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Abstract

Requirements engineering for multiple customers, each
of whom have competing and often conflicting priorities,
raises issues of negotiation, mediation and conflict reso-
lution. This paper uses a multi-objective optimisation ap-
proach to support investigation of the trade-offs in various
notions of fairness between multiple customers. Results are
presented to validate the approach using two real-world
data sets and also using data sets created specifically to
stress test the approach. Simple graphical techniques are
used to visualize the solution space.

1 Introduction

This paper addresses a requirements analysis setting in
which there are many customers, each with competing
(and possibly conflicting interests). This is an increasingly
prevalent because of the growing scale and complexity of
the organisations that requirements analysis must address.
Where there may be many customers, each with their own
view on the sets of requirements to be prioritized, the goal
of the requirements engineer may appear to resemble an in-
vidious attempt to please “all of the people all of the time”.

The authors have worked with Motorola on the problem
of multi customer requirements. The techniques for fair-
ness analysis proposed in this paper have been applied to
a real world set of requirements from Motorola and the re-
sults are reported as part of the validation of this work. The
Motorola data set concerns a set of 35 requirements for hand

held communication devices. In this case, the customers are
four mobile telephony service providers, each of which has
a different set of priorities with respect to the features that
they believe ought to be included in each handset. Motorola
also maintains cost data, in the form of the estimated cost of
implementation of each requirement. The paper shows how
it is possible to explore trade offs and tensions between the
customers in an attempt to satisfy multi definitions of fair-
ness.

To address this problem, the paper adopts a search-based
optimisation approach, which it uses to automate the explo-
ration of the possible trade offs and conflicts between var-
ious notions of fairness. The search explores the space of
possible allocations of requirements for the next release of
the system.

Requirements analysis problems, with their large space
of possible solution choices and complex and often com-
peting constraints have proved to be natural candidates for
optimisation based analysis. Previous work in this area has
shown that meta heuristic optimisation techniques can be
used to search for a balance between the costs and bene-
fits associated with sets of requirements in what has come
to be known as the Next Release Problem (NRP) [2, 16]
and Release Planning [4, 20, 21, 22, 26, 27, 28]. That is,
the problem is to find an answer to the question: ‘Which
requirements should appear in the next release of the sys-
tem?’.

Existing work on this problem has tended to treat the
NRP as a single objective problem formulation, in which
the various constraints and objectives that characterize the
requirements analysis problem are combined into a single



objective fitness function. A variety of optimisation algo-
rithms have been applied to single objective formulations,
including integer linear programming, greedy algorithms,
branch and bound, simulated annealing and genetic algo-
rithms [2, 16, 32]. Single objective formulations have the
draw back that the maximisation of one concern might be
achieved at the expense of the potential maximisation of an-
other resulting in a bias guiding the search to a certain part
of the solution space.

More recently however, there has been work on multi-
objective formulations of the problem [29, 33]. In this work
on the Multi-Objective Next Release Problem (MONRP),
each of the objectives to be optimized is treated as a sep-
arate goal in its own right; the multiple objectives are not
combined into a single (weighted) objective function. This
allows the optimisation algorithm to explore the Pareto front
of non-dominated solutions. Each of these non-dominated
solutions denotes a possible assignment of requirements
that maximizes all objectives without compromising on the
maximisation of the others.

Hitherto, the only work on the MONRP has considered
two possible bi-objective formulations, one in which the
two objectives to be optimized are cost and value [33] and
the other in which the two objectives are implementation-
based and business-based [29]. However, no previous work
has considered the problem of fairness analysis in require-
ment optimisation.

The problem of fairness in requirements allocation has
two aspects:

1. What is a reasonable way to measure fairness?

2. To what extent can a solution be shown (to the stake
holders) to be a fair allocation of requirements

These two aspects are interrelated and complicated by
the fact that there is no single accepted notion of fairness.
For example, an allocation might be deemed to be fair were
it to satisfy the same number of requirements for each cus-
tomer. However, this might be over simplistic; perhaps the
solution should give each customer roughly equal value (as
perceived by the customer) or, alternatively, roughly equal
cost should be spent in implementing each customers’ re-
quirements.

This paper shows that using a multi-objective Pareto op-
timal search for optimal allocations of requirements, it is
possible to treat each candidate notion of fairness as a sep-
arate optimisation objective in its own right. The paper
shows that, using this multi objective approach, it is pos-
sible to explore the trade-offs between different notions of
fairness and to attempt to locate solutions that balance these
trade offs.

The result is feedback to the decision maker that serves
two purposes: it allows the decision maker to see where

there are potential problems in balancing concepts of fair-
ness among customers and it allows the decision maker to
demonstrate to the customer that the solution adopted is fair
according to multiple fairness criteria.

In this way, the ability to automatically search for opti-
mal regions of the ‘fairness space’ has applications in nego-
tiation, mediation and conflict resolution during the require-
ments analysis process. It provides an unbiased and thor-
ough exploration of trade offs and tensions within the multi-
dimensional and complex space of customers and their re-
quirements.

The primary contributions of the paper are as follows:

1. The paper gives several multi-objective formulations
of fairness in requirements allocation.

2. The paper introduces a search based approach to ex-
plore the space of multiply fair allocations.

3. The paper reports results on the application of the
search based optimisation approach to two real-world
requirements data sets and to a series of synthetic data
sets constructed to stress-test the approach.

The rest of the paper is organized as follows: In Sec-
tion 2 the research problem is defined formally. Section 3
introduces the search algorithms studied and how they are
tailored to the MONRP. Section 4 describes the experimen-
tal setup and environment. Section 5 presents the results
of the experiments and discusses the findings. Section 6
describes the context of related work in which the current
paper is located. Section 7 concludes.

2 Problem Formulation

This section gives definitions and characteristics of the
MONRP problem as an extension of the traditional NRP
model [2].

2.1 NRP Model

It is assumed that for an existing software system, there
is a set of customers,

C = {c1, . . . , cm}

whose requirements are to be considered in the development
of the next release of the software.

The set of possible software requirements is denoted by:

ℜ = {r1, . . . , rn}

In order to satisfy each requirement, some resources need to
be allocated. The resources needed to implement a particu-
lar requirement can be transformed into cost terms and con-
sidered to be the associated cost to fulfill the requirement.



Typically, these cost values are estimated, which is the case
with the real world case studies presented below. The resul-
tant cost vector for the set of requirementsri(1 ≤ i ≤ n) is
denoted by:

Cost = {cost1, . . . , costn}

It is assumed that not all requirements are equally
important for a given customer. The level of satisfaction
for a given customer depends on the requirements that
are satisfied in the next release of the software, which
provide value to the customers’ organizations. Each
customercj(1 ≤ j ≤ m) assigns avalue to require-
ment ri(1 ≤ i ≤ n) denoted by: value(ri, cj) where
value(ri, cj) > 0 if customerj desires implementation of
the requirementi and 0 otherwise.
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Each customercj has therefore, a subset of requirements
that they expect to be satisfied denoted byRj

such that Rj ⊆ ℜ, ∀ r ∈ Rj value(r, cj) > 0

The decision vector−→x = {x1, . . . , xn} ∈ {0, 1} deter-
mines the requirements that are to be satisfied in the next
release. In this vector,xi is 1 if requirementi is selected
and 0 otherwise. This vector denotes the solution to the
problem.

2.2 Fairness in Requirements Assign-
ments

Fairness is a deceptively simple concept; its implemen-
tation is complicated because the definition of fairness may
have several equally valid, but possibly conflicting formu-
lations. In order to capture and optimize fairness, a new
aspect of the MONRP is explored:Fairness in Requirement
Assignments. The principal motivation of fairness analysis
is try to balance the requirement fulfillments between the
customers. It could provide a convincing reference from the
view of marketingand help the decision makers to maintain
a record of fairness between the customers. It also may play
a role in mediation, negotiation and dispute resolution.

Three factors are considered in this paper, namely, the
number, the value and the cost of the requirements fulfilled
for each customer. The aim is to calculate the absolute

amount and the percentage of each factor that is present in a
proposed MONRP solution. More formally, the three com-
binations studied in this paper are:

1. Fairness on absolutenumberof fulfilled requirements:

Maximize NA

Minimize σ(NA)

whereNA is the mean value of the vectorNA.

The vectorNA = {NA1, · · · , NAm} represents the
absolute number of fulfilled requirements for each cus-
tomer, whereNAj = |Rj |. Thus, the aim is to maxi-
mize the average absolute number of fulfilled require-
ments for all the customers whilst minimizing the stan-
dard deviation of the absolute number fulfilled require-
ments for each customer.

2. Fairness on absolutevalueof fulfilled requirements:

Maximize V A

Minimize σ(V A) where V Aj =

n
∑

i=1

value(ri, cj)·xi

The vectorV A = {V A1, · · · , V Am} represents the
fulfilled value for each customer. In this vector, simi-
larly, V Aj(1 ≤ j ≤ m) is thejth customer’s fulfilled
value:

This objective function rewards solutions for which
each customer obtains the same value. It penalizes so-
lutions the more they depart from this equitable out-
come.

3. Fairness on the percentage ofvalueandcostof fulfilled
requirements:

The vectorCost C = {Cost C1, · · · , Cost Cm} rep-
resents the costs of fulfilled requirement for each cus-
tomer. In this vector,Cost Cj(1 ≤ j ≤ m) is thejth

customer’s fulfilled cost:

Cost Cj =
n

∑

i=1

costi · xi if ri ∈ Rj

The vectorV P = {V P1, · · · , V Pm} represents the
percentage of fulfilled requirements’ value for each
customer.

V Pj =
V Aj

∑

r∈Rj
value(r, cj)

× 100%

to minimize the standard deviation of spend on each of
the customers,

Minimize σ(Cost C)



to minimize the standard deviation of the percentage
of fulfilled value for customers,

Minimize σ(V P )

to maximize the overall average fulfillment of each
customers’ objectives

Maximize V P

and finally to minimize the overall cost of the next re-
lease

Minimize
n

∑

i=1

costi · xi

3 Optimisation Algorithms

This section describes the search algorithms used in this
paper. In the solution of Multi-Objective Optimisation
Problems (MOOPs) there exist multiple and possibly con-
flicting objectives to be optimized simultaneously. There
are various approaches to solve MOOPs. Among the most
widely adopted techniques are: sequential optimisation,ǫ-
constraint method, weighting method, goal programming,
goal attainment, distance based method and direction based
method. For a comprehensive study of these approaches,
readers may refer to the survey by Szidarovsky et al. [31]
and Collette and Siarry [7].

3.1 Pareto-Optimal Front

The Multi-Objective Optimisation Problem (MOOP) can
be defined as the problem of finding a vector of decision
variables−→x , which optimizes a vector ofM objective func-
tions fi(−→x ) wherei = 1, 2, . . . ,M ; subject to inequality
constraintsgj(−→x ) ≥ 0 and equality constraintshk(−→x ) = 0
wherej = 1, 2, . . . , J andk = 1, 2, . . . ,K. The objective
functions are a mathematical description of performance
criteria that are usually in conflict with each other [24].

Without loss of generality, a MOOP can be defined as
follows:

Maximize{f1(−→x ), f2(−→x ), . . . , fM (−→x )}

subject to:

gj(−→x ) ≥ 0; j = 1, 2, . . . , J

and
hk(−→x ) = 0; k = 1, 2, . . . ,K.

where−→x is vector of decision variables;fi(−→x ) is the i-
th objective function; andg(−→x ) andh(−→x ) are constraint
vectors.

These objective functions constitute a multi-dimensional
space in addition to the usual decision space. This addi-
tional space is called the objective space,Z. For each solu-
tion−→x in the decision variable space, there exists a point in
the objective space:

−→
f (−→x ) = Z = (z1, z2, . . . , zM )T

In a Multi-Objective Optimisation Problem, we wish to
find a set of values for the decision variables that optimizes
a set of objective functions. A decision vector−→x is said to
dominate a decision vector−→y (also written as−→x ≻ −→y ) iff:

fi(−→x ) ≥ fi(−→y ) ∀ i ∈ {1, 2, . . . ,M};

and
∃ i ∈ {1, 2, . . . ,M} | fi(−→x ) > fi(−→y ).

All decision vectors that are not dominated by any other
decision vector are callednon-dominatedor Pareto-optimal
and constitute the Pareto-optimal Front. These are solutions
for which no objective can be improved without detracting
from at least one other objective.

3.2 Characteristics

Among meta-heuristics, Evolutionary Algorithms (EAs)
are particularly desirable to solve MOOPs, primarily be-
cause of their population-based nature. This enables them
to capture the dominance relations in the population as a
vehicle to guide the search towards Pareto-optimal front.
They deal simultaneously with a set of possible solutions
(the so-called population) which unlike traditional mathe-
matical programming techniques, can find good approxi-
mations of Pareto-optimal set in a single run. Additionally,
EAs are less susceptible to the shape or continuity of the
Pareto-optimal front [5], whereas these two issues pose a
barrier to classical mathematical programming techniques.

EAs usually contain several parameters that need to be
‘tuned’ for each particular application. For completeness,
and to facilitate replicability, we give details of algorithmic
tuning in Section 4.2. In addition, since the EAs are stochas-
tic optimisation techniques, different runs tend to produce
different results. Therefore, multiple runs of the same algo-
rithm on a given problem are needed to statistically describe
their performance on that problem. For a more detailed dis-
cussion of the application of EAs in multi-objective optimi-
sation, the reader is referred to Coello et al. [6] and Deb
[9].

To solve the MONRP, Multi-Objective EAs need to ful-
fill two primary roles:

1. Guiding the search towards the Pareto-optimal set to
accomplish optimal or near-optimized solutions.



2. Maintaining a diverse population to achieve a well dis-
tributed non-dominated front, thereby fully exploring
the solution space.

3.3 NSGA-II

The Non-dominated Sorting Genetic Algorithm-II
(NSGA-II), introduced by Deb et al. [11] is an exten-
sion to an earlier Multi-Objective EA called NSGA de-
veloped by Srinivas and Deb [30]. The NSGA-II incor-
porates elitism to maintain the solutions of the best front
found. The rank of each individual is based on the level
of non-domination. The NSGA-II is a computationally ef-
ficient algorithm whose complexity isO(mN2), compared
to NSGA with the complexityO(mN3), wherem is the
number of objectives andN is the population size.

The population is sorted using the non-domination rela-
tion into several fronts. Each solution is assigned a fitness
value according to its non-domination level. In this way, the
solutions in better fronts are given higher fitness values. The
NSGA-II uses a measure of crowding distance to provide an
estimation of the density of solutions belonging to the same
front. This parameter is used to promote diversity within the
population. Solutions with higher crowding distance are as-
signed a higher fitness compared to those with lower crowd-
ing distance, thereby avoiding the use of the fitness sharing
factor with its associated computational cost [17].

Deb et al. [11] assumed that every individuali in the
population has two attributes: non-domination rank(irank)
and crowding distance(idistance).

A partial order≺n is defined as follows

i ≺ j if (irank < jrank)

or ((irank = jrank) and(idistance > jdistance))

That is, between two solutions with differing non-
domination ranks, the solution with the lower (better) rank
is preferred. Otherwise, if both solutions belong to the same
front, then the solution that is located in a less crowded re-
gion is preferred [11].

The algorithm can be described as follows. Initially, a
random parent populationP0 with sizeN is created. Tour-
nament selection, crossover, and mutation operators are
used to create a child populationQ0 of sizeN [11]. The
NSGA-II procedure executes the main loop described in Al-
gorithm 1.

The NSGA-II algorithm was applied to the Fairness
in Requirement Assignments Problem in order to identify
Pareto front in different scenarios.

Algorithm 1 : NSGA-II (main loop) Deb (2001)

while not stopping ruledo1

Let Rt = Pt ∪ Qt2

Let F = fast-non-dominated-sort(Rt)3

Let Pt+1 = φ and i = 14

while |Pt+1| + |Fi| ≤ N do5

Apply6

crowding-distance-assignment(Fi)
Let Pt+1 = Pt+1 ∪ Fi7

Let i = i + 18

end9

Sort(Fi,≺n)10

Let Pt+1 = Pt+1 ∪ Fi[1 : (N − |Pt+1|)]11

Let Qt+1 = make-new-pop(Pt+1)12

Let t = t + 113

end14

4 Experimental Set Up

4.1 Data Sets

This section describes the test data sets used to fulfill the
research tasks of fairness analysis in requirements assign-
ments. There are three data sets used in our experiments.

The first data set is generated randomly with 30 require-
ments and 5 customers according to the problem model.
The values and costs are assigned as follows: random
choices were made for value and cost; the range of costs
were from 1 through to 9 inclusive (zero cost is not per-
mitted). The range of values were from 0 to 5 inclusive
(zero value is permitted, indicating that the customer places
no value on, i.e. does not want, this requirement). This
simulates the situation where a customer ranks the choice
of requirements (for value) and the cost is estimated to fall
in a range, very low, low, medium, high, very high. The
authors’ experience indicates that customers prefer such a
coarse grained scale. While a finer level of granularity
may be more theoretically interesting for the research pur-
poses, in practice customers are uncomfortable with such
fine-grained value assignments.

The second data set is taken from Motorola [3] as shown
in Table 1. The Motorola data set has 4 customers and 35
requirements.

Table 2 shows the third data set that is taken from Greer
2004 [16]. The Greer data set has 5 customers and 20
requirements. Greer’s data does not contain information
about the cost of each requirement. For the purpose of feed-
ing this useful industrial data into our algorithm, the costof
the requirements were generated randomly within the range
from 10 to 1100, following a Gaussian distribution.



Table 1: Feature Data from Motorola
r1 r2 r3 r4 r5 r6 r7

100 50 300 80 70 100 1000

r8 r9 r10 r11 r12 r13 r14

40 200 20 1100 10 500 10

r15 r16 r17 r18 r19 r20 r21

10 10 20 200 1000 120 300

r22 r23 r24 r25 r26 r27 r28

50 10 30 110 230 40 180

r29 r30 r31 r32 r33 r34 r35

20 150 60 100 400 80 40

4.2 Algorithmic Tuning

The algorithm was run for a maximum of 10,000 func-
tion evaluations. The algorithm was executed 20 times for
each data set. The initial population was set to 200. A sim-
ple binary GA encoding was used, with each bit to code
for a decision variable (the inclusion or exclusion of a re-
quirement). The length of a chromosome is thus equal to
the number of requirements. Each experimental execution
of algorithms was terminated after 50 generation (i.e. after
10,000 evaluations). The genetic approach used the tour-
nament selection (with tournament size of 5), single-point
crossover and bitwise mutation for binary-coded GAs. The
crossover probability was set toPc = 0.8 and mutation
probability toPm = 1/n (wheren is the string length for
binary-coded GAs). Readers may refer to Goldberg [15]
for detailed information about GAs and also to Deb [9]
and Coello et al. [6] for a comprehensive review of multi-
objective evolutionary algorithms.

Table 2: Feature Data Set taken from Greer 2004
r1 r2 r3 r4 r5 r6 r7 r8 r9 r10

c1 4 2 1 2 5 5 2 4 4 4
c2 4 4 2 2 4 5 1 4 4 5
c3 5 3 3 3 4 5 2 4 4 4
c4 4 5 2 3 3 4 2 4 2 3
c5 5 4 2 4 5 4 2 4 5 2

r11 r12 r13 r14 r15 r16 r17 r18 r19 r20

c1 2 3 4 2 4 4 4 1 3 2
c2 2 3 2 4 4 2 3 2 3 1
c3 2 4 1 5 4 1 2 3 3 2
c4 5 2 3 2 4 3 5 4 3 2
c5 4 5 3 4 4 1 1 2 4 1

5 Results and Analysis

In this section, we present different fairness models in
requirement assignments and the results of applying the
NSGA-II algorithm to different problem instances. Three
experiments were conducted and the results shown in Figure
1, 2 and 3 respectively. In order to demonstrate the evolu-
tionary process of the NSGA-II algorithm, the initial popu-
lations, the populations generated by the median generation
and the final non-dominated solutions were plotted in the
figures. Each point represents a subset of requirements for
the next release. The small ‘•’, ‘ ∗’ and solid ‘N’ denote
the increasingly better solutions found. Therefore, the algo-
rithm’s progress towards the final Pareto front produced is
visualized by increasingly darker and larger points.

The results of the first experiment are shown in Figure
1 where all the populations are plotted for the three data
sets. In this experiment, the two objectives are: a) minimize
the standard deviation of the absolute number of fulfilled
requirements for each customer and b) maximize the overall
average number of fulfilled requirements for all customers.

We observe that the search techniques guide the popula-
tion towards the Pareto front. The optimal fronts are shown
in the results for both random and the Motorola data set. On
these two fronts, the standard deviation of fulfilled require-
ments increases with overall average number. This implies
that the more requirements are fulfilled, the less fairness is
provided to the customers. This is partly because the cus-
tomers in these two data sets demand different numbers of
requirements. As the number of the selected requirements
increases, it becomes easier for the algorithm to adjust the
allocations of fulfilled requirements to different customers
to obtain a lower standard deviation (more fairness). The
most top-right solid ‘N’ on the fronts denotes the solutions
in which all requirements for the customers are fulfilled.

In Figure 1(a), the eight ‘∗’ along theX–axis with zero
standard deviation show that NSGA–II is able to obtain sub-
sets of requirements that fulfill each customer with the same
number of requirements. However, in Figure 1(b), we can-
not observe this sort of “perfectly-fair” solution. This isbe-
cause of the difference between the sparsity pattern of the
Customer-Requirement matrix of these two data sets.

In the Motorola data set, every requirement is demanded
by only one customer exclusively, and the forth customer
requests only a single requirement. This pattern dramati-
cally increases the difficulty for NSGA–II to obtain the only
“perfectly-fair” solution that fulfills each customer with
only one requirement.

On the other hand, the result for the Greer data set
shows the standard deviation remains at zero throughout
the search. This is also because of the distribution of the
data, which, in this case is perfectly uniform. That is, in the
Greer data set, every customer requests every requirement,
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Figure 1: Results of Fairness on AbsoluteNumberof
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10 20 30 40 50 60 70
0

2

4

6

8

10

12

Average Value

S
ta

n
d

ar
d

 D
ev

ia
ti

o
n

(a) Result for Random Data Set

2 4 6 8 10 12 14 16 18 20
0

5

10

15

Average Value

S
ta

n
d

ar
d

 D
ev

ia
ti

o
n

(b) Result for Motorola Data Set

10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Average Value

S
ta

n
d

ar
d

 D
ev

ia
ti

o
n

(c) Result for Greer Data Set

Figure 2: Results of Fairness on AbsoluteValueof
Fulfilled Requirements
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Figure 3: Results of Fairness onPercentageof Fulfilled
Value and Cost

so all customers would have an equal number of fulfilled
requirements, no matter which requirements are selected in
the next release.

Figure 2 illustrates the results for the second experiment
in which the two objective functions are: a) minimize the
standard deviation of the absolute value of fulfilled require-
ments for each customer and b) maximize the overall av-
erage value of fulfilled requirements for all the customers.
On the fronts of these results, a similar trend is observed:
the degree of fairness decreases as the overall coverage in-
creases.

In the third experiment, information on the cost of the
requirements is taken into account. This allows us to obtain
fairness information within different budget constraints.
Four objectives are considered: a) minimizing the overall
cost of the next release, b) minimizing the standard devia-
tion of the cost spent on each customer, c) minimizing the
percentage of fulfilled value for each customer and d) max-
imizing the overall average fulfilled value for all customers.

Here, we consider the fairness on both cost and value
simultaneously. The results are plotted in Figure 3. It is
something of a challenge to visualize a four-dimensional so-
lution space in a two-dimensional figure. In this figure, each
bar represents an optimal solution on the Pareto front. The
location of each bar in the(x, y) plane shows the average
fulfilled value for all customers and the standard deviation
of fulfilled value for each customer respectively. The height
of each bar shows the overall cost for each optimal solution.
The standard deviation of the cost spent on each customer
is shown by the gray scale of each bar.

From the results for all the data sets, it can be seen that
as the overall fulfilled value increases along theX–axis,
the standard deviation of cost spend on the customers also
increases. This observation replicates the previous experi-
ments reported in this paper.

There is also an interesting observation in Figure 3(b).
There are no solutions in the ‘empty triangle’ area around
50% fulfillment on the average value. The reason for this
lies in the fact that the fourth customer in the Motorola data
set only requests a single requirement. Thus, the percentage
of fulfilled value for this customer has to be either 0% or
100%. Consider those solutions on the edge of this triangle,
when the overall percentage is growing between 0% and
50%, the fulfilled value for this customer stays at 0%. This
is because the other customer’s fulfillment is below 50%, if
the fourth customer has 100% fulfillment then the standard
deviation will increase and the solution will leave the edge.
Thus, on the edge of the triangle leading up to 50% overall
fulfillment, the standard deviation must increase if one of
the customer’s fulfillment remains at zero while the other
customer’s fulfillment increases.

The experiments show that as more requirements are ful-
filled, less fairness is provided to the customers. This is



partly due to the high variation in the customers’ number
of requirements in the examined data sets. However, fortu-
nately as the number of the selected requirements increases,
the algorithm has more scope in which to search for opti-
mally fair solutions. It was also observed that the quality of
final solutions in terms of fairness is partly dependent upon
the sparsity pattern of the Customer-Requirement matrices.
This is also the case for the search algorithm, i.e. sparser
customer-requirement matrixes tend to make problem more
difficult for the search algorithm.

6 Related Work

In the area of requirements engineering, several related
studies have been proposed for requirements analysis and
optimisation. Karlsson [20, 21, 27] provided the method-
ologies for assigning priorities to requirements and devel-
oping strategies for selecting an optimal set of requirements
for implementation. The Focal Point tool (marketed by
Telelogic) is based on this work.

Bagnall et al. (2001) [2] suggested the termNext Re-
lease Problemfor requirements planning and described the
various metaheuristic algorithms to find a high quality, but
possibly suboptimal, solution to balance customer requests.
Van den Akker [32] study a variation of the problem using
integer linear programming to find exact solutions within
budgetary constraints.

Zhang et al. [33] considered value and cost as two
separate criteria in their multi-objective next release prob-
lem (MONRP) formulation. They consider an integrated
value function, comprising of the values associated with
each customer using search-based techniques. Greer and
Ruhe [16] address software release planning by minimizing
total penalty and maximising total benefit in the form of an
integrated objective function with user defined weights for
each objective.

Problems associated with multiple customers with com-
pleting and conflicting view points has been known for
some time [23]. Hoh In at el. [18, 19] proposed the WinWin
model to help the stakeholders’ negotiation process based
on Multi-Criteria preference analysis. Another approach
to resolve stakeholder conflicts is the ViewPoint approach
[12, 13], which separates the different opinions among the
stakeholders and can detect conflicts automatically. In the
stakeholder requirements analysis problem, Robinson at el.
[1, 25] worked on a requirements negotiation model which
provided automated support to generate requirements reso-
lutions.

However, the present paper is the first to introduce tech-
niques for analysis of the trade-offs between different cus-
tomers’ notions of fairness in requirement allocation, where
there are multiple customers with potentially conflicting re-
quirement priorities and also possibly different views of

what would constitute fair and equitable solution.
Evolutionary multicriteria optimisation has traditionally

concentrated on problems comprising 2 or 3 objectives. Our
formulation comprises a relatively large number of objec-
tives. Such problems pose new challenges for algorithm de-
sign, visualization and implementation. In multi-objective
evolutionary search the populations are likely to be largely
composed of non-dominated solutions.

Fleming et al. [14] use progressive articulation of design
preferences to assist in reducing the region of interest for
the search and, thereby, simplifying the problem.

Corne and Knowles [8] compare a number of ranking
methods to address the shortcoming of existing evolutionary
algorithms for many-objective optimisation.

Deb and Kumar [10] suggest an interactive method to
incorporate user preferences in guiding the multi-objective
search. The idea is to reduce the search space by focusing
on the more favourable regions of the Pareto front. This ap-
proach has potential application in the multi-objective next
release problem provided that the user is prepared to iden-
tify their preferences during the search.

Though other authors have considered conflicts and ne-
gotiations, the present paper is the first to address the issue
of “fairness” in requirements analysis.

7 Conclusions

The paper introduces the concept of fairness in require-
ments analysis and optimisation using a new formulation
of Multi-Objective Next Release Problem. Three fairness
models were introduced to balance the requirements fulfill-
ments between the customers.

The work reported here is the first to address the issue of
fairness balance among different definitions of fairness. The
formulations adopted cover simplified scenarios. However,
even with the relatively simple formulations adopted in this
paper, it has been possible to use search based optimization
technique to reveal tensions between fairness definitions.

The experiments upon which this paper reports demon-
strate that search based techniques can be applied to real
world data sets and illustrate the way in which they reveal
hidden tensions implicit in these data sets. However, more
work is required to extend and evaluate the techniques.

Future work will focus on adapting the search based for-
mulations to cater for more ‘messy’ real world scenarios
in which requirements are partially unclear and subject to
change and for which the domain specific parameters are
both constrained and subject to estimation error. These aug-
mented scenarios would pose a significant challenge to any
approach. However, there are grounds for optimism. We
are also concerned to find ways to package and deliver our
approach in such a way that they can be used by working
requirements engineers in the context of existing tool sets.
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