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Abstract. The stable marriage problem has a wide va-
riety of practical applications, ranging from matching resi-
dent doctors to hospitals, to matching students to schools, or
more generally to any two-sided market. We consider a use-
ful variation of the stable marriage problem, where the men
and women express their preferences in the form of a prefer-
ence list with ties over a subset of the members of the other
sex. Matchings are permitted only with people who appear in
these preference lists. In this setting, we study the problem
of finding a stable matching that marries as many people as
possible. Stability is an envy-free notion: no man and woman
who are not married to each other would both prefer each
other to their partners or to being single. This problem is
NP-hard. We propose to tackle it via a local search approach,
which exploits properties of the problem to reduce the size
of the neighborhood and to make local moves efficiently. Ex-
perimental results show that this approach is able to solve
large problems, quickly returning stable matchings of large
and often optimal size.

1 Introduction

The stable marriage problem [3] is a well-known problem of
matching men to women to achieve a certain type of ”stabil-
ity”. Each person expresses a strict preference ordering over
the members of the opposite sex. The goal is to match men
to women so that there are no two people of opposite sex who
would both rather be matched with each other than with their
current partners. Surprisingly such a stable marriage always
exists and one can be found in polynomial time. Gale and
Shapley give a quadratic time algorithm to solve this prob-
lem based on a series of proposals of the men to the women (or
vice versa) [1]. The stable marriage problem has a wide vari-
ety of practical applications, ranging from matching resident
doctors to hospitals, sailors to ships, primary school students
to secondary schools, as well as in market trading.

There are many variants of this classical formulation of the
stable marriage problem. Some of the most useful in practice
include incomplete preference lists (SMI), that allow us to
model unacceptability for certain members of the other sex,
and preference lists with ties (SMT), that model indifference
in the preference ordering. With a SMI problem, we have to
find a stable marriage in which the married people accept
each other. It is known that all solutions of a SMI problem
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have the same size (that is, number of married people). In
SMT problems, instead, solutions are stable marriages where
everybody is married. Both of these variants are polynomial
to solve. In real world situations, both ties and incomplete
preference lists may be needed. Unfortunately, when we allow
both, the problem becomes NP-hard [7]. In a SMTI (Stable
Marriage with Ties and Incomplete lists) problem, there may
be several stable marriages of different sizes, and solving the
problem means finding a stable marriage of maximum size.

In this paper we investigate the use of a local search ap-
proach to tackle this problem. Our algorithm starts from a
randomly chosen marriage and, at each step, moves to a neigh-
bor marriage which is obtained by removing one blocking pair,
that is, a man-woman pair who are not married in the cur-
rent marriage but who prefer to be married with each other
rather than with their current partners. Stable marriages have
no blocking pairs, so the aim of such a move is to pass to a
marriage which is closer to stability. Among the neighbor mar-
riages, the evaluation function chooses one with the smallest
number of blocking pairs and of singles. Since there may be
several stable marriages with different sizes, we look for the
one with maximum size (that is, the smallest number of sin-
gles). Random moves are also used, to avoid stagnation in
local minima. The algorithm stops when a perfect matching
(that is, a stable marriage with no singles) is found, or when
a given limit on the number of steps is reached.

This basic local search approach works well with problems
of limited size, but does not scale. With large sizes, it fails
to find good solutions and sometimes even stable marriages.
One of the main reasons is that the neighborhood can be very
large, since a marriage may have a large number of blocking
pairs. Many such blocking pairs can be ignored since they
are ”dominated” by others, whose removal will also elimi-
nate all the dominated blocking pairs. By considering only
undominated blocking pairs, we can solve SMTI problems of
much larger size in a small amount of time. The marriages
returned by our local search method are stable and contain
very few single people. Experiments on randomly generated
SMTI problems of size 100 show that our algorithm is able to
find stable marriages with at most two singles on average in
tens of seconds at worst.

The SMTI problem has been tackled also in [2], where the
problem is modelled in terms of a constraint optimization
problem and a constraint solver is employed to solve it. This
systematic approach is guaranteed to find always an optimal
solution. However, our experimental results show that our lo-



cal search algorithm in practice always finds optimal solutions.
Moreover, it scales well to sizes much larger than those consid-
ered in [2]. Another approach is to use approximation. Unfor-
tunately the SMTI problem cannot be approximated within
33/29 unless P=NP [11]. On the other hand, McDermid re-
cently gave a three phase algorithm for the SMTI problem
that has an approximation ratio of 3/2 [8] which beats the
previous best known guarantee of 5/3.

2 Background

In this section we give the basic notions about stable marriage
problems and local search.

2.1 Stable marriage problems with ties and
incompleteness

A stable marriage (SM) problem [3] consists of matching
members of two different sets, usually called men and women.
When there are n men and n women, the SM problem is said
to have size n. Each person strictly ranks all members of the
opposite sex. The goal is to match the men with the women so
that there are no two people of opposite sex who would both
rather marry each other than their current partners. Such a
marriage is called stable. At least one stable marriage exists
for every SM problem. In fact, the set of stable marriages
forms a lattice. Gale and Shapley give a polynomial time al-
gorithm to find the stable marriage at the top (or bottom) of
this lattice [1].

In this paper we consider a variant of the SM problem where
preference lists may include ties and may be incomplete. This
variant is denoted by SMTI [6]. Ties express indifference in
the preference ordering, while incompleteness models unac-
ceptability for certain partners.

Definition 1 (SMTI marriage) Given a SMTI problem
with n men and n women, a marriage M is a one-to-one
matching between men and women such that partners accept
each other. If a man m and a woman w are matched in M ,
we write M(m) = w and M(w) = m. If a person p is not
matched in M we say that he/she is single.

Definition 2 (Marriage size) Given a SMTI problem of
size n and a marriage M , its size is the number of men (or
women) that are married.

An example of a SMTI problem with four men and women
is shown in Table 1. A SMTI problem is described by giving,
for each man and woman, the corresponding preference list
over members of the other sex. For example, by writing 2 :
2 (3 4) among the men’s preference lists we mean that man
m2 strictly prefers woman w2 to women w3 and w4, that are
equally preferred.

Definition 3 (blocking pairs in SMTIs) Consider a
SMTI problem P , a marriage M for P , a man m and a
woman w. A pair (m, w) is a blocking pair in M if m and w

accept each other and m is either single in M or he strictly
prefers w to M(m), and w is either single in M or she
strictly prefers m to M(w).

men’s preference lists women’s preference lists
1: 2 1 1: 3 1 (2 4)
2: 2 (3 4) 2: 1 4 2
3: (1 2 3 4) 3: (1 2) (4 3)
4: (3 2) 1 4 4: (3 2 4)

Table 1. An example of a SMTI problem of size 4.

Definition 4 (Weakly Stable Marriages) Given a SMTI
problem P , a marriage M for P is weakly stable if it has no
blocking pairs.

As we will consider only the weak stability criterion, we will
simply call them stable marriages. Given a SMTI problem,
there may be several stable marriages of different sizes. If the
size of a marriage coincides with the size of the problem, it is
said to be a perfect matching.

In the above example, the marriage 2 3 1 4 (where the
number in position i indicates the woman married to man mi

in that marriage) is stable and its size is 4, so it is a perfect
matching.

Solving a SMTI problem means finding a stable marriage
with maximal size. This problem is NP-hard [7].

2.2 Local search

Local search [4, 10] is one of the fundamental paradigms for
solving computationally hard combinatorial problems. Local
search methods in many cases represent the only feasible way
for solving large and complex instances. Moreover, they can
naturally be used to solve optimization problems.

Given a problem instance, the basic idea underlying lo-
cal search is to start from an initial search position in the
space of all solutions (typically a randomly or heuristically
generated candidate solution, which may be infeasible, sub-
optimal or incomplete), and to improve iteratively this can-
didate solution by means of typically minor modifications. At
each search step we move to a position selected from a local
neighborhood, chosen via a heuristic evaluation function. The
evaluation function typically maps the current candidate so-
lution to a real number and it is such that its global minima
correspond to solutions of the given problem instance. The
algorithm moves to the neighbor with the smallest value of
the evaluation function.

This process is iterated until a termination criterion is sat-
isfied. The termination criterion is usually the fact that a
solution is found or that a predetermined number of steps is
reached, although other variants may stop the search after a
predefined amount of time.

Different local search methods vary in the definition of the
neighborhood and of the evaluation function, as well as in the
way in which situations are handled when no improvement is
possible. To ensure that the search process does not stagnate
in unsatisfactory candidate solutions, most local search meth-
ods use randomization: at every step, with a certain probabil-
ity a random move is performed rather than the usual move
to the best neighbor.



3 Local search on SMTIs

We adapt the classical local search schema to SMTI problems
as follows. Given a SMTI problem P , we start from a ran-
domly generated marriage M for P . At each search step, we
move to a new marriage in the neighborhood of the current
one. For each marriage M , the neighborhood N(M) is the set
of all marriages obtained by removing one blocking pair from
M . Consider a blocking pair bp = (m,w) in M and assume
m′ = M(w) and w′ = M(m). Then, removing bp from M

(written M\bp) means obtaining a marriage M ′ in which m

is married with w and both m′ and w′ become single, leaving
the other pairs in the marriage M unchanged. Notice that, if
M is stable, its neighborhood is empty. Notice also that this
notion of neighborhood is not symmetric.

To select the neighbor to move to, we use an evaluation
function f : Mn → Z, where Mn is the set of all possible
marriages of size n, and f(M) = nbp(M) + ns(M). For each
marriage M , nbp(M) is the number of blocking pairs in M ,
while ns(M) is the number of singles in M which are not in
any blocking pair. The algorithm moves to a marriage M ′ ∈
N(M) such that f(M ′) ≤ f(M ′′) ∀M ′′ ∈ N(M).

During the search, the algorithm maintains the best mar-
riage found so far, defined as follows: if no stable marriage
has been found, then the best marriage is the one with the
smallest value of the evaluation function; otherwise, it is the
stable marriage with fewest singles.

To avoid stagnation in a local minimum of the evaluation
function, at each search step we perform a random walk with
probability p (where p is a parameter of the algorithm). In
the random walk, we move to a randomly selected marriage
in the neighborhood. If a stable marriage is reached, its neigh-
borhood is empty and a random restart is performed.

The algorithm terminates if a perfect marriage (that is, a
stable marriage with no singles) is found, or when a maxi-
mal number of search steps is reached. Upon termination, the
algorithm returns the best marriage found during the search.

The pseudo-code of our algorithm, called LTI, is shown in
Algorithm 1. In the pseudo-code, Mbest is the best marriage
found so far, and fbest its evaluation (number of blocking pairs
plus number of singles). Function best neighborhood returns
one of the best marriages in the neighborhood of the current
marriage, according to the evaluation function.

In addition to this simple local search algorithm which di-
rectly applies standard local search approaches to SMTI prob-
lems, we have also designed a more sophisticated algorithm
which has been tailored to exploit the specific features of
SMTI problems. The main difference is in the definition of
the neighborhood, which refers to the notion of undominated
blocking pairs.

Definition 5 (dominance in blocking pairs) Let (m,w)
and (m, w′) be two blocking pairs. Then (m,w) dominates
(from the men’s point of view) (m,w′) if m prefers w to w′.
There is an equivalent concept from the women’s point of view.

Definition 6 (undominated blocking pair) A men-
(resp., women-) undominated blocking pair is a blocking pair
such that there is no other blocking pair that dominates it
from the men’s (resp., women’s) point of view. When the
point of view (men or women) is clear or not important, we
will omit it.

Algorithm 1: LTI

input : a SMTI problem P , an integer max steps

output: a marriage

M ← random marriage1

steps← 02

Mbest ←M3

fbest ← f(M)4

repeat5

if f(M) = 0 then6

return M7

if rand() ≤ p then8

M ← RandomWalk(M)9

else10

PAIRS← blocking pairs in M11

if PAIRS is empty then12

perform a random restart13

else14

M ← best neighborhood(M, PAIRS)15

if M is the first stable marriage found so far then16

fbest ← f(M)17

Mbest ←M18

if Mbest is not stable and fbest > f(M) then19

fbest ← f(M)20

Mbest ←M21

if both Mbest and M are stable and fbest > f(M)22

then
fbest ← f(M)23

Mbest ←M24

steps← steps + 125

until steps ≤ max steps ;26

return Mbest27

For example, consider the SMTI problem in Table 1, the
marriage 1 2 3 4, and two blocking pairs (m1, w2) and
(m4, w2). Using the definitions above, (m1, w2) dominates
(m4, w2) from the women’s point of view. If we remove
(m4, w2) from the marriage, (m1, w2) will remain. On the
other hand, removing (m1, w2) also eliminates (m4, w2). Thus
removing undominated blocking pairs may reduce the number
of blocking pairs more than eliminating dominated pairs.

We call LTIU the algorithm LTI where the neighborhood is
defined as the set of marriages obtained from the current one
by removing any undominated blocking pair. More precisely,
at each step we consider the undominated blocking pairs from
the men’s point of view which are also undominated from
the women’s point of view. Then, in the next step, we swap
genders and do the same, to ensure gender neutrality in our
algorithm.

Due to their ability to restart, our algorithms have the PAC
(probabilistically approximate complete property) [5]. That
is, as their runtime goes to infinity, the probability that the
algorithm does not return an optimal solution goes to zero.
If the algorithm starts at a stable marriage, the algorithms
will perform a random restart, which will end up in an opti-
mal solution with probability greater than zero. On the other
hand, if the algorithm starts from a non-stable marriage, we
perform one or more steps in which we remove a blocking



pair. This sequence of blocking pair removal has been shown
to converge to a stable marriage with non-zero probability in
the context of SMs with incomplete preference lists [9]. The
proof of this result can be adapted to our context, although
we have ties in the preference lists. Since a stable marriage
can be reached with non-zero probability, and as we have ar-
gued above that from any stable marriage random restarting
will reach an optimal solution with non-zero probability, the
PAC property holds.

4 Experimental setting

Problems are generated using the same method as in [2]. The
generator takes three parameters: the problem’s size n, the
probability of incompleteness p1 and the probability of ties
p2. Given a triple (n, p1, p2), a SMTI problem with n men
and n women is generated, as follows:

1. For each man and woman, we generate a random preference
list of size n, i.e., a permutation of n persons;

2. We then iterate over each man’s preference list: for a man
mi and for each women wj in his preference list, with prob-
ability p1 we delete wj from mi’s preference list and delete
mi from wj ’s preference list. In this way we get a possibly
incomplete preference list.

3. If any man or woman has an empty preference list, we dis-
card the problem and go to step 1.

4. We iterate over each person’s (men and women’s) prefer-
ence list as follows: for a man mi and for each woman in
his preference list, in position j ≥ 2, with probability p2 we
set the preference for that woman as the preference for the
woman in position j − 1 (thus putting the two women in a
tie).

Note that this method generates SMTI problems in which
the acceptance is symmetric. In fact, if a man m does not
accept a woman w, m is removed from w’s preference list as
well. This does not introduce any loss of generality because
m and w cannot be matched together in any stable marriage.

Notice also that this generator will not construct a SMTI
problem in which a man (resp., woman) accepts only women
(resp., men) who do not find him (resp, her) acceptable. Such
a man (resp., woman) will remain single in every stable match-
ing. Therefore a simple preprocessing step can remove such
men and women, giving a smaller problem of the form con-
structed by our generator.

We generated random SMTI problems of size 100, by letting
p2 vary in [0, 1.0] with step 0.1, and p1 vary in [0.1, 0.8] with
step 0.1 (above 0.8 the preference lists start to be empty).
For each parameter combination, we generated 100 problem
instances. Moreover, the probability of the random walk is set
to p=20% and the search step limit is s=50000.

4.1 Experimental results

We first analyzed the behavior of the base algorithm, LTI.
Unfortunately this algorithm fails to find a stable marriage in
most of our test problems (see Figure 1). In fact, LTI can find
a stable marriage only for easy problems, which are the ones
with a large amount of ties (that is, p2 high) and/or with a
large amount of incompleteness (that is, p1 high).
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Figure 1. Average number of stable marriages found by LTI.

On the other hand, algorithm LTIU finds a stable marriage
in 100% of the runs. Since stability is essential in our context,
from now on we will only show the experimental results for
algorithm LTIU.

We start by showing the average size of the marriages re-
turned by LTIU. In Figure 2 we can see that LTIU finds a
perfect marriage (that is, a stable marriage with no singles)
almost always. Even in settings with a large amount of in-
completeness (that is, p1 = 0.7 - 0.8) the algorithm finds very
large marriages, with only 2 singles in average.
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Figure 2. Average size of marriages with LTIU, varying p2 for
different values of p1.

We also consider the number of steps needed by our algo-
rithm. From Figure 3, we can see that the number of steps is
less than 2000 most of the time, except for problems with a
large amount of incompleteness (i.e. p1 = 0.8). As expected,
with p1 greater than 0.6 the algorithm requires more steps.
In some cases, it reaches the step limit of 50000. Moreover, as
the percentage of ties rises, stability becomes easier to achieve



and thus the number of steps tends to decrease slightly. From
the results we can see that the case with complete indiffer-
ence (p2=1) is a special case. In fact, in this situation, the
number of steps increases for almost every value of p1. This
is because the algorithm makes most of its progress via ran-
dom restarts. In these problems every person (if accepted) is
equally preferred to all the others accepted. This means that
the only blocking pairs are those involving singles who both
accept each other. In this situation, after a few steps all sin-
gles that can be married are matched, stability is reached,
and the neighborhood becomes empty. The algorithm there-
fore performs another random restart. In this situation it is
very difficult to reach a perfect matching and the algorithm
therefore often runs until the step limit.
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Figure 3. Average number of steps for LTIU, varying p2 for
different values of p1.

The algorithm is fast. It takes, on average, less than 40
seconds to give a result even for very difficult problems (see
Figure 4). As expected, with p2 = 1 the time increases for the
same reason discussed above concerning the number of steps.

Re-considering Figure 2 and the fact that all the marriages
the algorithm finds are stable, we notice that most of the mar-
riages are perfect. From Figure 5 we see that the average per-
centage of matchings that are perfect is almost always 100%
and this percentage only decreases when the incompleteness
is large.

We compared our local search approach to the one in [2].
In their experiments, they measured the maximum size of the
stable marriages in problems of size 10, fixing p1 to 0.5 and
varying p2 in [0,1]. We did similar experiments, and obtained
stable marriages of a very similar size to those reported in
[2]. This means that although our algorithm is incomplete in
principle, it always finds an optimal solution in practice, and
for small sizes it behaves as a complete algorithm in terms
of size of the returned marriage. However, we can also tackle
problems of much larger sizes, still obtaining optimal solutions
most of the time.

We also considered the runtime behavior of our algorithm.
In Figure 6 we show the average normalized number of block-
ing pairs and, in Figure 7, the average normalized number of
singles of the best marriage as the execution proceeds. Al-
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Figure 4. Average execution time for LTIU, varying p2 for
different values of p1.
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though the step limit is 50000, we only plot results for the
first steps because the rest is a long plateau that is not very
interesting. We show the results only for p2 = 0.5. However,
for greater (resp., lower) number of ties the curves are shifted
slightly down (resp., up). From Figure 6 we can see that the
average number of blocking pairs decreases very fast, reach-
ing 5 blocking pairs after only 100 steps. Then, after 300-400
steps, we reach a stable marriage almost all the time for all
values of p1. Considering Figure 7, we can see that the algo-
rithm starts with more singles for greater values of p1. This
happens because, with more incompleteness, it is more diffi-
cult for a person to be accepted. However, after 200 steps, the
average number of singles becomes very small no matter the
incompleteness in the problem.

Looking at both Figures 6 and 7, we observe that, although
we set a step limit s = 50000, the algorithm reaches a very
good solution after just 300-400 steps. In fact, after this num-
ber of steps, the best marriage found by the algorithm usually
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Figure 6. Average normalized number of blocking pairs
(p2=0.5).
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Figure 7. Average normalized number of singles (p2=0.5).

has no blocking pairs nor singles. This appears largely inde-
pendent of the amount of incompleteness and the number of
ties in the problems. Hence, for SMTI problems of size 100
we could set the step limit to just 400 steps and still be rea-
sonably sure that the algorithm will return a stable marriage
with a large size, no matter the amount of incompleteness and
ties.

5 Conclusions

We have presented a local search approach for solving stable
marriage problems with ties and indifference. Experimental
results show that our algorithm is both fast and effective at
finding large stable marriages for problems of sizes not con-
sidered before in the literature. Moreover, the runtime behav-
ior of the algorithms is not greatly influenced by the amount
of incompleteness or ties in the problem. The algorithm was

usually able to obtain a very good solution after a very small
amount of time.
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