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Abstract. CP-Nets are a framework for dealing with qualitative preferences,
both conditional and unconditional. They have received a lot of attention re-
cently, and many extensions have been provided. In particular, the framework
of constrained CP-Nets aims to choose, amongst the solutions that satisfy a set of
constraints, the preferred one.
While the semantics of CP-Nets allows for cycles (and, indeed, cyclic CP-Nets
occur in real-life problems), current algorithms are not always able to select the
preferred solution in the presence of cycles. This means that, although there might
exist feasible solutions, current algorithms are unable (in unlucky instances) to
provide a preferred solution, and they simply fail, providing no answer to the
user.
In this work, we propose FCP-Net, that is, a framework that adds an objective
function to a constrained CP-Net. The objective function (essential in many con-
straint applications) is able to convey quantitative information into the CP-Net.
Besides the higher expressivity of FCP-Nets, we are able to provide a single,
best preferred solution in all feasible instances (those inwhich there is at least a
solution), paving the way to a wider use of CP-Nets in practical applications.

1 Introduction

Preferences occur naturally in many real-world problems. There are many kinds of
preferences, for example, quantitative (“I prefer ice cream at level 0.8”) or qualitative
(“I prefer meat to fish”). Moreover, preferences can be unconditional (“I prefer fish”)
or conditional (“If there is white wine, I prefer fish to meat”). Qualitative preferences
are often easier to express: expressing a specific quantitative level of preference values
to every element of a problem could be tedious and difficult for the user. Moreover, it
is natural to allow the user to express, if she wants, her preferences in a way that is
conditioned by other preferences.

An elegant formalism to represent conditional and qualitative preferences isCP-
nets[5, 9, 3]. CP-nets model statements of qualitative and conditional preference which
are interpreted under the Ceteris Paribus (that is, “all else being equal”) assumption.
CP-Nets can contain unconditional preferences, likemeat ≻ fish, that means that, all
else being equal, I prefer meat to fish. Such a preference saysnothing about two dinners
that differ for the dessert: it states that between two identical meals differing only for



the main course, I prefer the one with meat. There are also conditional preferences, as
in meat : red ≻ white, that asserts that, given two meals that differ only in the kind
of wine served and both containing meat, the meal with a red wine is preferable to the
meal with a white wine.

Most earlier work has concentrated on the acyclic model. Forexample, inacyclic
CP-netsone can determine the most preferred outcome in linear time [5, 3], while find-
ing the optimal in CP-nets containing cycles is, in general,NP-hard [6].

Unluckily, the presence of cycles in a CP-net occurs often inreal-life situations. A
cycle can also be intrinsic in the description of the preferences. For example, it may be
natural to give preferences over wine depending on the main course, and vice versa. This
may be interpreted as the fact that the two features are equally important but dependent
on each other [13]. Consider, for instance, a diner who has tochoose either red or white
wine, and either fish or meat. Given red wine, he prefers meat,and conversely, given
meat he prefers red wine. On the other hand, given white wine,he prefers fish, and
conversely, given fish he prefers white wine. This gives a consistent cyclic CP-Net, and
there is no acyclic CP-net giving rise to the same preferences on outcomes [12].

Also, cyclic CP-nets emerge naturally when there is a set of interdependent vari-
ables, none of which is more important than the other. For example, [10] note that
such dependency can emerge naturally among web-page components in their web-
personalization tool.

In some cases, a cycle may denote inconsistent or contradicting information, that
nevertheless happens in the real world. For example, a cyclemay appear from the ag-
gregation of preferences of several agents.

Various works propose methods for dealing with cyclic CP-nets, but a completely
satisfactory solution is yet to come. In the original proposal [5] cyclic networks do not
always have a preferred assignment. The only answer is that there is an inconsistency in
the preferences, and the user is forced to revise her statements and make them consis-
tent. In following works, CP-nets are combined with constraint reasoning [4], and only
feasible outcomes are compared through the statements in the CP-Net. Further research
found out that even in some cyclic networks there may be a non-dominated outcome and
corresponding algorithms have been proposed. But, there are also instances in which a
cycle of outcomes exists, and no outcome outside the cycle dominates any outcome in
the cycle. In such a case no answer is given, and the algorithmfails.

A new approach [13] tries to give an answer by giving a different semantics for a
constrained CP-net. In constrained CP-nets a feasible outcome isapproximately optimal
if no feasible outcome that differs only for one value is better. In this way, if a hard
constraint cuts the cycles, one can find an approximately optimal outcome. Moreover,
the authors propose how to encode preferences into constraints, which lets them find the
approximately optimal outcome by solving a constraint satisfaction problem. Although
very smart, this proposal does not always work: there might be cycles that are not cut by
constraints, and in this case no (approximately optimal) outcome is found. Also, even
when the cycle is cut by constraints, it is not always clearwhy the selected outcome
should be considered as the best within the outcomes in the cycle.

Consider the following example (Figure 1a). Romeo and Juliet are planning a trip.
Romeo prefers a luxury hotel if it is on the seaside (sea : lux ≻ lux), but for him a



non-luxury hotel is better in case there is no sea (sea : lux ≻ lux). Juliet wants to go
to the sea if the hotel is not luxury (lux : sea ≻ sea), but chooses not to go to the
sea (e.g., mountain) if the hotel is luxury (lux : sea ≻ sea). The preferences of both
spouses make perfectly sense, taken singularly, but there is a dreadful cycle when they
are put together:luxsea ≻ luxsea ≻ luxsea ≻ luxsea ≻ luxsea (Figure 1b). Now,
the original semantics [5] says that the two spouses should discuss how to make the net-
work acyclic, and one of the two will probably have to drop oneof his/her preferences,
favouring the other. Let us add a constraint that breaks the cycle: there is no luxury hotel
on the sea. The relaxed semantics [13] says that the only approximately optimal solu-
tion is luxsea, since there is no chain of improving flips fromluxsea to other solutions,
passing only on feasible assignments. Indeed, this answer is better than no answer, but
will Romeo accept this explanation, or will he argue to support the optionluxsea?

sea: lux > lux

sea: lux > lux

lux: sea > sea

lux: sea > sea

lux sea

lux sea

lux sea

lux sea

(a) (b)

HD

Fig. 1. Romeo and Juliet example.

Moreover, there are worse instances: the constraints mightnot remove elements
from the cycle. In this case, neither the original, nor the relaxed semantics is able to
give an answer: they both fail.

Picture the following situation. The user defines through constraints the feasible re-
gion, and happily finds that there are solutions. Since the solutions are many, and she
cannot scan through all of them, she decides to state formally her preferences (possi-
bly, together with those of other users, involved in the decision process). She adopts
CP-Nets, and takes one of the available (exact or approximate) semantics [5, 4, 13], to-
gether with the corresponding algorithm. To her disappointment, now no solution is
feasible any longer: she has either to revise her preferences (which might mean find an
agreement with the other users about which preferences should be relaxed), or to accept
that all feasible solutions are equally preferred.

In this paper we propose a pragmatic way to deal with such situations. We believe
that, since the user spends time and effort in formalising his/her preferences, throwing



away all preferences is not a satisfactory answer. In some cases, signalling that prefer-
ences should be revised is not enough. Selecting answers depending on feasibility will
not always be acceptable. We believe that cycles should not be avoided at all costs, but
they should be considered as sets of equally preferred outcomes (as was already hinted
in the original paper [5]). But we need a way tobreak ties.

Also, a practical need in many applications is to be able to reason about numeric
values. Indeed, qualitative preferences are easy to express when there is no quantitative
information, but when some quantitative information is given, concealing it would be
unwise. In all constraint languages there are modules that perform optimisation, typi-
cally through the branch-and-bound algorithm; we think that a unique framework able
to deal both with qualitative and quantitative informationwould be very handy.

We propose a framework taking into consideration both qualitative and quantitative
information. Qualitative information is given through CP-Nets, widely studied and ap-
preciated framework. Quantitative information is used to break ties in case the CP-Net
alone is unable to select one (or more) preferred outcomes. We adopt hard constraints
in our language, to let the user express impossibility, besides preferences. We have an
objective function to perform optimisation, ubiquitous inCP languages.

In many practical applications there are functions to be optimised. They might be
less important than qualitative preferences: indeed, if the user wants to express quali-
tative preferences, it is probably because he/she is unableto provide numeric values,
and deems numeric parts less important. But quantitative preferences very often ex-
ist, and they are the perfect candidate for breaking ties. Inour Shakespearian example,
Romeo and Juliet, unable to make a preferred choice, could raise the cost information,
and choose the less expensive option amongst the equally preferable choices. We do not
give up qualitative information when there is no preferred outcome, but we select the
best outcome (according to an objective function) amongst the options that are equally
preferred according to the CP-net.

To handle constrained cyclic CP-nets and to satisfy the goals mentioned above, i.e.,
to discriminate among various outcomes that are all optimalaccording to the definition
above, and to find a weaker optimal outcome, when no optimal outcome is found, we
will introduce a new formalism, calledconstrained FCP-net(where “F” stands for ob-
jective function). Such a formalism extends the classical constrained CP-net formalism,
by considering, besides hard constraints and the qualitative aspect of the CP-net, also a
quantitative aspect, given by an objective function, that may relate some of the variables
of the CP-net.

Other formalisms have been defined to introduce a quantitative aspect in the classi-
cal CP-net formalism. However, we will show in the related work section that all these
formalisms are different from our framework.

The rest of this paper is organized as follows: Section 2 provides necessary back-
ground. Section 3 describes constrained FCP-nets and the notion of lex optimality.
Section 4 presents the algorithm that we propose to handle constrained FCP-net, that
takes as input a constrained FCP-net and it returns the lex optimal outcomes. Section 5
presents related work. We conclude in Section 6 with a discussion of future work.



2 Background

We now give the necessary background. In particular, we willgive the basic notions of
the CP-nets [5] and constrained CP-nets [13].

2.1 CP-net

CP nets were introduced in [5] as a tool for compactly and intuitively representing
qualitative preference relations. CP-nets are a graphicalmodel for representing condi-
tional and qualitative preferences. They exploit conditional preferential independence
by structuring an agent’s preferences under the ceteris paribus assumption. Informally,
CP nets are sets of conditional ceteris paribus (CP) preference statements. Many philoso-
phers and AI researchers [11] have argued that many of our preferences are of this type.
CP nets bear some similarity to Bayesian networks. Both utilize directed graphs where
each node stands for a domain variable, and assume a set of features{X1, . . . , Xn} with
finite, discrete domainsD(X1), . . . , D(Xn). For each featureXi, each user specifies
a set ofparentfeaturesPa(Xi), that can affect her preferences over the values ofXi.
This defines a dependency graph in which each nodeXi hasPa(Xi) as its immediate
predecessors. Given this structural information, the userexplicitly specifies her pref-
erence over the values ofXi for each complete outcome onPa(Xi). This preference
is assumed to take the form of total or partial order [5, 13] over D(Xi). For example,
consider a CP-Net whose features areA, B andC with binary domains containingf
andf̄ , if F is the name of the feature, and with the CP preference statements as follows:
a ≻ ā, a : b̄ ≻ b, ā : b ≻ b̄, b : c̄ ≻ c, b̄ : c ≻ c̄. For example, the conditional statement
a : b̄ ≻ b states that givenA = a, thenB = b̄ is better thanB = b.

The semantics of CP nets depends on the notion of a worsening flip. A worsening
flip is a change in the value of a variable to a value which is less preferred by the CP
statement for that variable. For example, in the CP net above, passing fromab̄c to abc

is a worsening flip since whenA = a, b̄ is better thanb. We say that one outcomeα is
better thananother outcomeβ (written α ≻ β) iff there is a chain of worsening flips
from α to β. Such a definition induces a preorder over the outcomes.

For generic CP-nets has been shown that finding optimal outcomes and testing for
optimality in this ordering is PSPACE-complete [12]. However, in acyclic CP-nets,
there is only one optimal outcome and this can be found in linear time [5, 3]. We simply
sweep through the CP-net, following the arrows in the dependency graph and assigning
at each step the most preferred value in the preference table. For instance, in the CP-net
above, we would chooseA = a and thenB = b̄, and thusC = c. The optimal outcome
is thereforeab̄c.

Determining if one outcome is better than another accordingto this ordering (a
dominance query) is NP-hard even for acyclic CP-nets. Whilst tractable special cases
exist, there are also acyclic CP-nets in which there are exponentially long chains of
worsening flips between two outcomes. In the CP-net of the example, the outcomēab̄c̄

is worse thanab̄c, in fact there is a chain of worsening flipsab̄c ≻ ab̄c̄ ≻ āb̄c̄.



2.2 Constrained CP-net

Our work builds on the nice procedure to handle hard constraints in CP-nets presented
in [13]; we give some background on their semantics.

The idea is to translate the CP-statements of the CP-net intoa set of hard constraints
such that the solutions of these hard constraints (called “optimality constraints”) are the
optimal solutions of the CP-nets. Consider a set of CP-statementsN which define a
partial order≻ over the elements in the domain of a variablex under the conditionφ of
an assignment of values to other variables. Then, for each ofsuch statements, the corre-
sponding optimality constraint isφ → ∨j(x = aj), where theaj ’s are the undominated
elements of the partial order≻. The optimality constraintsopt(N) corresponding to
the entire setN are the optimality constraints corresponding to all the CP-statements in
N . Moreover, an outcome is optimal in the ordering induced by aCP-netN iff it is a
satisfying assignment foropt(N) [13].

For example, the CP-statementsa ≻ ā anda∧ b : c ≻ c̄ map to the hard constraints
a and(a ∧ b) → c respectively. In the case of boolean variables, these constraints map
directly to SAT clauses, so SAT is a convenient technology for solving these problems.

3 Constrained CP-net with objective function

We now introduce a formalism that generalizes the classicalone of the CP-net, by al-
lowing both the presence of hard constraints and of an objective function.

Definition 1 (constrained FCP-net).A constrained FCP-net is a tuple(VN , VH , N,

H, F ) whereVN andVH are two sets of variables (non necessarily disjoint),N is a
CP-Net over variables inVN , H is a set of hard constraints over variables inVH , and
F : Assignments(VN∪VH) 7→ R is an objective function, where Assignments(VN∪VH)
is the set of all the possible assignments to the variables in(VN ∪ VH).

Definition 2 (complete outcome).A complete outcome in a constrained FCP-net(VN ,

VH , N, H, F ) is an assignment to all the variables inVN ∪ VH .

Definition 3 (Solution). A complete outcome in a constrained FCP-net(VN , VH , N ,
H , F ) is feasible iff it satisfies all the constraints inH (i.e., iff H(s) is true). Such an
outcome is also called asolutionof the FCP-Net.

Definition 4 (Non-dominated solution).A solutions of a constrained FCP-net(VN ,
VH , N, H , F ) is non-dominated iff∄ solutions′ s.t.s′ ≻ s.

Example 1.Consider the CP-Net in Figure 2, let us call itN , on the boolean variables
VN = {A, B, C}. The complete set of outcomes is represented in Figure 3, where the
arrows show the dominance relations. Assume also to have a unique constraint over the
same variables (thus, in this instance,VH = VN ), that states¬(a∧b∧c): this constraint
makes infeasible the outcomeabc.

The values of the objective functionF are represented in Figure 3 next to the com-
plete outcome. For example,f(āb̄c) = 5 andf(ab̄c) = 7. 2
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Fig. 2. A CP-net.

Amongst the (possibly many) feasible outcomes, we have to select the preferred
ones in the CP-Net and with respect to the objective function. The problem is that the
CP-Net and the objective function could propose different solutions: we have to select
the ones to be presented to the decision maker. In the previous example, the CP-Net
is unable, alone, to provide a preferred solution because ofthe cycle1. The objective
function alone suggests solutionāb̄c̄, with an optimal value of28, but this is hardly the
solution intended by the user: in fact, it is the worst possible solution according to the
CP-Net (sinceabc is not even feasible).

Different strategies could be used; in this work we focus on lexicographic combina-
tions, in which the various criteria are sorted for importance.

One could decide that the objective function is the most important criterion. This
case is very simple: one can simply solve the constrained optimization problem obtained
by dropping the CP-Net, and then choose, amongst the solutions with the same, optimal
value of objective function, the preferred one according tothe CP-Net. But we could
get very bad solutions with respect to the CP-Net (as the previous example showed).

A more challenging problem is the dual one: the CP-Net is moreimportant, and only
in cases where it fails to propose a clear winner, we discriminate the potential solutions
through the objective function. This is also, probably, thesemantics that the decision
maker is more inclined to accept: after he defined formally his preference table, he will
probably want to exploit the CP-Net at its best. Intuitively, in Figure 3 we have a cycle
of solutions that are dominated only by other solutions in the cycle. Thus, the intended
solution should be searched for in the cycle. Within the cycle, we select the best solution
with respect to the objective function: outcomeābc̄.

Definition 5 (lex optimal solution). Given a constrained FCP-netP = (VN , VH , N,

H, F ), a solutions is lex optimal iff one of the following items holds:

– s is non-dominated and∀s′ non-dominated solution ofP , F (s) ≥ F (s′);

1 And the cycle is not cut by constraints, so the relaxed semantics [13] does not provide a solu-
tion either.
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Fig. 3.Complete outcomes of the FCP-net in Figure 2.

– P does not admit non-dominated solutions and, for any solution s′, if s′ ≻ s then
(s ≻ s′ ∧ F (s) ≥ F (s′)).

The first condition says that a solution is lex-optimal if it is a non-dominated solu-
tion in the CP-Net and, among the non-dominated solutions, it is the one with the high-
est value of the objective function. Moreover, there can be cases in which the CP-Net
does not provide a non-dominated solution, but we have acycleof solutions, where
each solution in the cycle dominates the others (and even itself). In such a case, the
usual CP-Net semantics fails to propose a preferred solution. The second condition of
Definition 5 says that, if there are no non-dominated solutions, a solutions is a lex-
optimal solution if, whenever it is dominated by some solution s′, it also dominatess′

(i.e., they are in the same cycle) and, moreover, it is betterwith respect to the objective
functionF .

One interesting property of lex-optimal solutions is that,under reasonable assump-
tions, in a constrained FCP-Net there exists exactly one lex-optimal solution (provided
that the constraints are satisfiable). This property answers a very practical need: even
if the CP-Net is not consistent, it is possible to find a uniquepreferred solution, which
avoids two potential problems of the CP-Nets. The first is that the CP-Net could leave
too many solutions, amongst which the decision maker has to choose. The second, even



worse, is that there is no solution to choose, and the decision maker has to revise his/her
preferences.

Theorem 1. Consider a constrained FCP-netP = (VN , VH , N, H, F ). If the set of
constraintsH admits at least a solution, and the functionf is injective, then there is
exactly one lex-optimal solution toP .

Proof. Suppose that the constrained CP-Net has a non-empty setL of non-dominated
solutions. Since the set of solutions is finite andf is limited,f admits a maximum value
on the setL, call it f(m). Sincef is injective, the maximum is unique. By Definition 5,
m is a lex-optimal solution. Sincef(m) is the maximum, any other feasible solution
s ∈ L is f(s) < f(m), and thus it is not lex-optimal.

Suppose now that the set of non-dominated solutions of the constrained CP-Net is
empty. By Definition 4, this can happen either if there are no solutions (which is false,
by hypothesis) or if all solutions are dominated. Consider solution s: it is dominated
iff there exists a solutions′ ≻ s. In its turn,s′ is dominated iff there is some solution
s′′ ≻ s′. Since the set of solutions is finite, and no solution is non-dominated, there must
be a cycle. If such cycle is dominated by some solutions∗ that is not in the cycle, then
we can use the same argument used above to show thats∗ belongs to a cycle. Consider
now a cycleC such that, for eachs1, s2 ∈ C, s1 ≻ s2 ands2 ≻ s1, and∄s∗ 6∈ C such
thats∗ ≻ s1. Since the set of solutions is finite,C is finite. SinceF is injective, there
is a unique maximum amongst the elements ofC; this maximum is by Definition 5 the
unique lex-optimal solution ofP .

We now present an algorithm that finds lex-optimal solutions.

4 An algorithm

We now show an algorithm to find lex-optimal solutions of a constrained FCP-net. The
algorithm uses procedureHardPareto, defined previously in the literature [13], that
finds the non-dominated solutions of a constrained CP-Net.

This algorithm (Algorithm 1) takes as input a constrained FCP-netP = (VN , VH ,

N, H, F ), and it returns as output a setL coinciding with the set of the lex-optimal
solutions ofP .

The algorithm first checks if there are non-dominated solutions with procedure
HardPareto. If the set of returned solutions is not empty, then there arenon-dominated
solutions, thus the lex-optimal ones should be selected amongst those (line 1). Amongs
those candidate lex-optimal solutions, we select those with the highest value of the ob-
jective function via procedureSelectOptimal (procedure 2), that is basically a search
of the maximum element in a set.

HardPareto might return no solutions in two cases [13]: if the set of hardcon-
straints is unsatisfiable, or if no feasible solution is non-dominated, due to the fact that
there is a cycle. We distinguish the two cases; in case there are no solutions, that is no
feasible outcome for the constraints, we simply fail (line 2).

Otherwise, there must be a cycle that contains the lex-optimal solutions. In this case,
we break the cycles by removing some of the preferences. Function AcyclicReduced



Algorithm 1 : LexOptimalSolutions(CPNet, CSP, F )
Input : P = (N, CSP, F ): a constrained FCP-net;
Output : L: a set of LexOptimal solutions
L← HardPareto(CSP,N);
if |L| > 0 then

return SelectOptimal(L, F )1

else
// either there are no solutions, or there is a top cycle
if Solve(CSP)=failthen2

return fail3

else
// there is a top cycle
A← AcyclicReducedCPnets(N )4

L← ∅
foreachAi ∈ A do

L← L ∪HardPareto(CSP,Ai)

L← RemoveDominated(L,N)5

L← SelectOptimal(L, F )
return L6

CPnets (line 4) finds all the maximal ways to make the CP-Net acyclic.More precisely,
it finds all the ways that make the CP-net acyclic by eliminating a set of edges that is
minimal (with respect to set inclusion). In other words, it computes the set of spanning
trees of the dependence graph of the CP-Net. For each of the acyclic reduced CP-Nets,
we compute the set of the non-dominated solutions with algorithmHardPareto. Then,
among these solutions, we select only those that are non-dominated in the given cyclic
CP-net. We achieve this with theRemoveDominated procedure (line 5), that performs
dominance testings among these solutions and returns only the non-dominated ones.
The chosen solutions are the candidate lex-optimal solutions, that will be again selected
with theSelectOptimal procedure.

Theorem 2. Consider a constrained FCP-netP = (VN , VH , N, H, F ). The set re-
turned by Algorithm 1 applied toP coincides with set of the lex optimal solutions of
P .

Proof. The proof consists of two parts. In the first (soundness) we will show that every
solution returned by Algorithm 1 applied to the FCP-netP is lex optimal forP , while
in the second part (completeness) we will show that every lexoptimal solution ofP is
returned by Algorithm 1 applied toP .

Soundness.Given a constrained FCP-netP = (VN , VH , N, H, F ), every solution re-
turned by Algorithm 1 applied toP is lex optimal. In fact,

– If the hard constraints have no solutions, the algorithm returns failure in line 3.



ProcedureSelectOptimal(L, F)
Input : L= a set of complete outcomes;F : the objective function
Output : the optimal solutions amongstL

Opt← ∅
F ∗ ← −∞
foreachX ∈ L do

if F (X) = F ∗ then
Opt← Opt ∪ {X}

if F (X) > F ∗ then
Opt = {X}
F ∗ ← F (X)

return Opt

ProcedureRemoveDominated(L, N)
Input : L= a set of complete outcomes;N : a CP-Net
Output : the non-dominated solutions
foreachX ∈ L do

foreach Y ∈ L do
if (Y ≻ X) ∧ (X 6≻ Y ) then1

L← L \ {X}

return L

– If the algorithm Hard-Pareto succeeds (line 1), then the constrained CP-Net has
non-dominated solutions, and, among the non-dominated solutions, we choose those
with the highest value of the objective function, thus thesesolutions are obviously
lex-optimal.

– Otherwise, suppose the algorithm returns a solutions in line 6. Since algorithm
Hard-Pareto failed on the original CP-NetN , this means thats was dominated by
somes′ in N , while by makingN acyclic this is no longer the case. On the other
hand, ifs is dominated bys′ ands does not dominates′, thens is removed from
the set of candidate solutions in line 5.
Finally, considering all solutions that are dominated onlyby solutions involved in
the same cycle, only the best solution with respect tof is returned (see Proce-
dure 2), thus ifs is returned then it is lex-optimal.

Completeness.Suppose that there exists a lex-optimal solutions; we prove thats is
returned by Algorithm 1.

– If s is non-dominated inN , then Algorithm Hard-Pareto will find it, and will be
returned in line 1.

– If s is dominated by another feasible solutions′, ands is lex-optimal, then they
must be in the same cycle, thus alsos′ ≻N s. Thus, there must be a sequence of
assignmentss′ ≻N a1 ≻N a2 ≻N · · · ≻N ak ≻N s, wheres is obtained with
one worsening flip fromak. Such a worsening flip must be due to an arrowe of



the CP-net. If we remove arrowe from N , thens becomes non-dominated, thus
algorithm Hard-Pareto is able to find it. The arrowe is clearly in a cycle, thus there
exists a way to makeN acyclic that removese.
Finally, solutions will not be removed by Procedure 2 because it has the optimal
value off within the feasible ones in the cycle. 2

Example 2.Let us consider the constrained FCP-Net shown in Example 1.
Algorithm 1 invokes Hard-Pareto, that returns no solutions, since there does not ex-

ist any non-dominated solution with respect to the given CP-Net. The algorithm checks
if the set of constraints is satisfiable (line 2). Since the corresponding CSP is satisfiable,
the CP-Net of Figure 2 is made acyclic in all possible ways: namely by removing either
arcA → B, or B → C or C → A. We run Hard-Pareto on the three acyclic CP-Nets,
and we obtain the candidate solutions in Table 1.

sub-CP-Net candidate solutions

{A→ B, B → C} ab̄c ābc̄

{B → C, C → A} abc̄ āb̄c

{C → A, A→ B} ābc ab̄c̄

Table 1.Candidate solutions for the problem in Example 1.

The setL of candidate solutions is then{āb̄c, ab̄c, ab̄c̄, abc̄, ābc̄, ābc̄, ābc}. Func-
tion RemoveDominated does not remove any of these solutions; in fact none of
these elements is dominated by some solution that is not dominated by them. Finally,
SelectOptimal selects only the solution with maximum value of objective function:
namelyābc̄. 2

4.1 Discussion

The algorithms reasoning on CP-Nets are blessed by the efficient test of optimality of
CP-Nets, but are cursed by the complexity of the dominance test, that is in PSPACE.
The same holds for algorithms dealing with constrained CP-Nets: for example, one of
the improvements of Hard-Pareto [13] with respect to Search-CP [4] is that it avoids
dominance testing in some significant cases: when there are no (feasible) solutions and
when the set of optimal solutions coincides with the solutions of a CSP built by adding
optimisation constraints to the setH of hard constraints.

Algorithm 1 does not discard a priori solutions that belong to cycles, but considers
them as equivalent with respect to the CP-Net, and differentiates them through the sec-
ondary criterion given by the objective function. This means that we can answer user’s
questions even in cases where other semantics fail. In our semantics, showing that a
solution is dominated is not enough to discard it, as in constrained CP-Nets, because
we have more ambitious objectives. In other words, we ask more to our semantics, so,
not surprisingly, the algorithm achieving it can be more complex.



Nevertheless, Algorithm 1 has some notable features. First, it uses Hard-Pareto to
preprocess the FCP-Net; this means that when Hard-Pareto succeeds in finding solu-
tions, we have the same complexity (and we do not need to perform further dominance
tests).

Second, we do not perform dominance tests on all the possiblesolutions, but only
on the selected solutions that are feasible Pareto optimal for an acyclic CP-Net.

Algorithm 4 : LexOptimalSolutions(CPNet, H, F )
Input : P = (N, H,F ): a constrained FCP-net;
Output : L: a set of LexOptimal solutions
L← HardPareto(H,N);
if |L| > 0 then

return SelectOptimal(L, F )1

else
// either there are no solutions, or there is a top cycle
if Solve(H)=failthen2

return fail3

else
// there is a top cycle
A← AcyclicReducedCPnets(N )4

L← ∅; Lnd ← ∅
foreachAi ∈ A do5

X ← Optimal(Ai)6

if H(X) then7

Lnd ← Lnd ∪ {X}
A← A \ {Ai}

foreachAi ∈ A do
L← L ∪HardPareto(H,Ai)

L← RemoveDominated(L,Lnd, N)8

L← SelectOptimal(L, F )
return L9

Algorithm 4 is an improvement of Algorithm 1, that exploits some features of
acyclic CP-Nets. In an acyclic CP-Net, finding the optimal has linear cost; if the optimal
is also feasible, then it is obviously non-dominated. Algorithm 4 reduces the number
of invocations ofHardPareto; moreover it reduces the number of domination tests.
If the optimal solution of an acyclic subnet is feasible (line 7), then it is added to a
distinguished setLnd; moreover there is no need to invokeHardPareto on this sub-
net, because we already know the only optimal solution. Notethat for each element
X ∈ Lnd, we have that∀Y, X ≻ Y , so there is no need to invokeRemoveDominated

for the elements ofLnd (condition 1 of Procedure 3 is always false); in this way, we can
potentially save many dominance checks.



ProcedureRemoveDominated(L, Lnd, N)
Input : L: a set of complete outcomes;Lnd: a set of candidate Lex-optimal solutions;
N : a CP-Net
Output : the non-dominated solutions
repeat

chooseX ∈ L

L← L \ {X}
if ∄Y ∈ L ∪ Lnd such that(Y ≻ X) ∧ (X 6≻ Y ) then

Lnd ← Lnd ∪ {X}

until L 6= ∅ ;
return Lnd

5 Related work

Other formalisms have been defined to introduce a quantitative aspect in the classical
CP-net formalism. For example, utility CP-net (UCP-net) formalism [2] can be viewed
as an extension of the CP-net model, that allows one to represent quantitative utility in-
formation rather than simple preference orderings. However, in such a formalism only
acyclic CP-nets have been considered, while we consider also cyclic ones. Moreover,
their objective function is a GAI (Generalized Additive Independent) [1], that depends
on the CP-net, while our objective function is a generic function, and thus it is indepen-
dent from the CP-net.

Another formalism that adds to the CP-net formalism a quantitative aspect is the
Tradeoff CP-net (TCP-net) [7, 8]. In such a formalism relative importance statements
have been added to the qualitative and conditional preference representation, since it
is very natural to express the fact that one variable’s valueis more important than
another’s. Adding an explicit importance relation, CP-nets induce an importance re-
lation between nodes and their descendants only. This approach is different from our
approach, since, to handle the presence of cycles in the CP-nets, we do not introduce as
in [7, 8] an explicit importance relation among variables, but we take into account the
presence of an objective function.

6 Conclusions and future work

We have proposed a new formalism, the constrained FCP-net formalism, that extends
the classical constrained CP-net framework, by considering, besides hard constraints
and the qualitative aspect of the CP-net, also a quantitative aspect, given by an objective
function, that may relate some of the variables of the CP-net. Such a quantitative aspect
is used to break ties in case the CP-Net alone is unable to select one (or more) preferred
outcomes. We have defined a new notion of optimal solution, and we have given an
algorithm to find such a kind of optimal solutions also in the case of cyclic CP-nets.
Such an algorithm returns always at least one of these solutions, if there is at least a
feasible outcome in the CP-net. We plan to implement a tool tohandle FCP-nets and to
test it empirically over classes of these problems.
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