC such that, for eachy, s, € C, 51 > so andsy > s1, andfis* ¢ C such
thats* - s;. Since the set of solutions is finit€, is finite. SinceF’ is injective, there
is a unigue maximum amongst the element€§'pthis maximum is by Definition 5 the
unique lex-optimal solution oP.

We now present an algorithm that finds lex-optimal solutions

4 An algorithm

We now show an algorithm to find lex-optimal solutions of astoained FCP-net. The
algorithm uses procedutdardPareto, defined previously in the literature [13], that
finds the non-dominated solutions of a constrained CP-Net.

This algorithm (Algorithm 1) takes as input a constrainedPh@tP = (Vy, Vy,
N, H, F), and it returns as output a sktcoinciding with the set of the lex-optimal
solutions ofP.

The algorithm first checks if there are non-dominated soh#iwith procedure
HardPareto. If the set of returned solutions is not empty, then ther@aredominated
solutions, thus the lex-optimal ones should be selectedgstdhose (line 1). Amongs
those candidate lex-optimal solutions, we select those thi¢ highest value of the ob-
jective function via procedur8electOptimal (procedure 2), that is basically a search
of the maximum element in a set.

HardPareto might return no solutions in two cases [13]: if the set of heod-
straints is unsatisfiable, or if no feasible solution is mmminated, due to the fact that
there is a cycle. We distinguish the two cases; in case thera@solutions, that is no
feasible outcome for the constraints, we simply fail (line 2

Otherwise, there must be a cycle that contains the lex-@bsoiutions. In this case,
we break the cycles by removing some of the preferences.tiéandcyclicReduced



Algorithm 1: LexOptimalSolution® PNet, CSP, F)
Input: P = (N,CSP, F): aconstrained FCP-net;
Output: L: a set of LexOptimal solutions
L — HardPareto(CSP,N);
if |[L] > 0then

1 L return SelectOptimal(L, F)

else
/I either there are no solutions, or there is a top cycle
if Solve(CSP)=faithen

| return fail

else
I there is a top cycle

4 A «— AcyclicReducedCPn€fy)
L0
foreach A; € Ado

| L« LUHardPareto(CSP,A;)

5 L — RemoveDominated(L, N)
L — SelectOptimal(L, F)
6 return L

C Pnets (line 4) finds all the maximal ways to make the CP-Net acydiore precisely,

it finds all the ways that make the CP-net acyclic by elimimgth set of edges that is
minimal (with respect to set inclusion). In other words,dtputes the set of spanning
trees of the dependence graph of the CP-Net. For each of yokcaeduced CP-Nets,
we compute the set of the non-dominated solutions with &lyorH ard Pareto. Then,
among these solutions, we select only those that are nomrdted in the given cyclic
CP-net. We achieve this with tHéemove Dominated procedure (line 5), that performs
dominance testings among these solutions and returns lo@lpdn-dominated ones.
The chosen solutions are the candidate lex-optimal saistithat will be again selected
with the SelectOptimal procedure.

Theorem 2. Consider a constrained FCP-nét = (Vy,Vy, N, H, F). The set re-
turned by Algorithm 1 applied t@ coincides with set of the lex optimal solutions of
P.

Proof. The proof consists of two parts. In the first (soundness) Weshvow that every
solution returned by Algorithm 1 applied to the FCP-fieis lex optimal forP, while
in the second part (completeness) we will show that everpfsimal solution ofP is
returned by Algorithm 1 applied t&.

SoundnessGiven a constrained FCP-nét = (Vy, Vg, N, H, F'), every solution re-
turned by Algorithm 1 applied t@ is lex optimal. In fact,

— If the hard constraints have no solutions, the algorithmrret failure in line 3.



ProcedureSel ect Opti mal ( L, F)

Input: L= a set of complete outcomeE; the objective function
Output: the optimal solutions amongét
Opt —
F* — —
foreach X € L do

if F(X)= F*then

| Opt — OptU{X}
if F(X) > F* then

Opt = {X}
F* — F(X)
return Opt

ProcedureRenpveDoni nat ed( L, N)
Input: L= a set of complete outcomed: a CP-Net
Output: the non-dominated solutions
foreach X € L do
foreachY € L do
1 Lif(Y»X)/\(X;éY)then
| L~ L\{X}

return L

— If the algorithm Hard-Pareto succeeds (line 1), then thestamed CP-Net has
non-dominated solutions, and, among the non-dominatetisons, we choose those
with the highest value of the objective function, thus theslaitions are obviously
lex-optimal.

— Otherwise, suppose the algorithm returns a solution line 6. Since algorithm
Hard-Pareto failed on the original CP-N&t this means that was dominated by
somes’ in N, while by makingN acyclic this is no longer the case. On the other
hand, if s is dominated by’ ands does not dominate’, thens is removed from
the set of candidate solutions in line 5.

Finally, considering all solutions that are dominated dmysolutions involved in
the same cycle, only the best solution with respecf tis returned (see Proce-
dure 2), thus ifs is returned then it is lex-optimal.

CompletenessSuppose that there exists a lex-optimal solutipmve prove thats is
returned by Algorithm 1.

— If s is non-dominated inV, then Algorithm Hard-Pareto will find it, and will be
returned in line 1.

— If s is dominated by another feasible solutigh ands is lex-optimal, then they
must be in the same cycle, thus alsa- 5 s. Thus, there must be a sequence of
assignments’ >~y a1 =y a2 =N -+ =N ar =N S, Wheres is obtained with
one worsening flip fronu,. Such a worsening flip must be due to an arroof



the CP-net. If we remove arrowfrom N, thens becomes non-dominated, thus
algorithm Hard-Pareto is able to find it. The arrevs clearly in a cycle, thus there
exists a way to maké/ acyclic that removes.

Finally, solutions will not be removed by Procedure 2 because it has the optimal
value of f within the feasible ones in the cycle. a

Example 2.Let us consider the constrained FCP-Net shown in Example 1.
Algorithm 1 invokes Hard-Pareto, that returns no solutjeirsce there does not ex-

ist any non-dominated solution with respect to the givenN&R-The algorithm checks

if the set of constraints is satisfiable (line 2). Since theesponding CSP is satisfiable,

the CP-Net of Figure 2 is made acyclic in all possible waysialg by removing either

arcA — B,orB — C orC — A. We run Hard-Pareto on the three acyclic CP-Nets,

and we obtain the candidate solutions in Table 1.

| sub-CP-Net [candidate solutions
{A— B,B—C} abc abe
{B—C,C— A}| abe  abc
{C - AA— B}| abc abe

Table 1. Candidate solutions for the problem in Example 1.

tion RemoveDominated does not remove any of these solutions; in fact none of
these elements is dominated by some solution that is notrdded by them. Finally,
SelectOptimal selects only the solution with maximum value of objectivadtion:
namelyabe. ]

4.1 Discussion

The algorithms reasoning on CP-Nets are blessed by theeeffitst of optimality of
CP-Nets, but are cursed by the complexity of the dominarste tieat is in PSPACE.
The same holds for algorithms dealing with constrained @®sNor example, one of
the improvements of Hard-Pareto [13] with respect to Se&eH4] is that it avoids
dominance testing in some significant cases: when thereog(feasible) solutions and
when the set of optimal solutions coincides with the sohaiof a CSP built by adding
optimisation constraints to the st of hard constraints.

Algorithm 1 does not discard a priori solutions that belomgycles, but considers
them as equivalent with respect to the CP-Net, and diffeats them through the sec-
ondary criterion given by the objective function. This me#mat we can answer user’s
guestions even in cases where other semantics fail. In onarsics, showing that a
solution is dominated is not enough to discard it, as in gairgtd CP-Nets, because
we have more ambitious objectives. In other words, we aslertmour semantics, so,
not surprisingly, the algorithm achieving it can be more ptex.



Nevertheless, Algorithm 1 has some notable features., Ringtes Hard-Pareto to
preprocess the FCP-Net; this means that when Hard-Pareteeds in finding solu-
tions, we have the same complexity (and we do not need tonpefiother dominance
tests).

Second, we do not perform dominance tests on all the possiiléions, but only
on the selected solutions that are feasible Pareto optonalf acyclic CP-Net.

Algorithm 4 : LexOptimalSolution® PNet, H, F)
Input: P = (N, H, F'): a constrained FCP-net;
Output: L: a set of LexOptimal solutions
L — HardPareto(H,N);
if |IL| > 0then

1 L return SelectOptimal(L, F)

else
/I either there are no solutions, or there is a top cycle

2 if Solve(H)=failthen
| return fail

else
I there is a top cycle
4 A — AcyclicReducedCPnétys)
foreach A; € Ado

X «— Optimal(A;)

if H(X) then

Lpg < LpgU {X}
L A— A\ {Ai}

foreach A; € Ado
| L« LUHardPareto(H, A;)

8 L — RemoveDominated(L, L4, N)
L — SelectOptimal(L, F)
9 return L

Algorithm 4 is an improvement of Algorithm 1, that exploiterse features of
acyclic CP-Nets. In an acyclic CP-Net, finding the optimal lvaear cost; if the optimal
is also feasible, then it is obviously non-dominated. Aldon 4 reduces the number
of invocations ofH ardPareto; moreover it reduces the number of domination tests.
If the optimal solution of an acyclic subnet is feasible €li), then it is added to a
distinguished set.,,;; moreover there is no need to invokEurd Pareto on this sub-
net, because we already know the only optimal solution. N for each element
X € L4, we have that’Y, X > Y, so there is no need to invok&emove Dominated
for the elements of.,,; (condition 1 of Procedure 3 is always false); in this way, &e ¢
potentially save many dominance checks.



ProcedureRenmoveDom nat ed( L, L4, V)

Input: L: a set of complete outcomes;,;: a set of candidate Lex-optimal solutions;
N:a CP-Net
Output: the non-dominated solutions
repeat

chooseX € L

L — L\ {X}

if Y € LU L,,q such thatY = X) A (X # Y)then

|_ Lng «— Lpg U {X}

until L#£0;
return L,q4

5 Related work

Other formalisms have been defined to introduce a quartaspect in the classical
CP-net formalism. For example, utility CP-net (UCP-nethialism [2] can be viewed
as an extension of the CP-net model, that allows one to reprgsiantitative utility in-
formation rather than simple preference orderings. Howéwesuch a formalism only
acyclic CP-nets have been considered, while we considercgldic ones. Moreover,
their objective function is a GAI (Generalized Additive Baendent) [1], that depends
on the CP-net, while our objective function is a generic fiorg and thus it is indepen-
dent from the CP-net.

Another formalism that adds to the CP-net formalism a gtetite aspect is the
Tradeoff CP-net (TCP-net) [7, 8]. In such a formalism refatimportance statements
have been added to the qualitative and conditional preferegpresentation, since it
is very natural to express the fact that one variable’s vaueore important than
another’s. Adding an explicit importance relation, CPsnigiduce an importance re-
lation between nodes and their descendants only. This apprie different from our
approach, since, to handle the presence of cycles in thee®Rwe do not introduce as
in [7, 8] an explicit importance relation among variablest Wwe take into account the
presence of an objective function.

6 Conclusions and future work

We have proposed a new formalism, the constrained FCP-natfism, that extends
the classical constrained CP-net framework, by considetbiesides hard constraints
and the qualitative aspect of the CP-net, also a quanttatipect, given by an objective
function, that may relate some of the variables of the CPSwath a quantitative aspect
is used to break ties in case the CP-Net alone is unable ttt s&le (or more) preferred
outcomes. We have defined a new notion of optimal solutiod,va@ have given an
algorithm to find such a kind of optimal solutions also in tlese of cyclic CP-nets.
Such an algorithm returns always at least one of these sohjtif there is at least a
feasible outcome in the CP-net. We plan to implement a tobatalle FCP-nets and to
test it empirically over classes of these problems.



Acknowledgements

This work has been partially supported by Italian MIUR PRHIdjpct “Constraints and
Preferences” (r2005015491).

References

10.

11.

12.

13.

F. Bacchus and A. J. Grove. Graphical models for preferamc utility. InProceedings of
UAI 1995 pages 3-10. Morgan Kaufmann, 1995.

. C. Boutilier, F. Bacchus, and R. I. Brafman. UCP-netwoikslirected graphical represen-

tation of conditional utilities. In J. S. Breese and D. Kalleditors,UAI '01: Proceedings
of the 17th Conference in Uncertainty in Artificial Intekigce, University of Washington,
Seattle, Washington, USA, August,p&ges 56—64. Morgan Kaufmann, 2001.

. C. Boutilier, R. I. Brafman, C. Domshlak, H. H. Hoos, andRnole. CP-nets: A tool for

representing and reasoning with conditional ceteris parfireference statements. Artif.
Intell. Res. (JAIR)21:135-191, 2004.

. C. Boutilier, R. |. Brafman, Carmel Domshlak, H. H. Hoosdd. Poole. Preference-based

constraint optimization with CP-net€omputational Intelligence20(2):137-157, 2004.

. C. Boutilier, R. I. Brafman, H. H. Hoos, and D. Poole. Reasg with conditional ceteris

paribus preference statements. In K. B. Laskey and H. Pealiters,UAI '99: Proceedings
of the Fifteenth Conference on Uncertainty in Artificialdhigence, Stockholm, Sweden, July
30-August 1pages 71-80. Morgan Kaufmann, 1999.

. R. 1. Brafman and I. Dimopoulos. A new look at the semardiog optimization methods of

CP-networks. IProceedings of IJCAI 200®ages 1033-1038. Morgan Kaufmann, 2003.

. R. I. Brafman and C. Domshlak. Introducing variable intpoce Tradeoffs into CP-nets.

In A. Darwiche and N. Friedman, editordAl ‘02, Proceedings of the 18th Conference in
Uncertainty in Artificial Intelligence, University of Alpa, Edmonton, Alberta, Canada,
August 1-4pages 69—-76. Morgan Kaufmann, 2002.

. R. I. Brafman, C. Domshlak, and S. E. Shimony. On graphitadieling of preference and

importance JAIR, 25:389-424, 2006.

. C. Domshlak and R. I. Brafman. CP-nets: Reasoning andstensy testing. In D. Fensel,

F. Giunchiglia, D. L. McGuinness, and M. Williams, editoBspceedings of the Eight Inter-
national Conference on Principles and Knowledge Reprasiamt and Reasoning (KR-02),
Toulouse, France, April 22-2%ages 121-132. Morgan Kaufmann, 2002.

C. Domshlak, R. I. Brafman, and S. E. Shimony. Preferdrased configuration of web
page content. liProceedings of IJCAI 20Qbages 1451-1456. Morgan Kaufmann, 2001.
J. Doyle and M. Wellman. Representing preferences a&sisgtaribus comparatives. In
S. Hanks, S. Russell, and M. Wellman, editddgcision-Theoretic Planning: Papers from
the 1994 Spring AAAI Symposiupages 69-75. AAAI Press, Menlo Park, California, 1994.
J. Goldsmith, J. Lang, and M. Truszczynski N. Wilson. Thenputational complexity of
dominance and consistency in cp-netsPhoceedings of IJCAI 200%ages 144-149. Pro-
fessional Book Center, 2005.

S. D. Prestwich, F. Rossi, K. B. Venable, and T. Walsh. saint-based preferential opti-
mization. InAAAI-05 pages 461-466, 2005.



