
Imprecise Soft Constraint Problems

Mirco Gelain1, Maria Silvia Pini1, Francesca Rossi1, K. Brent Venable1, and Nic
Wilson2

1 Dipartimento di Matematica Pura ed Applicata, University of Padova, Italy
E-mail:{mgelain,mpini,frossi,kvenable}@math.unipd.it

2 Cork Constraint Computation Centre, University College Cork, Ireland,
Email: n.wilson@4c.ucc.ie

Abstract. We define interval-valued soft constraints, where users canassociate
an interval of preference values, rather than a single value, to each instantiation
of the variables of the constraints. This allows us to model aform of uncertainty
and imprecision that is often found in real-life problems. We then define several
notions of optimal solutions for such problems, providing algorithms to find op-
timals and also to test whether a solution is optimal. Besides the usefulness of the
algorithms, that can be the base for an environment where to reason with uncer-
tainty in soft constraints problems, it is important to notice that most of the times
these algorithms require the solution of a soft constraint problem. This means
that it is possible to handle uncertainty in soft constraints without increasing the
computational effort to reason with such problems. We also show that the same
results hold if users are allowed to use multiple disjoint intervals rather than a
single one.

1 Introduction

Constraints [3, 8] are useful to model real-life problems when it is clear what should
be accepted and what should be forbidden. Soft constraints [1, 7] extend the constraint
notion by allowing several level of acceptance. This allowsto express preferences rather
than (and besides) strict requirements.

However, in soft constraints, each instantiation of the variables of a constraint must
be associated to a precise preference value. Sometimes it isnot possible for a user of a
soft constraint system to know exactly all these values. Forexample, a user may have
a vague idea of the preference value. Also, a user may not be willing to reveal his
preference, for example for privacy reasons. In this paper we consider these forms of
imprecision, and we provide a formalism and reasoning toolsto handle them.

In particular, we extend soft constraints by allowing usersto state an interval of
preference values for each instantiation of the variables of a constraint. This interval can
contain a single element (in this case we have usual soft constraints), or the whole range
of preference values (when there is complete ignorance about the preference value),
or it may contain more than one element but a strict subset of the set of preference
values. In an elicitation procedure there will typically besome degree of imprecision,
so attributing an interval rather than a precise preferencedegree can be a more reliable
model of the information elicited. In particular, linguistic descriptions of degrees of

preference (such as ”quite high” or ”low” or ”undesirable”)may be more naturally
mapped to preference intervals, especially if the preferences are being elicited from
different experts, since they may mean somewhat different things by these terms. We
call such problemsinterval-valued CSPs (or also IVCSPs).

Two examples of real world application domains where preference intervals can
be useful or necessary are energy trading and network trafficanalysis [10], where the
data information is usually incomplete or erroneous. In energy trading costs may be
imprecise since they may evolve due to market changes; in network traffic analysis
the overwhelming amount of information and measurement difficulties force the use of
partial or imprecise information.

In an IVCSP, ascenario is a soft constraint problem (SCSP) obtained by selecting
a specific preference value from each interval. Also, given any solutions (that is, a
complete assignment of the variables) of an IVCSP, we can associate to it two prefer-
ence valuesL(s) andU(s), obtained by combining all the lower bounds (resp., upper
bounds) in the intervals thats selects in the constraints.

Given an IVCSP, we consider several notions of optimal solutions. We first start
with interval-based notions. For example, we definelower-optimal solutions, which are
complete variable assignmentss such that there is no other assignments′ with L(s′)
better thanL(s). Such solutions are optimal in the worst scenario, that is, in the scenario
obtained by selecting the lower bound in every interval. They are therefore useful in a
pessimistic approach to uncertainty, since they outperform the other assignments in the
worst scenario. We also define several other notions of optimal solutions, which may be
interesting in other approaches to uncertainty.

We then provide algorithms to find such optimal solutions, and also to test whether
a given solution is optimal. In most of the cases, finding or testing an optimal solution
amounts at solving a soft constraint problem. Thus, even if our formalism significantly
extends soft constraints, and gives users much more power inmodelling his knowledge
of the real world, in the end the work needed to find an optimal solution (or to test it
is optimal) is not more than that needed to find an optimal solution in a soft constraint
problem.

We then pass to more general notions of optimality, which do not refer to intervals
but to more general ideas that apply whenever we have severalscenarios to consider. For
example, as in [5], we considernecessarily optimal solutions, which are optimal in all
scenarios, orpossibly optimal solutions, which are optimal in at least one scenario. We
also consider solutions that guarantee a certain level of preference in all (resp., some)
scenarios, and we aim to find those that guaranteee the highest level.

By relating these general notions of optimal solutions to the specific ones based
on intervals, we are then able to provide algorithms to find ortest optimal solutions
according to these notions. Again, it is very important to notice that solving a soft
constraint problem is almost always enough, thus confirmingthat it is possible to handle
uncertainty in soft constraints without increasing the computational effort to reason with
such problems.

The optimality notions considered in this paper would not produce different results
if users were allowed to use multiple disjoint intervals rather than a single one. This

means that a level of precision greater than a single interval does not add any useful
information when looking for an optimal solution.

Previous approaches to uncertainty in soft constraint problems assumed either a
complete knowledge of the preference value, or a complete ignorance. In other words,
a preference value in a domain or a constraint was either present or not [4–6,9]. Then,
the solver was trying to find optimal solutions with the information given by the user or
via some form of elicitation of additional preference values. Here instead we consider a
more general setting where the user may specify preference intervals. Also, we assume
that the user has given us all the information he has about theproblem, so we do not
resort to preference elicitation.

The most related work is the one presented in [5]. However, while [5] considers the
same interval for all preference values, which is the entirerange of preferences, here
we consider a possibly different interval for each preference value. This makes most
of the results in [5] inapplicable to our general case. Moreover, the formalism in [5]
is unable to represent linguistic descriptions of degrees of preference (such as ”quite
high” or ”low” or ”undesirable”) that may be mapped to preference intervals. Also, [5]
looks only for necessarily optimal solutions, and uses preference elicitation, if needed,
to find them. Here instead we consider many other notions of optimal solutions, with
the aim of returning interesting solutions without resorting to preference elicitation.

Other papers consider preference intervals, such as the work in [2]. However, these
lines of work focus on specific preference aggregation mechanisms (such as the Cho-
quet integral) and of modelling issues without addressing the algorithmic questions
related to finding optimal solutions according to differentrisk attitudes. We are instead
interested in providing efficient algorithms to find optimalsolutions according to dif-
ferent risk attitudes (called pessimistic and optimistic in the paper), besides the mod-
elling concerns. For this reason, we model imprecise problems within an extension of
soft constraints that allows us to exploit the existing machinery to solve soft constraint
problems to obtain optimal solutions in the presence of preference intervals.

2 Background: soft constraints

A soft constraint [1] is just a classical constraint [3] where each instantiation of its
variables has an associated value from a (totally or partially ordered) set. This set has
two operations, which makes it similar to a semiring, and is called a c-semiring. More
precisely, a c-semiring is a tuple〈A, +,×,0,1〉 such that:A is a set, called the carrier
of the c-semiring, and0,1 ∈ A; + is commutative, associative, idempotent,0 is its unit
element, and1 is its absorbing element;× is associative, commutative, distributes over
+, 1 is its unit element and0 is its absorbing element.

The relation≤S over A such thata ≤S b iff a + b = b is a partial order, over which
+ and× are monotone, and where0 is the minimum and1 the maximum. Moreover,
〈A,≤S〉 is a lattice and, for alla, b ∈ A, a + b = lub(a, b). If × is idempotent, then
〈A,≤S〉 is a distributive lattice and× is its glb. Informally, the relation≤S gives us a
way to preference values: whena ≤S b, we say thatb is better than a. Thus,0 is the
worst value and1 is the best one.

A c-semiring〈A, +,×,0,1〉 is said to beidempotent iff the combination operator×
is idempotent, i.e., for everya ∈ A, a × a = a, while it is said to bestrictly monotonic
iff the combination operator× is strictly monotonic, i.e., for everya, b ∈ A, if a < b

then, for everyc ∈ A, a × c < b × c. If a c-semiring is totally ordered, i.e., if≤S is
a total order, then the+ operation is just max with respect to≤S . If the c-semiring is
also idempotent, then× is equal to min, and the c-semiring is of the kind used for fuzzy
constraints (see below).

Given a c-semiringS = 〈A, +,×,0,1〉, a finite setD (the domain of the variables),
and an ordered set of variablesV , a soft constraint is a pair〈def, con〉 wherecon ⊆ V

anddef : D|con| → A. Therefore, a soft constraint specifies a set of variables (the
ones incon), and assigns to each tuple of values ofD of these variables an element of
the c-semiring setA, which will be seen as itspreference. A soft constraint satisfaction
problem (SCSP) is just a set of soft constraints over a set of variables.

A classical CSP is just an SCSP where the chosen c-semiring isSCSP = 〈{false,

true}, ∨,∧, false, true〉. Fuzzy CSPs [7] are instead modeled by choosing the idem-
potent c-semiringSFCSP = 〈[0, 1], max, min, 0, 1〉: we want to maximize the min-
imum preference. For weighted CSPs, the strictly monotonicc-semiring isSWCSP =
〈ℜ+, min, +, +∞, 0〉: preferences are interpreted as costs from0 to +∞, and we want
to minimize the sum of costs.

Given an assignments to all the variables of an SCSPP , its preference, written
pref(P, s), is obtained by combining the preferences associated by each constraint to
the subtuples ofs referring to the variables of the constraint:pref(P, s) = Π〈idef,con〉∈C

def(s↓con), whereΠ refers to the× operation of the c-semiring ands↓con is the pro-
jection of tuples on the variables incon. For example, in fuzzy CSPs, the preference of
a complete assignment is the minimum preference given by theconstraints. In weighted
constraints, it is instead the sum of the costs given by the constraints. An optimal solu-
tion of an SCSPP is then a complete assignments such that there is no other complete
assignments′′ with pref(P, s) <S pref(P, s′′).

3 Interval-valued constraint problems

Soft constraint problems require users to specify a preference value for each tuple in
each constraint. Sometimes this is not reasonable, since a user may have a vague idea
of what preferences to associate to some tuples. In [5] a firstgeneralization allowed
users to specify either a fixed preference (as in usual soft constraints) or the complete
[0,1] interval. Thus an assumption of complete ignorance was madewhen the user was
not able to specify a fixed preference. Here we generalize further by allowing users to
state any interval over the preference set.

Given a set of variablesV with finite domainD, and a totally-ordered c-semiring
S = 〈A, +,×,0,1〉, aninterval-valued constraint is a pair〈int, con〉 wherecon ⊆ V

is the scope of the constraint and int:D|con| −→ A×A specifies an interval overA by
giving its lower and upper bound. Ifint(x) = (a, b), it must bea ≤S b. In the following
we will denote withl(int(x)) (resp.,u(int(x))) the first (resp., second) component
of int(x), representing the lower and the upper bound of the preference interval. An

interval-valued constraint problem (IVCSP) is a 4-tuple〈V, D, C, S〉, whereC is a
set of interval-valued constraints overS defined on the variables inV with domainD.

Figure 1 shows an IVCSPP defined over the fuzzy c-semiring〈[0, 1], max, min, 0, 1〉,
that contains three variablesX1, X2, andX3, with domain{a, b}, and five constraints:
a unary constraint on each variable, and two binary constraints on(x1, x2) and(x2, x3).
The figure shows the definition of each constraint, giving an interval for each variable
assignment.

Fig. 1. An IVCSP.

In an IVCSP, a complete assignment of values to all the variables can be associ-
ated to an interval as well, by combining all the intervals ofthe relevant tuples in the
constraints.

Given an IVCSPP = 〈V, D, C, S〉 and an assignments to all its variables overD
thepreference intervalof s in P is [L(s), U(s)], whereL(s) = Π<int,con>∈Cl(int(s↓con))
andU(s) = Π<int,con>∈Cu(int(s↓con)), andΠ is the combination operator of the c-
semiringS.

Figure 2 shows all the complete assignments of the IVCSP in Figure 1, together
with their preference interval. The details of the computation of the preference intervals
are shown fors1.

Fig. 2. Solutions of the IVCSP shown in Figure 1.

Once we have an IVCSP, it is useful to consider specific scenarios arising from
choosing a preference value from each interval.

Given an IVCSPP , a scenarioof P is an SCSPP ′ obtained fromP as follows:
given any constraintc = 〈int, con〉 of P , we insert inP ′ the constraintc′ = 〈def, con〉,
wheredef(t) ∈ [l(int(t)), u(int(t))] for every tuplet ∈ D|con|. We will denote with
S(P) the set of all possible scenarios ofP . Thebest scenario(BS(P)) (resp.,worst
scenario(WS(P))) of an IVCSP is obtained by replacing every interval with its upper
(resp., lower) bound.

The preference interval of a complete assignments of an IVCSPP contains all the
preference values associated tos by the SCSPs inS(P). The inverse does not neces-
sarily hold. That is, there may be values in the preference interval of s which cannot
be obtained in any scenario. However, if the c-semiring is idempotent, then there is a
one-to-one correspondence. In the general case, we can however prove that, if the pref-
erence interval ofs is [a, b], there exist at least a scenario wheres has preferencea and
there exist at least a scenario wheres has preferenceb.

4 Interval-based optimality notions

Given an IVCSP, several notions of optimality can be given. Since an IVCSP presents a
form of uncertainty, specified by the intervals, there are several ways to approach such
an uncertainty. For example, one could be pessimistic or optimistic about the possible
scenarios.

More precisely, given an IVCSPP = 〈V, D, C, S〉, an assignments to the variables
in V is said:

– lower-optimal iff, for every other complete assignments′, L(s) ≥ L(s′).
Thus, a lower-optimal assignment is better than or equal to all other assignments in
the worst scenario. Therefore, lower-optimal assignmentsare useful in pessimistic
approaches to uncertainty, since they outperform the otherassignments in the worst
case. We denote withLO(P) the set of the lower optimal assignments ofP . The
IVCSPP of Figure 1 hasLO(P) = {s1, s4}.

– upper-optimal iff, for every other complete assignemnts′, U(s) ≥ U(s′).
Thus, an upper-optimal assignment is better than or equal toall other assignments
in the best scenario. Therefore, it is useful for optimisticapproaches to uncertainty.
We denote withUO(P) the set of the upper optimal assignments ofP . The IVCSP
P of Figure 1 hasUO(P) = {s1, s2}.

– interval-optimal iff, for every other complete assignments′, L(s) ≥ L(s′) or
U(s) ≥ U(s′).
In words, an interval-optimal assignment is an assignment with either a higher or
equal lower bound, or a higher or equal upper bound, w.r.t. all other assignments.
This means that it must be better than, or equal to, all other assignments in either
the worst or the best scenario. We denote withIO(P) the set of the interval optimal
assignments ofP . The IVCSPP of Figure 1 hasIO(P) = {s1, s2, s4}.

– lower (resp., upper) lexicographically-optimaliff, for every other assignments′,
eitherL(s) > L(s′) (resp.,U(s) > U(s′)), or L(s) = L(s′) andU(s) ≥ U(s′)
(resp.,U(s) = U(s′) andL(s) ≥ L(s′)).
Thus, lower (resp., upper) lexicographically-optimal assignments are the best as-
signments for a pessimistic (resp., optimistic) approach,where ties are broken op-
timistically (resp., pessimistically). We denote withLLO(P) (resp.,ULO(P)) the
set of the lower (resp., upper) lexicographically-optimalassignments ofP . The
IVCSPP of Figure 1 hasLLO(P) = ULO(P) = {s1}.

– weakly-interval-dominant iff, for every other assignments′, L(s) ≥ L(s′) and
U(s) ≥ U(s′).

Thus, weakly-interval-dominant assignments are better than or equal to all others in
both the worst and the best scenario. We denote withWID(P) the set of the weakly
interval dominant assignments ofP . The IVCSPP of Figure 1 hasWID(P) =
{s1}.

– interval-dominant iff, for every other assignments′, L(s) ≥ U(s′).
Thus, interval-dominant assignments are better than or equal to all others in all
scenarios. They are therefore very robust w.r.t. uncertainty. We denote withID(P)
the set of the interval dominant assignments ofP . The IVCSPP of Figure 1 has
thatID(P) = ∅.

Given an IVCSP P, we have that:

– (UO(P) ∪ LO(P)) ⊆ IO(P);
– UO(P) ∩ LO(P) = WID(P);
– ID(P) ⊆ WID(P);
– LLO(P) ⊆ LO(P) andULO(P) ⊆ UO(P);
– ID(P) ⊆ (LLO(P) ∩ ULO(P)) = WID(P).
– IO(P), LO(P), UO(P), LLO(P), andULO(P) are never empty, whileWID(P)

andID(P) may be empty.
– If ID(P) 6= ∅, eitherID(P) contains a single solution, or several solutions all

with the lower bound equal to the upper bound and all equal to the same value.

5 Finding and testing optimal assignments

Lower and upper optimal assignments. To find a lower-optimal solution, it is enough
to take the worst scenario and find an optimal solution. In fact, a lower-optimal solution
is a complete assignment whose lower bound is greater than orequal to every other
complete assignment, and thus it is a complete assignment that is better than or equal to
all other assignments in the scenario obtained by replacingevery interval with its lower
bound, i.e., the worst scenario. Similarly, to find an upper-optimal solution, we can take
the best scenario and find an optimal solution. Thus finding assignments inLO(P) or
UO(P) is as complex as solving an SCSP.

To test if an assignments in LO(P) or in UO(P), it is enough to solve the SCSP
representing the worst or the best scenario and to check if the preference of the optimal
solution coincides withL(s) or U(s).

Interval optimal assignments. To find an interval optimal assignment, it is sufficient to
find a lower optimal solution or an upper optimal solution, since(UO(P)∪LO(P)) ⊆
IO(P), and bothUO(P) andLO(P) cannot be empty. Thus finding assignments of
IO(P) is as complex as solving an SCSP.

To test if an assignments is in IO(P), if the combination operator is idempotent,
we can find the solutions of the CSP obtained by putting together two CSPs obtained as
follows: one is obtained by considering the worst scenario and by allowing only tuples
with preference greater thanL(s), the other one is obtained by considering the best
scenario and by allowing only tuples with preference greater thanU(s). Then,s is in
IO(P) if and only if this CSP has no solution.

If the combination operator is not idempotent, we can consider the SCSP with the
same variables, domains, and constraint topology asP , and defined on the c-semiring
〈(A×A), (+′, +′), (×,×), (0,0), (1,1)〉, where+′ induces the strict ordering related
to +. Then,s is optimal in this SCSP if and only if it is interval-optimal.

Lower and upper lexicographically optimal assignments. To find the lower-lexicographically
optimal solutions of an IVCSPP defined on c-semiringS, let us consider the SCSP
with the same variables, domains, and constraint topology as P , and with c-semiring
〈A×A, lex, (×,×), (0,0), (1,1)〉, wherelex induces the ordering�lex defined as fol-
lows: for each(a, a′), (b, b′) ∈ (A × A), (a, a′) �lex (b, b′) iff a > b or a = b and
a′ ≥S b′. In words, the first component is the most important, and the second one is
used to break ties. To find the upper-lexicographically optimal solutions, it is sufficient
to consider the same SCSP as defined above except for the ordering which considers
the second component as the most important. Thus, finding assignments inLLO(P)
andULO(P) is as complex as solving an SCSP.

To test if a solutions is in LLO(P), it is enough to find the preference pair, say
(p1, p2), of the optimal solution of the SCSP defined above and to checkif (L(s), U(s)) =
(p1, p2). Similarly to test if a solution is inULO(P).

Weakly interval dominant solutions. We know thatWID(P) = LO(P) ∩ UO(P).
Thus a straightforward, but costly, way to find a solution inWID(P) is to compute all
the optimal solutions of the best and the worst scenario and then to check if there is a
solution in the intersection of the two sets. However, if thec-semiring is idempotent,
this is not necessary. In fact, it is sufficient to do the following:

– to find the optimal preference levels of the best and worst scenario, saylopt and
uopt;

– to consider the CSP obtained from the worst (resp., best) scenario by allowing in
the constraints only tuples with preference greater than orequal tolopt (resp.,uopt);
we will denote such two CSPs byP1 andP2;

– to solve the CSP obtained obtained by putting together the constraints inP1 and in
P2.

In this way, finding a weakly interval dominant solution amounts to solving two SCSPs
and one CSP.

To test whether a solutions is in WID(P), it is sufficient to find the preference of
the optimal solution of the worst and best scenarios, saylopt anduopt, and to check if
L(s) = lopt andU(s) = uopt.

Interval dominant assignments. To find an assignment inID(P), if the c-semiring is
idempotent, we can

– compute the optimal preference of the worst scenario, saylopt;
– consider the CSP obtained from the best scenario by allowingin the constraints

only tuples with preference greater thanlopt;

– check the number of solutions of this CSP: if it has no solution, thenID(P) =
LO(P), thus it is enough to find an optimal solution ofWS(P); if it has one
solution, says, andL(s) = lopt, then this solution is the only one inID(P);
otherwiseID(P) = ∅.

Thus, we need to solve an SCSP and then one CSP.
To test if an assignments is in ID(P), we can consider two cases. IfL(s) 6= U(s),

then, if the c-semiring is idempotent, we can take the best scenario and consider the
CSP obtained by allowing only tuples with preference greater thanL(s). This CSP has
only s as solution if and only ifs is in ID(P). If insteadL(s) = U(s), we can check if
s is an optimal solution of the best scenario.

6 Necessary and possible optimality

We will now consider more general notions of optimality, that are applicable to any
setting where the lack of precision gives rise to several possible scenarios. We will
then show how to exploit the interval-based notions of optimality introduced above to
characterize these general notions.

Necessarily optimal solutions

Given an IVCSPP = 〈V, D, C, S〉, an assignments to the variables inV is necessarily
optimal if it optimal in all scenarios. Given an IVCSPP , the set of its necessarily
optimal solution will be denoted byNO(P).

Necessarily optimal solutions are very attractive, since they are very robust: they are
optimal independently of the uncertainty of the problem. Unfortunately, the setNO(P)
may be empty. More precisely, given an IVCSPP , we have that:

– ID(P) ⊆ NO(P) ⊆ WID(P);
– if ID(P) 6= ∅, thenID(P) = NO(P).

It is easy to see that an interval-dominant solution is a necessarily optimal solution.
Moreover, ifID(P) 6= ∅, then the converse holds as well. In fact, every solution not
in ID(P) has at most preference equal to the lower bound of those inID(P) in all
scenarios. If insteadID(P) = ∅, then it may beNO(P) 6= ∅. In our running example
of Figure 1, we haveID(P) = NO(P) = ∅. However, consider the IVCSPP over
the fuzzy c-semiring with three variablesX1, X2, andX3, with domain{a, b} and
with two constraintsc1 andc2 such thatc1 = 〈int1, con1〉 with con1 = {X1, X2},
int1(a, a) = (0.4, 0.7), and(0, 0) otherwise, whilec2 = 〈int2, con2〉 with con1 =
{X2, X3}, int2(a, a) = (0.8, 1.0), int2(a, b) = (0.9, 1.0), and(0, 0) otherwise. We
haveID(P) = ∅ while NO(P) = {(a, a, a), (a, a, b)}.

Also, NO(P) ⊆ LO(P), since, ifs is not lower-optimal, then in some (for sure
the worst) scenario it is not optimal. Similarly, a necessarily optimal solution must
be optimal also in the best scenario and thusNO(P) ⊆ UO(P). This allows us to
conclude thatNO(P) ⊆ LO(P) ∩ UO(P) = WID(P).

To find a necessarily optimal solution, we can start by tryingto find an interval-
dominant assignment, since, ifID(P) 6= ∅, thenID(P) = NO(P). To this purpose,
we can use the procedure described in Section 5. If insteadID(P) = ∅, then, since
NO(P) ⊆ WID(P), we may check ifWID(P) is empty, since in such a case also
NO(P) is empty. If the previous steps do not allow us to conclude, wecan compute
setWID(P) and, for each solution in such a set, to test if it is necessarily optimal (see
below).

To test if a solutions is necessarily optimal, we can check ifs is an optimal solution
of an SCSP with the same c-semiring, variables, domains, andconstraint topology as
P , where we replace the interval of every tuple associated with s with its lower bound
and the interval of all the other tuples with their upper bound. If s is not an optimal
solution of this SCSP, thens is not necessarily optimal. If the c-semiring is strictly
monotonic, this is a necessary and sufficient condition. However, this is not so when the
combination operator is idempotent.

Guaranteeing a level of preference in all scenarios

An assignments is necessarily of at least preferenceα if, for all scenarios, its pref-
erence is at leastα. The set of all solutions of an IVCSPP with this feature will be
denoted byNec(P, α). In our running example, if we considerα = 0.5, we have
Nec(P, 0.5) = {s1, s2, s4, s6}.

If we are happy with a preference level ofα, elements inNec(P, α) are what we
want, since they guarantee such a preference level independently of the uncertainty of
the problem.

We can observe thats ∈ Nec(P, α) if and only if α ≤ L(s). Thus, testing whether
a solutions is in Nec(P, α) amounts at checking this condition, which can be done in
linear time.

If the c-semiring is idempotent, the elements ofNec(P, α) are the solutions of the
CSP obtained fromWS(P) by allowing only the tuples with preference at leastα.
Therefore, to find a solution inNec(P, α), it is sufficient to solve a CSP.

If the combination operator is not idempotent, we can solve the worst scenario and
compute the preference level of an optimal solution, saylopt. Then,s ∈ Nec(P, α) if
and only ifα ≤ lopt. Thus, in the general case, we must solve an SCSP.

Let α∗ be the maximumα such that there exists a solution inNec(P, α). In our
running example, we haveα∗ = 0.6, andNec(P, 0.6) = {s1, s4}.

It is possible to show that the elements inNec(P, α∗) are the solutions ofLO(P).
This implies also thatNO(P) ⊆ Nec(P, α∗). Thus, to find a solution inNec(P, α∗),
it is sufficient to find an optimal solution of the worst scenario of P .

Possibly Optimal Solutions

An assignments is possibly optimal if it optimal in some scenario. The set of possibly
optimal solutions ofP will be denoted byPO(P). In our running example, we have
PO(P) = {s1, s2, s3, s4, s6}.

To find a solution inPO(P), we can observe thatLO(P), UO(P), LLO(P), or
ULO(P) are all contained inPO(P), and are never empty. Thus we may find an ele-
ment in any of such sets.

To test if a solutions is in PO(P), if the combination operator is strictly mono-
tonic,s is in PO(P) if and only if s wins in the scenario where all its unknowns are set
to the upper bound and the other unknowns to the lower bound. If instead the combi-
nation operator is idempotent, we have to consider the worstscenario and compute the
preference level of its optimal solutions, saylopt. Thens is in PO(P) if and only if s

wins in the worst scenario or in the scenario obtained by the worst one by raising all the
unknowns ofs to the levellopt (if this is not possible,s is not inPO(P)). Thus, finding
or testing possible optimality requires solving an SCSP.

Guaranteeing a level of preference in at least one scenario

An assignments is possibly of at least preferenceα if there exists a scenario such that
the preference ofs in that scenario is at leastα. The set of all solutions of an IVCSP
P with this feature will be denoted byPos(P, α). In our running example, if we take
α = 0.3, we havePos(P, 0.3) = {s1, s2, s3, s4, s6, s7}.

An assignments is in Pos(P, α) if and only if α ≤ U(s). Thus, to test whether a
solution is inPos(P, α), it is enough to check this condition, that takes linear time.

To find an assignment inPos(P, α), if the c-semiring is idempotent, we can con-
sider the CSP obtained from the best scenario by allowing only the tuples with prefer-
ence at leastα. Therefore, it is sufficient to solve a particular CSP.

Let α∗ be the maximumα such thatPos(P, α) is not empty. In our running exam-
ple, we haveα∗ = 0.9 andPos(P, 0.9) = {s1, s2}.

It is possible to show thatPos(P, α∗) = UO(P). ThusNO(P) ⊆ Pos(P, α∗) ⊆
PO(P). Thus, to find a solution inPos(P, α∗), it is sufficient to find an optimal solu-
tion of the best scenario ofP , and thus to solve an SCSP.

7 Necessary and possible dominance

Besides finding or testing for optimality, it may sometimes be useful to know if a solu-
tion dominates another one.

Given a scenarioS, we say that a solutions strictly dominates (resp., dominates) a
solutions′ if and only if pref(S, s) > pref(S, s′) (resp.,pref(S, s) ≥ pref(S, s′))
in the ordering of the considered c-semiring. Also, a solution s possibly dominatesa
solutions′ if and only if there is at least one scenario wheres strictly dominatess′.
Instead, a solutions necessarily dominatesa solutions′ if and only if, in all scenarios,
s dominatess′, and there is at least one scenario wheres strictly dominatess′.

In our running example,s1 necessarily dominatess8. In the best scenario,s2 strictly
dominateds4, while in the worst scenarios4 strictly dominatess2. Thuss2 possibly
dominatess4, and viceversa.

The maximal elements in the partial ordering given by the necessary dominance are
the possibly optimal solutions. Also, the ”possibly dominates” ordering may have cycles
(see the cycle betweens2 ands4 in our example), thus it may have no undominated

elements. However, if it has undominated elements, they arethe necessarily optimal
solutions.

To test ifs possibly dominatess′ we can set each interval associated withs but not
with s′ to its upper bound; letλ be the combination of these values. Then we set each
interval associated withs′ but not withs to its lower bound; letµ be the combination
of these values. Finally, we compare the preference values of s ands′, by testing if the
conditionλ × u1 × · · · × uk > µ × u1 × · · · × uk holds for any selections of values
u1, . . . , uk in the intervals of boths ands′.

If we have strict monotonicity, testing this condition amounts to testing ifλ > µ. If
we have idempotence, we can replace eachui with its upper bound, and then test the
condition.

To test ifs necessarily dominatess′, we first check ifs′ possibly dominatess. If so,
we can conclude negatively. Otherwise, we check ifs possibly dominatess′. If so, we
conclude positively, otherwise negatively.

8 Final considerations and future work

Given an IVCSPP , the solutions in NO(P) are certainly the most attractive, since they
are the best one in every scenario. However, if there is none,we can pass to consider the
solutions inNec(P, α∗): they may be suboptimal, but they guarantee a preference level
α∗ in all scenarios. Ifα∗ is too low, and we feel optimistic, we can consider the solutions
in Pos(P, α∗): they guarantee it is possible to reach a higher level of preference, but
not in all scenarios.

If we allowed users to associate to each partial assignment in the constraints not just
a single interval, but a disjoint set of intervals, this would reduce the uncertainty of the
problem. However, all the optimality notions would give thesame set of optimals. The
main reason for this result is the assumption of working withmonotonic combination
operators. This means that a level of precision greater thana single interval does not
add any useful information when looking for an optimal solution.

This paper considers only totally ordered preferences. IVCSPs can be defined also
for a partially ordered setting. We plan to extend the analysis of the optimality notions
also to this more general setting.

We plan also to test empirically our algorithms over classesof IVSCPs over the
fuzzy c-semiring. We are currently performing these experiments and we plan to add
empirical results in the camera-ready version of the paper.

Acknowledgements

This work has been partially supported by Italian MIUR PRIN project “Constraints and
Preferences” (n.2005015491).

References

1. S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based constraint solving and optimiza-
tion. JACM, 44(2):201–236, mar 1997.

2. M. Ceberio and F. Modave. An interval-valued, 2-additivechoquet integral for multi-criteria
decision making. InIPMU’04, 2004.

3. R. Dechter.Constraint processing. Morgan Kaufmann, 2003.
4. B. Faltings and S. Macho-Gonzalez. Open constraint programming. AI Journal, 161(1-

2):181–208, 2005.
5. M. Gelain, M. S. Pini, F. Rossi, and K. B. Venable. Dealing with incomplete preferences in

soft constraint problems. InProc. CP’07, volume 4741 ofLNCS, pages 286–300. Springer,
2007.

6. S. Macho González, C. Ansótegui, and P. Meseguer. On therelation among open, interac-
tive and dynamic CSP. InThe Fifth Workshop on Modelling and Solving Problems with
Constraints (IJCAI’05), 2005.

7. P. Meseguer, F. Rossi, and T. Schiex. Soft constraints. InF. Rossi, P Van Beek, and T. Walsh,
editors,Handbook of Constraint Programming. Elsevier, 2006.

8. F. Rossi, P Van Beek, and T. Walsh, editors.Handbook of Constraint Programming. Elsevier,
2006.

9. N. Wilson, D. Grimes, and E. C. Freuder. A cost-based modeland algorithms for interleaving
solving and elicitation of csps. InProc. CP’07, volume 4741 ofLNCS, pages 666–680.
Springer, 2007.

10. N. Yorke-Smith and C. Gervet. Certainty closure: A framework for reliable constraint rea-
soning with uncertainty. InCP’03, volume 2833 ofLNCS, pages 769–783. Springer, 2003.

