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Abstract. Many real-world AI problems (e.g., in configuration) are weakly constrained, thus requiring a
mechanism for characterizing and finding the preferred solutions. Preference-based search (PBS) exploits
preferences between decisions to focus search to preferred solutions, but does not efficiently treat prefer-
ences on global criteria such as the total price or quality of a configuration. We generalize PBS to compute
balanced, extreme, and Pareto-optimal solutions for general CSPs, thus handling preferences on and be-
tween multiple criteria. A master-PBS selects criteria based on trade-offs and preferences and passes them
as an optimization objective to a sub-PBS that performs a constraint-based Branch-and-Bound search. We
project the preferences of the selected criterion to the search decisions to provide a search heuristic and to
reduce search effort, thus giving the criterion a high impact on the search. The resulting method will be
particularly effective for CSPs with large domains that arise if configuration catalogues are large.
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search

Introduction

In this paper, we consider combinatorial problems that are weakly constrained and that
lack a clear global optimization objective. Many real-world AI problems have these char-
acteristics: examples can be found in configuration, design, diagnosis, but also in tempo-
ral reasoning and scheduling. An example for configuration is a vacation adviser system
that chooses vacation destinations from a potentially very large catalogue. User require-
ments (e.g., about desired vacation activities such as wind-surfing, canyoning), compat-
ibility constraints between different destinations, and global ‘resource’ constraints (e.g.,
on price) usually have a large set of possible solutions. In spite of this, most of the so-
lutions will be discarded as long as more interesting solutions are possible. Preferences
on different choices and criteria are an adequate way to characterize the interesting so-
lutions. For example, the user may prefer Hawaii to Florida for doing wind-surfing or
prefer cheaper vacations in general.

Different methods for representing and treating preferences have been developed in
different disciplines. In AI, preferences are often treated in a qualitative way and specify
an order between hypotheses, default rules, or decisions. Examples for this have been
elaborated in nonmonotonic reasoning (Brewka, 1989; Delgrande and Schaub, 2000)

∗ Previous versions of this article have been presented at CP-AI-OR’02 and AAAI-02.
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and constraint satisfaction (Junker, 2000). Here, preferences can be represented by a
predicate or a constraint, which allows complex preference statements (e.g., dynamic
preferences, soft preferences, meta-preferences and so on). Furthermore, preferences
between search decisions also allow us to express search heuristics and to reduce search
effort for certain kinds of scheduling problems (Junker, 2000).

In our vacation adviser example, the basic decisions consist of choosing one (or
several) destinations and we can thus express preferences between individual destina-
tions. However, the user preferences are usually formulated on global criteria, such as
the total price, quality, and distance, which are defined in terms of the prices, qualities,
and distances of all the chosen destinations. We thus obtain a multi-criteria optimization
problem.

We could try to apply the preference-based search (Junker, 2000) by choosing the
values of the different criteria before choosing the destinations. However, this method
has severe draw-backs:

1. Choosing the value of a global criterion highly constrains the remaining search prob-
lem and usually leads to thrashing behaviour.

2. The different criteria are minimized in a strict order. We get solutions that are optimal
w.r.t. some lexicographic order, but none that represents compromises between the
different criteria. For example, the system may propose a cheap vacation of bad
quality and an expensive vacation of good quality, but no compromise between price
and quality.

Hence, a naive application of preferences between decisions to multi-criteria opti-
mization problems can lead to thrashing and lacks a balancing mechanism.

Multi-criteria optimization (MCO) avoids those problems. Operations research
provides different methods for solving a multi-criteria optimization problem. For ex-
ample, the problem can be mapped to a single or to a sequence of single-criterion op-
timization problems which are then solved by traditional methods. Furthermore, there
are several notions of optimality such as Pareto-optimality, lexicographic optimality,
and lexicographic max-order optimality. A recent overview of this large research field
of multi-criteria optimization can be found in (Ehrgott and Gandibleux, 2000). Based
on these methods, we can thus determine ‘extreme solutions’, where some criteria is
favoured over other criteria, as well as ‘balanced solutions’, where the different crite-
ria are as close together as possible and which represent compromises. This balancing
requires that the different criteria are comparable, which is usually achieved by a stan-
dardization method. The balancing is not achieved by weighted sums of the different
criteria, but by a new lexicographic approach that has been studied by different authors
(cf. Behringer, 1981; Ehrgott, 1997). According to this approach, we have to proceed as
follows in order to find a compromise between a good price and a good quality: we first
minimize the maximum between (standardized versions of) price and quality, fix one of
the criteria (e.g., the standardized quality) at the resulting minimum, and then minimize
the other criterion (e.g., the price).
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In this paper, we will develop a modified version of preference-based search that
solves a minimization subproblem for finding the best value of a given criterion instead
of trying out the different value assignments. Furthermore, we also show how to compute
Pareto-optimal and balanced solutions with this new version of preference-based search.

Multi-criteria optimization as studied in operations research also has draw-backs.
Qualitative preferences as elaborated in AI can help to address the following issues:

1. We would like to state that certain criteria are more important than other criteria with-
out choosing a total ranking of the criteria as required by lexicographic optimality.
For example, we would like to state a preference between a small price and a high
quality on the one hand and a small distance on the other hand, but we would still like
to get a solution where the price is minimized first and a solution where the quality is
maximized first.

2. Multi-criteria optimization specifies preferences on global criteria, but it does not
translate them to preferences between search decisions. In general, it is not evident
how to derive a search heuristic automatically from the selected optimization objec-
tive. Adequate preferences between search decisions provide such a heuristic and
also allow a preference-based search to be applied to reduce the search effort for the
subproblem.

In order to address the first point, we compare the different notions of optimal
solutions with the different notions of preferred solutions that have been elaborated in
nonmonotonic reasoning (NMR). There have been two major approaches to treat a strict
partial order between default rules. Geffner and Pearl (1992) and Grosof (1991) lift
this order to a partial order among solutions and consider the solutions that are the
most preferred ones with respect to this order. Brewka (1989) chooses a lineariza-
tion of the partial order and then compares the solutions lexicographically by using
the chosen linearization as base order. Each linearization leads to a single preferred
solution. Different preferred solutions can be obtained by choosing different lineariza-
tions. In (Junker, 1997), we showed that each preferred solution in the sense of Brewka
(B-preferred solution) corresponds to a preferred solution in the sense of Geffner and
Grosof (G-preferred solution). In this paper, we adapt these definitions to multi-criteria
optimization. Instead of a strict partial order between default rules, we introduce two
kinds of preferences:

1. Preferences on criteria: for each criterion, we consider a strict partial order between
its possible values and we seek a best value w.r.t. this order.

2. Preferences between criteria: if a criterion z1 is more important than z2, then any
value assignment to z1 is more important than any value assignment to z2.

If no preferences between criteria are given, the Pareto-optimal solutions corre-
spond to the G-preferred solutions and the lexicographic-optimal solutions correspond to
the B-preferred solutions. Preferences between criteria can easily be taken into account
by the latter methods. For balanced solutions, we present a variant of Ehrgott’s definition
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Figure 1. Merging concepts from MCO and NMR.

that additionally respects preferences between criteria and we define preferred solutions
in the style of Ehrgott (E-preferred solutions). Thus, we merge concepts from MCO and
NMR as illustrated in figure 1. Since the preference-based search method is dedicated to
B-preferred solutions, we develop suitable translations of a multi-criteria optimization
problem such that the G- and E-preferred solutions of the original problem correspond
to the B-preferred solutions of the translations. We thus obtain a system where the user
can express preferences on the criteria and preferences between the criteria and choose
between extreme solutions, balanced solutions and Pareto-optimal solutions.

The preference-based search method explores the given criteria in different orders
that are compatible with the preferences between criteria. When preference-based search
selects a criterion, it solves a minimization subproblem to determine the best value for
this criterion. Once this value has been found, preference-based search tries out two
different possibilities: either it assigns the best value to the selected criterion or it tries to
refute this assignment by optimizing other criteria first. Thus, preference-based search
sets up a sequence of minimization subproblems with changing objectives. These sub-
problems can be solved by different methods, for example constraint-based Branch-and-
Bound. This method imposes an upper-bound constraint on the objective. Although the
upper bound is reduced each time a solution is found, the objective has quite a weak
impact on the search space. In particular, the first solution does not depend at all on the
objective since no upper bound is given yet.

We can improve the search behaviour by projecting the preferences of the selected
criterion to the search decisions. For example, if we want to minimize the price of
our trip we will choose cheaper hotels first. We will introduce a general method for
preference projection, which we then apply to normal objectives such as sum, min, max,
and element constraints. It is important to note that these projected preferences will
change from one subproblem to the other. The projected preferences will be used to
guide the search. Depending on the projected preferences, completely different parts
of the search space may be explored and, in particular, the first solution depends on the
chosen objective. Furthermore, the projected preferences preserve Pareto-optimality and
we can reduce search effort by limiting search to the Pareto-optimal solutions that are
defined by the projected preferences. This can be achieved by a suitable adaption of
preference-based search to the subproblem as indicated in figure 2.

The paper is organized as follows: we first introduce different notions of optimality
from multi-criteria optimization (section 1) and then extend them to cover preferences
between criteria (section 2). We then show how these preferences can be formulated
in a general preference programming framework (section 3). After this, we develop
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Figure 2. Multiple subsearches driven by Master-PBS.

new versions of preference-based search for computing the different kinds of preferred
solutions (section 4). Finally, we introduce preference projection (section 5). The paper
supposes some basic background in optimization as well as constraint programming.

1. Preferences on criteria

We first introduce different notions of optimality from multi-criteria optimization and
then link them to definitions of preferred solutions from nonmonotonic reasoning.

Throughout this paper, we consider combinatorial problems that have the decision
variables X := (x1, . . . , xm), the criteria Z := (z1, . . . , zn), and the constraints C. We
suppose that each decision variable xi has a fixed domain D(xi) that is finite and that
specifies the possible values for xi . In our vacation adviser problem, xi represents the ac-
commodation of the ith vacation day. The constraints in C have the form C(x1, . . . , xm).
Each constraint symbol C has an associated relation RC . In our example, there may be
compatibility constraints (e.g., the destinations of two successive vacation stops should
be neighbouring cities) and requirements (e.g., at least one destination should allow
wind-surfing and at least one should allow museum visits). Each criterion zi has a de-
finition in the form of a functional constraint zi := fi(x1, . . . , xm) and a finite domain
D(zi). Examples for criteria are price, quality, and distance (zone). The price is a sum
of element constraints:

price :=
m∑

i=1

price(xi).

The total quality is defined as the minimum of the individual qualities and the total dis-
tance is the maximum of the individual distances. The prices, qualities, and destinations
of the individual accommodations are given by tables such as the catalogue in table 1.

A solution S of (C,X ) is a set of assignments {x1 = v1, . . . , xm = vm} of values
from D(xi) to each xi , such that all constraints in C are satisfied, i.e. (v1, . . . , vm) ∈ RC

for each constraint C(x1, . . . , xm) ∈ C. We write vS(zi) for the value fi(v1, . . . , vm) of
zi in the solution S.

Furthermore, we introduce preferences between the different values for a criterion
zi and thus specify a multi-criteria optimization problem. Let ≺zi

⊆ D(zi) × D(zi) be a
strict partial order for each zi . For example, we choose < for price and distance and >

for quality. We write u � v iff u ≺ v or u = v.
Often, we choose preferences on criteria that satisfy specific properties. Table 2

specifies the properties of strict partial orders, ranked orders, and strict total orders.
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Table 1
Catalogue of a fictive hotel chain.

Destination Price Quality Distance Activities

Athens 60 1 4 museums,
wind-surfing

Barcelona 70 2 3 museums,
wind-surfing

Florence 80 3 3 museums
London 100 5 2 museums
Munich 90 4 2 museums
Nice 90 4 2 wind-surfing

. . .

Table 2
Properties of strict orders.

Strict partial order: binary relation ≺ s.t.
u ≺ v implies u �= v (irreflexivity)
u ≺ v, v ≺ w implies u ≺ w (transitivity)

Ranked order: strict partial order ≺ s.t.
u ≺ v, v ≡ w implies u ≺ w

u ≡ v, v ≺ w implies u ≺ w

Strict total order: strict partial order ≺ s.t.
v ≺ w or v = w or w ≺ v

There is a strict hierarchy between these notions: each strict total order is a ranked order
and each ranked order is a strict partial order. Ranked orders ensure that incomparable
elements can replace each other in comparisons of the form u ≺ v. Two elements v and
w are incomparable, i.e. v ≡ w, iff neither v ≺ w, nor w ≺ v is true. Due to this, we
can say that a ranked order puts incomparable elements in a layer of same priority. If
≺ is a ranked order then there exists a (unique) function rank≺ that maps the values to
ordinals 1, 2, . . . , k such that the following correspondence holds

v ≺ w iff rank≺(v) < rank≺(w) (1)

and the largest rank k is as small as possible.
Multiple criteria optimization provides different notions of optimality. The most

well-known examples are Pareto optimality, lexicographic optimality, and optimality
w.r.t. weighted sums.

A Pareto-optimal solution S is optimal in the following sense. If another solution
S∗ is better than S w.r.t. a criterion zk then S is better than S∗ for some other criterion zj :

Definition 1. A solution S of (C,X ) is a Pareto-optimal solution of (C,X ,Z,≺zi
) iff

there is no other solution S∗ of (C,X ) such that the following conditions hold:

1. vS∗(zk) ≺zk
vS(zk) for a k, and

2. vS∗(zi) �zi
vS(zi) for all i.
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Figure 3. Pareto-optimal solutions.

Pareto-optimal solutions narrow down the solution space since non-Pareto-optimal
solutions do not appear to be acceptable. However, their number is usually too large to
enumerate them all. Figure 3 shows the Pareto-optimal solutions S1 to S8 for the two
criteria z1 and z2 that need to be minimized. Other solutions are contained in the area
that is surrounded by the dashed line.

A lexicographic solution is based on a ranking of the different criteria. We express
such a ranking by a permutation π of the positions 1, . . . , n. We use πi for the index of
the criterion at the ith position:

π(Z) := (zπ1, . . . , zπn
). (2)

Let VS(π(Z)) be the tuple of values of these criteria:

VS

(
π(Z)

) := (
vS(zπ1), . . . , vS(zπn

)
)
. (3)

As an example, consider three criteria z1, z2, z3. We obtain six permutations:

π1 π2 π3 π(Z) VS(π(Z))

1. 1 2 3 z1, z2, z3 (vS(z1), vS(z2), vS (z3))

2. 1 3 2 z1, z3, z2 (vS(z1), vS(z3), vS (z2))

3. 2 1 3 z2, z1, z3 (vS(z2), vS(z1), vS (z3))

4. 2 3 1 z2, z3, z1 (vS(z2), vS(z3), vS (z1))

5. 3 1 2 z3, z1, z2 (vS(z3), vS(z1), vS (z2))

6. 3 2 1 z3, z2, z1 (vS(z3), vS(z2), vS (z1))

Given a permutation π , we compare two solutions S1 and S2 by a lexicographic order
≺lex, which uses π(Z) as ranking of the criteria. The values at position i are compared
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w.r.t. the preferences on the criterion ≺zπi
at position i. Let VS1(π(Z)) := (v1, . . . , vn)

and VS2(π(Z)) := (w1, . . . , wn), We define

(v1, . . . , vn) ≺π
lex (w1, . . . , wn) iff

∃k: vk ≺zπk
wk and vi = wi for all i = 1, . . . , k − 1.

(4)

Definition 2. Let π be a permutation of 1, . . . , n. A solution S of (C,X ) is an extreme
solution of (C,X ,Z,≺zi

) iff there is no other solution S∗ of (C,X ) s.t. VS∗(π(Z)) ≺π
lex

VS(π(Z)).

Different rankings lead to different extreme1 solutions which are all Pareto-
optimal. In figure 3, we obtain the extreme solutions S1 where z1 is preferred to z2

and S8 where z2 is preferred to z1. Extreme solutions can be determined by solving
a sequence of single-criterion optimization problems starting with the most important
criterion.

If we cannot establish a preference order between different criteria then we would
like to be able to find compromises between them. Although weighted sums (with equal
weights) are often used to achieve those compromises, they do not necessarily produce
the most balanced solutions. If we choose the same weights for z1 and z2, we obtain S7

as the optimal solution. Furthermore, if we slightly increase the weight of z1 the optimal
solution jumps from S7 to S2. Hence, weighted sums, despite their frequent use, do not
appear a good method for balancing.

In (Ehrgott, 1997), Ehrgott uses lexicographic max-orderings to determine optimal
solutions. In this approach, values of different criteria need to be comparable. For this
purpose, we assume that the criteria zi have a common domain D and that the preference
orders ≺zi

of the different criteria are equal to a strict total order <D. This usually
requires some scaling or standardization of the different criteria. We also introduce the
reverse order >D which satisfies zi >D zj iff zj <D zi . When comparing two solutions
S1 and S2, the values of the criteria in each solution are first sorted w.r.t. the order >D.
The sorted tuples are then compared by a lexicographic order ≺lex. It is important to note
that this sorting can lead to different permutations of the criteria if different solutions are
considered. We describe the sorting by a permutation ρS that depends on a given solution
S and that satisfies two conditions:

1. ρS sorts the criteria in a decreasing order: if vS(zρS
i
) >D vS(zρS

j
) then i < j .

2. ρS does not change the order if two criteria have the same value: if i < j and
vS(zi) = vS(zj ) then ρS

i < ρS
j .

Definition 3. A solution S of (C,X ) is a balanced solution of (C,X ,Z,<D) iff there
is no other solution S∗ of (C,X ) s.t. VS∗(ρS∗

(Z)) ≺lex VS(ρ
S(Z)).

Balanced solutions are Pareto-optimal and they are those Pareto-optimal solutions
where the different criteria are as close together as possible. In the example of figure 3,
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we obtain S5 as balanced solution. According to Ehrgott, it can be determined as follows:
first max(z1, z2) is minimized, i.e. max(z1, z2) is used as objective2 of the constraint
satisfaction problem (C,X ). If m is the resulting optimum, the constraint max(z1, z2) =
m is added before min(z1, z2) is minimized. Balanced solutions can thus be determined
by solving a sequence of single-criterion optimization problems.

2. Preferences between criteria

If many criteria are given it is natural to specify preferences between different criteria as
well. For example, we would like to specify that a (small) price is more important than
a (short) distance without specifying anything about the quality. We therefore introduce
preferences between criteria in the form of a strict partial order ≺Z ⊆ Z × Z . These
preferences express a notion of relative importance and it is natural to require that this
notion is transitive and irreflexive.

Preferences on criteria and between criteria can be aggregated to preferences be-
tween assignments of the form zi = v. Let ≺ be the smallest relation satisfying the
following two conditions: 1. If u ≺zi

v then (zi = u) ≺ (zi = v) and 2. If zi ≺Z zj then
(zi = u) ≺ (zj = v) for all u, v. Hence, if a criteria zi is more important than zj , then
any assignment to zi is more important than any assignment to zj . In general, we could
also have preferences between individual value assignments of different criteria. In this
paper, we simplified the structure of the preferences in order to keep the presentation
simple.

In nonmonotonic reasoning, those preferences ≺ between assignments can be used
in two different ways:

1. as specification of a preference order between solutions,

2. as (incomplete) specification of a total order (or ranking) between all assignments,
which is in turn used to define a lexicographic order between solutions.

The Ceteris–Paribus preferences (Boutilier et al., 1997) and the G-preferred solu-
tions of (Grosof, 1991; Geffner and Pearl, 1992) follow the first approach, whereas the
second approach leads to the B-preferred solutions of (Brewka, 1989; Junker, 1997). We
will now adapt the definitions in (Junker, 1997) to the specific preference structure of
this paper.

2.1. Generalizing extreme solutions

In the definition of lexicographic optimal solutions, a single ranking of the given criteria
is considered. In the definition of B-preferred solutions, we consider all rankings that
respect the given preferences between the criteria. The following definition has been
adapted from (Brewka, 1989; Junker, 1997) to our specific preference structure:
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(a) (b)

Figure 4. Preferred solutions.

Definition 4. A solution S of (C,X ) is a B-preferred solution of (C,X ,Z,≺) if there
exists a permutation π such that (1) π respects ≺Z (i.e. zπi

≺Z zπj
implies i < j )

and (2) there is no other solution S∗ of (C,X ) satisfying VS∗(π(Z)) ≺π
lex VS(π(Z)).

The B-preferred solution for π can be computed by solving a sequence of mini-
mization problems if all ≺zi

are ranked orders. Let C0 := C and

Ci := Ci−1 ∪ {zπi
= m},

where

m = min≺zπi

{
vS(zπi

) | S is a solution of (Ci−1,X )
}
.

Each solution of the resulting set Cn is a B-preferred solution and each B-preferred so-
lution is a solution of a set Cn of some permutation π . Figure 4 shows different kinds
of preferred solutions for three criteria z1, z2, z3 that are all minimized and that respect
the preferences z1 ≺Z z3 and z2 ≺Z z3. The B-preferred solutions are S1, S8 (cf. fig-
ure 4(b)). Each B-preferred solution corresponds to an extreme solution. If there are
no preferences between criteria, each extreme solution corresponds to some B-preferred
solution.

If there are preferences between criteria certain extreme solutions may not be B-
preferred. For example, in figure 4(a), S15 is an extreme solution, which is obtained if
first the distance z3 is minimized and then the price z1. However, this ranking of the
criteria does not respect the given preferences.
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2.2. Generalizing Pareto-optimal solutions

Adapting the G-preferred solutions of (Junker, 1997) to the specific preference structure
yields the following definition.

Definition 5. A solution S of (C,X ) is a G-preferred solution of (C,X ,Z,≺) if there
is no other solution S∗ of (C,X ) such that vS(zk) �= vS∗(zk) for some k and all i with
vS(zi) �= vS∗(zi) satisfy at least one of the following conditions: (1) vS∗(zi) ≺zi

vS(zi)

or (2) there exists a j s.t. zj ≺Z zi and vS∗(zj ) �= vS(zj ).

A G-preferred solution S is optimal in the following sense. If another solution
S∗ is better than S w.r.t. a criterion zi then there exists a more important criterion zj

such that S and S∗ differ on zj . Then either S is better than S∗ on zj or another crite-
rion zk exists, such that S and S∗ differ on zk. We cannot repeat this argumentation an
infinite number of times since ≺Z does not have infinite descending chains due to the
finiteness of Z . Hence, we finally end up with a criterion zk∗ that is more important
than zi and for which S is better than S∗. Hence, a criterion of a G-preferred solution
can become worse if a more important criterion is improved. In figure 4(b), S1 to S8

are G-preferred if z1 ≺Z z3 and z2 ≺Z z3 are given. Each G-preferred solution corre-
sponds to a Pareto-optimal solution. If there are no preferences between criteria, each
Pareto-optimal solution corresponds to some G-preferred solution.

Proposition 1. Let P be (C,X ,Z,≺). If S is a G-preferred solution of P then S is a
Pareto-optimal solution of P. If S is a Pareto-optimal solution of P and ≺Z= ∅ then S

is a G-preferred solution of P.

However, if there are preferences between criteria, certain Pareto-optimal solutions
S are not G-preferred. There can be a Pareto-optimal solution S that is better than a
G-preferred solution S∗ for a criterion zi , but worse for a more important criterion zj

(i.e. zi ≺Z zj ). In this case, the G-preferred solution S∗ is preferred to S meaning that
S is not G-preferred. In figure 4(a), S9 to S17 are Pareto-optimal, but not G-preferred.
For example, S9 is not G-preferred since S1 and S9 differ on distance and price. S1 has
a better price than S9 and thus improves S9 w.r.t. this criterion. The fact that S9 has a
better distance than S1 is compensated by the fact that S1 and S9 differ on a criterion that
is more important than the distance, namely the price.

In general, we may get new G-preferred solutions if we add new constraints to our
problem. However, adding upper bounds to best criteria does not add new G-preferred
solutions. We say z is a ≺Z-best criterion iff there is no z∗ s.t. z∗ ≺Z z:

Proposition 2. Let z be a ≺Z -best criterion. S is a G-preferred solution of (C ∪
{z �z u},X ,Z,≺) iff S is a G-preferred solution of (C,X ,Z,≺) and vS(z) �z u.

Although this property appears to be trivial it is not satisfied for the B-preferred
solutions. The property will be essential for computing G-preferred solutions.
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Furthermore, we can eliminate a best criterion from a problem by assigning a best
value to this criterion:

Proposition 3. Let z be a ≺Z -best criterion and v be a ≺z-best value for z. S is
a G-preferred solution of (C ∪ {z = v},X ,Z,≺) iff S is a G-preferred solution of
(C,X ,Z − {z},≺) and vS(z) = v.

In (Junker, 1997), it has been shown that each B-preferred solution is a G-preferred
one, but that the converse is not true in general.

Proposition 4. Let P be (C,X ,Z,≺). Each B-preferred solution of P is also a
G-preferred solution of P.

In figure 4(b), S2 to S7 are G-preferred, but not B-preferred. These solutions assign
a worse value to z1 than the B-preferred solution S1, but a better value than S8. Similarly,
they assign a better value to z2 than S8, but a worse value than S1. It is evident that such
a case cannot arise if each criteria has only two possible values. Hence, we get an
equivalence in the following case, where no compromises are possible:

Proposition 5. Let P be (C,X ,Z,≺). If ≺Z is a ranked order and there are no three so-
lutions S1, S2, S3 of (C,X ) such that vs1(z) ≺z vs2(z) and vs3(z) ��z vs2(z) for a criterion
z then each G-preferred solution of P is also a B-preferred solution of P.

In general, this equivalence does not hold. However, propositions 2 and 5 point
out a possibility for mapping G-preferred solutions to B-preferred solutions if the order
≺Z is ranked. The basic idea is to replace the original criteria by binary criteria that are
satisfied if the original criteria are smaller or equal to an upper bound.

Let z be a criterion in Z and let v be a possible value for z. We introduce a binary
criterion uz,v which is equal to 1 if and only if the criterion z has a value smaller or equal
to v:

uz,v :=
{

1 if z �z v,

0 otherwise.
(5)

Let U be the set of these upper-bound criteria. It is important to note that the value of a
binary criterion uz,v in a solution S is entirely determined by the value of the criterion
z in S. Hence, if we know the values of the criteria in a G-preferred solution, we can
determine the values of the binary criteria. Vice versa, if we know the values of the
binary criteria, we can determine the values of the original criteria: vS(z) is equal to the
≺z-smallest value w such that vS(uz,w) is equal to one. We can thus replace the set of
original criteria Z by U in the translation of the original problem.

We maximize each uz,v, which is expressed by the following preferences on the
binary values:

1 ≺′
uz,v

0. (6)
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The preferences between the criteria Z are mapped to corresponding preferences
between the criteria U . Given two criteria zi and zj the following correspondence holds
for all upper bounds ui and uj :

zi ≺Z zj implies uzi ,vi
≺′

U uzj ,vj
. (7)

If the order ≺Z is ranked then ≺′
U is ranked as well. We then call the resulting problem

(C,X ,U ,≺′) the bound-translation of (C,X ,Z,≺).
The G-preferred solutions are preserved by this translation.

Proposition 6. Let P be (C,X ,Z,≺). S is a G-preferred solution of P iff S is a
G-preferred solution of the bound-translation of P.

The bound-translation matches the conditions of proposition 5 since all criteria in
U are binary and since we suppose that ≺Z is ranked. Hence, the G-preferred solutions
correspond to the B-preferred solutions of the bound-translation:

Theorem 1. Let P be (C,X ,Z,≺) and ≺Z be a ranked order. S is a G-preferred solu-
tion of P iff S is a B-preferred solution of the bound-translation of P.

If the order ≺Z is not ranked, then the bound-translation is not sufficient to estab-
lish a correspondence between B- and G-preferred solution. Future work is needed to
address this more general case.

2.3. Generalizing balanced solutions

So far, we simply adapted existing notions of preferred solutions to our preference struc-
ture and related them to well-known notions of optimality. We now introduce a new kind
of preferred solution that generalizes the balanced solutions. We want to be able to bal-
ance certain criteria, e.g., the price and the quality, but prefer these two criteria to other
criteria such as the distance. Hence, we limit the balancing to certain groups of criteria
instead of finding a compromise between all criteria. For this purpose, we partition Z
into mutually disjoint sets G1, . . . ,Gk of criteria. Given a criterion z, we also denote its
group by G(z). The criteria in a single group Gi will be balanced. The groups them-
selves are handled by using a lexicographic approach. Thus, we can treat preferences
between different groups, but not between different criteria of a single group. Given
a strict partial order ≺G between the Gis, we can easily define an order ≺Z between
criteria: if G1 ≺G G2 and zi ∈ G1, zj ∈ G2 then zi ≺Z zj . Hence, the preferences
between criteria are easy to acquire. If we want to balance several criteria we put them
into the same group. If there are several groups we will determine a balancing for one
group after another. Preferences between groups constrain the possible orderings of the
groups. The most natural case is obtained if the groups are totally ordered. Otherwise,
multiple orders of the groups can be considered.

We now combine definitions 4 and 3. Again, we assume that the preference orders
≺zi

of the different criteria are equal to a strict total order <D. As in definition 4, we first
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choose a global permutation π that respects the preferences between groups. We then
locally sort the values of each balancing group in a decreasing order. We describe this
local sorting by a permutation θS that depends on a given solution S and that satisfies
three conditions:

1. θS can only exchange variables that belong to the same balanced group: G(zi) =
G(zθS

i
).

2. θS sorts the criteria of each group in a decreasing order: if vS(zθS
i
) >D vS(zθS

j
) and

G(zθS
i
) = G(zθS

j
) then i < j .

3. θS does not change the order if two criteria of the same group have the same value:
if i < j , vS(zi) = vS(zj ), and G(zi) = G(zj ) then θS

i < θS
j .

Definition 6. A solution S of (C,X ) is an E-preferred solution of (C,X ,Z,≺) if there
exists a permutation π such that (1) π respects ≺Z (i.e. zπi

≺Z zπj
implies i < j )

and (2) there is no other solution S∗ of (C,X ) s.t. VS∗(θS∗
(π(Z))) ≺lex VS(θ

S(π(Z))).

The concatenation of the two permutations π and θS∗
deserves a short explana-

tion. Firstly, we apply π in order to determine an ordering zπ1, . . . , zπn
of the criteria

that respects the preferences between criteria. Let us say that this ordering is equal to
p1, . . . , pn, i.e. let pi be equal to zπi

. Secondly, we apply θS∗
to p1, . . . , pn result-

ing in the ordering pθS∗
1

, . . . , pθS∗
n

. It is now easy to see that VS(θ
S(π(Z))) is the tuple

(vS(zπ
θS
1
), . . . , vS(zπ

θS
n

)).

In figure 4(b), S11 and S12 are balanced solutions w.r.t. the standardized versions
of price, quality, and distance. This notion does not take into account that the distance
is less important than price and quality (z1 ≺Z z3 and z2 ≺Z z3). If we determine the
E-preferred solutions, we consider two groups. The more important group contains the
price and quality, whereas the second group contains the distance. In order to obtain
the E-preferred solution S5, we first compute a balanced solution of group 1 and then
minimize the single criterion of group 2. In this case, neither the balanced solutions
are E-preferred, nor the E-preferred solutions are balanced. However, if there is only a
single group, E-preferred solutions coincide with balanced solutions.

Interestingly, we can map E-preferred solutions to B-preferred solutions if we
introduce suitable variables and preferences. We explain the idea for three criteria
Z3 := {z1, z2, z3} and we suppose that the common strict total order <D is the increasing
order on integers, meaning that all three criteria are minimized. The first step consists
in minimizing the criterion that has the worst value in a solution. For this purpose, we
introduce a new criterion

ŷ3 := max(z1, z2, z3) (8)

by using a max-expression.3 Given the best value v3 for ŷ3, we then know that at least
one criterion zk has the value v3 in a preferred solution S and that the other criteria in
Z2 := {z1, z2, z3} − {zk} have the same or a better value. We can further compare the
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remaining solutions by comparing the values of the criteria in Z2 after setting ŷ3 to v3.
We therefore minimize the maximum of the criteria in Z2. We can do this although
we do not know zk and the elements of Z2. The trick is to consider all possibilities for
Z2, namely {z1, z2}, {z1, z3}, and {z2, z3}. We determine the maximum of each of these
combinations, namely max(z1, z2), max(z1, z3), max(z2, z3), and distinguish two cases:

1. If zk is in a set {zi, zj } of two criteria then max(zi, zj ) has the value v3 in a solution.

2. If zk is not a set {zi, zj } of two criteria then this set is equal to Z2 and max(zi, zj )

corresponds to our objective, which has a value smaller or equal to v3.

We can thus prove that minimizing

ŷ2 := min
(
max(z1, z2), max(z1, z3), max(z2, z3)

)
(9)

determines the best value v2 of the second worst criterion in a solution. After assigning
v2 to ŷ2, we minimize

ŷ1 := min(z1, z2, z3) (10)

in order to find the best value v1 for the third worst criterion (i.e. the best criterion in this
example).

We now discuss the general case. For each group G of cardinality nG, we use the
following min-max-variables yG,nG

, . . . , yG,1. The criterion yG,i is minimized if the best
values of all, but i criteria have been found. Since we do not know which of the criteria
are remaining we determine the maximum of each subset of size i and take the minimum
of these maxima as explained above:

yG,i := min<D

{
max<D

(X) | X ⊆ G s.t. |X| = i
}
, (11)

where max<D
(X) := max<D

{z | z ∈ X}. The min-max-variables can directly be ex-
pressed in a constraint programming language. Due to the exponential size of the expres-
sion, this is only feasible for a small number of criteria. For a large number of criteria, an
option for future work is the development of a global constraint. Let Ẑ := {ẑ1, . . . , ẑn}
be the set of all of these min-max-variables. The ẑi are arranged in an order that pre-
serves the group of position i: if the criterion zi belongs to group G then ẑi also belongs
to group G and is equal to yG,j for some j .

We now adapt the preferences ≺ to the new criteria and we denote the result by ≺̂.
The preference order ≺̂yG,i

of all criteria yG,i is equal to the strict total order <D. The
preferences ≺̂Ẑ between the criteria Ẑ satisfy two properties:

1. The following preferences ensure that min-max-variables for larger subsets X are
more important:

yG,i≺̂Ẑ yG,i−1 for i = nG, . . . , 2. (12)

2. A preference between a group G∗ and a group G can be translated into a preference
between the last min–max-variable of G∗ and the first one of G:

yG∗,1≺̂Ẑ yG,nG
. (13)
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We call the resulting problem (C,X , Ẑ, ≺̂) the min-max-translation of (C,X ,Z,≺).
The E-preferred solutions then correspond to the B-preferred solutions of the trans-

lated criteria and preferences:

Theorem 2. Let P be (C,X ,Z,≺). S is an E-preferred solution of P iff S is a
B-preferred solution of the min-max-translation of P.

We have thus established variants of Pareto-optimal, extreme, and balanced solu-
tions that take into account preferences between criteria. On the one hand, we gain a
better understanding of the existing preferred solutions by this comparison with notions
from multi-criteria optimization. On the other hand, we obtain a balancing mechanism
that fits well into the qualitative preference framework.

3. Preference programming

In the previous section, we defined preferred solutions based on preferences on criteria
and between criteria, but we did not discuss how these preferences can be specified. For
this purpose, we enhance traditional constraint programming by primitives for stating
preferences. We thus obtain a system of preference programming, which is described
in (Junker and Mailharro, 2003b) in detail. Preference programming has been imple-
mented in ILOG JCONFIGURATOR 2.0 (ILOG, 2002) and supports different preference-
based problem solving tasks such as searching for a solution guided by preferences,
finding a preferred explanation, and satisfying user preferences. Furthermore, JCON-
FIGURATOR combines an expressive constraint language with a description logic for de-
scribing the taxonomic and partonomic configuration knowledge (Junker and Mailharro,
2003a).

In this section, we show how preferences on and between criteria can be specified
within the preference programming framework. In our approach, preferences constrain
the order in which decisions are made. We therefore represent preferences by special
kinds of constraints. Preferences between two criteria (e.g., price and distance) can be
stated by the following constraint:

prefer(price, distance);

The strict partial order ≺Z is then defined as the transitive closure of the set of all tuples
(zi, zj ) for which prefer(zi, zj ) is given. If the transitive closure is not irreflexive then
the preference statements are considered inconsistent.

Domain orders ≺zi
can be specified in a compact way. We represent the increasing

order on integers by minFirst and the decreasing order on integers by maxFirst.
Ranked orders can be expressed by assigning a priority to each value and strict partial
orders can be formulated by prefer-statements between values (Junker and Mailharro,
2003b). A domain order is applied to a criterion by a preferValues-constraint:
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preferValues(distance, minFirst());
preferValues(price, minFirst());
preferValues(quality, maxFirst());

In certain cases, preferences between criteria can be structured by grouping differ-
ent criteria together and by stating preferences between these groups. For example, we
can introduce a group containing the criteria price and quality and then prefer this group
to the criteria distance:

group(g1);
contains(g1, price);
contains(g1, quality);
prefer(g1, distance);

If a group g1 is preferred to a group g2 then all elements of g1 are preferred to all
elements of g2.

Since the preference programming layer is built on top of a constraint programming
system, it is straightforward to achieve balancing of several criteria by the translation of
theorem 2. As example, suppose that we want to balance minimization of price and
maximization of quality and that this balancing is more important than minimizing the
distance. We first introduce a group called balance and state that its elements are more
important to the distance, which has to be minimized:

group(balance);
prefer(balance, distance);
preferValues(distance, minFirst());

Next, we describe the contents of the balancing group. First, we need to bring price
and quality to the same scale since we cannot balance criteria with different domain or-
ders. For this purpose, we introduce a common scale defined by the ordinals 1, 2, . . . , d

and we use the increasing order as preference order on this scale. Let us suppose that
the domain of the price is [0, 300] and the domain of the quality is [1, 6]. For the sake
of simplicity, we provide a linear mapping of the criteria to ordinals.4 We choose d = 6.
We divide the price by 60 and add 1, thus obtaining a mapping from the price domain
[0, 300] to the ordinals 1, . . . , 6. Furthermore, we subtract the quality from d + 1 since
we need to minimize the standardized criteria:

scaledPrice = price / 60 + 1;
scaledQuality = d + 1 - quality;

Next we introduce the translated criteria as specified in (11). Since only two criteria
are involved the min-max-expressions of (11) can be simplified:

criterion1 = max(scaledPrice, scaledQuality);
criterion2 = min(scaledPrice, scaledQuality);
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Finally, we add the new criteria to the group balance and specify their domain
orders:

contains(balance, criterion1);
contains(balance, criterion2);
preferValues(criterion1, minFirst());
preferValues(criterion2, minFirst());
prefer(criterion1, criterion2);

This example shows how balanced solutions can be determined with JCONFIGURATOR

2.0.

4. Preference-based search

We now adapt the preference-based search (PBS) algorithm from (Junker, 2000) to treat
preferences on criteria. PBS was designed as a search algorithm that reduces search
effort by focusing on preferred choices. If v is a best value for a variable x, PBS either
tries the assignment x = v or tries to refute it by making best assignments for other
variables. PBS abandons a best choice only if such a refutation succeeds. Otherwise, it
fails.

We could apply the original PBS to multi-criteria optimization. In this case, PBS
would first choose the values of the criteria before choosing the values of the decision
variables. However, the assignments to criteria are often very constraining and we easily
get a thrashing behaviour as long as these assignments are not supported by any solu-
tion. A better idea is to directly determine the best value of a criterion z by solving a
minimization subproblem:

minimize(C, z,≺z) := min
{
rank≺z

(
vS(z)

) | S is a solution of (C,X )
}
. (14)

In order to obtain a traditional minimization problem, we only consider ranked orders
≺zi

throughout this section.
The resulting algorithm is called MCPBS5 and follows the architecture in figure 5.

We explain its basic idea for the example shown in figure 6, where price and quality
are preferred to distance. The algorithm maintains a set U of unexplored criteria, which
is initialized with the set of all criteria (i.e. price, quality, and distance). In each step,
the algorithm selects a best criterion z of U (e.g., the price). Instead of trying to as-
sign different values to the total price, we determine the cheapest price by solving a
minimization subproblem minimize(C, price,<) as explained above. In our example,
the cheapest solution has a price of 133. We now add the assignment price = 133 to
the initial set C of constraints. In figure 6, these assignments occur as labels of the left
branches. We then determine the best quality under this assignment. Once the price and
quality have been determined we can determine a distance as well, thus obtaining a first
solution.
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Figure 5. Architecture of PBS-algorithm.

Figure 6. Finding B-preferred solutions.

If a criterion z has several best assignments of same rank r, MCPBS tries them
out upon backtracking. If all best assignments have been tried out, MCPBS will search
for preferred solutions that assign a worse rank to z. In order to find further preferred
solutions, MCPBS introduces a refutation query φ of the form rank≺z

(z) = r. We require
that MCPBS determines only those preferred solutions of C that violate this refutation
query φ. This is stronger than adding the constraint ¬φ to C: each preferred solution of
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C that violates φ is a preferred solution of C ∪ {¬φ}, but C ∪ {¬φ} may have preferred
solutions, which are not preferred solutions of C and which must not be determined
by MCPBS.

We say that a refutation query rank≺z
(z) = r is refuted if it becomes inconsistent

after assigning values to the unexplored criteria that may precede z. The refutation
queries are added to a set Q. We can remove an element from Q if it has been refuted
after making other assignments.

In our example, the assignment to the distance cannot be refuted since there are
no further unexplored criteria. The quality of 1 cannot be refuted since the single non-
explored criterion distance cannot precede the quality. However, we can refute the price
of 133 by first maximizing the quality. After this, we can again minimize the price and
the distance, which leads to a new solution as shown in figure 6. This example shows
that refutation queries lead to a change of the exploration order of criteria.

The algorithm cannot select a criterion z if it has a refutation query in Q. We
denote the set of criteria with refutation queries by

Z(Q) := {
z ∈ Z | ∃(rank≺z

(z) = q) ∈ Q
}
. (15)

When adding a new constraint to C, we use a constraint propagation procedure to reduce
the possible values for each criterion z. The reduced domain of z is denoted by domC(z).
Different constraint propagation algorithms can be used that maintain different degrees
of local consistency. A minimal assumption is to maintain node consistency for unary
constraints and bound consistency for non-unary constraints. If a criterion has a single
possible value in domC(z) then MCPBS does not need to try out different assignments
for z and can explore it without solving a minimization problem.

The resulting search algorithm is shown in figure 7. For the sake of comprehensi-
bility, we present it as a non-deterministic algorithm that uses try-statements as in OPL
(van Hentenryck, Perron, and Puget, 2000) to describe the branching. The statement
‘try A or B’ performs a simple branching. In the left branch, A is executed, whereas
B is executed in the right branch. The statement ‘try A for each v ∈ V ’ creates several
branches, namely, one for each value in V .

Furthermore, MCPBS uses several subprocedures (see figure 8) that can have dif-
ferent implementations and that may make some global updates of the data structures
of MCPBS, such as the addition of new constraints. The subprocedure ISCONSISTENT

checks the consistency of the constraints. The selection of a best criteria is done by the
procedure SELECT. The procedure MINIMIZE determines the best rank for the chosen
criterion.

The algorithm maintains a state σ := (C,Q,U) consisting of the set C of con-
straints, the set Q of refutation queries, and the set U of unexplored criteria. We say that
S is a B-preferred solution of the state σ iff S is a B-preferred solution of the problem
Pσ := (C,X , U,≺) and S violates each (rank≺z

(z) = q) in Q. Given a state σ , we
consider the best unexplored criteria

Bσ := {
z ∈ U |� ∃z∗ ∈ U : z∗ ≺Z z

}
(16)
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Figure 7. Algorithm for computing B-preferred solutions.

Figure 8. Subprocedures for extreme solutions.
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and their best ranks:

rankσ (z) := min
{
rank≺z

(
vS(z)

) | S is a solution of C
}
. (17)

If the rank rank≺z
(v) of a value v is equal to rankσ (z) then there is no solution S that

assigns a better value to z. This means vS(z) ≺z v is not possible in this case.
MCPBS is based on the following properties of a state σ :

• Success: If U = ∅ and Q = ∅ then each solution of (C,X ) is a B-preferred solution
of σ .

• Refutation query: Let z ∈ U and q be any value. S is a B-preferred solution of
(C,Q∪{rank≺z

(z) = q}, U) iff S is a B-preferred solution of (C,Q,U) and S violates
rank≺z

(z) = q.

• Choice: Let z ∈ Bσ and v be a value having the rank rankσ (z). S is a B-preferred
solution of (C ∪ {z = v}, Q,U −{z}) iff S is a B-preferred solution of (C,Q,U) and
S satisfies z = v.

• Refutation: Suppose (rank≺z
(z) = q) ∈ Q and q < rankσ (z). Then S is a B-preferred

solution of (C,Q,U) iff S is a B-preferred solution of (C,Q − {rank≺z
(z) = q}, U).

• Global fail: If U �= ∅ and for all z ∈ Bσ we have (rank≺z
(z) = rankσ (z)) ∈ Q then

(C,Q,U) has no B-preferred solution.

MCPBS has an inner loop and an outer loop. In each iteration of the outer loop, it
first determines the set B of best criteria. In the inner loop, it either assigns a value to
a single criterion z of B or it ensures that each criterion in B has a refutation query for
its best rank. In the first case, MCPBS removes z from U and immediately leaves the
inner loop. B is updated in the next iteration of the outer loop. In the second case, the
conditions of a global fail are satisfied and MCPBS fails (cf. line 18 in figure 7: please
note that B ⊆ U holds in the second case, but not in the first case since z from B is no
longer in U ). We are now able to show that MCPBS is correct and complete:

Theorem 3. Suppose that all ≺zi
are ranked. Algorithm MCPBS(C,X ,Z,≺) always

terminates. Each successful run returns a set X of constraints, the solutions of which are
B-preferred solution of (C,X ,Z,≺) and each such B-preferred solution is the solution
of the result X of exactly one successful run.

MCPBS can solve several minimization subproblems for the same criterion z if
it has a refutation query for z in Q. In the worst case, such a minimization problem
is solved each time an assignment is added to C. The number of subproblems can be
reduced by keeping previous solutions as supports. Suppose that rank q for criterion z

needs to be refuted. MCPBS determined a solution Sz with rank≺z
(vS(z)) = q before

it added the refutation query. We can keep this solution as support for the best rank q

of z. If the refutation query is checked again after adding the constraint � to C, we first
test whether Sz is a solution of C ∪ �. If yes, then the best rank for z in C ∪ � is q and
the refutation query has not been refuted by the additional constraints. As long as the
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supporting solution Sz of the refutation query satisfies all constraints, we do not need to
solve a minimization problem. The subprocedures in figure 8 incorporate supports. We
also introduce a support S∗ for the consistency check of C. Future work will be devoted
to improve the pruning of the search tree by exploiting further properties of refutation
queries and solution supports. For example, we can post a constraint that avoids that Sz

is computed twice and that prunes solutions dominated by Sz as in (Gavanelli, 2002).
We analyze the complexity for the case where each criterion z has d possible values

and a strict total order ≺z. In each successful iteration of the inner-loop, the algorithm
MCPBS either assigns a value to a criterion or adds a refutation query requiring that
this assignment will be violated. Hence, each non-deterministic run needs at least O(n)

iterations (where n is the number of criteria) and at most O(n · d) iterations. Since
each iteration corresponds to a branching in a search tree, we obtain a search tree with
a branching factor of 2 and a maximal depth of O(n · d). Hence, O(2n·d) is an upper
bound for the number of search nodes. Furthermore, the number of search states is also
bounded by the number of permutations of criteria, namely, O(n!).

Given the bound-translation of a problem, we can use MCPBS to determine all
Pareto-optimal solutions. We consider a very simple example involving two criteria a, b

that have both the domain [1, d] and that are both minimized. Suppose that there are
three Pareto-optimal solutions. The first one is vS1(a) = 1, vS1(b) = 5, the second
one is vS2(a) = 2, vS2(b) = 2, and the third one is vS3(a) = 5, vS3(b) = 1. In spite
of the simplicity of the example, we have 2d binary criteria, namely ua,1, . . . , ua,d and
ub,1, . . . , ub,d . There are no preferences between these binary criteria, but there are log-
ical dependencies that can be exploited when running MCPBS on the bound translation
and that have a high impact on the form of the search tree. The search tree in figure 9 is
obtained by the following observations:

1. If we add the constraint uz,v = 1 to C then constraint propagation reduces the domains
of the criteria uz,w with v ≺z w to 1 meaning that these criteria are skipped by
MCPBS in line 13. For example, when adding ua,1 = 1 in the left branch, constraint
propagation deduces that the criteria ua,i+1, . . . , ua,d are all equal to 1 and MCPBS

does not do any branching for them.

2. Let m be the best rank for criterion z. If we add the constraint rank≺z
(z) � m to C,

then constraint propagation reduces the domains of the criteria uz,w with rank≺z
(w) <

m to 0. For example, ub,1, . . . , ub,4 are all 0 after adding ub,5 = 1 and need not be
considered.

3. If there is a refutation query uz,v = 1 in Q and w ≺z v, then violating uz,v = 1 will
violate uz,w = 1 as well. Hence, uz,w = 1 needs to be refuted as well in this case. We
therefore will not select ub,1, . . . , ub,4 when seeking a refutation of ub,5 = 1.

We thus select a binary criterion uz,v with a best bound v for z in order to recon-
stitute the search behaviour of MCPBS on the original problem when running it on the
bound-translation. Furthermore, we can improve the refutation behaviour by exploiting
the supporting solutions of refutation queries:
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Figure 9. Determining Pareto-optimal solutions.

1. If there is a refutation query uz,v = 1 in Q and uz,v = 1 is not refuted by C, then there
exists a solution S of C that satisfies uz,v = 1. It also satisfies uz,w = 1 for w �z v.
Hence, adding uz,w = 1 to C will not produce a state where uz,v = 1 is refuted. We
therefore will not select ub,6, . . . , ub,d when seeking a refutation of ub,5 = 1.

2. As a consequence, a refutation query uz,v = 1 in Q cannot be refuted if all binary
criteria in B have the form uz,v′ , i.e. concern the original criterion z. Therefore,
ub,5 = 1 cannot be refuted.

3. If a refutation query uz,v = 1 in Q is satisfied by the solution Sz and Sz is a solution of
C, then we select a criterion uz∗,v∗ such that adding uz∗,v∗ = 1 will invalidate Sz The
constraint z∗ �z v∗ is satisfied by Sz if and only if vSz

(z∗) �z v∗. Hence, uz∗,v∗ =
1 invalidates Sz if vSz

(z∗) ��z v∗. We choose a �z-largest value v∗ satisfying this
condition. For example, we choose ub,4 = 1 to invalidate the support S1 for ua,1 = 1
and ub,1 = 1 to invalidate the support S2 for ua,2 = 1.
However, if no such criterion z∗ and value v∗ exist then uz,v = 1 cannot be refuted,
meaning that the current state has no G-preferred solution. In this case, a failure
occurs.

We have thus seen how solution supports for refutation queries can guide the se-
lection of binary criteria and ensure that refutations can be found. Moreover, solution
supports for refutation queries could be used to do additional propagations and deduc-
tions: if there is only one possibility to invalidate a support for a refutation query, then
this possibility must be true. A detailed elaboration of those rules is a subject of future
work.
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Figure 10. Subprocedures for Pareto-optimal solutions.

We now adapt the subprocedures to the bound-translation and incorporate the se-
lection rules for the bound translation. The resulting subprocedures are shown in fig-
ure 10. Please note that minimization subproblems and solution supports Sz refer to the
original criteria z and not to the binary criteria uz,v. These changes ensure that MCPBS

provides an adequate search behaviour for enumerating Pareto-optimal solutions. For
two criteria, we get a behaviour that is similar6 to the algorithm of Van Wassenhove and
Gelders (1980), which determines all Pareto-optimal solutions for bicriteria-problems.
On the one hand, we thus derive a well-known algorithm from more basic principles and
we can understand it as a method that deduces bound-constraints from solution supports
of refutation queries. On the other hand, we can understand MCPBS (on the bound-
translation) as a method that generalizes the algorithm of Van Wassenhove and Gelders
to more than two criteria.

According to theorem 2, we can also use MCPBS to compute balanced solutions
if we apply it to the min-max-translation. Table 3 shows the values of the three criteria
price, quality, and distance for the two B-preferred solutions and the unique E-preferred
solution, which is determined w.r.t. the two groups G1 := {scaledPrice, scaledQuality}
and G2 := {scaledDistance}, where G1 is more important than G2. We see that the
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Table 3
Comparing B-preferred and E-preferred solutions.

Solution Price Quality Distance #Subsearches Total effort

1st B-preferred sol. 133 1 3 3 2872 choices
2nd B-preferred sol. 600 5 2 3 61 choices

E-preferred sol. 254 4 2 3 4872 choices

E-preferred solution provides a good compromise between the B-preferred solution.
Typically, a user might ask for such a E-preferred solution whenever the gap between
the different B-preferred solutions is too high. Table 3 also shows the number of sub-
searches needed for each solution, which is 3 in all cases. We use constraint-based
Branch-and-Bound to solve the subproblems. The total effort, i.e. the number of the
choices of all subsearches, highly depends on the first criterion that is chosen. It is
interesting to note that the effort for E-preferred solutions is not too high compared
to the effort for the first B-preferred solution. This demonstrates that constraint-based
Branch-and-Bound can well minimize min-max-variables as long as two criteria need
to be balanced. Future investigations are needed to measure the behaviour for more
criteria.

Other CSP-based approaches to multi-criteria optimization do a single Branch-
and-Bound search for all criteria, which requires maintaining a set of non-dominated
solutions (cf. Boutilier et al., 1997; Gavanelli, 2002) instead of a single bound. Domi-
nance checking ensures that non-preferred solutions are pruned. Interestingly, MCPBS

does not need dominance checking, but uses refutation queries to avoid non-preferred
solutions. Furthermore, MCPBS does not preform a single search with multiple criteria,
but multiple searches with a single criterion, and thus follows well-established meth-
ods for lexicographical optimization that are broadly used in Operations Research. This
paper provides the theoretical background for MCPBS. Therefore, a detailed empirical
evaluation of MCPBS and its comparison with Branch-and-Bound search for multiple
criteria is beyond its scope and a subject of future work.

5. Preference projection

A multi-criteria optimization problem is often solved by a sequence of single-criterion
optimization problems having different objectives. We can, for example, solve each of
these subproblems by a constraint-based Branch-and-Bound which maintains the best
objective value found so far. Now, when changing the objective, the search heuristic
should be adapted as well. Thus, the explored search tree of each minimization subprob-
lem will strongly depend on the selected objective as figure 11 illustrates.

It is a natural idea to project the preference order of the objective to the decision
variables that appear in its definition. We define preference projection as follows.
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Figure 11. Explored subtree depends on projected preferences.

Definition 7. ≺xk
is a projection of ≺zj

via fj (x1, . . . , xm) to xk if and only if the
following condition holds for all u1, . . . , um and v1, . . . , vm with ui = vi for i =
1, . . . , k − 1, k + 1, . . . , m:

if uk ≺xk
vk then fj (u1, . . . , um) �zj

fj (v1, . . . , vm). (18)

Definition 8. ≺x1, . . . ,≺xm
is a projection of ≺z1, . . . ,≺zn

via f1, . . . , fn to x1, . . . , xm

if ≺xi
is a projection of ≺zj

via fj (x1, . . . , xm) to xi for all i, j .

The projected preferences preserve Pareto-optimality:

Theorem 4. Let ≺x1, . . . ,≺xm
be a projection of ≺z1, . . . ,≺zn

via f1, . . . , fn to
x1, . . . , xm. If S is a Pareto-optimal solution w.r.t. the criteria z1, . . . , zn and the prefer-
ences ≺z1, . . . ,≺zn

then there exists a solution S∗ that (1) is a Pareto-optimal solution
w.r.t. the criteria x1, . . . , xm and the preferences ≺x1, . . . ,≺xm

and (2) vS∗(zi) = vS(zi)

for all criteria zi .

We give some examples for preference projections satisfying the conditions of de-
finition 7:

1. The increasing order < is a projection of < via sum, min, max, and multiplication
with a positive coefficient.

2. The decreasing order > is a projection of < via a multiplication with a negative
coefficient.
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Table 4
Reduction of search effort by preference projection.

Objective Projection Distance to opt. Effort Effort
(1st. sol.) (best sol.) (opt. proof)

minimize no 248% 462 choices 1203 choices
price yes 24% 251 choices 675 choices
maximize no 20% 27 choices 27 choices
quality yes 0% 16 choices 16 choices

3. Given an element constraint (i.e. an arbitrary functional constraint) of the form y =
f (x) that maps each possible value i of x to a value f (i), the following order ≺x is a
projection of < to x via f (x):

u ≺x v iff f (u) < f (v). (19)

Hence, projecting the increasing or decreasing order on integers via an element con-
straint yields a ranked order.

Table 4 shows the impact of preference projection on our vacation adviser prob-
lem. We consider the subsearches for B-preferred solutions that are performed for the
first selected criterion, namely the quality or the price. These criteria are defined by
different element constraints and the projected preferences completely differ depending
on the selected objective. If we want to minimize the price, the projected preferences
ensure that cheaper hotels are selected first for each vacation stop. If we want to max-
imize the quality, the projected preferences will favour hotels of better quality in each
stop.

In this example, preference projection helps to reduce the number of choices
around 45%. More importantly, it improves the degree of optimality of the first solu-
tion. If no preference projection is used the first solution has a distance of 248% to the
best price and a distance of 20% to the best quality. If preference projection is used, the
first solution depends on the chosen objective. If price is minimized first the distance
to the best price reduces from 248% to 24%. If quality is maximized first the distance
to the best quality reduces from 20% to 0%. Hence, these two solutions are completely
different. Since the problem is weakly constrained, the first solutions are found rapidly,
meaning that different trade-offs can indeed be produced in a small time frame if prefer-
ence projection is used.

This shows that preference projection is of high importance for interactive con-
figuration problems where time is limited. If only a single solution can be determined
by each subsearch, standard constraint-based Branch-and-Bound will always return the
same solution independent of the selected objective. In this case, preference projection
ensures that the selected objective is taken into account and that different solutions are
determined. Again, this is important for interactive configuration, where we want to
determine several solutions of different characteristics in a short time frame.
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Since extreme and balanced solutions are Pareto-optimal, we can additionally use
the projected preferences to reduce search effort when solving a subproblem. For this
purpose, we can apply the algorithm MCPBS to the decision variables x1, . . . , xm and
the bound-translation. An investigation of the possible gains of this method is a subject
of future work.

6. Conclusion

Although preference-based search (Junker, 2000) provided an interesting technique for
reducing search effort based on preferences, it could only take into account preferences
between search decisions, was limited to combinatorial problems of a special structure,
and did not provide any method for finding compromises in the absence of preferences.
In this paper, we have lifted PBS from preferences on decisions to preferences on crite-
ria, as they are common in qualitative decision theory (Doyle and Thomason, 1999; Bac-
chus and Grove, 1995; Boutilier et al., 1997; Domshlak, Brafman, and Shimony, 2001).
We further generalized PBS, such that not only extreme solutions are computed, but
also balanced and Pareto-optimal solutions. Balanced solutions can be computed by
a modified lexicographic approach (Ehrgott, 1997), which fits well into a qualitative
preference framework as studied in nonmonotonic reasoning and qualitative decision
theory.

Our search procedure consists of two modules. A master-PBS explores the criteria
in different orders and assigns optimal values to them. The optimal value of a selected
criterion is determined by a sub-PBS, which performs a constraint-based Branch-and-
Bound search through the original problem space (i.e. the different value assignments
to decision variables). Furthermore, we project the preferences on the selected criterion
to preferences between the search decisions, which provides an adapted search heuristic
for the optimization objective and which allows the search effort to be reduced fur-
ther. Hence, different regions of the search space will be explored depending on the
selected objective. The master-PBS has been implemented in ILOG JCONFIGURATOR

V2.1 and adds multi-criteria optimization functionalities to this constraint-based config-
uration tool.

Future work will be devoted to improving the pruning behaviour of the new PBS
procedures w.r.t. the master problem as well as the subproblems. We will also examine
whether PBS can be used to determine preferred solutions as defined by soft constraints
(Bistarelli et al., 1999; Khatib et al., 2001).
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Appendix A. Proofs

This appendix contains detailed proofs for the propositions of the article. For the sake
of readability, we are using the following short-hand for formulae:

S1 is better than S2 on criterion z ⇔ vS1(z) ≺z vS2(z),
S1 and S2 agree on criterion z ⇔ vS1(z) = vS2(z),

zi is a ≺Z-best criterion ⇔ there is no zj s.t. zj ≺Z zi ,
v is a ≺z-best value ⇔ there is no w s.t. v ≺z w.

Proof of proposition 1. Let P be (C,X ,Z,≺). We show that each G-preferred solu-
tion S of P is Pareto-optimal by a contradiction proof. Assume that S is not a Pareto-
optimal solution. According to definition 1, there exists a solution S∗ of P such that
vS∗(zi) �zi

vS(zi) for all i and vS∗(zi) ≺zi
vS(zi) for at least one i. Consider a ≺Z -best

criterion zk such that S∗ is different from S for zk. Since S is G-preferred, one of the
following conditions holds: (1) vS(zk) ≺zk

vS∗(zk) or (2) there exists a j with zj ≺Z zk

such that S and S∗ differ on zj . The properties of S∗ imply that vS∗(zk) �zk
vS(zk).

Since S∗ and S are different for zk, we obtain vS∗(zk) ≺zk
vS(zk). Hence, the first con-

dition does not hold since ≺zk
is irreflexive. The second condition implies that S∗ and

S differ for a criterion that is better than zk. However, zk is a ≺Z -best criterion sat-
isfying this condition. Hence, we get a contradiction in both cases, meaning that S is
Pareto-optimal.

We now show that each Pareto-optimal solution is G-preferred if there are no pref-
erences between criteria, i.e. ≺Z= ∅. Consider a solution S of P that is not G-preferred.
Hence, there exists a solution S∗ of P such that vS(zk) �= vS∗(zk) for some k and for
all i with vS(zi) �= vS∗(zi) one of the following conditions holds: (1) vS∗(zi) ≺zi

vS(zi)

or (2) there exists a j with zj ≺Z zi such that S and S∗ differ on zj . Since there are
no preferences between criteria, no such j can exist and the second condition does not
hold. As a consequence, we obtain vS∗(zi) ≺zi

vS(zi) for all zi where S∗ and S differ.
As a consequence, vS∗(zi) �zi

vS(zi) for all zi . Furthermore, we know that there is at
least one zk such that S and S∗ differ on zk. Hence, we obtain vS∗(zk) ≺zk

vS(zk). This
means that S is G-preferred if it is Pareto-optimal. �

Proof of proposition 2. Given the problem P := (C,X ,Z,≺), a ≺Z -best criterion zi ,
and a value u, we introduce the problem P∗ := (C ∪ {zi �zi

u},X , Z,≺).
Consider a solution S of P such that vS(zi) �zi

u. We will show that S is not
a G-preferred solution of P if it is not a G-preferred solution of P∗. Since S satisfies
the constraint zi �zi

u in addition to C, it is a solution of P∗. Assume that S is not a
G-preferred solution of P∗. Hence, there is another solution S∗ of P∗ such that vS(zk) �=
vS∗(zk) for some k and for all l with vS(zl) �= vS∗(zl) one of the following conditions
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holds: (1) vS∗(zl) ≺zl
vS(zl) or (2) there exists a j s.t. zj ≺Z zl and vS∗(zj ) �= vS(zj ).

Since the constraints of P are a subset of the constraints of P∗, S∗ is also a solution of
P and we obtain that S is not a G-preferred solution according to definition 5.

Now consider a solution S of P∗. We will show that S is not a G-preferred of P∗ if
it is not a G-preferred solution of P. Since S satisfies the constraint zi �zi

u, we obtain
vS(zi) �zi

u. Furthermore, S is a solution of P. Suppose that S is not a G-preferred
solution of P. Hence, there is another solution S∗ of P such that vS(zk) �= vS∗(zk) for
some k and for all l with vS(zl) �= vS∗(zl) one of the following conditions holds: (1)
vS∗(zl) ≺zl

vS(zl) or (2) there exists a j s.t. zj ≺Z zl and vS∗(zj ) �= vS(zj ).
Assume that vS∗(zi) �zi

u is not satisfied. Since vS(zi) �zi
u, this means that S∗

and S cannot be equal for zi . Since zi is a ≺Z-best criterion, there does not exist a j s.t.
zj ≺Z zi and vS∗(zj ) �= vS(zj ). Since S∗ and S differ for zi and the condition 2 does not
hold for zi , condition 1 must be true: vS∗(zi) ≺zi

vS(zi). Since vS(zi) �zi
u, we also get

vS∗(zi) �zi
u, which contradicts the assumption. Therefore, the assumption was wrong

and we deduce vS∗(zi) �zi
u. Hence, S∗ is a solution of P∗. As a consequence, S is not

a G-preferred solution of P∗ since S∗ satisfies the conditions stated in definition 5. �

Proof of proposition 3. Given the problem P := (C,X ,Z,≺), a ≺Z -best criterion,
and a ≺zi

-best value v for zi , we define P∗ := (C ∪ {zi = v},X ,Z − {zi},≺).
Let S be a G-preferred solution of P and suppose vS(zi) = v. Then S is a solution

of P∗. Now suppose that S is not a G-preferred solution of P∗. Hence, there is another
solution S∗ of P∗ such that vS(zk) �= vS∗(zk) for some zk ∈ Z −{zi} and for all zl ∈ Z−
{zi} with vS(zl) �= vS∗(zl) one of the following conditions holds: (1) vS∗(zl) ≺zl

vS(zl)

or (2) there exists a zj ∈ Z − {zi} s.t. zj ≺Z zl and vS∗(zj ) �= vS(zj ). Since S∗ is a
solution of P∗, it also satisfies vS∗(zi) = v. Hence, S and S∗ agree on zi . Hence, we can
state that vS(zk) �= vS∗(zk) for some zk ∈ Z and for all zl ∈ Z with vS(zl) �= vS∗(zl) one
of the following conditions holds: (1) vS∗(zl) ≺zl

vS(zl) or (2) there exists a zj ∈ Z s.t.
zj ≺Z zl and vS∗(zj ) �= vS(zj ). According to this, S is not a G-preferred solution of P,
which is a contradiction.

Let S be a G-preferred solution of P∗. Then vS(zi) = v. Now suppose that S

is not a G-preferred solution of P. Hence, there is another solution S∗ of P such that
vS(zk) �= vS∗(zk) for some zk ∈ Z and for all zl ∈ Z with vS(zl) �= vS∗(zl) one of
the following conditions holds: (1) vS∗(zl) ≺zl

vS(zl) or (2) there exists a zj ∈ Z s.t.
zj ≺Z zl and vS∗(zj ) �= vS(zj ).

Assume vS∗(zi) �= v. Hence, S∗ and S differ on zi . Hence S∗ is better than S on zi

or there exists a zj ∈ Z s.t. zj ≺Z zi and vS∗(zj ) �= vS(zj ). The first case is not satisfied
since vS(zi) is equal to the ≺zi

-best value v for zi . The second case is not satisfied
since zi is a ≺Z-best criterion. We obtain a contradiction in both cases and conclude
that vS∗(zi) = v. Hence, we can state that vS(zk) �= vS∗(zk) for some zk ∈ Z − {zi}
and for all zl ∈ Z − {zi} with vS(zl) �= vS∗(zl) one of the following conditions hold:
(1) vS∗(zl) ≺zl

vS(zl) or (2) there exists a zj ∈ Z − {zi} s.t. zj ≺Z zl and vS∗(zj ) �=
vS(zj ). Hence, S is not a G-preferred solution of P∗, which is a contradiction. �



106 JUNKER

Proof of proposition 4. Consider the problem P := (C,X ,Z,≺). We show that
a B-preferred solution S of P is G-preferred by a contradiction proof. Since S is a
B-preferred solution then there exists a permutation π such that (1) π respects ≺Z
and (2) there is no other solution S ′ of (C,X ) such that VS ′(π(Z)) ≺π

lex VS(π(Z)).
Now, assume that S is not G-preferred. Hence, there exists a solution S∗ such that
vS(zk) �= vS∗(zk) for some k and for all i with vS(zi) �= vS∗(zi) one of the follow-
ing conditions holds: (1) vS∗(zi) ≺zi

vS(zi) or (2) there exists a j s.t. zj ≺Z zi and
vS∗(zj ) �= vS(zj ). Consider the smallest k such that vS(zπk

) �= vS∗(zπk
). We consider

two cases, both leading to a contradiction:

1. Suppose S∗ is better than S on zπk
. Since both solutions agree on zπ1, . . . , zπk−1 we

thus obtain that VS∗(π(Z)) ≺π
lex VS(π(Z)). Hence, S is not B-preferred, which is a

contradiction.

2. Suppose S∗ is not better than S on zπk
. Hence, condition 1 is false for zπk

and there
exists a πj with zπj

≺Z zπk
and vS∗(zπj

) �= vS(zπj
). Since k is the smallest index

such that S and S∗ differ on zπk
, we obtain j � k. Since π respects the preferences,

zπj
≺Z zπk

implies j < k, which is a contradiction. �

Proof of proposition 5. We need the following lemma to prove the proposition.

Lemma 1. Suppose ≺Z is a ranked order. If S1 is a G-preferred solution for P :=
(C,X ,Z,≺) and S2 is a solution of P that is better than S1 for a ≺Z-best criterion zk

then there exists another ≺Z -best criterion zj such that S1 and S2 differ on zj and S2 is
not better than S1 on zj .

Proof. Let S1 and S2 as supposed in the lemma. Assume that vS2(z) �z vS1(z) for all
≺Z -best criteria. Let zi be an arbitrary criterion such that S1 and S2 are different on zi

and suppose that S2 is not better than S1 on zi . According to the assumption, zi cannot be
a ≺Z -best criterion. Hence, there exists a ≺Z -best criterion zj such that zj ≺Z zi . Since
zj and zk are both ≺Z -best elements, they are incomparable w.r.t. ≺Z . According to the
properties of a ranked order, we get zk ≺Z zi in this case and we know that S1 and S2 do
not agree on zk. Hence, we can state that for all criteria zi with vS1(zi) �= vS2(zi) one of
the following conditions holds: (1) vS2(zi) �zi

vS1(zi) or (2) zk ≺Z zi vS2(zk) �= vS1(zk).
As a consequence, S1 is not G-preferred, which is a contradiction. Hence, we cannot
have vS2(z) �z vS1(z) for all ≺Z -best criteria and there exists a ≺Z -best criterion zj

with vS2(zj ) ��zj
vS1(zj ). Since vS2(zk) ≺zk

vS1(zk), the criterion zj is different from zk.
�

Let P be a problem (C,X ,Z,≺) such that there do not exist three solutions
S1, S2, S3 for P and a criterion zi with vs1(zi) ≺zi

vs2(zi) and vs3(zi) ��zi
vs2(zi). Fur-

thermore let ≺Z be a ranked order.
We show that a G-preferred solution S of P is a B-preferred solution by an induc-

tion on the number n of criteria.
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If n = 0 then Z is empty and all solutions are incomparable w.r.t. to any lexico-
graphical order. Hence, each solution of P is B-preferred since there is no better solution
w.r.t. a lexicographical order.

If n � 1 suppose that the proposition is true for all problems with n − 1 or less
criteria. We first show that there exists a ≺Z -best criterion zk such that there is no
solution that is better than S on zk. For this purpose, consider any ≺Z -best criteria zi .
We distinguish two cases:

1. If there does not exist a solution S∗ that is better than S on zi we choose k := i.

2. Otherwise, there exists a solution S∗ that is better than S on zi . According to
lemma 1, there exists a ≺Z -best criteria zj such that S is different from S∗ on zj

and S∗ is not better than S on zj . According to the prerequisites of the proposition,
there cannot be a third solution that is better than S on zj . Hence, we choose k = j .

Thus, we know that there is a k such that no solution is better than S on zk.
Since zk is a ≺Z-best criterion there exists a permutation π that respects the pref-

erences between criteria and that chooses zk as first criterion, i.e. π1 = k. Assume that
S is not a B-preferred solution of P. Hence, there exists a solution S∗ such that

VS∗
(
π(Z)

) ≺π
lex VS

(
π(Z)

)
. (A.1)

From (A.1), we obtain vS∗(zπ1) �zπ1
vS(zπ1). Since π1 = k and no solution is better

than S on zk, we conclude that

vS∗(zπ1) = vS(zπ1). (A.2)

From the properties (A.1) and (A.2), we obtain(
vS∗(zπ2), . . . , vS∗(zπn

)
) ≺π

lex

(
vS(zπ2), . . . , vS(zπn

)
)
. (A.3)

Now consider the problem P ′ that remains after assigning the value vS(zπ1) to the crite-
rion zπ1 :

P ′ := (
C ∪ {

zk = vS(zπ1)
}
,X ,Z − {zk},≺

)
.

Since S and S∗ satisfy zk = vS(zπ1), they are both solutions of P ′. According to propo-
sition 3, S is also a G-preferred solution of P ′. Property (A.3) implies that S is not a
B-preferred solution of P ′, which contradicts the induction hypothesis. Thus, we have
shown that S is a B-preferred solution of P. �

Proof of proposition 6. Let P := (C,X ,Z,≺) and P∗ := (C,X ,U ,≺′). We observe
the following properties:

1. Since P and P∗ have exactly the same constraints, S is a solution of P if and only
if S is a solution of P∗.

2. z∗ ≺Z z iff there exists values v, v∗ s.t. uz∗,v∗ ≺′
U uz,v.
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3. Consider two solution S1 and S2 of P∗ and a binary criterion uz,v ∈ U . Suppose S1

and S2 assign the same value v′ to z. If v′ �z v, then vS1(uz,v) and vS2(uz,v) are both
equal to 1. In the other case, vS1(uz,v) and vS2(uz,v) are both equal to 0. Hence, S1

and S2 assign the same value to uz,v.
As a consequence, S1 and S2 do not agree on z if they do not agree on uz,v.

4. Consider two solutions S1 and S2 of P∗ and let v1 := vS1(z) and v2 := vS2(z). We
suppose that S1 and S2 agree on uz,v1 and on uz,v2 . The first supposition implies
v2 = vS2(z) �z v1 and the second supposition implies v1 = vS1(z) �z v2. Due to
the irreflexivity of �z, we obtain v1 and v2 are equal, meaning that S1 and S2 agree
on z.
As a consequence, S1 and S2 differ on uz,v1 or on uz,v2 if S1 and S2 differ on z.

Let S be a G-preferred solution of P. We show that S is a G-preferred solu-
tion of P∗ by a contradiction proof. Suppose S is not a G-preferred solution of P∗.
Hence, there is another solution S∗ of P∗ such that vS(uz,v) �= vS∗(uz,v) for some
uz,v ∈ U and for all uz,v ∈ U with vS(uz,v) �= vS∗(uz,v) one of the following condi-
tions holds: (1) vS∗(uz,v) ≺′

uz,v
vS(uz,v) or (2) there exists a uz∗,v∗ ∈ U s.t. uz∗,v∗ ≺′

U uz,v

and vS∗(uz∗,v∗) �= vS(uz∗,v∗). If S and S∗ do not agree on uz,v they do not agree on z as
shown above. Since there exists such a uz,v , we can state that S and S∗ do not agree on
some z.

Now consider a z ∈ Z such that vS(z) �= vS∗(z). Let v := vS(z) and v∗ := vS∗(z).
By definition, uz,v is equal to 1 in S and that uz,v∗ is equal to 1 in S∗. We consider two
cases:

1. Suppose uz,v is equal to 1 in S∗. This means that vS∗(z) is smaller or equal to
v = vS(z). Since S and S∗ do not agree on z we obtain vS∗(z) ≺z vS(z) in this case.

2. Suppose uz,v is equal to 0 in S∗. This means that S and S∗ differ on uz,v. Fur-
thermore, S assigns the preferred value 1 of uz,v, whereas S∗ assigns the non-
preferred value 0. Hence, we have vS(uz,v) ≺′

uz,v
vS∗(uz,v). This means that

vS∗(uz,v) ≺′
uz,v

vS(uz,v) is false. Hence, there exists a uz∗,v∗ ∈ U s.t. uz∗,v∗ ≺′
U uz,v

and vS∗(uz∗,v∗) �= vS(uz∗,v∗). There are only preferences between binary criteria
if there is a preference between the original criteria to which they refer. Hence,
z∗ ≺Z z. Since S and S∗ do not agree on uz∗,v∗ , they do not agree on z∗.

In both cases, we have shown that S is not a G-preferred solution of P, which is a
contradiction.

Let S be a G-preferred solution of P∗. We show that S is a G-preferred solution of
P by a contradiction proof. Suppose S is not a G-preferred solution of P. Hence, there
is another solution S∗ of P such that vS(z) �= vS∗(z) for some z ∈ Z and for all zi ∈ Z
with vS(zi) �= vS∗(zi) one of the following conditions holds: (1) vS∗(zi) ≺zi

vS(zi) or
(2) there exists a zj ∈ Z s.t. zj ≺Z zi and vS∗(zj ) �= vS(zj ).

Since there is a z ∈ Z with vS(z) �= vS∗(z), we conclude that S and S∗ differ on
uz,vS(z) or on uz,vS∗ (z). Hence, we know that S and S∗ differ on some binary criterion.
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Consider a uz,v such that S and S∗ differ on uz,v. Suppose that S∗ is not better
than S on uz,v . This means that S assigns the better value 1 to uz,v and S∗ the worse
value 0. As a consequence, vS(z) �z v and vS∗(z) �≺z v. In this case, we cannot have
vS∗(z) �z vS(z). According to the properties of S∗, there exists a z∗ ∈ Z s.t. z∗ ≺Z z

and vS∗(z∗) �= vS(z). We then know that S and S∗ differ on uz∗,vS(z∗) or on uz∗,vS∗ (z∗).
Furthermore, uz∗,vS(z∗) ≺′

U uz,v and uz∗,vS∗(z∗) ≺′
U uz,v Hence, S is not a G-preferred

solution of P∗, which is a contradiction. �

Proof of theorem 1. We first show that ≺′
U is a ranked order. Suppose uz1,v1 ≺′

U uz2,v2 .
Then z1 ≺Z z2. Furthermore, suppose neither uz2,v2 ≺′

U uz3,v3 nor uz3,v3 ≺′
U uz2,v2 is the

case. Hence, neither z2 ≺Z z3 nor z3 ≺Z z2 is the case. Since ≺Z is ranked we obtain
z1 ≺Z z3. As a consequence, uz1,v3 ≺′

U uz1,v3. Similarly, we can show that z1 ≺Z z3 is
obtained if z2 ≺Z z3 and neither z1 ≺Z z2 nor z2 ≺Z z1 is the case.

Since the uz,v’s are all binary it is easy to see that they match the conditions of
theorem 5. We can thus prove the theorem by combining propositions 6 and 5. �

Proof of theorem 2. Let P := (C,X ,Z,≺) and P̂ := (C,X , Ẑ, ≺̂). We observe that
Z and Ẑ have the same cardinalities. Since P and P̂ have the same constraints they have
the same set of solutions.

Lemma 2. Let S be a solution of (C,X ) and let π, ρ be two permutations. If G(zπi
) =

G(zρi
) for all i then VS(θ

S(π(Z))) = VS(θ
S(ρ(Z))).

Proof is straightforward from the definition of θS .

Lemma 3. If π̂ is a permutation respecting ≺̂Ẑ then π̂ respects ≺Z .

Proof. Assume that zπ̂i
≺Z zπ̂j

and j � i for some i, j . We then know that G(zπ̂i
) �=

G(zπ̂j
) and that G(zπ̂i

) = G(ẑπ̂i
) is preferred to G(zπ̂j

) = G(ẑπ̂j
). Hence, there is a

preference ẑπ̂i
≺Ẑ ẑπ̂j

. Since π̂ satisfies these preferences, we get i < j , which is a
contradiction. �

Lemma 4. If π is a permutation respecting ≺Z then there exists a permutation π̂ re-
specting ≺̂Ẑ such that G(zπi

) = G(zπ̂i
) for all i.

Proof. We define π̂ such that

1. π and π̂ agree on the groups: G(zπi
) = G(zπ̂i

),

2. if G(zπ̂i
) �= G(zπ̂j

) and ẑπ̂i
≺̂Ẑ ẑπ̂j

then i < j .

We now show that π̂ respects ≺̂Ẑ . Assume that ẑπ̂i
≺̂Ẑ ẑπ̂j

, but j � i. We then
know that G(zπ̂i

) �= G(zπ̂j
) and that G(zπ̂i

) = G(zπi
) is preferred to G(zπ̂j

) = G(zπj
).

Hence, there is a preference zπi
≺̂Zzπj

. Since π satisfies these preferences, we get i < j ,
which is a contradiction. �
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Lemma 5. Let S be a solution of (C,X ). If π respects the preferences ≺̂ then
VS(π(Ẑ)) = VS(θ

S(π(Z))).

Proof. Consider the tuples (vS(ẑπ1), . . . , vS(ẑπn
)) and (vS(zπ

θS
1
), . . . , vS(zπ

θS
n

)) and as-

sume that the lemma is wrong. Let k be the largest index such that vS(ẑπk
) �= vS(zπ

θS
k

).

According to property (1) of θS , we know that zπ
θS
k

and zπk
belong to the same group G.

Hence, ẑπk
also belongs to G as stated in the definition of ẑ. The criterion ẑπk

is equal to
yG,j for some j .

Since π respects the preferences ≺̂, we know that j members of G belong to the
tuple (vS(ẑπk

), . . . , vS(ẑπn
)). Since vS(ẑπi

) and vS(zπ
θS
i

) belong to the same groups, we

also know that j members of G belong to the tuple (vS(zπ
θS
k

), . . . , vS(zπ
θS
n

)). Let X be

the set of these latter members. From property (2) of θS we know that vS(zπ
θS
k

) �D vS(z)

for all z ∈ X. Since the cardinality of X is j , we get:

vS(yG,j ) = min
{
vS

(
max

(
X′)) | X′ ⊆ G s.t. |X| = j

}
�D vS

(
max(X)

)
�D vS(zπ

θS
k

). (A.4)

Since vS(yG,j ) = vS(ẑπk
) is different from vS(zπ

θS
k

), we deduce that vS(yG,j ) <D

vS(zπ
θS
k

). According to the definition of yG,j , there must exist a subset Y of G with

cardinality j such that

vS(yG,j ) = vS

(
max(Y )

)
. (A.5)

Obviously, Y cannot be equal to X. Since they have the same cardinality, there exists an
element zπ

θS
t

that is in Y , but not in X. Since zπ
θS
t

belongs to the group G and it is not

in X, it must belong to the tuple (vS(zπ
θS
1
), . . . , vS(zπ

θS
k−1

)), meaning that t < k. Since

vS(zπ
θS
t

) �D vS(max(Y )) = vS(yG,j ) we get

vS(zπ
θS
t

) <D vS(zπ
θS
k

). (A.6)

Property (2) of θS implies t > k in this case, which is a contradiction. �

These lemmas then allow us to transform the conditions on π and S∗ as stated in
the definition of B-preferred solutions into the analogue conditions of the definition of
E-preferred solutions.

Proof of theorem 3. We first proof the properties on which MCPBS is based:

Lemma 6. If U = ∅ and Q = ∅ then each solution of (C,X ) is a B-preferred solution
of σ .
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Proof. Let S be a solution of (C,X ). Since the problem Pσ has no criteria in U , each
of its solutions, including S, is B-preferred. Since Q is empty, S violates all elements
of Q. Hence, S is a B-preferred solution of σ := (C,Q,U). �

Lemma 7. Let z ∈ U and q be any value. S is a B-preferred solution of (C,Q ∪
{rank≺z

(z) = q}, U) iff S is a B-preferred solution of (C,Q,U) and S violates
rank≺z

(z) = q.

Proof. This proof is obvious. We simply reformulate the condition that S violates each
rank≺′

z
(z′) = q ′ in Q ∪ {rank≺z

(z) = q} by two conditions, namely that S violates each
rank≺′

z
(z′) = q ′ in Q and that S violates rank≺z

(z) = q. �

Lemma 8. Let z ∈ Bσ and v be a value such that rank≺z
(v) = rankσ (z). S is a

B-preferred solution of (C ∪ {z = v},Q,U − {z}) iff S is a B-preferred solution of
(C,Q,U) and S satisfies z = v.

Proof. We consider a permutation π s.t. zπ1 = z. Such a permutation exists since z is
in Bσ meaning that it is a ≺Z -best element of U .

Let S be a B-preferred solution of (C ∪ {z = v},Q,U − {z}). Then vS(z) = v and
the rank of vS(z) is equal to rankσ (z). Now assume that S is not a B-preferred solution
of σ . Hence, there exists a solution S∗ of (C,X ) such that(

vS∗(zπ1), . . . , vS∗(zπn
)
) ≺π

lex

(
vS(zπ1), . . . , vS(zπn

)
)
. (A.7)

Hence, vS∗(zπ1) �z vS(zπ1). If S∗ were strictly better than S on zπ1 then the rank of
vS∗(z) would be strictly smaller than the rank of vS(z). Since vS(z) has the best rank of
all solutions of (C,X ), this cannot be the case. Hence, we conclude that S and S∗ agree
on zπ1 . As a consequence, S∗ satisfies z = v and is a solution of (C ∪ {z = v},X ). Since
vS∗(z) = vS(z), property (A.7) simplifies to(

vS∗(zπ2), . . . , vS∗(zπn
)
) ≺π

lex

(
vS(zπ2), . . . , vS(zπn

)
)
. (A.8)

Hence, S is not a B-preferred solution of (C ∪ {z = v},X , U − {z},≺), which is a
contradiction. Therefore, S is a B-preferred solution of σ .

Now let S be a B-preferred solution of (C,Q,U) that satisfies z = v. Hence,
vS(z) = v and S is a solution of (C ∪ {z = v},X ). Assume that S is not a B-preferred
solution of (C ∪ {z = v},X , U − {z},≺). Hence, there exists a solution S∗ of this
problem such that(

vS∗(zπ2), . . . , vS∗(zπn
)
) ≺π

lex

(
vS(zπ2), . . . , vS(zπn

)
)
. (A.9)

Since S∗ satisfies z = v, we obtain vS∗(z) = v = vS(z). Hence(
vS∗(zπ1), . . . , vS∗(zπn

)
) ≺π

lex

(
vS(zπ1), . . . , vS(zπn

)
)

(A.10)

which means that S is not a B-preferred solution of σ , which contradicts our supposi-
tion. �
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Lemma 9. Suppose (rank≺z
(z) = q) ∈ Q and q < rankσ (z). Then S is a B-preferred

solution of (C,Q,U) iff S is a B-preferred solution of (C,Q − {rank≺z
(z) = q}, U).

Proof. Let S be a B-preferred solution of (C,Q,U). Since S violates each element of
Q it is also violates each element of Q − {rank≺z

(z) = q}. Hence, we immediately see
that S is a B-preferred solution of (C,Q − {rank≺z

(z) = q}, U).
Now let S be a B-preferred solution of (C,Q − {rank≺z

(z) = q}, U). Assume
that S satisfies rank≺z

(z) = q. This means that the rank of vS(z) is equal to q and thus
strictly better than rankσ (z). Since S is a solution of (C,X ) this contradicts the fact that
rankσ (z) is the best rank for z in all solutions of (C,X ). Hence, S violates rank≺z

(z) = q

and is a B-preferred solution of σ . �

Lemma 10. If U �= ∅ and for all z ∈ Bσ we have (rank≺z
(z) = rankσ (z)) ∈ Q then

(C,Q,U) has no B-preferred solution.

Proof. Suppose that (C,Q,U) has a B-preferred solution S. Hence, there exists a
permutation π such that 1. π respects ≺Z and 2. there is no other solution S∗ of Pσ

such that VS∗(π(Z)) ≺π
lex VS(π(Z)).

Now consider zπ1 . Since rankσ (zπ1) is the best rank for zπ1 , we have rankσ (zπ1) �
rank≺z

(vS(zπ1)). Consider a solution S∗ with rank≺z
(vS∗(zπ1)) = rankσ (zπ1). Suppose

the rank of vS∗(zπ1) is strictly smaller than the rank of vS(zπ1). Then S∗ is better than
S on zπ1 and we get VS∗(π(Z)) ≺π

lex VS(π(Z)), which contradicts the fact that S is
B-preferred. Furthermore, the rank of vS∗(zπ1) cannot be strictly greater than the rank of
vS(zπ1) since it is equal to the best rank rankσ (zπ1) of a solution. Therefore, the rank of
vS(zπ1) is equal to this best rank as well:

rank≺z

(
vS∗(zπ1)

) = rankσ (zπ1). (A.11)

Since π respects the preferences, there is no zπj
∈ U such that zπj

≺ zπ1. Hence,
zπ1 is an element of Bσ . Due to the prerequisites of the lemma, (rank≺z

(z) = rankσ (z))

is a refutation query in Q. Hence, S violates this query, meaning that the rank of vS(zπ1)

cannot be equal to rankσ (z)), which contradicts (A.11). Hence, S is not a B-preferred
solution of σ . �

These properties permit us to show that algorithm 7 is correct. In each outer loop
iteration, the algorithm applies one of these rules and maps the initial state σ to a reduced
state σ ′. If the condition of line 2 is not satisfied then lemma 6 applies. The set B

computed in line 4 is equal to Bσ at the beginning of each inner loop iteration (i.e.
line 7): if an element of B is removed from U by an inner loop iteration then the inner
loop is stopped and B is updated. In all other cases, the inner loop iteration either fails
or modifies Q, which does not require an update of B. If the condition of line 10 is true
then lemma 9 is valid. Line 13 checks whether z has a single possible value. In this case,
each B-preferred solution of σ will assign this value to z and we can apply lemma 8.
A preferred solution of σ either satisfies the constraint rank≺z

(z) = m or violates it:
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1. In the first case, each B-preferred solution of σ assigns a value v of rank m to z

since m is the best rank and can thus reduce the problem according to lemma 8.
Since MCPBS does not know which of these best values is equal to the value of z it
tries them all in different branches.

2. In the second case, lemma 7 is applied to reduce the problem as described in line 17.

If the inner loop has been terminated without a change of U then all criteria in B

have a refutation query rank≺z
(z) = m in Q where m is their best rank. Hence, the

conditions of lemma 10 are met in line 18 and the algorithm fails.
In each successful iteration of the inner-loop, the algorithm MCPBS either assigns

a value to a criterion or puts an assignment z = m to the refutation query meaning that
m is no longer possible for z. Since each criterion only has a finite number of values,
each nondeterministic run terminates after a polynomial number of loop-iterations.

Proof of theorem 4. Let P := (C,X ,Z,≺). Let ≺′
x1

, . . . ,≺′
xm

be a projection of
≺z1, . . . ,≺zn

via f1, . . . , fn to x1, . . . , xm. Let S be a Pareto-optimal solution of P.
Now consider P ′ := (C,X ,X ,≺′). If S is a Pareto-optimal solution of P ′, then

the theorem is trivially satisfied.
Otherwise, there exists a solution S∗ of P ′ such that vS∗(xk) ≺′

xk
vS(xk) for a

k and vS∗(xi) �′
xi

vS(xi) for all i. At least one of these solutions S∗ is Pareto-optimal.
Otherwise, we would be able construct an infinite descending chain . . . , St , St−1, . . . , S1,
where S1 := S and where each Sj is better than Sj−1 for some variable and at least as
good as Sj−1 for all variables. However, this would imply that the domain of at least
one variable is infinite, which has been excluded. Hence, we can suppose that S∗ is
Pareto-optimal without any loss of generality.

We consider each criterion zi , which is defined by fi(x1, . . . , xm). Since ≺′
x1

,

. . . ,≺′
xm

are projection of ≺zi
via fi and vS∗(xj ) �′

xj
vS(xj ), we obtain

fi

(
vS∗(x1), . . . , vS∗(xj−1), vS∗(xj ), vS(xj+1), . . . , vS(xj )

)
�zi

fi

(
vS∗(x1), . . . , vS∗(xj−1), vS(xj ), vS(xj+1), . . . , vS(xj )

)
. (A.12)

Hence, we obtain

fi

(
vS∗(x1), . . . , vS∗(xm)

) �zi
fi

(
vS(x1), . . . , vS(xm)

)
(A.13)

which results in vS∗(zi) �zi
vS(zi) for all criteria zi . If S∗ were better than S on a

criterion zi , then S would not be a Pareto-optimal solution of P. Hence, we obtain
vS∗(zi) = vS(zi) for all criteria. �

Notes

1. We use the term extreme in the sense that certain criteria have an absolute priority over other criteria.
2. In constraint programming, any numerical expression that can be formulated in the constraint language

can be used as objective.
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3. Expressions such as min(e1, e2) and max(e1, e2) on two integer expressions e1, e2 are standard in con-
straint programming tools, which usually maintain bound consistency for these numerical expressions.

4. More complex standardization methods can be formulated by using other arithmetic expressions of the
constraint library. We can also represent arbitrary mappings by using the so-called element constraints.

5. For multi-criteria preference-based search.
6. Except for the right branches that fail immediately and that could be avoided by some additional propa-

gation rules.
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