Imprecise Soft Constraint Problems

Mirco Gelaint, Maria Silvia Pint, Francesca RossiK. Brent Venablé, and Nic
Wilson?

! Dipartimento di Matematica Pura ed Applicata, Universityadova, Italy
E-mail: {mgelain,mpini,frossi,kvenab}é@ math.unipd.it
2 Cork Constraint Computation Centre, University CollegekCtreland,
Email: n.wilson@4c.ucc.ie

Abstract. We define interval-valued soft constraints, where usersasanciate
an interval of preference values, rather than a single yatueach instantiation
of the variables of the constraints. This allows us to modeka of uncertainty
and imprecision that is often found in real-life problemse YWen define several
notions of optimal solutions for such problems, providitgoaithms to find op-
timals and also to test whether a solution is optimal. Besitle usefulness of the
algorithms, that can be the base for an environment whereatson with uncer-
tainty in soft constraints problems, it is important to netthat most of the times
these algorithms require the solution of a soft constrainblem. This means
that it is possible to handle uncertainty in soft constsimithout increasing the
computational effort to reason with such problems. We afgmvsthat the same
results hold if users are allowed to use multiple disjoinieials rather than a
single one.

1 Introduction

Constraints [3, 8] are useful to model real-life problemsewlit is clear what should
be accepted and what should be forbidden. Soft constrdint} gxtend the constraint
notion by allowing several level of acceptance. This alltowsxpress preferences rather
than (and besides) strict requirements.

However, in soft constraints, each instantiation of théaldes of a constraint must
be associated to a precise preference value. Sometimewit Bssible for a user of a
soft constraint system to know exactly all these values.example, a user may have
a vague idea of the preference value. Also, a user may not kiegmMo reveal his
preference, for example for privacy reasons. In this papecensider these forms of
imprecision, and we provide a formalism and reasoning tmotendle them.

In particular, we extend soft constraints by allowing uderstate an interval of
preference values for each instantiation of the varialflagonstraint. This interval can
contain a single element (in this case we have usual softr@imis), or the whole range
of preference values (when there is complete ignorancetaheipreference value),
or it may contain more than one element but a strict subseteket of preference
values. In an elicitation procedure there will typically é@me degree of imprecision,
so attributing an interval rather than a precise preferelegeee can be a more reliable
model of the information elicited. In particular, lingustdescriptions of degrees of

preference (such as "quite high” or "low” or "undesirabletiay be more naturally
mapped to preference intervals, especially if the prefasrare being elicited from
different experts, since they may mean somewhat diffet@ngs by these terms. We
call such problemmterval-valued CSPs (or also IVCSPs).

Two examples of real world application domains where peafee intervals can
be useful or necessary are energy trading and network teaffifysis [10], where the
data information is usually incomplete or erroneous. Inrgnérading costs may be
imprecise since they may evolve due to market changes; inonkttraffic analysis
the overwhelming amount of information and measuremefitdifies force the use of
partial or imprecise information.

In an IVCSP, ascenario is a soft constraint problem (SCSP) obtained by selecting
a specific preference value from each interval. Also, giveyn solutions (that is, a
complete assignment of the variables) of an IVCSP, we caocass to it two prefer-
ence valued.(s) andU (s), obtained by combining all the lower bounds (resp., upper
bounds) in the intervals thatselects in the constraints.

Given an IVCSP, we consider several notions of optimal smhgt We first start
with interval-based notions. For example, we defoweer-optimal solutions, which are
complete variable assignmentsuch that there is no other assignmentvith L(s’)
better tharL(s). Such solutions are optimal in the worst scenario, thatithé scenario
obtained by selecting the lower bound in every interval.yTae therefore useful in a
pessimistic approach to uncertainty, since they outpertbe other assignments in the
worst scenario. We also define several other notions of gbspiutions, which may be
interesting in other approaches to uncertainty.

We then provide algorithms to find such optimal solutionsl also to test whether
a given solution is optimal. In most of the cases, finding etitg an optimal solution
amounts at solving a soft constraint problem. Thus, evenrifermalism significantly
extends soft constraints, and gives users much more powaodielling his knowledge
of the real world, in the end the work needed to find an optiralt®n (or to test it
is optimal) is not more than that needed to find an optimaltsniun a soft constraint
problem.

We then pass to more general notions of optimality, which aforefer to intervals
but to more general ideas that apply whenever we have seaerérios to consider. For
example, as in [5], we considaecessarily optimal solutions, which are optimal in all
scenarios, opossibly optimal solutions, which are optimal in at least one scenario. We
also consider solutions that guarantee a certain levelasepgnce in all (resp., some)
scenarios, and we aim to find those that guaranteee the higlek

By relating these general notions of optimal solutions ® $pecific ones based
on intervals, we are then able to provide algorithms to findest optimal solutions
according to these notions. Again, it is very important tdicethat solving a soft
constraint problem is almost always enough, thus confirtfiagit is possible to handle
uncertainty in soft constraints without increasing the patational effort to reason with
such problems.

The optimality notions considered in this paper would naiduce different results
if users were allowed to use multiple disjoint intervalsheatthan a single one. This

means that a level of precision greater than a single intelo@s not add any useful
information when looking for an optimal solution.

Previous approaches to uncertainty in soft constraintIprob assumed either a
complete knowledge of the preference value, or a completerance. In other words,
a preference value in a domain or a constraint was eitheeptes not [4—6, 9]. Then,
the solver was trying to find optimal solutions with the infation given by the user or
via some form of elicitation of additional preference valuldere instead we consider a
more general setting where the user may specify preferatesals. Also, we assume
that the user has given us all the information he has aboytrthldem, so we do not
resort to preference elicitation.

The most related work is the one presented in [5]. Howeveitev{d] considers the
same interval for all preference values, which is the emtirege of preferences, here
we consider a possibly different interval for each prefeeewalue. This makes most
of the results in [5] inapplicable to our general case. Muegpthe formalism in [5]
is unable to represent linguistic descriptions of degrdgweference (such as "quite
high” or "low” or "undesirable”) that may be mapped to preface intervals. Also, [5]
looks only for necessarily optimal solutions, and usesgreafce elicitation, if needed,
to find them. Here instead we consider many other notions tifnap solutions, with
the aim of returning interesting solutions without resagtto preference elicitation.

Other papers consider preference intervals, such as tHeiwfi#t]. However, these
lines of work focus on specific preference aggregation mashas (such as the Cho-
quet integral) and of modelling issues without addressime algorithmic questions
related to finding optimal solutions according to differdsk attitudes. We are instead
interested in providing efficient algorithms to find optinsalutions according to dif-
ferent risk attitudes (called pessimistic and optimistithe paper), besides the mod-
elling concerns. For this reason, we model imprecise probleithin an extension of
soft constraints that allows us to exploit the existing niaety to solve soft constraint
problems to obtain optimal solutions in the presence ofgresfce intervals.

2 Background: soft constraints

A soft constraint [1] is just a classical constraint [3] wlieach instantiation of its
variables has an associated value from a (totally or pbrimatiered) set. This set has
two operations, which makes it similar to a semiring, andaited a c-semiring. More
precisely, a c-semiring is a tuplel, +, x, 0, 1) such thatA is a set, called the carrier
of the c-semiring, an@, 1 € A; + is commutative, associative, idempoteis its unit
element, and is its absorbing elemenx is associative, commutative, distributes over
+, 1 is its unit element and is its absorbing element.

The relation<g over A such that: <g b iff a + b = b is a partial order, over which
+ and x are monotone, and wheteis the minimum and the maximum. Moreover,
(A, <g) is a lattice and, for alt,b € A, a + b = lub(a,b). If x is idempotent, then
(A, <g) is a distributive lattice and is its glb. Informally, the relatior< ¢ gives us a
way to preference values: when<g b, we say thab is better than a. Thus,0 is the
worst value and is the best one.

A c-semiring(4, +, x, 0, 1) is said to bédempotent iff the combination operatax
is idempotent, i.e., forevery € A, a x a = a, while it is said to bestrictly monotonic
iff the combination operatox is strictly monotonic, i.e., for every,b € A, ifa < b
then, for everye € A, a x ¢ < b x c. If a c-semiring is totally ordered, i.e., 5 is
a total order, then the- operation is just max with respect t0s. If the c-semiring is
also idempotent, ther is equal to min, and the c-semiring is of the kind used for yuzz
constraints (see below).

Given a c-semiring = (A, +, x, 0, 1), afinite setD (the domain of the variables),
and an ordered set of variabl€s a soft constraint is a paftle f, con) wherecon C V/
anddef : Dl°o"l — A. Therefore, a soft constraint specifies a set of variables (t
ones incon), and assigns to each tuple of valuedbbf these variables an element of
the c-semiring sefl, which will be seen as itsreference. A soft constraint satisfaction
problem (SCSP) is just a set of soft constraints over a sedridibles.

A classical CSP is just an SCSP where the chosen c-semirifygss = ({ false,
true}, V, A, false, true). Fuzzy CSPs [7] are instead modeled by choosing the idem-
potent c-semirinSrcsp = ([0, 1], maz, min, 0, 1): we want to maximize the min-
imum preference. For weighted CSPs, the strictly monotofiemiring isSywcsp =
(RT, min, +, +00,0): preferences are interpreted as costs ffm+oo, and we want
to minimize the sum of costs.

Given an assignment to all the variables of an SCSP, its preference, written
pref (P, s), is obtained by combining the preferences associated by @atstraint to
the subtuples of referring to the variables of the constraipte f (P, s) = I1(;gef,con)ec
def(s|con), WherellI refers to thex operation of the c-semiring ard..., is the pro-
jection of tuples on the variables inon. For example, in fuzzy CSPs, the preference of
a complete assignment is the minimum preference given byahstraints. In weighted
constraints, it is instead the sum of the costs given by tinstcaints. An optimal solu-
tion of an SCSFP is then a complete assignmerguch that there is no other complete
assignment” with pref(P, s) <g pref(P,s").

3 Interval-valued constraint problems

Soft constraint problems require users to specify a prat&realue for each tuple in
each constraint. Sometimes this is not reasonable, sinseramay have a vague idea
of what preferences to associate to some tuples. In [5] adgéseralization allowed
users to specify either a fixed preference (as in usual sofitcaints) or the complete
[0,1] interval. Thus an assumption of complete ignorance was mheée the user was
not able to specify a fixed preference. Here we generalizbduby allowing users to
state any interval over the preference set.

Given a set of variableg with finite domainD, and a totally-ordered c-semiring
S = (A, +, x,0,1), aninterval-valued constraint s a pair(int, con) wherecon C V/
is the scope of the constraint and ifitt*°”! — A x A specifies an interval ovet by
giving its lower and upper bound.#it(x) = (a,b), it mustbea <g b. In the following
we will denote withi(int(x)) (resp.,u(int(z))) the first (resp., second) component
of int(x), representing the lower and the upper bound of the preferignerval. An

interval-valued constraint problem (IVCSP) is a 4-tuple(V, D, C, S), whereC'is a
set of interval-valued constraints ovgidefined on the variables ¥ with domainD.
Figure 1 shows an IVCSP defined over the fuzzy c-semiriff, 1], max, min, 0, 1),
that contains three variablé§,, X,, and X3, with domain{a, b}, and five constraints:
a unary constraint on each variable, and two binary coméran(z, x2) and(zz, x3).
The figure shows the definition of each constraint, givingrdarival for each variable

assignment.
,a[0.8, 1.0] ,a[0.8, 0.9]
Q?,Z [0.4, o.sw :,2 [0.8, 1.0]

a[1.0,1.0] bal0809] a[0.6 095 bal04,08 a[0.9,0.9]
b[0.7,08 bb[0.0,03] b[0.607] bb[0.1,02] b[0.5,0.9]

Fig.1.An IVCSP.

In an IVCSP, a complete assignment of values to all the visatan be associ-
ated to an interval as well, by combining all the intervalghaf relevant tuples in the
constraints.

Given an IVCSPP = (V, D, C, S) and an assignmeatto all its variables oveD
thepreference intervalof sin Pis[L(s), U(s)], whereL(s) = H<int con>eccl(int(s|con))
andU(s) = Hc<int,con>ccu(int(s)con)), @ndII is the combination operator of the c-
semirings.

Figure 2 shows all the complete assignments of the IVCSPdurEil, together
with their preference interval. The details of the compataof the preference intervals
are shown foi;.

L0y T T S1=(a,a,a)
0.9------ oo 53 [S2=(a,a,b)
08---mmfomooopooo- 3 (it Gl S3=(a,b,a)
[E/niiite Ikl Ak ey St e Sa=(b,a,a)
O el el i el S5=(a,b,b)

[T GRI ERR SR
S6=(b,a,b)

08 oo .
57 S7=(b,b,a)

0.3 = - o e g
$5 s8 S8=(b,b,b)

0.2 = mmm e e

01 oo) G I ,,,,,,

o3 Y SIS SR

For example L(S1)=min(1, 0.8, 0.6, 0.8, 0.9)=0.6 and U(S1)=min(1, 1, 0.95, 0.9, 0.9)=0.9

Fig. 2. Solutions of the IVCSP shown in Figure 1.

Once we have an IVCSP, it is useful to consider specific seenarising from
choosing a preference value from each interval.

Given an IVCSPP, ascenarioof P is an SCSPP’ obtained fromP as follows:
given any constraint = (int, con) of P, we insertinP’ the constraint’ = (def, con),
wheredef(t) € [I(int(t)), u(int(t))] for every tuplet € D!°"l. We will denote with
S(P) the set of all possible scenarios Bf Thebest scenario(BS(P)) (resp.,worst
scenario(W S(P))) of an IVCSP is obtained by replacing every interval withupper
(resp., lower) bound.

The preference interval of a complete assignmesitan [IVCSPP contains all the
preference values associatedstby the SCSPs iy (P). The inverse does not neces-
sarily hold. That is, there may be values in the preferentarval of s which cannot
be obtained in any scenario. However, if the c-semiring ésrigotent, then there is a
one-to-one correspondence. In the general case, we cawvéiogreve that, if the pref-
erence interval of is [a, b], there exist at least a scenario wheteas preference and
there exist at least a scenario whelteas preference

4 Interval-based optimality notions

Given an IVCSP, several notions of optimality can be givénc&an IVCSP presents a
form of uncertainty, specified by the intervals, there areesd ways to approach such
an uncertainty. For example, one could be pessimistic amigiic about the possible
scenarios.

More precisely, given an IVCSP = (V, D, C, S), an assignmentto the variables
in V is said:

— lower-optimal iff, for every other complete assignmetit L(s) > L(s').

Thus, a lower-optimal assignment is better than or equadl tdleer assignments in
the worst scenario. Therefore, lower-optimal assignmargsiseful in pessimistic
approaches to uncertainty, since they outperform the atfsgnments in the worst
case. We denote withO(P) the set of the lower optimal assignmentsiafThe
IVCSP P of Figure 1 had O(P) = {s1, 54}.

— upper-optimal iff, for every other complete assignenwitU(s) > U(s').

Thus, an upper-optimal assignment is better than or equal taher assignments
in the best scenario. Therefore, it is useful for optimiafiproaches to uncertainty.
We denote witlU O(P) the set of the upper optimal assignment$ofThe IVCSP
P of Figure 1 had/O(P) = {s1, s2}.

— interval-optimal iff, for every other complete assignmesit L(s) > L(s’) or

U(s) > U(s").
In words, an interval-optimal assignment is an assignméit @ther a higher or
equal lower bound, or a higher or equal upper bound, w.t.other assignments.
This means that it must be better than, or equal to, all otegigaments in either
the worst or the best scenario. We denote WitH P) the set of the interval optimal
assignments oP. The IVCSPP of Figure 1 had O(P) = {s1, $2, S4}.

— lower (resp., upper) lexicographically-optimaliff, for every other assignmesst,
eitherL(s) > L(s') (resp.,U(s) > U(s')), or L(s) = L(s") andU(s) > U(s’)
(resp..U(s) = U(s") andL(s) > L(s")).

Thus, lower (resp., upper) lexicographically-optimaligsments are the best as-
signments for a pessimistic (resp., optimistic) approadtere ties are broken op-
timistically (resp., pessimistically). We denote wittL O (P) (resp.,U LO(P)) the
set of the lower (resp., upper) lexicographically-optiraasignments of. The
IVCSP P of Figure 1 had.LO(P) = ULO(P) = {s1}.

— weakly-interval-dominant iff, for every other assignment, L(s) > L(s’) and
U(s) > U(s).

Thus, weakly-interval-dominant assignments are betger tr equal to all others in
both the worst and the best scenario. We denoteliftD (P) the set of the weakly
interval dominant assignments 8f The IVCSPP of Figure 1 hadVID(P) =
{81}.

— interval-dominant iff, for every other assignment, L(s) > U(s’).
Thus, interval-dominant assignments are better than oalegquall others in all
scenarios. They are therefore very robust w.r.t. uncegtaive denote withh D(P)
the set of the interval dominant assignmentg?ofThe IVCSPP of Figure 1 has
that/D(P) = 0.

Given an IVCSP P, we have that:

— (UO(P) ULO(P)) C IO(P);

— UO(P)NLO(P) = WID(P);

— ID(P) C WID(P);

— LLO(P) C LO(P) andULO(P) C UO(P);

— ID(P) C (LLO(P)NULO(P)) = WID(P).

— IO(P),LO(P),UO(P), LLO(P),andU LO(P) are never empty, whild" I D(P)
and/D(P) may be empty.

— If ID(P) # 0, eitherID(P) contains a single solution, or several solutions all
with the lower bound equal to the upper bound and all equdleésame value.

5 Finding and testing optimal assignments

Lower and upper optimal assignments. To find a lower-optimal solution, it is enough
to take the worst scenario and find an optimal solution. Ih fatower-optimal solution
is a complete assignment whose lower bound is greater thagual to every other
complete assignment, and thus it is a complete assignmaristbetter than or equal to
all other assignments in the scenario obtained by replamsiagy interval with its lower
bound, i.e., the worst scenario. Similarly, to find an uppetimal solution, we can take
the best scenario and find an optimal solution. Thus findisgasents inLO(P) or
UO(P) is as complex as solving an SCSP.

To test if an assignmentin LO(P) or in UO(P), it is enough to solve the SCSP
representing the worst or the best scenario and to chec& pgrigéference of the optimal
solution coincides wittL(s) or U(s).

Interval optimal assignments. To find an interval optimal assignment, it is sufficient to
find a lower optimal solution or an upper optimal solutiomcgi(UO(P) U LO(P)) C
IO(P), and bothUO(P) and LO(P) cannot be empty. Thus finding assignments of
IO(P) is as complex as solving an SCSP.

To test if an assignmentis in IO(P), if the combination operator is idempotent,
we can find the solutions of the CSP obtained by putting tagatto CSPs obtained as
follows: one is obtained by considering the worst scenamiblay allowing only tuples
with preference greater thal(s), the other one is obtained by considering the best
scenario and by allowing only tuples with preference gretit@nU (s). Then,s is in
IO(P) if and only if this CSP has no solution.

If the combination operator is not idempotent, we can cardside SCSP with the
same variables, domains, and constraint topologk ,aand defined on the c-semiring
((Ax A),(+,+),(x,x),(0,0),(1,1)), where+’ induces the strict ordering related
to +. Then,s is optimal in this SCSP if and only if it is interval-optimal.

Lower and upper lexicographically optimal assignments. To find the lower-lexicographically
optimal solutions of an IVCSRP defined on c-semiring, let us consider the SCSP
with the same variables, domains, and constraint topolagy,aand with c-semiring
(Ax A,lex, (%, x),(0,0),(1,1)), wherelex induces the ordering,.., defined as fol-
lows: for each(a,da’), (b,0") € (A x A), (a,a’) *iex (b,0) iff @ > bora = band
a’ >g b'. In words, the first component is the most important, and éo®isd one is
used to break ties. To find the upper-lexicographicallyraptisolutions, it is sufficient
to consider the same SCSP as defined above except for théngredrich considers
the second component as the most important. Thus, findingressnts inLLO(P)
andULO(P) is as complex as solving an SCSP.

To test if a solutions is in LLO(P), it is enough to find the preference pair, say
(p1,p2), of the optimal solution of the SCSP defined above and to cifi¢éKs), U(s)) =
(p1,p2). Similarly to test if a solution is iV LO(P).

Weakly interval dominant solutions. We know thatWID(P) = LO(P) N UO(P).
Thus a straightforward, but costly, way to find a solutioiti D(P) is to compute all
the optimal solutions of the best and the worst scenario lagd to check if there is a
solution in the intersection of the two sets. However, if theemiring is idempotent,
this is not necessary. In fact, it is sufficient to do the failog:

— to find the optimal preference levels of the best and worstade, sayl,,: and
uopt;

— to consider the CSP obtained from the worst (resp., bestjasiceby allowing in
the constraints only tuples with preference greater thauoal tal,,: (resp. wopt);
we will denote such two CSPs by; and P;

— to solve the CSP obtained obtained by putting together thetcaints inP; and in
Ps.

In this way, finding a weakly interval dominant solution amisito solving two SCSPs
and one CSP.

To test whether a solutiosis in WID(P), itis sufficient to find the preference of
the optimal solution of the worst and best scenarios,/sayandu,,, and to check if
L(s) = lopt @andU (s) = uopt-

Interval dominant assignments. To find an assignment inD(P), if the c-semiring is
idempotent, we can

— compute the optimal preference of the worst scenariolsay
— consider the CSP obtained from the best scenario by allowirige constraints
only tuples with preference greater thigp;

— check the number of solutions of this CSP: if it has no sofutiben/D(P) =
LO(P), thus it is enough to find an optimal solution Bf S(P); if it has one
solution, says, and L(s) = I, then this solution is the only one ihD(P);
otherwisel D(P) = 0.

Thus, we need to solve an SCSP and then one CSP.

To test if an assignmeatis in I D(P), we can consider two casesIfs) # U(s),
then, if the c-semiring is idempotent, we can take the bestaio and consider the
CSP obtained by allowing only tuples with preference grethten Z.(s). This CSP has
only s as solution if and only i& is in ID(P). If insteadL(s) = U(s), we can check if
s is an optimal solution of the best scenario.

6 Necessary and possible optimality

We will now consider more general notions of optimality, tthae applicable to any
setting where the lack of precision gives rise to severabiptes scenarios. We will
then show how to exploit the interval-based notions of optity introduced above to
characterize these general notions.

Necessarily optimal solutions

Givenan IVCSPP = (V, D, C, S), an assignmentto the variables iV is necessarily
optimal if it optimal in all scenarios. Given an IVCSP, the set of its necessarily
optimal solution will be denoted by O(P).

Necessarily optimal solutions are very attractive, sihey @are very robust: they are
optimal independently of the uncertainty of the problemfdstunately, the seNO(P)
may be empty. More precisely, given an IVCEPwe have that:

- ID(P) C NO(P) C WID(P);
— if ID(P) # 0, thenID(P) = NO(P).

Itis easy to see that an interval-dominant solution is a sssdy optimal solution.
Moreover, if ID(P) #), then the converse holds as well. In fact, every solution not
in ID(P) has at most preference equal to the lower bound of thodiP) in all
scenarios. If insteadD(P) = (), then it may beVO(P) # . In our running example
of Figure 1, we haved D(P) = NO(P) = (). However, consider the IVCSP over
the fuzzy c-semiring with three variableé§,, X5, and X3, with domain{a, b} and
with two constraints:;; ande, such thate; = (intq, conq) with cony = {X1, Xo},
int1(a,a) = (0.4,0.7), and (0, 0) otherwise, whilecy = (ints, cons) with con; =
{X2, X3}, inta(a,a) = (0.8,1.0), inta(a,b) = (0.9,1.0), and(0,0) otherwise. We
havel D(P) = () while NO(P) = {(a,a,a), (a,a,b)}.

Also, NO(P) C LO(P), since, ifs is not lower-optimal, then in some (for sure
the worst) scenario it is not optimal. Similarly, a necesgaptimal solution must
be optimal also in the best scenario and thi®(P) C UO(P). This allows us to
conclude thalVO(P) C LO(P) N UO(P) = WID(P).

To find a necessarily optimal solution, we can start by tryimdind an interval-
dominant assignment, since,liD(P) # (), thenID(P) = NO(P). To this purpose,
we can use the procedure described in Section 5. If insté®d®) = 0, then, since
NO(P) C WID(P), we may check ifW ID(P) is empty, since in such a case also
NO(P) is empty. If the previous steps do not allow us to concludecare compute
setWI1D(P) and, for each solution in such a set, to test if it is necelysaptimal (see
below).

To test if a solutiors is nhecessarily optimal, we can check ifs an optimal solution
of an SCSP with the same c-semiring, variables, domainscanstraint topology as
P, where we replace the interval of every tuple associateld switith its lower bound
and the interval of all the other tuples with their upper baulf s is not an optimal
solution of this SCSP, thesn is not necessarily optimal. If the c-semiring is strictly
monotonic, this is a necessary and sufficient condition. éi@s; this is not so when the
combination operator is idempotent.

Guaranteeing a level of preference in all scenarios

An assignmens is necessarily of at least preference if, for all scenarios, its pref-
erence is at least. The set of all solutions of an IVCSP with this feature will be
denoted byNec(P,). In our running example, if we consider = 0.5, we have
Nec(P,0.5) = {s1, 52, S4, 6}

If we are happy with a preference level @f elements inVec(P, o) are what we
want, since they guarantee such a preference level indeptpaf the uncertainty of
the problem.

We can observe thate Nec(P, «) if and only if « < L(s). Thus, testing whether
a solutions is in Nec(P, o) amounts at checking this condition, which can be done in
linear time.

If the c-semiring is idempotent, the elements\déc(P, o) are the solutions of the
CSP obtained from¥ S(P) by allowing only the tuples with preference at least
Therefore, to find a solution iVec(P, «), it is sufficient to solve a CSP.

If the combination operator is not idempotent, we can sdieavtorst scenario and
compute the preference level of an optimal solution,isgy Then,s € Nec(P, «) if
and only ifa < l,y;. Thus, in the general case, we must solve an SCSP.

Let o, be the maximumy such that there exists a solution Mec(P,). In our
running example, we have, = 0.6, andNec(P,0.6) = {s1, s4}.

It is possible to show that the elementshtec(P, a,) are the solutions oLO(P).
This implies also thalVO(P) C Nec(P, o). Thus, to find a solution itNec(P, o,),
it is sufficient to find an optimal solution of the worst scenaf P.

Possibly Optimal Solutions
An assignment is possibly optimalif it optimal in some scenario. The set of possibly

optimal solutions ofP will be denoted byPO(P). In our running example, we have
PO(P) = {s1, 52, 83, 54, 56 }

To find a solution inPO(P), we can observe thdtO(P), UO(P), LLO(P), or
ULO(P) are all contained ilPO(P), and are never empty. Thus we may find an ele-
ment in any of such sets.

To test if a solutions is in PO(P), if the combination operator is strictly mono-
tonic, s is in PO(P) if and only if s wins in the scenario where all its unknowns are set
to the upper bound and the other unknowns to the lower botimstead the combi-
nation operator is idempotent, we have to consider the veoestario and compute the
preference level of its optimal solutions, sgy;. Thens is in PO(P) if and only if s
wins in the worst scenario or in the scenario obtained by thiestone by raising all the
unknowns ofs to the level,, (if this is not possibles is not in PO(P)). Thus, finding
or testing possible optimality requires solving an SCSP.

Guaranteeing a level of preference in at least one scenario

An assignment is possibly of at least preferencey if there exists a scenario such that
the preference of in that scenario is at least The set of all solutions of an IVCSP
P with this feature will be denoted b¥os(P, «). In our running example, if we take
a = 0.3, we havePos(P, 0.3) = {s1, s2, 3, S4, S, S7 }

An assignmens is in Pos(P, «) if and only if < U(s). Thus, to test whether a
solution is inPos(P, a), it is enough to check this condition, that takes linear time

To find an assignment ifvos(P, «v), if the c-semiring is idempotent, we can con-
sider the CSP obtained from the best scenario by allowing vl tuples with prefer-
ence at least. Therefore, it is sufficient to solve a particular CSP.

Let o* be the maximuna such thatPos(P,) is not empty. In our running exam-
ple, we havex* = 0.9 andPos(P,0.9) = {s1, s2}.

It is possible to show thaPos(P, a*) = UO(P). ThusNO(P) C Pos(P,a*) C
PO(P). Thus, to find a solution iPos(P, a*), it is sufficient to find an optimal solu-
tion of the best scenario @, and thus to solve an SCSP.

7 Necessary and possible dominance

Besides finding or testing for optimality, it may sometimesuseful to know if a solu-
tion dominates another one.

Given a scenari®, we say that a solution strictly dominates (resp., dominates) a
solutions’ if and only if pref(S,s) > pref(S,s’) (resp.,pref(S,s) > pref(S,s’))
in the ordering of the considered c-semiring. Also, a soluti possibly dominatesa
solution s’ if and only if there is at least one scenario wherstrictly dominatess’.
Instead, a solutiom necessarily dominates solutions’ if and only if, in all scenarios,

s dominates’, and there is at least one scenario whesgrictly dominates’.

In our running examples; necessarily dominates. In the best scenarie, strictly
dominateds,, while in the worst scenarie, strictly dominatess,. Thusss possibly
dominatess,, and viceversa.

The maximal elements in the partial ordering given by thesssary dominance are
the possibly optimal solutions. Also, the "possibly dom@sd ordering may have cycles
(see the cycle between ands, in our example), thus it may have no undominated

elements. However, if it has undominated elements, theyreraecessarily optimal
solutions.

To test if s possibly dominates’ we can set each interval associated withut not
with s’ to its upper bound; lek be the combination of these values. Then we set each
interval associated witk’ but not with s to its lower bound; lej: be the combination
of these values. Finally, we compare the preference valuesnds’, by testing if the
condition\ x uy X --- X up > pu X uy X --- X uy holds for any selections of values
u1, ..., u in the intervals of botls ands’.

If we have strict monotonicity, testing this condition améaito testing if\ > p. If
we have idempotence, we can replace eactvith its upper bound, and then test the
condition.

To test if s necessarily dominates, we first check ifs’ possibly dominates. If so,
we can conclude negatively. Otherwise, we checkpbssibly dominates’. If so, we
conclude positively, otherwise negatively.

8 Final considerations and future work

Given an IVCSPP, the solutions in NO(P) are certainly the most attractivg;esthey
are the best one in every scenario. However, if there is ne@ean pass to consider the
solutions inNec(P, ai.): they may be suboptimal, but they guarantee a preferenek lev
a, inall scenarios. It is too low, and we feel optimistic, we can consider the sohsi
in Pos(P,a*): they guarantee it is possible to reach a higher level ofgpegifce, but
not in all scenarios.

If we allowed users to associate to each partial assignmehngiconstraints not just
a single interval, but a disjoint set of intervals, this wbvkéduce the uncertainty of the
problem. However, all the optimality notions would give $ame set of optimals. The
main reason for this result is the assumption of working witbnotonic combination
operators. This means that a level of precision greater éhsingle interval does not
add any useful information when looking for an optimal simint

This paper considers only totally ordered preferencesSW€can be defined also
for a partially ordered setting. We plan to extend the anslgkthe optimality notions
also to this more general setting.

We plan also to test empirically our algorithms over classeB/SCPs over the
fuzzy c-semiring. We are currently performing these experits and we plan to add
empirical results in the camera-ready version of the paper.

Acknowledgements

This work has been partially supported by Italian MIUR PRIjpct “Constraints and
Preferences” (r2005015491).

References

1. S. Bistarelli, U. Montanari, and F. Rossi. Semiring-lthsenstraint solving and optimiza-
tion. JACM, 44(2):201-236, mar 1997.

10.

M. Ceberio and F. Modave. An interval-valued, 2-addittequet integral for multi-criteria
decision making. IiPMU’ 04, 2004.

. R. DechterConstraint processing. Morgan Kaufmann, 2003.
. B. Faltings and S. Macho-Gonzalez. Open constraint progring. Al Journal, 161(1-

2):181-208, 2005.

. M. Gelain, M. S. Pini, F. Rossi, and K. B. Venable. Dealinthvincomplete preferences in

soft constraint problems. IRroc. CP’07, volume 4741 o NCS pages 286-300. Springer,
2007.

. S. Macho Gonzélez, C. Ansbétegui, and P. Meseguer. OretaBon among open, interac-

tive and dynamic CSP. lithe Fifth Workshop on Modelling and Solving Problems with
Constraints (IJCAI’ 05), 2005.

. P.Meseguer, F. Rossi, and T. Schiex. Soft constraints. Rossi, P Van Beek, and T. Walsh,

editors,Handbook of Constraint Programming. Elsevier, 2006.

. F.Rossi, P Van Beek, and T. Walsh, editétandbook of Constraint Programming. Elsevier,

2006.

. N. Wilson, D. Grimes, and E. C. Freuder. A cost-based madeklgorithms for interleaving

solving and elicitation of csps. IRroc. CP’07, volume 4741 ofLNCS pages 666—680.
Springer, 2007.

N. Yorke-Smith and C. Gervet. Certainty closure: A framoek for reliable constraint rea-
soning with uncertainty. I€P’ 03, volume 2833 oL NCS, pages 769-783. Springer, 2003.

