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Preface

This volume contains the papers presented at SofT-11: the 11th Workshop on
Preferences and Soft Constraints held on 12th September 2011 and co-located
with CP 2011 in Perugia, Italy.

Preferences are ubiquitous in real life: most problems are over-constrained
and would not be solvable if we insist that all their requirements are strictly met.
Moreover, many problems are more naturally described via preferences rather
than hard statements. Soft constraints are the way the constraint community
has extended its classical framework to deal with the concept of preferences.

The SofT-11 workshop will bring together researchers interested in all aspects
of soft constraints and cost function processing, such as:

– theoretical frameworks
– problem modeling
– solving algorithms
– languages
– preference aggregation and elicitation
– multi-objective or qualitative optimization
– combining/integrating different frameworks and algorithms
– comparative studies
– real-life applications

The workshop is an opportunity to share knowledge between people work-
ing around algorithms and solvers for different formalisms, including Weighted
Max-SAT, Soft CSP, Bayesian Networks, Random Markov Field, Factor Graphs,
Pseudo Boolean Optimization, SAT Modulo Theories, and related formalisms.

There were 10 submissions. Each submission was reviewed by at least 2 pro-
gramme committee members. The committee decided to accept all the papers.
The programme gives a broad overview of the various researches done in the
field of Preferences and Soft Constraints. There are papers focusing on finding
the m-best solutions to a combinatorial optimization problem using Best-First
or Branch-and-Bound search, papers on preference combination using Subjec-
tive Logic and papers efficiently solving a problem that generalizes submodular
binary VCSPs. Other papers propose an extension to the Pareto Dominance
relation and its application in Soft Constraints, or propose a Function Filtering
enhancing Dynamic Programming methods. Moreover, other papers deal with
expressing nonlinearity constraints in terms of Soft Global n-ary Constraints,
solve the Crop Allocation Problem with constraints, formalize the m-best task
within the unifying framework of Semirings, deal with decomposing Global Cost
Functions, or model and solve the University course Timetabling Problem.

August 2011 Maria Silvia Pini
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A Weighted CSP approach for solving

spatio-temporal farm planning problems

Mahuna Akplogan, Jérome Dury, Simon de Givry,
Gauthier Quesnel, Alexandre Joannon, Arnaud Reynaud,

Jacques Éric Bergez, and Frédérick Garcia

INRA, F-31320 Castanet Tolosan, France
{makploga,jdury,degivry,gquesnel,joannon,

areynaud,jbergez,fgarcia}@toulouse.inra.fr

Abstract. Applications regarding the crop allocation problem (CAP)
are required tools for agricultural advisors to design more e�cient farm-
ing systems. Despite this issue has been extensively treated by agronomists
in the past, few methods tackle the crop allocation problem considering
both the spatial and the temporal aspects of the CAP. In this paper, we
precisely propose an original approach based on weighted CSP (WCSP)
to address the crop allocation planning problem while taking farmers’
management choices into account. These are represented as hard and
preference constraints. We illustrate our proposition by some results
based on a virtual case study. This preliminary work foreshadows the
development of a decision-aid tool for supporting farmers in their crop
allocation strategies.

Keywords: Weighted CSP, constraint satisfaction, optimization, spatio-
temporal planning, crop allocation problem

1 Introduction

The design of a cropping plan is one of the first step in the process of crop
production and is an important decision that farmers have to take. By cropping
plan, we mean the acreages occupied by all the di↵erent crops every year and
their spatial allocation within a farming land. The cropping plan decision can be
summarized as (1) the choice of crops to be grown, (2) the determination of all
crops’ acreages, and (3) their allocation to plots. Despite the apparent simplicity
of the decision problem, the cropping plan decisions depend on multiple spatial
and temporal factors interacting at di↵erent levels of the farm management.
The cropping plan decision-making combines long term planning activities, with
managerial and operational activities to timely control the crop production pro-
cess. Modelling a decision-making process to support such farmers’ decisions
therefore requires to consider the planning of crop allocation over a finite hori-
zon, and to explicitly consider the sequence of problem-solving imposed by the
changing context (e.g. weather, price).
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2 A Weighted CSP approach

In this paper, we precisely focus on the activity of planning seen as a spatio-
temporal crop allocation problem (CAP) whose relevance is assessed by a global
objective function. In addition to many approaches based on optimization pro-
cedure, the objective of the work is to propose new directions to address crop
allocation while taking farmers’ decision factors into account. These factors are
formalized as hard and preference constraints in the WCSP framework. The
choice of constraints is based on a survey of farmers’ processes taking into ac-
count annual working hours capacity restrictions [5]. However, designing crop-
ping plans with such an approach is still an open question due to many other
decision factors that could be taken into account to solve the crop allocation
problem. This preliminary work foreshadows the implementation of a spatially
explicit decision-aid tool, namely CRASH (Crop Rotation and Allocation Simu-
lator using Heuristics), developed for supporting farmers in their crop allocation
strategies.

This paper is organized as follows. In section 2, we describe the crop allocation
problem. It introduces some specific definitions and emphasize crop allocation
problem. Section 3 describes existing approaches used to design cropping plans
with a focus on their main limitations. In section 4, we introduce the constraint
model compliant with the weighted CSP framework. In section 5, we illustrate
our modelling approach by a virtual case study in order to highlight the interests
of the proposed approach. And finally in section 6 we discuss and conclude the
relevance and limits of using WCSP to solve the CAP.

2 Crop allocation problem (CAP)

2.1 Global description of the problem

t1 t2 t3
Time

kp kp

x
3,2 x

3,2 x
3,2

p
3

p
4

b = 2

Biophysical properties

Management units

Fig. 1. Schematic representation of the spatial and temporal aspect of the decision-
making problem (ti: year, b: block, pj : plot, xb,i: landunit, kp: preceding e↵ect)
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Solving crop allocation problem 3

Let us consider a set of landunits defined as a piece of indivisible and homo-
geneous land whose historic and biophysical properties are identical. We define
crop allocation as a spatio-temporal planning problem in which crops are as-
signed to landunits xb,i over a fixed horizon H of time (Fig. 1). These landunits
are spatial sampling of the farmland where xb,i denotes the landunit i of block

b.

The planning problem depends on multiple spatial and temporal factors. In
space, these factors are organized in many di↵erent organizational levels called
management units (Fig.1). These management units are decided by the farmer
to organize his work and allocate resources. In order to simplify our example, we
only considered the two main management units: plot (pj) and block b. The first
concerns the annual management of crops. A plot is a combination of landunits.
Their delimitations are adapted over years in order to enforce the spatial bal-
anced of crop acreages. As shown by Fig.1 blocks are subset of plots managed
in a coherent way. Blocks are characterized by one cropping system defined by
the same collection of crops and by the use of a coherent set of production tech-
niques applied to these crops (e.g. fertilizer, irrigation water). The delimitation
of blocks are not reshaped in the CAP considered in this work. They are mostly
defined by the structural properties of the farm such as the availability of re-
sources (e.g. access to irrigation water) and by the biophysical properties (eg.
soil type, accessibility, topography). These biophysical properties are also used
to define if a crop could not be produced in good condition on certain soil types.

In time, the sequence of crops on the same landunit is not allowed or not
advisable without facing decrease in soil fertility, or increase in diseases or weeds
infestation. We deal with these temporal factors by summarizing the assessment
of crop sequence quality in two indicators: the minimum return time (rt) and the
Preceding e↵ect(kp). The minimum return time (rt) is defined as the minimum
number of years before growing the same crop on a same landunit. On the figure
1, the minimum return time of the crop produced on x3,2 (landunit 2 of block 3)
at t1 is equal to 2 years. More generally let t, t0 be two di↵erent years (t < t0),
xb,i a landunit and v a crop, xt

b,i = xt0

b,i = v if (t0 � t) � rt(v).

The preceding e↵ect (kp) is an indicator representing the e↵ect of the previous
crop on the next one [12]. Based on kp, some crop sequence can be ignored for
their e↵ects or recommended for their beneficial e↵ects for production purposes.
Further, some authors [4] have argued that the reproducibility of a cropping
system over time is only ensured when crop allocation choices are derived from
finite crop sequence which can be repeated over the time. We therefore introduce
the concept of repeatability while looking for such a crop sequence. This means
that the proposed crop sequence could be repeated over time without breaking
the constraint rt. We introduce this concept, known as a “crop rotation”, because
it is widely used by farmers as decision indicator.
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4 A Weighted CSP approach

2.2 Constraints description

Solving the crop allocation problem (CAP) is to assign crops to landunits xb,i

over a fixed horizon H of time. An assignment of crops must satisfy a set of
constraints.

We retained as hard constraints the minimum returned time (rt), the his-

toric of landunits and the physical properties (soil types, resource accessibility).
Preference constraints are related to the preceding e↵ects (kp) and the spatio-
temporal balance of crop acreages such that resources are e�ciently used. Hard
and preference constraints are defined either at:

– plot level to express for each plot (i) if they can be split/combined, (ii) if
they must be fixed over the planning horizon in order to enforce the static
aspect of the plot.

– block level to express for each landunit and crop the spatial compatibility of
crop, the return time and the preceding e↵ect.

– farm level to express preferences or the global use of resources.

Let us consider the crop allocation problem described in Fig. 2. In this prob-
lem, we consider 4 blocks and 15 plots sampled into 120 landunits. The size of
the farmland (180 ha) and its sampling into landunits correspond to a middle
real-world CAP. Four crops are produced over the all blocks: winter wheat (BH),
spring barley (OP), maize (MA) and winter rape (CH). Each block has a fixed
area (see Fig. 2). The blocks 1 and 3 have an access to irrigation equipments r1

and r2. The annual quota of irrigation water over the blocks is 6000m3 (respec-
tively 4000m3) for r1 (respectively r2). Only the maize (MA) can be irrigated.
There are two di↵erent types of soil: type 1 (block 1, 3) and type 2 (block 2, 4).
The table on Fig. 2 shows the sequence of crops produced by each plot during
the five previous years.

Spatio-temporal hard constraints

1. h-SCC - spatial compatibility of crops: for instance, the crop CH cannot
be assigned to landunits whose soil type is 1 (block 1,3). This biophysical
property is not suitable for the crop growing.

2. h-EQU - landunit equality : landunits on the plots p7 (respectively p9) and
p8 (respectively p10) must have the same crop every year. Indeed, these
landunits are decided by the farmer to be managed in the same manner.

3. h-HST - landunit historic: each landunit has defined historic values. The
table in Fig. 2 defines the historic of each plot.

4. h-TSC - temporal sequence of crop: for each couple of crops and landunits,
the minimum returned time rt must always be enforced. For instance in the
CAP above, rt(BH) = 2, rt(OP ) = 3, rt(MA) = 2 and rt(CH) = 3.

5. h-CCS - cyclicity of crop sequence: for each landunit, the crop sequence
after the historic must be endlessly repeated by enforcing temporal sequence
of crops.
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Solving crop allocation problem 5

r1

r2

b = 1 area = 48ha b = 2 area = 24ha

b = 3 area = 48ha

b = 4 area = 60ha

x

p

1

p

2

p

3

p

4

p

5

p

6

p

7

p

8

p

9

p

10

p

11

p

12

p

13

p

14

p

15

Plots t1 t2 t3 t4 t5
p1 MA MA BH OP MA
p2 OP MA MA BH OP
p3 BH OP MA MA BH
p4 MA BH OP MA MA
p5 BH OP BH CH BH
p6 OP BH CH BH OP
p7 MA MA MA MA MA
p8 MA MA MA MA MA
p9 MA MA MA MA MA
p10 MA MA MA MA MA
p11 BH CH BH OP BH
p12 CH BH OP BH CH
p13 BH OP BH CH BH
p14 OP BH CH BH OP
p15 BH CH BH OP BH

Fig. 2. A virtual farm with 4 blocks, 15 plots (12ha for each plot) split into 120
landunits. The grey blocks have their own irrigation equipment (r1, r2). The table
contains the historic values for each plot

previous crops
BH OP MA CH

BH 4 1 1 0
OP 2 3 1 0
MA 0 0 3 0
CH 0 0 0 4

Fig. 3. Table of preceding e↵ect

6. h-RSC - resources capacity : a fixed amount of resources are available. The
quantities of resources accumulated on the landunits do not exceed some
limits. For instance, in the CAP defined above, we have only one irrigated
crop (maize - MA). Knowing that we need 165m3 of water by hectare, the
annual production of MA on the blocks 1 cannot exceed 36, 36 ha.

7. h-SCA - same crops assigned : over the time, the same subset of crops must
be assigned to every landunit of the same block.

Spatio-temporal preferences

1. s-TOP - Farm topology : landunits where the same crops are assigned must
be spatially grouped. By this we mean that it is preferable to group as most
as possible the same crop on the same block. Thus, traveling time can be
reduced as well as the time spend by the farmers on operational activities
that control the crop production process. Therefore, every isolated landunit
is penalized by a cost �1.

2. s-SBC - Spatial balanced of crop acreages: a defined acreage of some crops
every year. For instance, in the CAP defined above, the acreage of MA should
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6 A Weighted CSP approach

be within the range [24, 48] ha on block 1 and [12, 24] ha on block 3. Any
deviation is penalized by a cost �2.

3. s-TBC - temporal balanced of crop acreages: a defined acreage of some crops
on each landunit over years. In the CAP defined above, between [12, 24] ha
of crop CH should be produced on every landunit. Any deviation is penalized
by a cost �3.

4. s-CSQ - Crop sequence quality : each pair of successive crops is associated
to a cost kp that defines its preceding e↵ect. Fig. 3 define all kp values.

In practice, we suggest to define the costs kp, �1, �2 and �3 such that
P

kp >P
�2 >

P
�1 >

P
�3. By doing so, a realistic hierarchy can be introduced

among the soft constraints. Indeed, first and foremost, the preceding e↵ects kp

must be minimized because of their consequences on the next crops. The spatial
balanced of crop acreages related to cost �2, implicitly defines the annual receipts
of the farmer. It must be ensured as much as possible. Afterwards the working
hours can be reduced by grouping the same crops together (�1). Lastly, the
additional preferences related to the temporal balanced of crop acreages (�3)
can be enforced.

3 Related work

Since Heady [7], the cropping plan decision was represented in most modelling
approaches as the search of the best land-crop combination [11]. Objectives
to achieve a suitable cropping plan were often based on complete rationality
paradigm using a single monetary criteria optimization, multi-attribute opti-
mization [1] or assessment procedures [2]. In these approaches, the cropping
plan decision is mainly represented into models by one of the two concepts, i.e.
the cropping acreage [13, 10, 18] or crop rotation [6, 4]. These two concepts are
two sides of the cropping plan decision problem, i.e. the spatial and temporal
aspects. The originality of our approach lies on the consideration of both dimen-
sions, i.e. spatial and temporal while solving the CAP. In most of the modelling
approaches, the cropping plan is not spatially represented and is summarized as
simple crop acreage distributions across various land types. At the farm level,
the heterogeneity of a farm territory is generally described using soil type as the
sole criterion [5].

4 Weighted CSP model of crop allocation

4.1 Weighted CSP Formalism

According to the CAP definition, and assuming a purely CSP formalism cannot
deal with preferences easily, we focus on the Weighted CSP (WCSP) formalism
which is more appropriate for solving optimization problems. The WCSP formal-
ism [14] extends the CSP formalism by associating cost functions (or preferences)
to constraints. A WCSP is a triplet hX ,D,Wi where:
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Solving crop allocation problem 7

– X = {1, · · · , n} is a finite set of n variables.
– D = {D1, · · · , Dn} is a finite set of variables domain. Each variable i 2 X

has a finite domain Di 2 D of values.
– W = {WS

1

, · · · , WSe
} is a set of cost functions where Si ⇢ X be a subset of

variables (i.e., the scope). We denote l(Si) the set of tuples over Si. Each cost
function WSi

is defined over a subset of variables Si (WSi
: l(Si) ! [0, m]

where m 2 [1, · · · ,+1]).

Solving a WCSP is to find a complete assignment A 2 l(X ) that minimizes
min(A2l(X ))

hP
WSi

2W WSi
(A[Si])

i
, where A[Si] is the projection of a tuple on

the set of variables Si.

4.2 Crop allocation problem definition

The CAP is defined by a set of landunits and crops. The planning problem is
defined over a finite horizon H. We define the associated WCSP problem as
follow.

X a set of variables xt
b,i that define the landunit i in block b (i 2 [1,Nb] , b 2 [1,B]

B = 4 and N1 = 32 in the CAP described in Fig. 2) at year t (t 2 [1,H]). Thus,
each landunit is described by H variables that represent the landunit occupation
at every time. We define [1, h] and [h+1,H] respectively the historic and the future
times. For instance, following Fig. 2) and considering H = 9 and h = 5, landunit
i in block b will be represented by 9 variables where the first five variables (white
nodes) are historic variables.

x1
b,i x2

b,i x3
b,i x4

b,i x5
b,i x6

b,i x7
b,i x8

b,i x9
b,i

kp kp kp kp kp kp kp kp

Fig. 4. A temporal sequence of variables over landunit i in block b

D the domains Db,i of variables xt
b,i is the set of possible crops over the landunit i

in block b. Considering the problem in Fig. 2, 8b 2 [1,B], 8i 2 [1,Nb], Db,i =
{1, 2, 3, 4} = {BH, OP, MA, CH}

W the cost functions are divided into five di↵erent types of hard and soft constraints:
(1) simple tabular cost functions (arity up to 5), (2) same global constraint, (3)
regular global constraint, (4) gcc global cardinality constraint, (5) soft-gcc soft
global cardinality constraint. These cost functions are precisely defined in the next
sections.

4.3 Simple cost functions

The hard and soft constraints h-SCC, h-EQU, h-HST, s-TOP and s-CSQ are
defined by:
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8 A Weighted CSP approach

h-SCC : 8t 2 [h + 1,H], 8b 2 B, 8i 2 Nb, let WSCC
xt

b,i
be a unary cost function

associated to spatial compatibility of crops.

8a 2 Db,i, W
SCC
xt

b,i
(a) =

⇢1 if a is forbidden for block b, landunit i

0 otherwise

(1)

h-EQU : 8t 2 [h + 1,H], 8b 2 B, for all couple of landunits (i, j) 2 Nb ⇥ Nb

that are decided by the farmer to be managed in the same manner, we define an
equality constraint WEQU

xt
b,i,x

t
b,j

between the two landunits.

8a 2 Db,i,8a0 2 Db,j , W
EQU
xt

b,i,x
t
b,j

(a, a0) =
⇢

0 if a = a0

1 otherwise

(2)

h-HST : 8b 2 B, 8i 2 Nb, 8t 2 [1, h], let WHST
xt

b,i
be an unary cost function

associated to the historic values of landunits.

8a 2 Db,i, W
HST
xt

b,i
(a) =

⇢
0 if a = historic(xt

b,i)
1 otherwise

(3)

where historic(xt
b,i) returns the historic value of landunit i in block b at time t.

s-TOP : 8t 2 [1,H], 8b 2 B, 8i 2 Nb, let WTOP
S be an n-ary cost function asso-

ciated to the farm land topology. We define a neighborhood function neighbor(i)
which returns the landunits j 2 Nb spatially close to i. For instance, in the
CAP presented on Fig. 2, we consider the 4 nearest neighbors, the so-called von
Neumann neighborhood. Here, the scope S is equal to {xt

b,i, x
t
b,n, xt

b,s, x
t
b,e, x

t
b,w}

where landunits n, s, e, w are the 4 nearest neighbors respectively at the North,
South, East and West of i. 8a 2 Db,i,8an 2 Db,n,8as 2 Db,s,8ae 2 Db,e,8aw 2
Db,w

WTOP
S (a, an, as, ae, aw) =

⇢
0 if a = an = as = ae = aw

�1 otherwise

(4)

According to the position of i in its block, the arity of WTOP
S could be reduced

to 4 or 3.

s-CSQ : 8t 2 [1,H], 8b 2 B, 8i 2 Nb , let WCSQ

xt
b,i,x

t+1

b,i

be a binary cost function

associated to the preceding e↵ect kp.
We define a function KP(a, a0) that returns the preceding e↵ect kp of doing

the crop a0 after a.

8a 2 Db,i,8a0 2 Db,i, W
CSQ

xt
b,i,x

t+1

b,i

(a, a0) = KP(a, a0) (5)
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Solving crop allocation problem 9

4.4 Crop collection over a block using same constraints

h-SCA : considering a block b, the subset of (H � h) future variables xt
b,i

(with t 2 [h + 1,H]) associated to each landunit i in b must be assigned to the
same crop collection. Thus, 8(i, j) 2 Nb ⇥ Nb (with i 6= j), the set of values
assigned to the temporal sequence of variables defining i is a permutation of
those of j. By using the same constraint introduced in [3] we define h-SCA. For
each block b, we choose a leading landunit i. We then define a 2 ⇤ (H � h)-
ary cost function WSCA

S associated to each pair of sequence of variables that
defines xt

b,i and xt
b,j (i 6= j). Thus, the scope S is {xh+1

b,i , · · · , xHb,i, x
h+1
b,j , · · · , xHb,j}.

Let A[xh+1
b,i , · · · , xHb,i] and A[xh+1

b,j , · · · , xHb,j ] denote the two sub-assignments of
the variables in S. The constraint WSCA

S requires that A[xh+1
b,i , · · · , xHb,i] is a

permutation of A[xh+1
b,j , · · · , xHb,j ].

WSCA
S = same(xh+1

b,i , · · · , xHb,i| {z }
i

, xh+1
b,j , · · · , xHb,j| {z }

j

) (6)

4.5 Crop sequence using regular global constraints

The constraints h-TSC and h-CCS are related to temporal crop sequences. We
represent them by using the regular constraint [16]. 8t 2 [1,H], 8b 2 B, 8i 2 Nb,
8a 2 Db,i , let Ma

b,i be a non deterministic finite automaton (NFA), L(Ma
b,i)

the language defined by Ma
b,i, and Sb,i a temporal sequence of H variables that

describes landunit i of block b over the horizon. Solving a regular(Sb,i, Ma
b,i)

constraint is to find an assignment A[Sb,i] such that A[Sb,i] 2 L(Ma
b,i).

h-TSC : considering each landunit xb,i, the crop sequence is enforced by defining
for each crop a 2 Db,i a language L(Ma

b,i) such that the same value a is assigned
to (xt

b,i and xt0

b,i) i↵ xt0

b,i enforces the minimum returned time rt(a) i.e., 8t0 6=
t, t0 � t+ rt(a). We define regular(Sb,i, Ma

b,i) where Ma
b,i is described as in Fig.

5 for crop a = CH the minimum return time of which is rt(CH) = 3 years.
Here, the initial state is 0 while final states are 4, 5, 6. Arcs are labelled with
crop values.

As shown by the NFA in Fig. 5, the historic variables are used to enforce the
minimum return time over the future variables. We then define an H-ary cost
function WTSCa

Sb,i
associated to each pair of landunit i in block b and each crop

a such that:

8b 2 B,8i 2 Nb,8a 2 Db,i, W
TSCa

Sb,i
= regular(x1

b,i, · · · , xt
b,i, · · · , xHb,i, M

a
b,i) (7)

h-CCS : considering each landunit xb,i, we combine h-TSC with a repeatability
constraint also defined by a set of regular constraints. The constraint h-CCS
ensures that any crop sequence assignment after the historic can be endlessly
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6 7432
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CHCH

vv
CH
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Fig. 5. Automaton for crop CH with rt(CH) = 3 and h = 5. v denotes any value in
Db,i. The notation CH corresponds to Db,i \ {CH}. The associated language accepts
every pattern over the historic variables and only the patterns that enforce the mini-
mum return time in the future variables (e.g., CH-OP-CH-OP-CH-BH-OP-CH-BH).

repeated without violating the minimum return time constraint h-TSC. Fig. 6
describes a cyclic NFA for crop CH. The initial state is 0 while final states are
3, 6, 9, 12. The scope of the cost function WCCSa

Sb,i
is restricted to future variables.

8b 2 B,8i 2 Nb,8a 2 Db,i, W
CCSa

Sb,i
= regular(xh+1

b,i , · · · , xHb,i, M
a
b,i) (8)

00

41 7 10
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CH

CH

CH

CH

CH

CH
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CH

CH CH

CH CH

CH

CH

CH

CH

CH

CH

CH

CH

Fig. 6. Cyclic automaton for the crop CH with rt(CH) = 3 and H� h = 4.

4.6 Resource capacity constraints using global cardinality
constraints

In CAP, each landunit consumes a fixed amount of resources according to some
structural (crop type, the area of landunits, etc.) and numerical (the irrigation
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Solving crop allocation problem 11

dose) requirements. For instance, the maize (MA) is an irrigated crop whereas
winter wheat (BH) does not need irrigation. A classical approach to deal with
resources is to solve a shortest path problem with resource constraints [9]. The
problem is NP-hard if the path needed is elementary. Loosely, solving a resource
allocation problem involves both sequencing and counting reasoning. We assume
in the CAP that this problem can be reduced to a counting problem under
hypothesis 1 and 2.

Hypothesis 1 : Resources are supposed to be usable and systematically renewed

every year without doing anything (e.g. annual quota of irrigation water).

This hypothesis is closed to a real CAP because farmers usually have a fixed
quota of irrigation water. That can be exactly the case for the working hours
capacity in a year if work regulations is taken into account.

Hypothesis 2 : 8t 2 [1,H], 8(b, b0) 2 B⇥B a couple of blocks, 8(i, j) 2 Nb⇥N 0
b

a couple of landunits. The areas of landunits i and j of block b (respectively b0)
can be considered equivalent according to the problem size.

We make the assumption that the spatial sampling of the farm land into
landunits is homogeneous. Under these hypothesis the annual resource allocation
is seen as a counting problem at every time t 2 [h + 1,H]. Thus, given annual
resources capacities for a CAP, we define for each time t 2 [h + 1,H] an upper
and lower bound to the number of variables xt

i,b that are assigned to a given
crop according to both structural and numerical requirements.

h-RSC : to enforce resource capacity constraints h-RSC, we use the global
cardinality constraint gcc [17] over the assignments of crops to landunits.

8t 2 [h+1,H], let WRSC
St

b
be a Nb-ary global constraint associated to resource

capacities.
Given St

b = (xt
b,1, · · · , xt

b,Nb
) the global cardinality constraint (gcc) specifies,

for each value a 2 S
Db,i, an upper bound ub(a) and a lower bound lb(a) to the

number of variables xt
b,i that are assigned to a.

WRSC
St

b
= gcc(St

b, lb, ub) (9)

has a solution if there exists an assignment of St
b such that

8a 2
[

Db,i, lb(a)  |{xt
b,i 2 St

b|xt
b,i = a}|  ub(a) (10)

4.7 Spatio-temporal balance of crops using soft-gcc

Preferences related to the spatio-temporal balance of crops (s-SBC and s-TBC)
are defined as soft global cardinality constraints (soft-gcc) that allow the viola-
tion of both lower and upper bounds of the associated hard constraint gcc.

11 of 138



12 A Weighted CSP approach

soft-gcc(S, lb, ub, z, µ) = {(A[S], az)|A[S] 2 l(S), az 2 Dz, µ(A[S])  az}(11)

where lb and ub are respectively the lower and upper bounds, z a cost variable
with finite domain Dz, µ the violation measure for the global constraint soft-

gcc. In this work, we use the variable-based violation measure (see [8]) which
is the minimum number of variables whose values must be changed in order to
satisfy the associated gcc constraint. Thus soft-gcc(S, lb, ub, z, µ) has a solution
if 9 A[S] such that min(Dz)  µ(A[S])  max(Dz). Based on this definition the
constraints s-SBC and s-TBC are formalized as follow.

s-SBC : 8t 2 [h+1,H], 8b 2 B0 ✓ B. Let WSBC
St

b
be a |B0|-ary soft-gcc constraint

associated to block b at time t. The scope St
b = {xt

b,i|i 2 [1 · · · Nb]}.

WSBC
St

b
= soft-gcc(St

b, lb, ub, z, µ) (12)

s-TBC : 8b 2 B0 ✓ B, 8i 2 Nb. Let WTBC
Sb,i

be a (H� h)-ary soft-gcc constraint
associated to each landunit i. The scope Sb,i = {xh+1

b,i , · · · , xHb,i}. Excepted the
scope, WTBC

Sb,i
is exactly defined as the global soft cardinality constraint defined

for s-SBC.

5 Implementation

5.1 CAP instances description

We performed the experimentations by using four instances of the virtual farm
presented in Fig. 2. Each instance corresponds to a new sampling of landunits.
The number of landunits is increased from 15 to 120 (15, 30, 60, 120). For the
CAP instance with 15 landunits, N1 = N3 = 4,N2 = 2 and N4 = 5 where Ni

denotes the number of landunits in the block i. In this problem, sampling is done
such that the plots (see Fig. 2) are also the landunits (12 ha per landunit). These
landunits are gradually refined by splitting them into 2, 4 and 8 smaller ones, to
respectively build the instances with 30, 60 and 120 landunits. These sampling
are chosen to be representative of di↵erent farm sizes. The planning horizon is
nine years. According to the minimum return time (winter wheat rt(BH) = 2,
spring barley rt(OP ) = 3, maize rt(MA) = 2 and winter rape rt(CH) = 3) the
four last years are dedicated to the future while the five first are historic ones.
We use the historic values presented in Fig. 2.

We should emphasis that there is no constraints or preferences between blocks
as described in Section 2.2. Thus, we first focus on solving each block indepen-
dently. The instances associated to the block 1 are B1-LU4, B1-LU8, B1-LU16,
B1-LU32 respectively for 4, 8, 16, 32 landunits. For all these experimentations the
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Solving crop allocation problem 13

costs associated to s-TOP, s-SBC and s-TBC are respectively �1 = 2, �2 = 100
and �3 = 10. By doing so, we implicitly introduce a hierarchy among the soft
constraints according to the criterion defined in the last paragraph of section
2.2. To fine-tune the weight of preceding e↵ects kp in the global cost function,
we introduced a factor �4 = 10 such that kp are set to �4 ⇤KP . By doing so, the
crop sequences that minimize the preceding e↵ects are desired to be satisfied as
much as possible.

Secondly, we add a new preference over all blocks in our original model. We
define a new cost function WSBC

St , extending the previous WSBC
St

b
described in

section 2.2 such that the annual global acreage of MA and BH over all blocks
should be respectively within the range [40, 72] ha and [70, 100] ha. The CAP
instances B1[1-4]-LU15(*), B[1-4]-LU30(*), B[1-4]-LU60(*) and B[1-4]-LU120(*)
are associated to these new problems. The blocks are now interdependent and
consequently the maximum arity of soft global cardinality constraints is equal
to the total number of landunits. All of these instances are available in the cost
function benchmark1. For each instance, the number of constraints is approxi-
mately equal to 5

2 ⇥N ⇥H± 30, where N denotes the number of landunits and
H the planning horizon.

5.2 Analysis of the results

For solving the CAP, we use a Depth-First Branch and Bound (DFBB) algo-
rithm implemented in the Toulbar2 solver2 (version 0.9.1) using default options.
Columns |X | and |W| of Tab. 1 shows the number of variables and constraints
for each instance.

The results presented in Tab. 1 are performed on a 2.27GHz Intel(R) Xeon(R)
processor. Total CPU times are in seconds. We measure total times to find
and prove optimality (column Time(s) of One optimal (DFBB)) starting with
a relatively good upper bound (column UB). The initial upper bound has an
important impact on performance. We chose its value empirically. Based on
optimal values, we also measure total times to find all the optimal solutions
(column Time(s) of All optimal (DFBB)) by setting the initial upper bound to
the optimum (column Opt.) plus one.

While focusing on independent blocks, the best solution is got in less than
a minute excepte for B1-LU32. The optimum is found and proved for all the
instances. The di↵erences between CPU times to find one optimal and all the
optimal solutions is mainly due to the quality of the initial upper bound. The
results found while introducing interdependence between blocks are also accept-
able compared to the problem size. Indeed, the scope of some gcc and soft-gcc

constraints is equal to the number of landunits (120 variables in the worse case).
This may explain why the instance B[1-4]-LU120(*) is not closed after 48 hours.

1 http://www.costfunction.org/benchmark?task=browseAnonymous&idb=33
2 http://mulcyber.toulouse.inra.fr/projects/toulbar2
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14 A Weighted CSP approach

Table 1. An 0ptimal and all optimal solutions using DFBB

Instance of CAP |X | UB |W| Opt. One optimal (DFBB) All optimal DFBB

Time(s) Nodes BT Time(s) Nodes BT Nb.Sol

B1-LU4 36 1000 91 92 0.39 17 10 0.08 8 4 5
B1-LU8 72 2000 175 184 2.96 94 49 0.21 32 16 17
B1-LU16 144 4000 343 368 21.47 413 209 2.64 256 512 257
B1-LU32 288 6000 679 640 228 285 147 6.19 38 19 17

B2-LU2 18 1000 47 38 0.08 2 2 0.06 2 1 1
B2-LU4 36 2000 95 116 0.22 8 4 0.22 8 4 1
B2-LU8 72 4000 191 392 4.19 6 5 0.36 2 1 1
B2-LU16 144 6000 383 752 7.9 10 9 0.78 2 1 1

B3-LU4 36 1000 99 328 0.3 14 7 0.29 16 8 2
B3-LU8 72 2000 199 656 0.64 14 7 0.6 16 8 2
B3-LU16 144 4000 367 1312 1.51 18 9 1.37 16 8 2
B3-LU32 288 6000 703 2592 4.1 20 10 3.79 18 9 2

B4-LU5 45 1000 119 46 0.53 4 4 0.08 0 0 1
B4-LU10 90 2000 239 192 11.64 5 4 0.57 0 0 1
B4-LU20 180 4000 479 752 12.32 12 10 0.73 0 0 1
B4-LU40 360 6000 959 1504 39.33 23 19 1.97 2 1 1

B[1-4]-LU15(*) 135 2000 360 704 21.02 257 131 7.87 96 48 2
B[1-4]-LU30(*) 270 4000 712 1560 323.02 1029 521 155.9 498 249 12
B[1-4]-LU60(*) 540 4000 1384 3852 2412.97 1297 658 3697.23 2228 1114 136
B[1-4]-LU120(*) 1080 8000 2728 - - - - - - - -

6 Conclusion

In this paper, we have modelled the crop allocation problem (CAP) using the
Weighted CSP formalism. Contrary to existing approaches for solving such a
problem, our proposition combines both the spatial and the temporal aspects
of crop allocation. We explicitly described how the farmers’ hard and soft con-
straints can be addressed as a global objective function optimization problem.
The results have shown that on small and middle CAP, the Toulbar2 solver
can deliver relevant solutions in acceptable computational time. In the future,
we will investigate the cumulative constraint for expressing more complex re-
source management and the costRegular constraint for mixing the return
time and preceding e↵ects, taking inspiration from the work done by [15].
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Abstract. Similarly to what has been done with Global Constraints in
Constraint Programming, di↵erent results have been recently published
on Global Cost Functions in weighted CSPs, defining the premises of
a Cost Function Programming paradigm. In this paper, in the spirit of
Berge-acyclic decompositions of global constraints such as Regular, we
explore the possibility of decomposing Global Cost Functions in such a
way that enforcing soft local consistencies on the decomposed cost func-
tion o↵ers guarantees on the level of consistency enforced on the original
global cost function. We show that an extension of Directional Arc Con-
sistency to arbitrary arities and Virtual Arc Consistency o↵er specific
guarantees. We conclude by preliminary experiments on WeightedReg-

ular decompositions that show that decompositions may be very useful
to easily integrate global cost functions in existing solvers with good
e�ciency.

.

Introduction

Graphical model processing is a central problem in AI. The optimization of
the combined cost of local cost functions, central in the valued/weighted CSP
frameworks [25], captures problems such as weighted MaxSAT, Weighted CSP or
Maximum Probability Explanation in probabilistic networks. It has applications
in resource allocation, combinatorial auctions, bioinformatics. . .

The main approach to solve such problems in the most general situation relies
on Branch and Bound combined with dedicated lower bounds. Such lower bounds
can be provided by enforcing soft local consistencies [5], leading to pruning as
in Constraint Programming solvers. CP solvers are also equipped with global
constraints which are often considered as crucial for solving large di�cult prob-
lems. Dedicated algorithms for filtering such constraints have been introduced.
For some classes of global constraints, among which the famous Regular con-
straint, it has been shown that using a direct decomposition of the constraint into

This work has been partially funded by the french “Agence nationale de la
Recherche”, reference ANR-10-BLA-0214.
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a Berge-acyclic network of fixed arities constraints could lead to better e�ciency,
with a simpler implementation and without losing e↵ectiveness in filtering.

The notion of global constraints has been recently extended to weighted
CSP, defining Global Cost functions [26,19,18] with associated e�cient filtering
algorithms. In this paper, we consider the possible decomposition of global cost
functions into Berge-acyclic networks and see if enforcing local consistency on
the decomposition can lead to a filtering which is comparable to the filtering
obtained by directly enforcing the same consistency on the original global cost
function.

To give body to this notion of Berge-acyclic decomposable cost functions,
we use the WeightedRegular cost function, which relies on a weighted finite
automaton to define a cost function on assignments, considered as a regular
language.

After some preliminaries introducing Cost Function Networks and Soft Local
Consistencies, we define Cost function decomposition and show how it can be
applied to the WeightedRegular cost function in Section 2. Section 3 then
shows that enforcing soft local consistencies such as Directional Arc Consis-
tency or Virtual Arc Consistency on Berge-acyclic decompositions is essentially
equivalent to a direct application on the original global cost function. Finally,
Section 4 reports preliminary experiments comparing the e�ciency of decom-
posed vs. monolithic version of the WeightedRegular cost function used to
model SoftRegular cost functions.

1 Preliminaries

A Cost Function Network (CFN) or weighted CSP is a pair (X,W ) where X =
{1, . . . , n} is a set of n variables and W is a set of cost functions. Each variable
i 2 X has a finite domain Di of values than can be assigned to it. A value a
in Di is denoted (i, a). The maximum domain size is d. For a set of variables
S ✓ X, DS denotes the Cartesian product of the domain of the variables in
S. For a given tuple of values t, t[S] denotes the projection of t over S. A cost
function wS 2 W , with scope S ✓ X, is a function wS : DS 7! [0, k] where
k is a maximum integer cost (or 1) used to represent forbidden assignments
(expressing hard constraints). To faithfully capture hard constraints, costs are
combined using the bounded addition defined by ↵�� = max(k,↵+�). Observe
that the intolerable cost k may be either finite or infinite. A cost � may also be
subtracted from a larger cost ↵ using the operation  where ↵ � is (↵� �) if
↵ 6= k and k otherwise. Without loss of generality, we assume that every network
contains one unary cost function wi per variable and a 0-arity (constant) cost
function w?. A tuple tS is said to be valid i↵ 8i 2 S,wi(t[i]) < k.

The associated hyper-graph of a CFN (X,W ) is an hypergraph with one ver-
tex per variable i 2 X and one hyperedge per scope S such that 9wS 2 W . We
consider CFN with connected hypergraphs. The intersection graph of an hyper-
graph has one vertex by hyperedge and an edge connects two vertices i↵ their
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associated hyperedges intersect. An hyper-graph is Berge acyclic i↵ hyperedges
intersect by at most one vertex and its intersection graph is acyclic [1].

The central problem in CFN is to find an optimal solution: a complete as-
signment t minimizing the combined cost function

L
wS2W wS(t[S]), with a cost

strictly lower than k. This optimization problem has an associated NP-complete
decision problem and restrictions to boolean variables and binary constraints are
known to be APX-hard [22]. It federates a variety of famous problems including
CSP, SAT, Max-SAT but also the Maximum A posteriori Problem (MAP) in
Random Markov fields, the Maximum Probability Explanation (MPE) problem
in Bayes nets [14] and quadratic pseudo-boolean optimization [3].

General exact methods for solving this minimization problem usually rely on
branch and bound algorithms equipped with dedicated lower bounds. We focus
in this paper on the incremental lower bounds provided by maintaining soft local
consistencies at the arc level such as Directed Arc Consistency (DAC [6,17]) and
Virtual Arc Consistency (VAC [5]).

DAC has been originally introduced on binary cost functions using the no-
tion of strong support [5] and later extended to non binary cost functions in [24]
and [19] with di↵erent definitions. These two definitions coincide on binary cost
functions. In this paper, we use a simpler extension of DAC, and to avoid con-
fusion, we call this variant T-DAC (for terminal DAC). Given a total order �
on variables, a binary CFN is said to be Terminal Directional Arc Consistent
(T-DAC) w.r.t. � i↵ for any cost function wS , and for any value (i, a) of the
maximum variable i 2 S according to �, there exists t 2 DS , t[i] = a such that
wi(a) = wS(t)

L
j2S wj(t[j]). The tuple t is a full support of (i, a) on wS w.r.t.

�. Note that either wi(a) = k and (i, a) does not participate in any solution or
wi(a) < k and this implies that wS(t)

L
j2S,j 6=i wj(t[j]) = 0.

Virtual Arc Consistency is a more recent local consistency property that es-
tablishes a link between a Cost Function Network P = (X,W ) and a Constraint
Network denoted as Bool(P ) defined by the same set X of domain variables and
such that every constraint in Bool(P ) is the result of the transformation of a
cost function wS 2 W into a constraint cS with the same scope which forbids
any tuple t 2 Ds such that wS(t) 6= 0. A CFN P is said to be Virtually Arc
Consistent i↵ the arc consistent closure of the constraint network Bool(P ) is non
empty [5].

Enforcing soft local consistencies

Enforcing such soft local consistencies relies on so-called arc level Equivalence
Preserving Transformations (EPTs) which apply to one cost function wS [7].
Instead of just deleting domain values, EPTs may shift cost between wS and the
unary constraints wi, i 2 S and therefore operate on a sub-network of P defined
by wS and denoted as NP (wS) = (S, {wS} [i2S wi). The main EPT used by
arc level soft local consistencies is described as Algorithm 1. This EPT shifts
an amount of cost |↵| between the unary cost function wi and the cost function
wS . The direction of the cost move is given by the sign of ↵. The precondition
guarantees that costs remain non negative in the resulting equivalent network.
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Algorithm 1: The main cost shifting EPT used to enforce soft arc con-
sistencies. The �, operations are extended to handle possibly negative
costs as follows: for non negative costs ↵,�, we have ↵ (��) = ↵�� and
for �  ↵, ↵� (��) = ↵ �.

Precondition: �wi(a)  ↵  mint2DS ,t[{i}]=a{wS(t)};1

Procedure Project(wS , i, a,↵)2

wi(a) wi(a)� ↵;3

foreach (t 2 DS such that t[{i}] = a) do4

wS(t) wS(t) ↵;5

To enforce T-DAC on a single cost function wS , it su�ces to first shift the cost
of every unary cost function wi, i 2 S inside wS by applying Project(wS , i, a,�wi(a))
for every value a 2 Di. Let j be the maximum variable in S according to �, one
can then apply Project(wS , j, b,↵) for every value (j, b) and ↵ = mint2DS ,t[j]=b wS(t).
Let t be a tuple where this minimum is reached. t is then a strong support for
(j, b): wj(b) = wS(t)

L
i2S wi(t[i]). This support can only be broken if for some

unary cost functions wi, i 2 S, i 6= j and wi(a) increases for some value (i, a).
To enforce T-DAC on a the complete CFN (X,W ), one can simply sort W

according to the order of the maximum variable of every cost function according
to � and apply the previous process on each cost function, successively. When
a cost function wS is processed, all the cost functions whose maximum variable
appears before the maximum variable of S have already been processed which
guarantees that none of the established full support will be broken. Enforcing
T-DAC is therefore in O(edr) in time. Using the � data-structures introduced
in [5], space can be reduced to O(edr).

The most e�cient algorithms for enforcing VAC [5] actually enforce an ap-
proximation of VAC called VAC" with a time complexity in O( ekd

r

" ) and a space
complexity in O(edr). Alternatively, and considering the worst case where the
intolerable cost k is finite, Optimal Soft Arc Consistency can be used to enforce
VAC in O(e6.5d(3r+3.5) logM) time (where M is the maximum finite cost in the
network).

2 Decomposing Global Cost Functions

Global constraints are usually described as families of constraints with a precise
semantics parametrized by the number of variables they involve. Most of the
usually considered global constraints allow for e�cient local consistency enforc-
ing (compared to the default GAC algorithm). The notion of global constraints
has been extended to define Soft Global Constraints such as SoftAllDiff or
SoftRegular [11]. These “soft” global constraints are not cost functions but
classical global constraints defined over a set of variables which includes a ded-
icated “cost” variable representing the cost of the assignment of the remaining
variables under the precise softened global constraint semantics. For several such

19 of 138



constraints, e�cient dedicated algorithm for enforcing Generalized Arc Consis-
tency have been introduced [11].

Recently, di↵erent papers [26,19,18] have shown that it is possible to define
Global Cost Functions as cost functions with a precise semantics parametrized by
the number of variables they involve, together with e�cient soft local consistency
enforcing algorithms. Compared to the previous cost variable based approach,
this new approach o↵ers improved propagation thanks to the enhanced commu-
nication between cost functions enabled by the arc level EPTs used to enforce
Soft AC [7], DAC and FDAC [6,17], EDAC [16], OSAC and VAC [5].

2.1 Decomposing Cost Functions

Similarly to constraints, cost functions may possibly decompose into a set of cost
functions of smaller arities.

Definition 1. A cost function zT decomposes into a cost function network (T [
E,F ) i↵ 8t 2 DT , zT (t) = mint02DT[E ,t0[T ]=t

L
wS2F wS(t0[S]).

Clearly, if zT appears in a CFN P = (X,W ) and decomposes into (T [
E,F ), then the optimal solutions of P can be directly obtained by projecting
the optimal solutions of the CFN P 0 = (X [ E,W \ {zT } [ F ) on X.

For technical reasons, we introduce the notion of extra-minimal decomposi-
tions.

Definition 2. A decomposition (T [E,F ) of zT is said to be extra-minimal i↵

all variables in E are involved in at least two cost functions in F .

This is done without loss of generality since from any decomposition, one can
easily produce an extra-minimal decomposition: for any extra variable i 2 T
which is involved in just one cost function wS 2 F , we can eliminate i from
E, replace wS by the cost function f = mini wS on S \ {i} and get a net-
work (T [ E \ {i}, F [ {f} \ {wS}) which is an extra-minimal decomposition.
This process removes extra variables and reduces scopes and therefore preserves
Berge-acyclicity.

Example 1. Consider the soft All-di↵erent cost function with the so-called de-
composition measure [11]: the cost of an assignment is equal to the number of
pairs of variables taking the same value. This global cost function can be de-
composed in a set of n.(n�1)

2 binary soft di↵erence cost functions, each involving
a di↵erent pair of variables. A soft di↵erence cost function takes cost 1 i↵ the
two involved variables are equal and 0 otherwise. In this case, no extra variable
is required and the decomposition is therefore already extra-minimal.

As for global constraints, using decomposition may lead to more local reason-
ing which may be less e↵ective. In all cases, it facilitates the implementation of
the global cost function in solvers without requiring the cost function to be “pro-
jection safe” (ability to perform EPTs on the internal representation of global
cost functions directly, as introduced in [19]).
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2.2 From Regular to Weighted Regular

Initially introduced in [23], the RegularA(i1, . . . , in) global constraint autho-
rizes a tuple (v1, ..., vn) i↵ it is a string of the language defined by the Finite Au-
tomaton A. A deterministic finite automaton (DFA) is defined by (Q,⌃,✓,q0,F ),
where Q is is a finite set of states, ⌃ is a finite set of symbols (the alphabet),
✓ : Q⇥⌃ ! Q is the transition function, q0 2 Q is the initial state and F ✓ Q is
a set of final (or accepting) states. A non-deterministic finite automaton (NFA)
is defined by (Q,⌃,�,q0,F ) where � is a transition function from ⌃ ⇥ Q ! 2Q.
The automaton starts in the initial state q0. In state q, the automaton inputs
the next symbol s 2 ⌃ and moves to a state in �(s, q). The string is accepted i↵
there is a path that ends in a state q 2 F . The whole set of strings accepted by
a N/DFA A is the language recognized by it, noted L(A). A regular language is
a language which can be recognized by a DFA or a NFA.

The SoftRegular

d
A(i1, . . . , in, z) global constraint can be directly softened

using any distance d between strings. This global constraint authorizes a tuple
(v1, ..., vn, c) i↵ the minimum distance according to d between (v1, . . . , vn) and
a string of the language of A is c. Traditional distances between strings of the
same length such as the Hamming distance (number of positions at which string
di↵ers) or the Edit distance (minimum number of substitutions, insertions and
deletions needed to edit one string into the other) have been considered and
dedicated global constraints with cost variables proposed in [11].

More recently, [8] has been considering using weighted automata as a more
general way of expressing soft regular constraints. This has also been extended
to CFG (Context Free Grammars) in [13]. We follow the same idea and con-
sider the WeightedRegular global cost function, defined through a weighted
automaton.

Weighted Automata and Language A weighted version of a N/DFA was
introduced in [12]. A weighted finite automaton (WFA) is a FA where the transi-
tion function � is replaced by a transition cost function �. In our WCSP context,
this function will output cost in [0, k]: � : Q ⇥ ⌃ ⇥ Q ! [0, k]. An additional
“exit” cost function ⇢ encodes cost for exiting the automaton ⇢ : F ! [0, k]5.

The weighted automaton starts in the initial state q0. In state q, the automa-
ton inputs the next symbol s 2 ⌃ and moves to a state q0, paying a cost �(q, s, q0).
The string is accepted i↵ a state q 2 F is ultimately reached. The cost of such
an accepting path is the sum of the cost of all the transitions used (including
the final step reaching an element of F , defined by ⇢). The cost associated with
a string ` is defined as the minimum cost over all possible accepting paths. If a
string cannot be derived, then its associated cost is just k (the intolerable cost).

The WeightedRegularA(i1, . . . , in) cost function is defined on a sequence
of variables T from a weighted automaton A using domain values as symbols in
the set ⌃. The cost of an assignment is just the cost of the string defined by the
assignment of T according to A.
5 The usual definition of weighted automata includes also an “entry” cost function [21].
We don’t use it in this paper.
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2.3 Decomposing Weighted Regular

We decompose the WeightedRegular using ternary cost functions encoding
the weighted automaton and a sequence of extra state variables. This decom-
position is similar in essence to the original decomposition of the Regular

constraint but relies on cost functions. The decomposition is defined by:

– the original domain variables i1, . . . , in 2 T ,
– extra domain variables s0, . . . , sn representing automaton states. The domain

of s0 is just {q0}, the domain of sn is F . All other s⇤ variables have a domain
equal to Q, the set of possible states.

– the set of ternary cost functions wsj�1,ij ,sj which returns �(sj�1, ij , sj).
– a unary cost function wsn on sn directly defined by ⇢.

By construction, the minimum cost that
Ln

j=1 wsj�1,ij ,sj � wsn can take is
precisely the cost defined by WeightedRegularA(i1, . . . , in).

This construction can be seen as a WCSP representation of the ”unrolled”
automaton transition graphs over n steps where each variable sj represents the
possible states at step j. The figure below illustrates this on a simple (deter-
ministic) automaton for words a(ba)⇤c with each occurrence of a having cost 1
and a sequence of 6 variables (this automaton can only emit even length words
whose cost is half the length). The unrolled automaton on the right does not
mention costs for clarity (cost 0 everywhere except for edges emitting a with
cost 1). Omitted edges represent intolerable k costs. It should be clear that one
can associate one variable with each “column” of states, from the first to the
last column. The additional variable ij capture the possible characters emitted,
and the triple has the associated emitting cost.

q0

q1

qF

a,1b,0

c,0

q0 q0 q0 q0 q0 q0

q1 q1 q1 q1 q1

qF qF qF qF qF qF

a,1 a,1 a,1 a,1 a,1

b b b b

c c c c c

Similarly to what has been shown in cost variable decomposition using con-
text free grammars [13], it is possible to encode Hamming and Edit distance
based soft constraints using a weighted automaton and therefore a Weighte-

dRegular cost function.
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Considering the Hamming distance, from an original DFA A, we just derive
a weighted automata with the same alphabet and states, with a constant zero
exit function ⇢ and a transition cost function �(q, s, q0) defined as:

– 0 whenever q0 2 �(s, q) in A,
– 1 whenever q0 /2 �(s, q) in A, but 9t 2 ⌃, t 6= s, such that q0 2 �(t, q),
– the intolerable cost k otherwise.

q0 q1 qF
a

b

c q0 q1 qF
a

b|c,1

b

a|c,1

c

a|b,1

q0 q1 qF
a

b|c,1

b

a|c,1 c

a|b,1

*,1 *,1 *,1

q0 q1 qF
a

b|c|",1

b

a|c|",1
c

a|b|",1

*,1 *,1 *,1

Fig. 1. From top-left to bottom-right, in reading order: (tl) the DFA for the language
a(ba)⇤c (tr) the WFA encoding the Hamming distance to the previous automaton,
(bl) the WFA allowing both for substitution and insertion (br) the WFA for the Edit
distance. An arc is labelled by symbols,cost pairs where 0 costs are omitted and a
’|’ separated list of symbols is used to factorize several transitions with same source,
destination and cost.

The Edit distance d(s1, s2) of two words s1 and s2 is the smallest number of
insertions, deletions, and substitutions required to change one word into another.
It captures the fact that two words that are identical except for one extra or
missing symbol should be considered close to one another. Considering the Edit
distance from an original DFA A, we derive a WFA with alphabet ⌃ [ {"} and
states Q with four kinds of transition cost functions:

1. copy of automaton A: �(q, s, q0)=0 for each transition q0 2 �(s, q) in A,
2. substitution: transition cost function is the same as for Hamming,
3. insertion: for each q 2 Q s.t. q /2 �(s, q), �(q, s, q)=1
4. deletion: to each transition q0 2 �(s, q) in A is associated an "-transition6

q0 2 �(", q) s.t. �(q, ", q0)=1

Consider the DFA for the language a(ba)⇤c (Fig. 1-top-left). The WFA for
substitution is depicted Fig. 1 (top-right), for substitution/insertion Fig. 1 (bottom-
left) and for substitution/insertion/deletion Fig. 1 (bottom-right).

6 An "-transition is a transition using an empty symbol " which does not emit any-
thing. In practice, to derive a given word, a transition from state q to q0 emitting "
means that we can directly go from q to q0 without considering available symbols.
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Unfortunately, the decomposition we presented in the beginning of this Sec-
tion for WeightedRegular based on WFA without "-transitions does not ex-
tend directly to WFA with "-transitions, which are used for deletions. However,
"-transitions can be removed by computing the "-closure of the WFA (see [21]).
Then, the resulting WFA can be directly decomposed.

3 Local Consistency and Decompositions

Decomposing large arity constraints or cost functions into an equivalent combi-
nation of smaller arity components may sometimes be practically useful by itself:
small arity may weaken propagation but may improve e�ciency. Ultimately, this
is a matter of compromise (especially in unstructured domains where there is no
dedicated propagator for the considered cost function [9]).

However, for global cost functions, which have a precise semantics, it may be
possible to define decompositions such that enforcing a given level of consistency
on the decomposition o↵ers a guarantee on the strength of the filtering compared
to what would have been done using the original (non decomposed) cost function.

On classical constraint networks, di↵erent global constraints, such as the
Regular global constraint, can be decomposed into a Berge-acyclic set of small
arity constraints. By virtue of arc consistency, it is known that enforcing GAC
on the set of Berge-acyclic constraint enforces GAC on the global constraint
itself [1]. We show that a similar result can be obtained for cost functions and
we illustrate this on the WeightedRegular cost function.

3.1 Directional AC

In this section, we will show that enforcing T-DAC on a decomposition of a cost
function is equivalent to enforcing it on the original cost function itself, as far
as the decomposition is Berge-acyclic.

We consider a decomposable global cost function zT on the variables T =
with possible associated unary cost function wi, i 2 T . We assume that zT can
be decomposed in an extra-minimal Berge-acyclic cost function network N =
(T [ E,F ).

We now show that there exists a variable ordering on T[E such that enforcing
T-DAC on the decomposition is as strong as enforcing T-DAC on the original
global cost function zT .

Theorem 1. In a CFN, if a global cost function zT decomposes into an extra-

minimal Berge-acyclic cost function network N = (T [ E,F ) then there is an

ordering on T [ E such that the unary cost function win on the last variable in
produced by enforcing T-DAC on the subnetwork (T, {zT }[i2T wi) is identical to
the unary cost function w0

in produced by enforcing T-DAC on the decomposition

N = (T [ E,F [i2T wi).

Proof. We first show that for any ordering of the variables, and any value (in, a)
of the last variable in of T according to the ordering, enforcing T-DAC on the
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subnetwork (T, {zT }[i2T wi) guarantees that the single value assignment (in, a)
can be extended to a complete assignment t of T with cost win(a). Let us consider
t a full support of (in, a) on zT . By definition win(a) = zT

L
i2T wi(t[i]) which is

precisely the cost of the complete assignment t in the subnetwork (T, {zT }[i2T

wi).

Conversely, we will now prove that the same property holds after enforcing
T-DAC on the decomposition of zT . The proof is not di�cult but technical. Let
L = (F, I) be the intersection graph associated with the decomposition. L has
one vertex per cost function in F and an edge e 2 I connects any two cost
functions sharing a variable. Because of the Berge-acyclicity of N , L is acyclic
(a forest). We can assume without loss of generality that L is connected (a tree).
Indeed, if it is not connected, we can select two connected components and link
them by adding one dummy constant zero binary cost function in F and just
repeat this until L is connected. This preserves Berge-acyclicity and does not
change the maximum arity in F .

We root L in any cost function that involves at least one original variable
in T . We then perform a topological sort on L which successively selects a cost
function with just one non selected neighbor in L (a leaf), choosing first cost
functions whose intersection with this neighbor is an extra variable from E. Let
fS1 , . . . , fSe be the sequence of cost functions that are successively removed by
the topological sort. Note that fSi intersects with fSi+1 by at most one variable
(Berge acyclicity). This intersecting variable will be denoted as Root(fSi).

This ordering on cost functions can be extended to an order on variables
as follows: we take each cost function fSi in the previous order and replace it
by the sequence of all the variables in Si which have not already been ordered.
This sequence itself is ordered in such a way that the variable Root(fSi) that
intersects with fSi+1 (if any) is ordered last. This produces an order j1, . . . , jm
over variables in T [ E.

First note that the variable jm must be a variable of T . Indeed, since the
decomposition is network minimal, all extra variables in fSe must appear in the
intersection between scopes with previous cost functions. Because of the topo-
logical ordering chosen, if jm is en extra variable, this means that fSe involves
only extra variables which contradicts the choice of a root with a variable from
T . Thus, jm 2 T and jm = in.

Assume now that (T [E,F [i2T wi) is made T-DAC consistent (which does
not change scopes). Consider a value (in, a). If win(a) = k, then clearly any
complete assignment extending this value has a cost of k and the property is
proved. Otherwise, win(a) < k. Let te be a strong support of this value. We
have win(a) = wSe(te)

L
i2Se

wi(te[i]) which proves that te is an assignment of
Se with the same cost win(a) and such that 8i 2 Se, i 6= in), wi(te[i]) = 0. This
is specifically true for any of the variables i in Se that intersect with scopes of
children cost functions, where the value te[i] will have a zero unary cost. Since
L is a tree, we can inductively use the same argument based on T-DAC to
show that the tuple te can be extended to more variables with no increase in
cost until the leafs of the tree are reached and all variables are assigned. This

25 of 138



proves that the assignment (in, a) can be extended to complete assignment of
(T [ E,F [i2T wi) with cost win(a). ut

This result shows that directional consistency has enough power to handle
Berge-acyclic decompositions in Weighted CSP without losing any propagation
strength, provided a correct order is used for cost function propagation.

In practice, a CFN may contain di↵erent Berge-acyclic decomposable cost
functions sharing variables and there may be no variable order which would
be compatible with all the Berge-acyclic structures of these decomposed cost
functions. In this case, a possibility would be to use so-called “Propagator
groups” [15] which have been recently proposed for Berge-acyclic propagation in
CN. Each propagator group is in charge of propagating one decomposition. For
CFN, proper ordering between groups will likely be needed to avoid cycling.

3.2 Virtual AC

Virtual Arc Consistency o↵ers a simple and direct link between CNs and CFNs
which allows to directly lift classical CN’s properties to CFNs, under simple
conditions.

Consider a decomposable global cost function zT on the variables T with
possible associated unary cost functions wi, i 2 T . We assume that zT can be
decomposed in an extra-minimal Berge-acyclic cost function network N = (T [
E,F ).

Theorem 2. In a CFN, if a global cost function zT decomposes into a Berge-

acyclic cost function network N = (T [ E,F ) then enforcing VAC on either

(T, {zT } [i2T wi) or on (T [ E,F [i2T wi) yields the same lower bound w?.

Proof. Enforcing VAC on the CFN P = (T [ E,F [i2T wi) does not modify
the set of scopes and yields an equivalent problem P 0 such that Bool(P 0) is
Berge-acyclic, a situation where arc consistency is a decision procedure. We can
directly make use of Proposition 10.5 of [5] which states that if a CFN P is
VAC and Bool(P ) is in a class of CSPs for which arc consistency is a decision
procedure, then P has an optimal solution of cost w?.

Similarly, the network Q = (T, {zT }[i2T wi) contains just one cost function
with arity strictly above 1 and Bool(Q) will be decided by arc consistency.
Enforcing VAC will therefore provide a CFN which has also an optimal solution
of cost w?. The networks P and Q having optimal solutions of the same cost by
definition of a decomposition, the result follows. ut

4 Experimental Results

In this section, we intend to probe the possible interest of global cost function
decompositions. These decompositions allow for a simple implementation, but
it is also interesting to check if they can improve filtering performances or, at
least, not degrade them too much.

26 of 138



We implemented the ternary encoding of the WeightedRegular cost func-
tion allowing to model a SoftRegular with Hamming distance. Since the
monolithic propagator for the global SoftRegular cost function is already im-
plemented in the WCSP solver toulbar2 with associated (weak) E/FDGAC*
filtering, this allows to compare the decomposition and monolithic versions.

Following [23], we generated random automata with |Q| states and an alpha-
bet size |⌃|. We randomly selected 30% of all possible pairs (s, qi) 2 ⌃ ⇥Q and
randomly chose a state qj 2 Q to form a transition �(s, qi) = qj for each such
pair. The set of final states F is obtained by randomly selecting 50% of states
in Q. All random samples use a uniform distribution.

From each automaton, we built two CFNs: one using a monolithic SoftReg-

ular cost function using Hamming distance and another using the Berge-acyclic
decomposition of the WeightedRegular cost function encoding the same cost
function. To make the situation more realistic, we added to each of these prob-
lems the same set of random unary constraints, one per non-extra variable (with
unary costs randomly chosen between 0 and 9). These problems have been solved
using the CFN solver toulbar2 (See https://mulcyber.toulouse.inra.fr/

projects/toulbar2, version 0.9.4).

All preprocessing options of toulbar2 except filtering were turned o↵ (option
line -o -e: -f: -dec: -h: -c: -d:) and a DAC ordering compatible with
the Berge-acyclic structure of the decomposition was used. The value ordering
used chooses the existential EAC value first. The adaptive variable ordering
heuristic is dom/wdeg. No initial upper bound is used. The same level of local
consistency (namely (weak) EDGAC*, stronger than the T-DAC consistency
considered in the paper and which therefore will also produce an optimal w?
at the root) was used in all cases. We measured two times: (1) time for loading
the problem and filtering the root node of the search tree and (2) total time for
solving the CFN (including the previous time). The first time is informative on
the filtering complexity while the second emphasizes the incrementality of the
filtering algorithms. All the experiments were run on one 2.66 Ghz Intel Xeon
CPU core with 64Gb RAM available with a time-limit of 5’. Times were averaged
on 30 runs and samples reaching the time limit are considered as terminating in
5’. Table 1 shows the results.

Clearly, the decomposition brings an impressive progress in terms of e�-
ciency. The results of these experiments should however be considered with
care. The current implementation of the monolithic version of SoftRegular

in toulbar2 is probably far from optimized and, clearly, it has very limited in-
crementality. On the other hand, the core table filtering algorithms of toulbar2
show excellent incrementality. These results could still be improved however: the
ternary decomposition uses the same ternary cost function over and over in the
problem. This is currently ignored by the solver. Taking this into account could
considerably lower memory usage and file sizes.

It is also interesting but not trivial to compare the asymptotic complexities
of the algorithms considered here. Enforcing EDGAC* on the decomposition is
in O(max(nd, k).nd3) [24].
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n |⌃| |Q| Monolithic Decomposed
filter solve filter solve

25 5 10 0.08 0.46 0.00 0.00
20 0.20 1.17 0.01 0.01
40 0.47 2.69 0.02 0.02
80 1.63 9.55 0.08 0.08

25 10 10 0.42 2.36 0.00 0.00
20 0.94 5.37 0.02 0.02
40 2.31 13.36 0.06 0.06
80 5.56 32.65 0.23 0.25

25 20 10 2.07 11.30 0.01 0.01
20 5.13 27.95 0.04 0.04
40 12.40 66.40 0.14 0.15
80 30.34 164.7 0.51 0.55

n |⌃| |Q| Monolithic Decomposed
filter solve filter solve

50 5 10 0.30 3.39 0.00 0.00
20 0.78 9.01 0.01 0.01
40 2.41 28.58 0.04 0.05
80 8.74 108.3 0.17 0.18

50 10 10 1.70 18.01 0.01 0.01
20 3.86 41.58 0.03 0.04
40 10.78 117.7 0.13 0.14
80 260.2 260.2 0.48 0.53

50 20 10 8.44 84.88 0.03 0.03
20 21.49 213.5 0.08 0.09
40 300 300 0.29 0.31
80 300 300 1.06 1.14

Table 1. Time in seconds to filter the CFN and to solve it to optimality. The CFNs
encode a SoftRegular cost function representing the Hamming distance between a
set of n variablesdefining a string and the language of a randomly generated DFA with
|⌃| = d symbols and |Q| states using either the monolitic filtering algorithm of [18]
or a ternary encoding of the equivalent WeightedRegular presented in Section 2.3,
using table cost functions.

The asymptotic complexity for enforcing (weak) E/FDGAC* on the global
SoftRegular cost function is not so simple to bound and it depends on the
nature of the string distance and automaton used. For the Hamming distance
and a deterministic automata, the underlying network has O(|Q|.(n + 1)) ver-
tices and O(n(|✓|+ |Q|d)) = O(n.|Q|d) edges. Therefore, the complexity for just
applying the successive shortest path minimum cost flow algorithm [4] on this
network will be O(|V |2.|E|) = O(n3.|Q|3d) while the search for a shortest path
using Bellman-Ford will be in O(|V |.|E|) = O(n2.|Q|2d). According to [19,18],
this means that the sole search for a full support will be in O(n3.|Q|2.d(d+ |Q|)).
Enforcing EDGAC* requires to simultaneously have simple, full and existential
supports. Just considering full supports, this means that the complexity for en-
forcing EDGAC* exceeds O(max(nd, k).n5.|Q|2.d(d + |Q|)). Assuming |Q|

|⌃| is in

O(1), this is in O(max(nd, k).n5.d4) compared to the O(max(nd, k).nd3) ob-
tained through decomposition. This corroborates our experimental results but
the strength of this comparison is largely conditionned by the tightness of the
bounds presented in [19,18]. Another reason for the impressive speedups we ob-
serve may also lies in the non optimality of the global filtering algorithms for
SoftRegular.

Conclusion

In this paper, we have extended the idea of constraint decomposition to cost
functions occurring in CFNs. For cost functions having a Berge-acyclic decom-
positions, we have shown that even relatively simple filtering, at the directed arc
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consistency level, provide a comparable filtering when they are applied onto the
decomposition or on the global cost function itself, provided a suitable variable
ordering is used. For the stronger consistency Virtual AC filtering, the same
result is obtained, without any requirement on variable ordering.

An example of decomposable cost function that has been considered in the
paper is the WeightedRegular cost function. This cost function, based on
weighted automata, allows to directly decompose the SoftRegular constraint
using either the Hamming or the Edit distance7.

The results presented in this paper are still preliminary. There are at least
three directions that are worth exploring here. First, one should consider other
decomposable cost functions beyond just WeightedRegular. Several related
constraints, including ContextFreeGrammar,Among, . . . have Berge-acyclic
decompositions and their cost functions variants likely have related Berge-acyclic
decompositions, allowing for a simple extension of WCSP solvers to more exten-
sive Cost Function Programming tools.

Beyond this, more experiments should be performed on more complex prob-
lems such as Nurse Rostering problems [20]. Finally, the strength and the simplic-
ity of the result obtained for this local consistency plead for experiments using
Virtual AC. This was not possible at the time this paper was written as the only
implementations of VAC we know are restricted to binary cost functions.

Although restricted to Berge-acyclic decompositions, this work paves the
way for a more general form of “structural decompositions” where global cost
functions decompose into an acyclic structure of local cost functions combined
with operators that could be di↵erent from �, with bounded separator sizes (but
not necessarily cardinality 1). For various operators, these global structurally
decomposed cost functions could then be propagated e�ciently through non
serial dynamic programming (elimination) approaches.
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Abstract. Timetabling is the task of assigning sets of events to periods
of time, taking into account resource-constraints and preferences among
assignments. It is a well-studied field of research and is generally recog-
nized to be a hard problem, both from the perspective of encoding it as
from a computational point of view.
In recent years, there has been increased interest in combining e�cient
search algorithms with modelling languages capable of high-level rep-
resentations of real-world domains. Research into such systems is con-
ducted, a.o., in the fields of Constraint Programming and Knowledge
Representation. In this paper, we investigate the use of the modelling
language of first-order logic extended with constructs such as aggregates,
types, definitions and arithmetic, and the idp system, which implements
model generation for this language, to the timetabling problem.
We show the feasibility of the approach and argue that there are impor-
tant advantages both from the modelling point of view, leading to nat-
ural representation of the problem, and from the solving point of view,
taking advantage of e�cient automated search techniques like SAT and
constraint propagation.

1 Introduction

Timetabling is a well-studied field of research and is generally known to be hard
to solve, both from the perspective of encoding as from a computational point
of view, belonging to the class of NP-hard constraint optimization problems.
The problem consists of assigning time points to a set of events, taking into
account constraints on resources associated with those events and preferences
among assignments. University timetabling distinguishes between examination
timetabling and course timetabling. In this paper we consider the latter.

Introductions to the basic elements of (automated) timetabling, approaches
to solve the problem and surveys of course and examination timetabling can be
found for example in [22]. Surveys of developments in timetabling can be found
in [2,7,20,14]. Methods generally used to solve the problem are primarily based
on three approaches: local search, e.g. [12], constraint logic programming, e.g.
[21], and integer or mixed-integer programming, e.g. [23].
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The requirements for course timetables can be quite di↵erent from one univer-
sity to another, but usually the problem is over-constrained. A common approach
is then to make a distinction between hard and soft constraints. The solution to
the problem should satisfy all hard constraints and satisfy the soft constraints
as much as possible. Therefore, soft constraints can also be seen as optimization
objectives for the search algorithms.

In recent years, there has been increased interest in combining e�cient search
algorithms with modelling languages which allow high-level, natural representa-
tion of real-world applications. Research into such systems is conducted within
e.g. the fields of Constraint Programming and Knowledge Representation.

At the Knowledge Representation and Reasoning group at the K.U. Leu-
ven, our long-term goal is to build a knowledge base system (KBS) [9]. In such
a system, knowledge about a domain of discourse is stored using a suitable
logic and diverse tasks can be solved by applying various inference methods on
that knowledge. Applied to the timetabling problem, such a KBS would contain
the relevant knowledge about timetabling and the concrete data. By applying
suitable forms of inference, diverse tasks can be accomplished: automatically
generating timetables at the start of the year, automatic verification of hand-
crafted tables, revision of existing timetables as time progresses, . . . , which are
all accomplished by reasoning on the same base of knowledge.

Our aim is to develop forms of inference for a KBS using FO(·) languages.
Here FO(·) stands for the family of extensions of FO with modelling constructs
useful for knowledge representation1. Examples are inductive definitions [8], ag-
gregates, a type hierarchy and arithmetic. The idp system is a step towards such
a general system, implementing model generation for FO(·), a form of inference
capable of generating models of a specification in FO(·).

The key features of a KBS are two-fold:

– The knowledge base language is truly declarative, being completely indepen-
dent of any execution mechanism.

– The specific inference mechanisms are able to use the latest techniques in
their respective fields, for example taking advantage of e�cient automated
search techniques like SAT and constraint propagation in model generation.

In this paper, we investigate the application of the idp system, which sup-
ports an instance of FO(·), to solving the timetabling problem. The focus lies on
solutions which are perceived to be regular : there should be some repeated pat-
tern in the timetable over the course of weeks. In practice, non-regular schedules
are almost never used as they complicate planning of other activities too much,
both for students, teachers, rooms, . . .

The main contributions of this paper are, on the one hand, showing the
applicability of soft constraints to handle regularity constraints in timetabling
applications. On the other hand, demonstrating the value of high-level modelling

1  Standard notation for extending FO with constructs of a class C is FO(C). Well-
known examples are FO(LFP) - FO extended with least-fixpoint constructs and
FO(ID) - FO extended with an inductive definition construct.
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Fig. 1. A model illustrating the application domain of scheduling university courses.

and declarative problem solving in general and of the idp system in particular
for such applications. The paper is an extension of the work done in the mas-
ter’s thesis “Modelling of timetables” [15]. We also show experimental results
by generating timetables for practicals for the first bachelor year of informatics
students at the K.U. Leuven.

2 What Are the Timetable Requirements?

We will now introduce the basic concepts involved in course scheduling. An
overview of the domain is presented in figure 1.

A course consists of a set of sessions, events with a specific content that
make out (part of) the course’s syllabus. A course is taught by a set of teachers
(professors, assistants, . . . ) and taken by at least one group of students. A time

slot is a period in time, characterized by a start and end point. A timetable

consists of a set of planned sessions: instances of a session with an associated
group and a time slot. For each session, the number of planned sessions depends
on the number of teachers, the number of students taking the course, . . .

This domain model will be used throught the rest of the paper. No men-
tion was made of other relevant resource constraints, such as available rooms,
available computers, . . . Leaving them out at this stage is motivated by the well-
known scheduling practice of dividing the problem in a sequence of increasingly
concrete scheduling problems, where the result of the previous problem is used
as input for the next. This reduces the complexity of the separate scheduling
problems, but potentially leads to suboptimal solutions. The domain model also
takes abstraction of the e↵ective person teaching a certain class or which stu-
dents are in which group. It is assumed that a teacher only teaches one course
and students are in only one group.

Time slots are discretized by dividing a semester into a number of weeks
and a day into a specified number of available slots (e.g. 8-9am, 9-10am, . . . ). A
time slot is then represented by a week, a weekday and a start and end slot. A
session has a number of (consecutive) slots it takes and a week in which it is be
preferably taught. Sessions of the same course are also ordered.

Any valid timetable is subject to a set of hard and soft constraints. Our
timetabling application is subject to the following hard constraints:
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– A group cannot attend multiple planned sessions in the same time slot.
– For each combination of a group and a session of a course the group takes,

one concrete session is planned (groups are assumed to be atomic).
– On holidays, no sessions are planned.
– The length of a session is taken into account.

The main focus in this paper is on the soft constraints involved in timetabling
and specifically, generating timetables with a high degree of regularity. Infor-
mally, the table of some course is regular with respect to a group taking the
course if its planned sessions take place on the same days and slots over the
weeks and are taught to the same group of students. A complete timetable is
then regular if it is regular for all courses and groups. Regularity is a very desir-
able property of timetables, for obvious reasons: both students and teachers can
work along some fixed lines and can get to know each-other over time, improv-
ing cooperation. When naively generating timetables without enforcing such a
constraint, it is almost never satisfied.

Next to regularity, the following other soft constraints are considered:

– Sessions should be planned in their preferred week. If this is not possible,
planning them later than their preferred week is considered better than plan-
ning them early.

– Sessions should not be planned at noon or in the earliest and latest slots
of each day. For Monday morning and Friday afternoon, this is even more
important.

– Having contiguous periods of planned sessions for the same group is preferred
to having free slots in between.

3 Reasoning on Logic Theories

3.1 FO(·)

For representing the knowledge about our problem domain in a declarative way,
we use a logic based on full first-order logic, extended with constructs to make
it better suited for representing knowledge in a natural way. In general, the
class of those languages is be denoted by FO(·): they are based on FO, but
extended by a number of additional language constructs. In this paper, we focus
on a specific instantiation of FO(·), one which allows to express all concepts
appearing in the timetabling domain in a natural fashion. This instantiation is
the language which extends FO with inductive definitions, aggregate functions,
partial functions, arithmetic and a hierarchical typing system (so it might be
denoted FO(ID, Agg, Part, Arith, Type)). We will now introduce the language
constructs relevant for the discussion at hand, for the remainder we refer the
reader to [24]. Abusing notation, FO(·) will be used in the rest of the paper to
refer to this instantiation whenever it is clear from the context.

A specification < ⌃, T, S > in FO(·) is a knowledge base consisting of the
vocabulary ⌃, the theory T and a �-structure S for a subset � of ⌃. A vo-
cabulary contains a hierarchy of types, a set of typed symbols (predicates and
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functions) and an infinite set of typed variables. A (partial) ⌃-structure assigns
interpretations to all types and a (partial) interpretation to the symbols of ⌃.

Terms and formulas are defined by mutual recursion. A term is defined re-
cursively as

– a (typed) variable is a term.
– if f is a function symbol and t1, . . . tn are terms, then f(t1, . . . tn) is a term.
– if agg is an aggregate function symbol and �(x) is a formula with free variables

x, then agg({x|�(x)}) is a term.

An aggregate function symbol is interpreted by an aggregate function, a func-
tion mapping (multi)-sets of domain elements to a domain element. We consider
the multi-set aggregates maximum, minimum, sum and count/cardinality, which
all map sets of integers to respectively the maximum element, the minimum ele-
ment, the sum and the number of elements of the set. These aggregate functions
are denoted respectively as max, min, sum and #.

A formula is defined recursively as

– if P is a predicate symbol and t1, . . . tn are terms, then P (t1, . . . tn) is a
formula (denoted as an atom).

– if �(x) and  (y) are formulas, then applying the following (FO) connectives
also yields formulas: 8x : �(x), 9x : �(x), �(x) ^  (y), �(x) _  (y), ¬�(x).

A (possibly inductive) definition� consists of rules of the form P (x)  �(x),
with P a predicate symbol and �(x) a logical formula. Inductive definitions follow
evaluation according to the well-founded semantics [8].

An FO(·) theory consists of a set of formulas and a set of definitions �. A
model of an FO(·) theory over a vocabulary ⌃ is a ⌃-structure satisfying all
formulas and all definitions.

In the rest of the paper, no recursively defined concepts are used, in which
case a defined literal is true if and only if any of its rules are satisfied.

For any variable, its type is the type of the argument positions in which
the variable appears 2. The type of a quantified variable v can also be specified
explicitly to be type t, denoted as 8v[t] or 9v[t].

Example 1. An example timetabling vocabulary might contain among others a
group and a course type and a predicate linking students to the courses they
take:

type group, type course, takes(group, course)

The theory can then express for example the constraint that each course has at
least one group. This can be formalized in FO(·) by the formula

8 c : 9 g : takes(g, c)

2  The idp system supports hierarchies of types and uses a type derivation system
to infer the correct type of variables. Such hierarchies are not used in this paper.
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The structure will among others contain an interpretation for the courses and
the groups (both denoted here by their informal name) and the interpretation
of the “takes” relationship:

group = {Bach1,Master2, . . .}
course = {Linear Algebra, Informatics,Organic Chemistry, . . .}
takes = {(Bach1, Informatics), (Master2, Organic Chemistry), . . .}

3.2 Model Expansion

The idp system implements one form of inference for FO(·), namely finite domain

model expansion [18]. The task of model expansion is, given a specification <
⌃, T, S >, with S a finite (partial) �-structure (� ✓ ⌃), to expand S to a
model of T . Model expansion generalizes both model checking (� = ⌃) and
model generation for a given finite domain (� is empty). We denote the model
expansion problem of expanding structure S to a model of theory T over ⌃ as
MX(< ⌃, T, S >).

The task of model minimization, denoted MM(< ⌃, T, S >,O) is an exten-
sion of the model expansion task MX(< ⌃, T, S >). O represents a (pre-)order
on the ⌃-structures extending S. The task is then to find optimal models of T :
models M such that no other model M 0 exists that M 0 < M according to O.

Example 2. Consider the FO(·) specification < ⌃, T, S > and pre-order O shown
below. Optimal models of this theory have a cost of 2, or equivalently, on each
day exactly two planned sessions take place.

⌃ = {type plannedsession, type day, on(plannedsession) : day, cost : int}
T = {cost = max( { #({s|s 2 plannedsession ^ on(s) = d}) | d 2 day} )

S = {plannedsession = {1..10}, day = {1..5}, . . .}

Order = M < M 0 i↵ costM < costM
0

The idp system is a state-of-the-art model expansion system, as has been shown
in the Answer Set Programming competition [10], where the task is to solve tasks
by modelling them in a declarative framework and then applying automated
inference techniques.

Model expansion inference in the idp system is implemented by two main
components:

– The grounder reduces an FO(·) theory to an equivalent propositional the-
ory [24]. The grounder combines state-of-the-art grounding technology with
a symbolic reasoning algorithm to derive which formulas of the propositional
theory are certainly true or certainly false in models of that theory. This in-
formation is exploited to e�ciently simplify the propositional theory while
it is constructed.
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– The solver [16] searches for models of the propositional theory generated by
the grounder. The core of the solver is a SAT solver, i.e., a model genera-
tor for propositional logic. Currently, we use the SAT solver MiniSat [11].
Propagation techniques from CP and SAT-Modulo-Theories [19], as well as
specialized algorithms [16], complement the SAT-based search to e�ciently
handle the additional language constructs like aggregates and inductive def-
initions.

Model minimization in idp is implemented in a relatively standard way on
top of model expansion with an anytime branch-and-bound algorithm. The min-
imization pre-order is specified as a logical term t and an order on the range
type. Search is conducted in a top-down fashion by incrementally reducing the
values t can still take. At the start of the search, no restrictions are imposed.
When a model M is found with tM = n, the constraint t < n is added 3. An-
other strategy would be to use bottom up search, starting with a minimal initial
bound on t and incrementally loosening the bound when no model exists, but
this has several drawbacks compared to the top-down strategy:

– Top-down search results in an anytime algorithm: at anytime during the
search when the computation is interrupted, the last model found is the
best one found. This is especially useful for timetabling problems as it is
well-known that suboptimal solutions are often acceptable and the optimal
solution often takes too long to find. With bottom-up search, the first model
found is the optimal one.

– Experimental results have shown that performing a bottom-up search often
converges slower to the optimal solution. One reason is that proving that no
model exists is in many cases more expensive than finding a model.

– SAT-solvers infer additional constraints during search (implied by the the-
ory but not explicitated) which further reduce the search space. Such learnt
constraints remain trivially valid when the theory is incrementally strength-
ened (as in top-down search), but not when the theory is loosened (as in
bottom-up search);

Considering the relation between modelling and performance, there are two
main issues concerning the complexity of the idp model expansion algorithm.
Firstly, the size of the logical theory increases during the transformation into
the ground format. This increase is exponential in the largest quantification
depth of any formula in the theory. For example, given a formula 8x : �(x) or
9x : �(x), the grounding will contain n instantiations of �(x), with n the domain
size of the type of x. Consequently, the modelling approach should avoid using
deep nesting of quantifications. Secondly, increasing the size of the domain, for
example to increase the granularity of the time slots, increases both grounding
size and solving time.

3  Previous, less stringent constraints are removed.
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4 Modelling the timetabling application

The approach we take to model timetabling is to cast it as an FO(·) model
minimization problem MM(< ⌃, T, S >,O). Hard constraints are represented
as logical formulas, the pre-order will reflect the influence of the soft constraints.
We will then use idp to solve the model minimization problem.

Before presenting how the constraints are modelled as a logical theory, we
introduce the technique reification and how it applies here.

4.1 Modelling aspects

When generating a logical specification from a problem description, it is im-
portant to keep the number of variables in any constraint to a minimum. Next
to reducing the size of the propositional theory (see previous section), it also
increases the modularity, reuse and compactness of the specification. Consider
for example the issue of modelling a time slot, which is identified by a week,
a day, a start slot and an end slot. A predicate relating a planned session to
its time slot might be modelled as time(plannedsession,week, day, start, end),
but using it would be awkward: we always have to quantify over all arguments.
The technique reification, a well-known technique in knowledge representation,
remedies this. Reification denotes the practice of creating an “artificial” identi-
fier for a tuple of information. Then, the identifier can be used instead of the full
tuple of information, e↵ectively abstracting the information itself. This concept
is well-known from a.o. database practice, where keys are used as identifiers to
records, allowing to refer to any record by only using its key as opposed to the
full record.

Example 3. Consider the constraint that the start slot has to precede the end
slot. Using the predicate time(plannedsession,week, day, start, end), this is ex-
pressed as:

8 g w d s : time(ps, w, d, s, e)) s  e

Using reification, a new type tps is introduced which identifies a planned ses-
sion. Its properties can be represented as binary symbols group(tps) : group,
start(tps) : slot, . . . The above-mentioned constraint is then expressed as

8 s[tps] : start(s)  end(s)

There are several consequences to using reification. It increases modularity

and reuse by providing an extra layer of abstraction. Also, it allows to reduce

the size of logical formulas, by not having to quantify over spurious variables.
On the downside, an upper bound is necessary on the number of tuples that

can be in the relationship. Otherwise the upper bound will equal the number of
possible combinations of arguments and reification will not reduce the proposi-
tional theory. Secondly, as which identifier maps to which tuple is not defined
(not knowing which tuples will be in the relationship) and as there might be too
many identifiers (if the upper bound is an approximation), an important number
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of (additional) symmetries are introduced in the problem. Symmetry breaking
constraints can be introduced to remedy this, by restricting which identifiers can
map to which tuples, as shown in the following example.

Example 3. (continued) Given the previous reified planned session type tps, the
number of symmetries can be (statically4) restricted by adding constraints:

8 s1[tps] s2[tps] : s1 < s2 ) week(s1)  week(s2)

8 s1[tps] s2[tps] : (s1 < s2 ^ week(s1)  week(s2))) group(s1)  group(s2)

. . .

If the upper bound is an approximation, a predicate used(tpc) is introduced
indicating which identifiers are e↵ectively in use. Constraints of the form 8s : �(s)
are then converted into 8s : used(s)) �(s). A similar transformation applies to
existential quantification.

4.2 From specification to FO(·)

Applied to our setting, reification is used both for representing concepts from the
domain and for all constraints. It can be applied to domain concepts (course,
group, . . . ) that have an upper bound on the number of tuples in the relationship.
For each such domain concept c, we create a type tc for c (tuple identifiers).
For each tuple of c known in advance, a unique identifier is created and its
associations are modelled using that identifier. This set of identifiers is extended
with upperbound unique identifiers, where upperbound is the maximum number
of additional tuples in c. If upperbound is an approximation, any association
which is a function has to be partial to allow for non-assigned identifiers.

Example 4. Consider the concept planned session, consisting of (among others)
a week, day, start and end slot. Its association with a session is represented by
the function sessionOf(week, day, start, end) : session. Assume that we know
that < week12, day2, slot1, slot2 > is a fixed planned session associated with
session session5. Furthermore, there will be at most 3 other planned sessions.

The concept planned session is reified into a type tps, consisting of the iden-
tifiers {a, b, c, d} (1 known + 3 others). The properties are represented as the
functions sessionOf(tps) : session, weekOf(tps) : week, dayOf(tps) : day,
. . . and the partial interpretation maps sessionOf(a) to session5, weekOf(a)
to week12, dayOf(a) to day2, . . .

Constraints often occur multiple times in the same specification, for exam-
ple as sub-constraints of multiple, larger ones. Also, multiple timetabling tasks
might di↵er only in which constraints they consider. In general, reuse of con-
straints should be easy. A modelling technique serving this purpose is to intro-
duce additional symbols which represent whether a constraint is satisfied or not

4  Symmetries can be broken statically, by adding extra constraints to the theory,
or dynamically, by controlling the exploration of the search space by the search
algorithm.
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(or whether it should be satisfied or not). In the following, we demonstrate how
to model hard and soft constraints and how to allow easy reuse.

A hard constraint can be seen as a condition which is required to be fulfilled.
Using the created vocabulary, this condition is represented by a logical formula
�. An additional predicate c is introduced which represents the truth of �. The
hard constraint is then modelled by adding the rule c � to the theory and the
fact that c is true to the structure. This allows to switch the constraint on or o↵
depending to solve various tasks by only changing the structure. Also, c can be
used as an abstraction for the constraint itself in other constraints.

Example 5. The hard constraint that no sessions should be planned on a holiday,
is represented as follows (the predicate holiday(week, day) represents which days
are holidays).

keepHolidaysFree 8 s[tps] : ¬holiday(weekOf(s), dayOf(s))

The associated structure asserts the reified atom: keepHolidaysFree = true.

Any soft constraint can be seen as a condition and a cost for violating the
condition (cost). Again, an additional predicate c is introduced which represents
the truth of the condition. But instead of adding c to the structure, a cost

function fc is created which is defined to be 0 if the condition holds and equal to
cost otherwise. Here, c is used to represent the condition, as shown in the next
example.

Example 6. For each planned session, the cost is 1 if it is not planned in the
preferred week of its session. This can be represented as:

8s : inPrefferedWeek(s) weekOf(s) = preferredWeekOf(sessionOf(s))

8s : costinPrefferedWeek(s) = 0, inPrefferedWeek(s)

8s : costinPrefferedWeek(s) = 1, ¬inPrefferedWeek(s)

As a last part of creating the logical specification, a constant cost : int is created
which represents the cost of the violation of all soft constraints. It is defined
as the sum of the cost functions of all the soft constraints, over all their do-
main elements. For example, two cost functions, f1 and f2, with arities 1 and 2
respectively, result in the following global cost function:

cost = sum({y |8 x : y = f1(x)} [ {z |8 x y : z = f2(x, y)})

This cost is used as the pre-order on the interpretations and allows to minimize
of the violation of the soft constraints.

In the next section we will discuss how to represent the constraint on the
regularity of schedules. The other soft constraints are not discussed in detail, as
they follow straightforwardly from the presented ideas.
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4.3 Regularity Requirements

It turned out that formalizing the concept of regularity was quite di�cult. The
basic case is straightforward: if all sessions of a specific course for some group
of students always take place on Thursday at 2pm, this is clearly regular. What
about a timetable organising 2 sessions in odd weeks and 1 in even weeks? This
probably also qualifies as quite regular. To decide whether a timetable is regular,
we introduce the concept of regularity patterns (in short, denoted as patterns),
which define which assignments of sessions to time slots qualify as regular. Such
a pattern would consist of a set of rules that define which slots can be assigned
to which sessions as a function of the weeks. The regularity pattern in the first
example is the pattern which maps all sessions of the course to the slot on
Thursdays at 2pm. In the second, it is the pattern which maps sessions n and
n+ 1 to an odd week week and n+ 2 to the next (even) week.

Clearly, many such regular patterns are possible, leading to a three-step
approach to generate regular timetables: pattern selection - pattern instantiation

- timetable generation. Firstly, a subset of allowed patterns is fixed (selection).
An example selection might be to only allow patterns which assign the same day
and slot to a group and course combination, independent of the weeks. Secondly,
a model minimization problem is solved that instantiates one pattern for each
group and course combination. This comes down to choosing the e↵ective slot(s)
in which the group will preferably take sessions of the course. If (according to
the pattern) each group and course are be assigned exactly one day and slot, we
will denote this as the default session for that group and course. The final step
then consists of generating the complete timetable. As a measure of regularity
of the timetables, a cost is assigned to the “distance” between a timetable and
the instantiated patterns.

In this paper, the allowed patterns are patterns which assign the same day
and slot to a group and course combination, independent of the weeks. An obvi-
ous disadvantage to this approach is that a bad instantiation will lead to subop-
timal timetables. This happens for example if there are more sessions to a course
than weeks in the semester (no low-cost timetables will exist then). Experiments
in this direction are part of future work, but a better pattern selection might be
to guess how many default slots will be necessary for a course.

In the pattern instantiation step, the following hard constraints are used in
the model minimization:

– No sessions are planned across noon.
– The number of planned sessions on the same timeslot cannot exceed the

number of available teachers.
– No planned sessions should coincide for the same group.
– The session length is taken into account.

A new cost function is introduced for this minimization problem which reflects
how busy a specific day and slot will be across the term. It maps a day and slot
combination to a linear combination of
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– The number of sessions of each course of which the default session is planned
on that day and slot.

– The number of holidays on that day.
– Whether the slot is preferred (recall, e.g. Monday morning was not).

The total cost is then defined as a function of the costs of each day and slot.
Preferably, the cost of a busy day should weigh more on the total cost than
the cost of several less busy days (there is a preference of spreading the work
over a week). As the idp system cannot handle non-linear functions e�ciently
(modelling the total cost as e.g. a quadratic summation might seem appropriate),
the total cost was defined as the maximum of the costs of each day and slot.

5 Experiments

Experiments were conducted by generating timetables for the scheduling of one
term (13 weeks) of courses for the first bachelor year in informatics, 2010-2011
at the Katholieke Universiteit of Leuven. Courses consist of a series of lectures
and a series of practicals. The dates of lectures are known in advance (they are
scheduled by another university division) and were used as partial interpretation
of the planned sessions. The lecture timetable is quite regular, except for some
special cases like holidays. Each problem instance has 3 groups of students, which
all take the same courses, and 2 teachers for each course.

From this dataset, we conducted several experiments 5, by varying both the
number of groups to schedule and the length of the term.

The time to instantiate the patterns is orders of magnitude below the time to
find the full schedule (as expected). In figure 2, such an optimal default pattern
is shown for one group of students. As expected, there are no overlapping default
sessions, as there is room enough in between the lectures.

Originally, the symmetry breaking constraints, introduced in 4, were included
in the experiments. Such constraints cause a blow-up in the propositional theory
for large domains, as each domain element is related to all other domain elements.
This blow-up e↵ectively forced us to disable the symmetry breaking constraints
for the larger data sets. As symmetry breaking constraints are important in
e�ciently proving that no better solutions exist, optimality for those data sets
was never proven within the imposed time bounds. On the other hand, the last
(suboptimal) solution found before timeout, even on those data sets, proved to
be su�ciently regular for practical use.

Table 1 shows the total time it took to find an optimal timetable, including
pattern instantiation and grounding. A timeout of 30 minutes was used. All cases
in which the optimum was found were very regular schedules, indicating that the
soft constraints were chosen quite well.

5  The experiments were conducted using version 2.17 of the idp system,
which can be found on http://dtai.cs.kuleuven.be/krr/software/download.
All datasets and the experimental setup can be found on
http://dtai.cs.kuleuven.be/krr/research/experiments. Experiments were conducted
on an Ubuntu 11.04 system, with 4Gb of RAM and a dual-core 2.53 GHz processor

42 of 138



Fig. 2. A one-week timetable containing the generated default sessions for one group
of the data set. Vertical axis denotes the days of the week, horizontal axis the time slots
available each day. The grey positions denote the moments that a lecture takes place
and white, labelled positions indicate the default time slot for the associated practicals.

# weeks 1 group 2 groups 3 groups # weeks 1 group 2 groups 3 groups
1 0.1 1.1 5 8 15* 641* ###*
2 0.7 3.4 22 9 28* 1342* ###*
3 1.5 8.4 174 10 48* 1875* ###*
4 3.7 29 ### 11 61* ###* ###*
5 3.1 54 ### 12 88* ###* ###*
6 6.8* 180* ###* 13 130* ###* ###*
7 10* 285* ###*

Table 1. The time taken to find an optimal timetable as a function of the number
of groups and the length of the term. Disabled symmetry breaking constraints are
indicated by ⇤, ### indicates that optimality was not proven within the time bound.

6 Related and Future Work

Researchers from several communities such as operations research, metaheuris-
tics [14] and constraint programming have been trying for some time to find
general, workable solutions for timetabling applications.

Within the specific application of course timetabling, a number of general
problem formulations have been proposed in [5], providing a generic way to
compare timetabling systems. As part of future work, we will model those in
FO(·) and compare the performance of idp with state-of-the-art systems.

The link with graph colouring has inspired a lot of approximation algorithms
that use metaheuristics to find ”good enough” solutions, including genetic al-
gorithms, tabu search and simulated annealing. Another line of research uses
mixed integer programming and optimizes an objective function [23].

Also constraint programming has been used to solve timetabling problems:
constraints model the knowledge and solutions are found by interleaving con-
straint propagation and search. Within the field of SAT, SAT technology has
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recently been used to tackle timetabling problems by casting them as maximum
satisfiability problems and using max-SAT technology to find good solutions, see
e.g. [1]. The approach taken in this paper is a hybrid of CP and SAT technology,
by using a SAT-solver as backend, but using specialised propagation mechanisms
for numeric constraints like sum and cardinality and for inductive definitions.

Within the constraint programming community, the treatment of soft con-
straints is supported by the semiring-based formalism [3,4]. The formalism ex-
tends the classical constraint notion by adding the concept of a structure repre-
senting the levels of satisfiability of the constraints.

One future task is to compare our approach with other high-level modelling
languages and their associated systems, both in terms of ease of modelling and
performance. Related languages are Zinc [17], based on Constraint Programming
methodologies and Answer Set Programming [13], based on logic programs.

Furthermore, we will be looking at other instances of course timetabling, for
example the master years of informatics, in which the students are able to choose
courses on an individual basis (which increases the problem complexity). We also
intend to deploy the system at the K.U. Leuven in the long run, after solving
the scalability issues related to the intricate interleaving of the curricula.

7 Conclusion

In this paper we present an approach to solving the university timetabling prob-
lem, taking regularity constraints into account. The approach was based on mod-
elling the problem in a declarative, high-level language and using an automatic
reasoning mechanism to find solutions.

Using FO(·) as a modelling language proved to be adequate, allowing for
a short (few hundred lines of code), adaptable and more importantly, natural
representation of the problem, even in the presence of soft constraints. The ex-
periments show that using the idp system and its model minimization inference
are capable of tackling the problem for practically usable problem sizes, after
applying a number of optimizations to reduce the search space.
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1. Roberto Aśın Achá and Robert Nieuwenhuis. Curriculum-based course timetabling
with SAT and MaxSAT. pages 42–56, 2010.

2. Armen S. Asratian and Dominique de Werra. A generalized class-teacher model for
some timetabling problems. European Journal of Operational Research, 143(3):531–
542, 2002.

3. Stefano Bistarelli. Semirings for Soft Constraint Solving and Programming, volume
2962 of Lecture Notes in Computer Science. Springer, 2004.

4. Stefano Bistarelli, Ugo Montanari, and Francesca Rossi. Semiring-based constraint
satisfaction and optimization. J. ACM, 44:201–236, March 1997.

5. Alex Bonutti, Fabio De Cesco, Luca Di Gaspero, and Andrea Schaerf. Benchmark-
ing curriculum-based course timetabling: formulations, data formats, instances,
validation, visualization, and results. Annals of Operations Research, pages 1–12,
2010.

44 of 138



6. Edmund K. Burke and Patrick De Causmaecker, editors. Practice and Theory
of Automated Timetabling IV, 4th International Conference, PATAT 2002, Gent,
Belgium, August 21-23, 2002, Selected Revised Papers, volume 2740 of Lecture
Notes in Computer Science. Springer, 2003.

7. Edmund K. Burke and Sanja Petrovic. Recent research directions in automated
timetabling. European Journal of Operational Research, 140(2):266–280, 2002.

8. Marc Denecker and Eugenia Ternovska. A logic of nonmonotone inductive defini-
tions. ACM Transactions on Computational Logic (TOCL), 9(2):Article 14, 2008.

9. Marc Denecker and Joost Vennekens. Building a knowledge base system for an
integration of logic programming and classical logic. volume 5366 of LNCS, pages
71–76. Springer, 2008.

10. Marc Denecker, Joost Vennekens, Stephen Bond, Martin Gebser, and Miroslaw
Truszczynski. The second answer set programming competition. In Esra Erdem,
Fangzhen Lin, and Torsten Schaub, editors, LPNMR, volume 5753 of Lecture Notes
in Computer Science, pages 637–654. Springer, 2009.
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Abstract. The paper focuses on finding the m best solutions to a com-
binatorial optimization problems using Best-First or Branch-and-Bound
search. We are interested in graphical model optimization tasks (e.g.,
Weighted CSP), which can be formulated as finding the m-best solution-
paths in a weighted search graph. Specifically, we present m-A*, extend-
ing the well-known A* to the m-best problem, and prove that all A*’s
properties are maintained, including soundness and completeness of m-
A*, dominance with respect to improved heuristics and most significantly
optimal efficiency compared with any other search algorithm that use the
same heuristic function. We also present and analyse m-B&B, an exten-
sion of a Depth First Branch and Bound algorithm to the task of finding
the m best solutions. Finally, for graphical models, a hybrid of A* and
a variable-elimination scheme yields an algorithm which has the best
complexity bound compared with earlier known m-best algorithms.

1 Introduction

Depth-First Branch and Bound (B&B) and Best-First Search (BFS) are the
most widely used search schemes for finding optimal solutions. In this paper we
explore the extension of such search algorithms to finding the m-best optimal
solutions. We apply such algorithms to optimization tasks over graphical models,
such as weighted CSPs and most probable explanation (MPE) over probabilistic
networks, arising in many applications, e.g, in procurement auction problems,
biological sequence alignment and finding m most likely haplotype configura-
tions.

Most of the paper’s analysis focuses on Best-First Search whose behavior for
the task of finding a single optimal solution is well understood. The algorithm
is known to be sound and complete when guided by an admissible (i.e., lower
bound for minimization task) heuristic evaluation function. Most significantly,
it is efficiently optimal: any node it expands must be expanded by any other
exact search algorithm having the same heuristic function, if both use the same
tie breaking rule [4]. Best-First Search, and its most famous variant A*, are also
known to require significant memory. The most popular alternative to BFS is
Depth-First Branch and Bound, whose most attractive feature compared with
BFS is that it can be executed with linear memory. Yet, when the search space
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is a graph, it can exploit memory to improve its performance, by flexibly trading
space and time.

Highly efficient B&B and BFS algorithms for finding an optimal solution
over graphical models were developed recently. These algorithms explore the
AND/OR search-tree or the context-minimal AND/OR search graph of the
graphical model [3], they use heuristic evaluation functions generated either by
the mini-bucket scheme or through soft arc-consistency schemes [9, 12] and they
proved to be most effective as demonstrated in recent evaluations [2]. Clearly, an
extension of a BFS or B&B to the m-best task over a general search space graph
for optimal path-finding tasks is applicable to graphical models when searching
its AND/OR search space [3].

The main contribution of this paper (Section 3) is in presenting m-A*, an
extension of the A* for finding the m-best solutions, and in showing that all its
properties extend to the m-best case. In particular we prove that m-A* is sound
and complete and is efficiently optimal. In Section 4 we discuss extensions of
Branch and Bound to the m-best task. Subsequently, in Section 5, we discuss an-
choring the algorithms for searching graphical models’ AND/OR search spaces.
We show that a hybrid of A* and a variable-elimination scheme, denoted BE-
Greedy-m-BF, yields a best complexity algorithm compared with earlier work on
graphical models. Preliminary empirical evaluation shed light on the algorithm’s
performance. We assume without loss of generality that the optimization task
at hand is minimization.

2 Background

Let A be a general search algorithm for finding an optimal solution path over a
search space defined implicitly by a set of states (the nodes in the graph), op-
erators that map states to states having costs or weights (the directed weighted
arcs), a starting state n0 and a set of goal states. The task is to find the least
cost solution path from the start node to a goal [10] where the cost of a solution
path is the sum of the weights or the product of the weights on its arcs. The two
primary search strategies for finding an optimal solution are Best-First Search
(BFS), (e.g., A*) and Depth-First Branch-and-Bound search (B&B). In this
paper we explore extensions of both schemes for finding the m-best solutions for
any integer m. Best-first search (BFS) seems to be the most suitable algorithm
to be extended to m-best task. It explores the search space using a heuristic
evaluation function f(n) which for every node n estimates the best cost solution
path passing through n. The algorithm maintains a list of nodes that are can-
didates for expansions (often called ”OPEN”, or ”frontier”). At each iteration
a node in the frontier having a minimal f is selected for expansion, moved to
another list (called ”CLOSED”, or ”explored set”) and its child nodes are places
in OPEN, each associated with its own evaluation function. When a goal node is
selected for expansion the algorithm terminates and outputs the solution found.

It is known that when f(n) is a lower bound on the optimal cost path that
goes through n the algorithm terminates with an optimal solution. The algo-
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rithm’s properties were extensively studied [10, 11]. In particular, (up to some
tie breaking rule) the algorithm is efficiently optimal. Namely, any node ex-
panded by BFS is expanded by any other search algorithm guaranteed to find
an optimal solution [4]. If provided with a consistent (also called monotonic)
heuristic, the algorithm expands nodes in frontiers of monotonically increasing
evaluation function and it expands every node just once [10]. This later property
is of utmost importance because it frees the algorithm from the need to check
for duplicates when the search space is a graph.

We focus on the well-known BFS variant called A∗, where the heuristic
evaluation function is expressed as the sum f(n) = g(n) + h(n) in which for
any node n g(n) is minimal cost from the root n0 to n along the current path,
and h(n) underestimates h∗(n), the optimal cost from n to a goal node. The
implicit directed search space graph is G = (N,E). We denote by gπ(n) the
cost from the root to n along path π and by cπ(n1, n2) the cost from n1 to
n2 along π. The heuristic function h is consistent iff ∀ n′ successor of n in G,
h(n) ≤ c(n, n′) + h(n′).

3 Best-first Search For the Best m Solutions

As was noted in [1], the extension of BFS algorithms, including A∗, to the m-best
problem seems simple: rather then terminate with the first solution found, the
algorithm continues searching until it generates m solutions. As we will show,
these solutions are the m best ones. Specifically, the second solution found is
the second optimal solution, the third is the third optimal one and so on. In
the following subsections we present an extension of A∗ to finding the m-best
solutions and show that most of A∗’s nice properties are maintained in m-A∗.

3.1 Algorithm m-A*

Figure 1 provides a high level description of a tree-search variant which we call
m-A*. The algorithm expands nodes in order of increasing value of f in the usual
A∗ manner. For simplicity we specify the algorithm under the assumption that
h is consistent. The algorithm maintains separate paths to each copy of a node
in the explored search tree, denoted by Tr. As we will show, this redundancy is
not wasteful when the heuristic function is consistent.

We denote by C∗
i the ith best solution cost, by f∗

i (n) the cost of the ith

best solution going through node n, by fi(n) the evaluation function estimating
f∗
i (n) and by gi(n) and hi(n) the estimates of the ith best costs from n0 to n
and from n to a goal, respectively. If the heuristic function is not consistent, step
7 should be revised to account for the possibility that new paths to n′ may be
encountered and expanded in a non-monotone cost order. We therefore should
revise as follows:
7a. for any node n′ that appears already more than m times in the union of
OPEN or CLOSED, if g(n′) is strictly smaller than gm(n′), the current m-best
path to n′, keep n′ with a pointer to n and discard the earlier pointer.
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Algorithm m-A*
Input: An implicit directed search graph G = (N,E), with a start node n0 and a set
of goal nodes Goals. A consistent heuristic evaluation function h(n), parameter m,
OPEN=∅. A tree Tr which is initially empty.
Output: the m-best solutions.

1. i =1 (i counts the current solution being searched for).
2. Put the start node n0 in OPEN, f(n0) = h(n0). Make n0 the root of Tr.
3. If OPEN is empty, exit and return the solutions found so far.
4. Remove a node, denoted n, in OPEN having a minimum f (break ties arbitrarily,

but in favor of goal nodes and deeper nodes) and put it in CLOSED.
5. If n is a goal node, output the current solution obtained by tracing back pointers

from n to n0 (pointers are assigned in the following step). Denote this solution as
Soli. If i = m exit. else i← i+ 1, and go to step 3.

6. Otherwise expand n, generating all its child nodes Ch. Compute g(n′) = g(n) +
c(n, n′) and f(n′) = g(n′) + h(n′), ∀n′ ∈ Ch.

7. If n′ appears in OPEN or CLOSED m times, discard node n′, otherwise attach
from each n′ in Ch a pointer back to n in Tr. Insert n′ into the right place in
OPEN based on its f(n′).

8. Go to step 3.

Fig. 1: Algorithm m-A*

Example 1. Consider example in Figure 2. We assume the task of finding the two
shortest paths from node A to node G. Assuming the following heuristic values:
h(A)=5, h(B)=4, h(C)=3, h(D)=2, h(E)=1, h(F)=1, h(G)=0, the cost of the
best solution path {A,C,D, F,G} is cost 6, the cost of the second best solution
{A,B,D, F,G} is cost 9. On the trace of the search tree (right) orange nodes were
expanded and put on CLOSED, blue nodes remain on OPEN, magenta nodes
are the goals. Nodes D, F , E and G are expanded twice and two duplicates of
each of these nodes are retained.

Based on the known properties of A∗ [10] we will establish the following
corresponding properties of m-A∗:

1. Soundness and completeness: m-A* terminates with the m-best solutions
generated in order of their costs.

2. Optimal efficiency: m-A* is optimally efficient in terms of node expansions,
compared with any other search algorithm that is guaranteed to find the
m-best solutions. Namely, any node that is surely expanded by m-A* must
be expanded by any other sound and complete algorithm.

3. Optimal efficiency for consistent heuristics: m-A* is optimally efficient in
terms of number of node expansions when the heuristic function is consistent.
In this case, m-A* expands each node at most m times.

4. Dominance: Given two heuristic functions h1 and h2, s.t. for every n h1(n) <
h2(n), m-A*1 will expand every node surely expanded by m-A*2, when
m-A*i is using heuristic hi.
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Fig. 2: The search graph of the problem (left) and the trace of the m-A∗ for
m=2. Node A is the start node, node G is the goal node. Orange represents the
nodes that were expanded and put on CLOSED, blue nodes were generated, but
never expanded (remain on OPEN list), magenta nodes are the goal nodes.

3.2 m-A* is Sound and Complete

We know, that, if provided with an admissible heuristic, A∗ will surely expand
any node n, whose evaluation function fπ along a given path π from n0 to n
is strictly lower than the cost of the optimal solution, C∗. Namely, it surely
expands every node n′, such that n′ ∈ πn0..n and f(n′) < C∗. We next show
that this property can be extended straightforwardly to the m-best case.

Let’s denote by SSi the set of nodes expanded by m-A* just before a goal
node of the ith-best solution was selected for expansion. By definition SS1 ⊂
SS2, ... ⊂ SSi, .. ⊂ SSm and C∗

1 ≤ C∗
2 , ... ≤ C∗

m.
Since we maintain at most m live copies of a node in OPEN or CLOSED

we must be sure that we never discard any of the viable m-best solution paths.
Bounding the number of copies of a node is important for complexity reasons.

Proposition 1. At any point before the algorithm generates the ith-best solution
there is always a node in OPEN along each of the jth-best solution path for
j ∈ [i, ...,m].

From the above proposition it follows that,

Proposition 2. At any time before m-A* expands a goal node of the ith best
solution path, there is a node n′ in OPEN satisfying f(n′) ≤ C∗

i .

Proof. Assume that the search graph G has at least m solutions. Let’s assume
that all the i− 1 best solutions were already generated. Namely, the goal nodes
of the first i − 1 solution paths were selected for expansion. At any time after
that, there is a node n in OPEN that resides on an ith best path πi, because the
ith-best path is not discarded (Proposition 1). Let n′ be the first OPEN node on
πi. Its evaluation function is, by definition, f(n′) = gπi

(n′) + h(n′). Since πi is
an ith best path, gπi

(n′) + cπi
(n′, t) = C∗

i , when t is the goal for path πi. Since
by definition h(n′) ≤ cπ(n′, t), we get that n′ is in OPEN and f(n′) ≤ C∗

i .

We can conclude:
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Theorem 1 (sound and completeness). Algorithm m-A* generates the m-
best solutions in order, namely, the ith solution generated is the ith best solution.

Proof. By induction. We know that the first solution generated is the optimal
one and, assuming that the first i − 1 solutions generated are i − 1 best in
sequence, we will prove that the ith one generated is the ith best. If not, the
ith generated solution path, denoted by π′ has a cost c and c > C∗

i . However,
when the algorithm selected the goal t′ along π′, its evaluation function was
f(t′) = gπ′(t′) = c, while there was a node in OPEN whose evaluation function
is C∗

i or smaller that should have been selected. Contradiction.

3.3 m-A* is Optimally Efficient

Algorithm A* is known to be optimally efficient [4]. Namely, any other algorithm
that extends search paths from the root and uses the same heuristic information
will expand every node that is surely expanded by A∗, i.e., ∀ n, such that f(n) <
C∗. This property can be extended to our m-A* as follows:

Theorem 2 (m-optimal efficiency). Any search algorithm which is guaran-
teed to find the m-best solutions, and which explores the same search graph as
m-A* will have to expand any node that is surely expanded by m-A*, if it uses the
same heuristic function. Formally, it will have to expand every node n that lies
on a path π0..n that is dominated by C∗

m, namely s.t., f(n′) < C∗
m ∀n′ ∈ π0..n.

Similarly to [4] we can show that any algorithm that does not expand a node
n lying on a path π0..n, whose evaluation function is dominated by C∗

m, (namely
∀ n′ f(n′) < C∗

m), can miss one of the m-best solutions when applied to a slightly
different problem, and therefore contradicts completeness.

Proof. Consider a problem having the search graph G and consistent heuristic
h. Assume that node n is surely expanded by m-A*, namely for some j ≤ m
node n lies on a path π dominated by C∗

j . Let B be an algorithm that uses the
same heuristic h and is guaranteed to find the m best solutions. Assume that
B does not expand n. We can create a new problem graph G′ (Figure 3) by
adding a new goal node t with h(t) = 0, connecting it to n by an edge having
cost c = h(n) + δ, where δ = 0.5(C∗

j − D), in where D = maxf(n′)
n′∈Ej

, Ej is the

set of nodes surely expanded by m-A* before finding the jth solution.
It is possible to show that the heuristic h is also admissible for the graph

G′ [4]. Since δ = 0.5(C∗
j − D), C∗ = D − 2δ. By construction, the evaluation

function of the new goal node is f(t) = g(t)+h(t) = g(n)+c = g(n)+h(n)+δ =
f(n) + δ ≤ D+ δ = C∗

j − δ < C∗
j . Since m-A* will surely expand all nodes with

f(n′) < C∗
j before finding the jth solution, it will expand node t and discover

the solution whose cost is bounded by C∗
j − δ. On the other hand, algorithm B,

that does not expand node n in the original problem, will be unable to reach
node t and will only discover the solution with cost C∗

j , thus not returning the
true set of m best solutions to the modified problem. Contradiction.
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Fig. 3: The graph G′ represents a new problem instance constructed by append-
ing to node n a branch leading to a new goal node t.

3.4 m-A* for Consistent Heuristics

If the heuristic function is consistent, whenever a node n is selected for expansion
(for the first time) by A∗ the algorithm had already found the shortest path to
that node. We can extend this property as follows:

Theorem 3. Given a consistent h, when m-A* selects a node n for expansion
for the ith time, then g(n) = g∗i (n), namely it has found the ith best solution
from s to n.

Proof. By induction. For i = 1 the theorem holds [10]. Assume that it also holds
for i = (j − 1). Let us consider the jth expansion of n. Since we have already
expanded n (j− 1) times and since by the induction hypothesis we have already
found the (j−1) distinct best paths to the node n, there can be two cases: either
the cost of the jth path to n is equal to the jth best, i.e., g(n) = g∗i (n), or it is
greater i.e., g(n) = g∗k(n), k > i. If we assume the latter, then there exists some
other path π from n0 to n with cost gπ(n) = g∗j (n) < gk(n) that has not been
traversed yet. Since fπ(n) = gπ(n) + h(n) and f(n) = g(n) + h(n), it follows
that fπ(n) < f(n). Let n′ be the latest node on π on OPEN, i.e., a node already
generated but not yet expanded. It is known, that if the heuristic function is
consistent, the values of f along any given path are non-decreasing and therefore
∀ n′ on π, fπ(n′) ≤ fπ(n) < f(n) and n′ should have been expanded before node
n leading to contradiction.

We can conclude that when h is consistent any node n will be expanded at
most m times.

Corollary 1. Given m-A* with a consistent h

– The maximum number of copies of the same node in OPEN or CLOSED
can be bounded by m.

– The set {n|f(n) < C∗
m} will surely be expanded (no need of dominance along

the path).
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3.5 The Impact of m on the Expanded Search Space

The relation between the sizes of search space explored by m-A* for different
levels of m is obviously monotonically increasing with m. We can provide the
following characterization for the respective search spaces.

Proposition 3. Given a search graph,

1. Any node expanded by i-A* is expanded by j-A* if i < j and if both use the
same tie-breaking rule.

2. The set S(i, j) of nodes defined by S(i, j) = {n|C∗
i < f(n) < C∗

j } will surely
be expanded by j-A* and surely not expanded by i-A*.

3. If Ci = C∗
i , the number of nodes expanded is determined by the tie-breaking

rule.

As a result, the larger the discrepancy between the respective costs C∗
j −

C∗
i is, the larger would be the potential difference in the search spaces they

explore. This, however, also depends on the granularity with which the values of
a sequence of observed evaluation functions increase, which is related to the arc
costs (or weights) of the search graph. If C∗

i = C∗
j = C, then the search space

explored by i-A* and j-A* will be different only in the frontier of f(n) = C.

3.6 The Case of h = h∗ for m-A*

Like A∗, m-A* improves its performance if it has access to more accurate heuris-
tics. In particular, when h1 is strictly larger (and therefore more accurate) than
h2, every node surely expanded by m-A* with h2 before the jth solution is
uncovered will also be expanded by m-A* with h1 before the jth solution is
uncovered. The proof idea is identical to the A* case and is omitted. The case
of the exact heuristic deserves a special notice. It is easy to show that,

Theorem 4. If h = h∗ is the exact heuristic, then m-A* generates solutions on
j-optimal paths 1 ≤ j ≤ m, only.

Proof. Since the heuristic function is exact the f values in OPEN are expanded
in sequence C∗

1 ≤ C∗
2 ≤ ... ≤ C∗

i ... ≤ C∗
m. All the nodes generated having f = C∗

1

are by definition on optimal paths (since h = h∗), all those generated who have
f = C∗

2 must be on paths that can be second best and so on. (Notice that the
best cost may differ only at some indices.)

When h = h∗ m-A* is clearly linear in the number of nodes having f∗ ≤ C∗
m

value. However, when the cost function has only a small range of values, there
may be exponential number of solution paths having cost C∗

m. To avoid this
exponential frontier we chose the tie-breaking rule of expanding deeper nodes
first. This will result in a number of nodes expansions that is bounded by mn
when n bounds the solution length.

In summary,

Theorem 5. When m-A* has access to h = h∗, then, if it uses a tie breaking
rule in favor of deeper nodes, it will expand at most #N nodes, where #N =∑

i#Ni and #Ni is the length of the i-optimal solution path. Clearly #N ≤ mn.
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4 Branch and Bound for m-best Solutions

Straightforwardly extending the well-known B&B scheme, algorithm m-Branch-
and-Bound (m-B&B) finds the m best solutions by exploring the search space
in a depth first manner.

The algorithm maintains an ordered list of the m best solutions found so
far. It prunes nodes whose evaluation function (a lower bound on the optimal
solution passing through the node) is greater than Um, current upper bound on
the mth best solution (Um = ∞ until initial m solutions are found). At time of
completion, m-B&B outputs an ordered list of the m best solutions.

In analyzing the complexity ofm-B&B we assume that the underlying search
space is a graph (as opposed to a search tree). The three main sources of com-
plexity, compared with finding a single best solution, are: the expansion of the
search space, the node processing overhead due to m best problem and the
impact of the cost function on pruning the explored search space. We defer the
analysis of the first two factors till Section 5.3, where we discuss the application
of m-B&B to graphical models.

Similar to m-A*, the number of nodes expanded by m-B&B greatly depends
on the values of the evaluation function and costs of the solutions. Since, as we
have already shown, m-A* is superior to any exact search algorithm for m-best
solutions, m-B&B must expand all the nodes that are surely expanded by m-A*,
which, assuming consistent heuristic, is the set of nodes E∗

m = {n|f(n) < C∗
m}.

The order in which m-B&B uncovers solutions is problem-specific and has
a big impact on the total number of node expantions. Let {U1

m, ..., U j
m} be the

sequence of upper bounds on the mth best solution, at the time when m-B&B
uncovered j solutions, ordered from the earliest bound obtained to the latest.
These upper-bounds, that influence the node pruning, are decreasing until they
coincide with C∗

m.

Proposition 4. Given a consistent heuristic
1. m-B&B will expand all nodes such as E∗

m = {n|f(n) < C∗
m}.

2. Initially, and until m-B&B encounters the true mth-best solution, it will
expand also nodes F ∗

m = {n|f(n) > C∗
m}. Subsequently, like m-A* it will only

expand nodes for which f(n) ≤ C∗
m.

5 Applying m-A* and m-B&B to Graphical Models.

In this section we apply m-A* and m-B&B to combinatorial optimization tasks
(COP) defined over graphical models. We focus more on the application of m-
B&B, since it is more practical then m-A* due to flexible memory requirements.

5.1 Background on graphical models.

Consider a weighted constraint problem expressed as a graphical model M =
(X,D,F,

∑
), where F = {f1, . . . , fr} is a set of discrete functions, called costs,
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over real-valued variablesX = {X1, . . . , Xn} with discrete domainsD = {D1, . . . , Dn}.
We aim to minimize the sum of all costs minX

∑
i fi. Closely related combinato-

rial optimization problem is Most Probable Explanation (MPE), where the task
is to compute maxX

∏
i fi, where the sum is replaced by a product. The set of

function scopes implies a primal graph and, given an ordering of the variables,
an induced graph (where, from last to first, each node’s earlier neighbors are
connected) with a certain induced width w∗.
Example 2. Figure 4a depicts the primal graph of a problem with six variables.
Figure 4b shows its induced graph along the ordering d = A,B,C,D,E, F ,
w∗ = 2.

AND/OR search space of a graphical model exploits the problem decomposi-
tion captured in the structure of the graph (see [3] for more details). The search
space is defined using a pseudo tree of the graphical model. A pseudo tree of
an undirected graph G = (X,E) is a directed, rooted tree T = (X,E′) , such
that every arc of G not included in E′ is a back-arc in T , namely it connects a
node in T to an ancestor in T . The arcs in E′ may not all be included in E.

AND/OR Search Trees. Given a graphical model M = (X,D,F,
∑

) and
a pseudo tree T , the AND/OR search tree guided by T consists of alternating
levels of OR and AND nodes. Figure 4d shows the AND/OR search tree for
our running example, guided by the pseudo-tree in Figure 4c.

It was shown that, for a problem with N variables with domain size k and a
pseudo tree T of height h, the size of the corresponding AND/OR search tree is
O(Nkh). Alternatively the size can be bounded by O(Nkw

∗ logN ), where w∗ is
the induced width of the problem graph along a depth-first traversal of T [3].

AND/OR Search Graphs. Identical subproblems, identified by their con-
text (the partial instantiation that separates the subproblem from the rest of the
network), can be merged, yielding the context-minimal AND/OR search graph,
at the expense of using additional memory during search. Merging nodes of the
AND/OR tree in Figure 4d yields the context-minimal AND/OR search graph
in Figure 4e. The context-minimal AND/OR search graph has size O(Nkw

∗+1)
(see [3] for details).

An optimization problem can be solved by searching the correspondingweighted
AND/OR search graph, namely an AND/OR search graph, in which each edge
from OR node to AND node has a weight derived from the set of cost func-
tions F [3]. As a heuristic evaluation function these search algorithms use the
mini-bucket heuristic that is known to be admissible and consistent, yielding
algorithms AOBB (AND/OR Branch and Bound) and AOBF (AND/OR Best-
First), described and extensively studied in [7, 9]. The solution to the problem
is a subtree of the weighted AND/OR search graph.

5.2 Algorithm m-AOBF for graphical models.

As noted, AOBF (AND/OR Best First) is version of algorithm A∗ that searches
the weighted AND/OR context minimal graph in a best-first manner. It can be
guided by any admissible heuristic. Extending AOBF to the m-best task as
suggested by the general m-A* yields an algorithm which we call m-AOBF . All
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(a) (b) (c)

(d) (e)

Fig. 4: Example primal graph with six variables (a), its induced graph along
ordering d = A,B,C,D,E, F (b), a corresponding pseudo tree (c), the resulting
AND/OR search tree (d), and the context-minimal AND/OR search graph (e).

the properties of m-A∗ extends to AND/OR search graphs. The algorithm may
require duplicating some nodes at most m times (if there are m paths leading
to them).

The complexity ofm-best algorithms for graphical models can be analyzed by
first characterizing the underlying search space that is being explored using graph
parameters, as is common in graphical models. Subsequently, we can characterize
the portion of the search space that is explored using the evaluation function, as
we did earlier. So, since m-AOBF explores the AND/OR context-minimal graph
(denoted CMG), and since we may duplicate some nodes at most m times we
get:

Theorem 6. The search space size explored by m-AOBF is bounded by O(N ·
m · kw∗), where w∗ is the induced-width along the pseudo-tree ordering.

Obviously this bound is loose since it does not consider the pruning power
of the evaluation function.

Theorem 7. Given an evaluation function f(n) that underestimates the least
cost solution tree that passes through the node n in the AND/OR context-minimal
graph, algorithm m-AOBF surely expands the set of nodes {n ∈ CMG|f(n) <
C∗

m}, where C∗
m is the cost of the mth best solution, and a subset of nodes for

which {n ∈ CMG|f(n) = C∗
m}, depending on the tie-breaking rule.
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5.3 Algorithm m-AOBB for Graphical models

Extending AOBB to m-AOBB is straightforward, mimicking the m-B&B while
searching the AND/OR search space. The main difference between m-AOBB
and m-B&B arises from the presence of AND nodes: at each AND node the m
best solutions to the subproblems rooted in its children need to be combined
and the best m out of the combination results need to be chosen. We distin-
guish between m-AOBB searching the AND/OR tree and the context minimal
AND/OR graph. These two versions of m-AOBB differ in the size of underlying
search space and the computational overhead per node.

The size of the AND/OR search tree is bounded by O(Nkh), where h is the
height of the pseudo-tree. The primary overhead is due to the combination of the
solutions to the children’s subproblems of AND nodes which is O(deg ·m logm)
time per AND node. Consequently, if the algorithm that searches the underlying
AND/OR tree (with no caching) the run-time complexity is bounded by O(m ·
Nkh · deg logm).

If the algorithm searches the context minimal AND/OR graph, (where iden-
tical subproblems are identified based on their context ) m-AOBB need to cache
the m best solutions rooted in some OR nodes, which requires additional mem-
ory, similar to graph-based AOBB [9]. Such caching introduces time overhead of
O(m logm) per OR node. Since the size of an AND/OR search graph is bounded
by O(Nkw∗) nodes and considering the AND node-related overhead, we can con-
clude that

Theorem 8. The time complexity of m-AOBB which searches the underlying
AND/OR search tree is bounded by O(m ·Nkh · deg logm). The time complexity
of m-AOBB which searches the context-minimal graph is O(N ·deg ·m logmkw

∗

)
and the space complexity is O(N · m logmkw

∗

), where w∗ is the induced-width
of the ordering along the pseudo-tree that guides the search and h is its height.

The above analysis considers only the impact of the m-best exploration on
the size of the underlying search space and the overhead computation per node,
but ignore the pruning power caused by the evaluation function that guides the
search. Clearly the complexity analysis can be further refined by taking into
consideration cost function, directly extending the results of Proposition 4 to
m-AOBB.

5.4 Algorithm BE-Greedy-m-BF

Since an exact heuristic for graphical models can be generated by the bucket-
elimination (BE) algorithm [7], we can use the idea suggested in Section 3.6,
yielding algorithm which we call BE-Greedy-m-BF. The algorithm first generates
the exact heuristics along an ordering using BE and subsequently applies m-
AOBF using these exact heuristics. It turns out that the worst-case complexity
of both algorithms when applied in sequence coincides with the best of the
known m-best algorithms for graphical models. This is because the number of
nodes expanded by m-A* when it uses the exact heuristic is bounded by N ·m,
when N is the number of variables.
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Theorem 9. Let B = (X,D,F ) be a general graphical model. The complexity
of BE-Greedy-m-BF (i.e., bucket-elimination followed by m-AOBF with exact
heuristic) is O(Nkw∗ +N ·m) when N is the number of variables.

6 Earlier work on finding the m-best solutions.

The most influential work on finding the m-best solution was written by Lawler
[8]. In the folowing years a great number of related methods were developed,
which we do not describe here for lack of space. Particular areas of interest
include the problem of finding k shortest paths, extensive references for which
can be found in [5]. An overview of algorithms focused on graphical model is
presented in [6].

7 Empirical demostrations

Instance N k w* h m=1 m=10 m=50 m=100

pedigree1 298 4 15 59 1 32 464 1751
pedigree37 726 5 20 72 41 240 1537 4825
pedigree38 581 5 16 52 2700 8890 24894 t/o
pedigree39 953 5 20 77 2594 7907 28037 t/o
pedigree50 478 6 16 54 685 2835 21903 t/o
grid50-12-5 143 2 15 48 1 2 13 35
grid50-14-5 195 2 18 64 87 599 1995 3739
grid50-15-5 224 2 19 76 180 1382 5011 9591
grid75-16-5 256 2 21 73 539 3327 10917 20572
grid75-18-5 324 2 24 85 1147 4533 14078 23948
mm-03-0000 1220 2 18 43 43 580 4845 13381
mm-03-0001 1193 2 15 38 1 2 8 23
mm-03-0002 1193 2 15 39 1 3 17 48
mm-03-0004 1193 2 15 38 0 3 17 46
mm-03-0005 1193 2 15 38 0 5 25 70
mm-03-0011 1172 2 18 42 18 148 757 2016
mm-03-0014 1172 2 18 43 15 107 544 1488
mm-04-0012 2224 2 29 56 842 6859 31952 t/o
mm-04-0013 2224 2 29 58 375 4880 23854 t/o
mm-04-0014 2224 2 29 60 655 8080 36740 t/o
mm-04-0015 2224 2 29 57 818 13299 t/o t/o

(a) Run-time of m-AOBB in seconds.
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(b) Pedigree instances. Pedigree 39
could not be solved before the time-
out of 12 hours, thus the runtime for
m=100 is unavailable.

Fig. 5: The run-time of m-AOBB in seconds as a function of number of solutions
m

Due to our interest in extremely memory-intensive problems (e.g. genetic
linkage analysis), we deem Branch and Bound-based methods with their flexible
memory requirements the more promising in practice. In the following prelim-
inary experiments we focused on evaluating how m-AOBB scales with number
of solutions m.

Our implementation of m-AOBB is exploring an AND/OR search tree and
not a graph. By making such design choice not only we achieve better space
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complexity, it also allows us to avoid the time overhead due to caching. On
the other hand, the search space we are exploring is inheritently larger (see
Section 5.3).

We evaluated the algorithm on maximum probability explanations (MPE)
problems using 3 sets of instances taken from 2008 UAI evaluation: pedigrees,
grids and mastermind instances. The parameters of the problems and run time
results in seconds are presented in Table 5a.

We evaluated the algorithm for m = [1, 10, 50, 100] solutions. The timeout
was set to 12 hours. The memory limit for pedigree instances is 4 Gb, for grids
and mastermind instances it is 10 Gb. In Figures 5b, 6a and 6b we see the
dependence of the runtime on number of solutions m for a number of chosen
instances from each set.

The theory states that the run-time of m-AOBB should scale with the num-
ber of solutions m as (m log2 m). In practice, we see that it is not always the
case and there exists a large discrepancy between the results. For some instances
(e.g. grid 50-12-5, mm-03-001) the scaling of runtime with m is significantly bet-
ter than what theory suggests, which can be attributed to sucessful pruning of
a large part of the search space. However, for some instances (e.g. pedigree38,
mm-04-0015) the runtime scales considerably worse. We explain the large scaling
factor by the suboptimality of our current implementation, which might intro-
duce overhead unaccounted for by theoretical analysis.
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(a) Grids instances.
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(b) Mastermind instances.

Fig. 6: The run-time of m-AOBB in seconds as a function of number of solutions
m for grid and mastermind instances.

8 Conclusion

The paper shows how Best First search algorithm for finding one optimal so-
lution can be extended for finding the m-best solutions. We provide theoretical
analysis of soundness and completeness and show that m-A∗ is optimally effi-
cient compared with any other algorithm that searches the same search space
using the same heuristic function.
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We then extend our analysis to Depth First Branch and Bound and apply the
algorithms to graphical models optimization tasks, provide worst-case bounds on
the search space explored by the m-best algorithms and characterize the added
pruning power associated with the heuristic evaluation function. Preliminary
empirical evaluation of m-AOBB shows that the algorithm often scales with the
number of solutions m significantly better than the theory suggests.

We also present BE-Greedy-m-BF, a hybrid of variable-elimination and Best
First Search scheme, that, interestingly, has the best time complexity amongst
m-best algorithms known to us.
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Abstract. Situations where agents with different preferences try to agree on a
single choice occur frequently. This must not be confused with fusion of evidence
from different agents to determine the most likely correct hypothesis or actual
event. Multi-agent preference combination assumes that each agent has already
made up her mind, and is about determining the most acceptable decision or
choice for the group of agents. This paper formalises and expresses preferences
for a state variable in the form of subjective opinions over a frame, and then
applies the belief constraint operator of subjective logic as a method for merging
preferences of multiple agents into a single preference for the whole group. The
model is expressive and flexible, and produces perfectly intuitive results.

1 Introduction

In situations where two or more agents need to make a selection among alternatives
their preferences can be combined to derive the selection that best satisfies all agents.
For example, person A might say: ”I like broccoli, but I dislike celery” and person B
might say: ”I like both of them”. Assume that person A and person B are cooking a
meal together, and they want to decide whether to include a particular ingredient, then
inclusion of Broccoli is obvious because both like it. The inclusion of celery however is
unclear because A and B have opposite preferences. In this case, cultural norms would
play a role, as e.g. politeness, or the relative status or authority of A and B. If the pref-
erences had been expressed as hard constraints, i.e. if A said ”For me celery is out of
the question” and B said ”For me celery is mandatory” then it would seem that they
simply can not cook the meal together.

In addition to having both positive and negative preferences, it is natural to also
express indifference, stating that we neither have a positive nor a negative preference
over a specific object. By continuing the above cooking example, person A might say:
”I’m indifferent to carrots” and person Bmight say: ”I like carrots”. Then the inclusion
of carrots seems natural because B likes it and A is indifferent, i.e. the indifference of A
lets B decide.

In this paper, we investigate how subjective opinions can be used to express pref-
erences in general. In particular we analyse the applicability of the belief constraint
operator, which in fact is an extension of Dempster’s rule [11], for combining prefer-
ences of multiple agents about the same choice variable. The intuitive motivation be-
hind our study is that preference can be represented as belief and that indifference can
! The work reported in this paper has been partially funded by UNIK.
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be represented as uncertainty/uncommitted belief. Positive and negative preferences are
considered as symmetric concepts, so they can be represented in the same way and com-
bined using the same operator. A totally uncertain opinion has no influence and thereby
represents the neutral element.

Our study focuses on multi-agent preferences over a single variable represented
as the possible states in a frame. In future research we plane to extend our study by
analysing multi-agent preferences over multiple variables, i.e. over multiple frames.

2 Related Work

The work presented here extends the fundamental idea of bipolar preferences wherein
agents can express positive and/or negative preferences for a particular choice. Publica-
tions that focus on this principle include [1, 2]. In [2] the soft constraint formalism based
on semirings is used to model negative preferences, and a separate algebraic structure
is used to model positive preferences. To model bipolar problems these two structures
are linked and the highest negative preference is set to coincide with the lowest positive
preference to model indifference. A combination operator is defined between positive
and negative preferences to model preference compensation. In [1] uncertainty is mod-
elled by the presence of uncontrollable variables. This means that the value of such vari-
ables is decided by ”Nature” or by some other agent. A solution is then only assigned to
controllable variables, not to uncontrollable ones. A typical example of uncontrollable
variable, in the context of satellite scheduling, is a variable representing the time when
clouds will disappear. Although the value for such uncontrollable variables can not be
chosen directly, the plausibility of the values in their domains can be expressed. The
plausibility information, which is not bipolar, is expressed by probability distributions.

Possibility theory applied to preference combination has also be investigated e.g.
in [3, 10]. The main idea in [10] is to represent preferences (or respective certainty
degrees) as a possibility distribution over labelings (choices). Such a distribution then
induces a possibility measure and a necessity measures over constraints. With this for-
malism constraints can be expressed as bounds on possibility or necessity defining a set
of possibility distribution among labelings. One can then define a set of ”most possible”
labelings satisfying these bounds. The main idea in [3] formalizes the notion of possi-
bilistic constraint satisfaction problems (CSP) that allows the modeling of uncertainly
satisfied constraints. Necessity-valued constraints then express the respective certainty
degrees of each constrain.

3 Subjective Logic Basics

Our model follows the same ideas as those of the models mentioned in Sec.2 above,
namely to express and combine positive and negative preferences as well as indiffer-
ence/uncertainty. However, the model of subjective logic is quite different from the
models of the previous approaches. Subjective opinions simultaneously express posi-
tive and negative preferences as well as indifference/uncertainty, thereby avoiding the
complexity of integrating multiple formalisms to express the various aspects of prefer-
ences. A subjective opinion expresses preferences over possible states of a frame, which
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constitutes a multi-polar preferencemodel. Preference combination based on subjective
logic can be interpreted as a form of majority voting where the weight of each agent’s
vote is inversely proportional to the indifference/uncertainty of that agent’s preference.
A totally indifferent/uncertain opinion then carries no weight and represents the neutral
element. Subjective logic thus provides the basis for a very general preference combi-
nation model.

A subjective opinion is a composite function that consists of belief masses, uncom-
mitted belief mass (uncertainty) and base rates, and that can also indicate the belief
source or owner. The main idea behind our study is to interpret belief mass as pref-
erence, and uncommitted belief mass as indifference. Base rates can be interpreted as
average preferences in the population.

3.1 The Reduced Powerset of Frames

A state space of mutually exclusive states is called a ”frame of discernment” or ”frame”
for short. Let X be a frame of cardinality k. In this study the possible states in the frame
represent the preference variable, i.e. agents can express preferences over states in the
frame. It is assumed that the goal of the multi-agent preference is to select a single state
from the frame as the most preferred state for the group of agents.

Belief mass (preference) is distributed over the reduced powerset of the frame de-
noted asR(X). More precisely, the reduced powersetR(X) is defined as:

R(X) = 2X \ {X , /0}= {xi | i= 1 . . .k, xi ⊂ X} , (1)

which means that all proper subsets of X are elements of R(X), but X itself is not in
R(X). The emptyset /0 is also not considered to be a proper element ofR(X).

An agent can thus express preference for singleton states as well as for subsets
containing multiple singletons. Assigning belief mass to a singleton or to a subset is
interpreted as positive preference for that singleton or subset, and as negative preference
for their complements in the frame. This can be considered as model for expressing
multi-polar preferences, and thereby extends the idea of bipolar preferences described
in [1, 2]. By not assigning all the belief mass to singletons or subsets the agent can
express indifference, i.e. the level of indifference is equal to the amount of uncommitted
belief mass.

The cardinality of ofR(X) is computed as κ = |R(X)|= (2k− 2), i.e. the reduced
powerset has only (2k − 2) elements because it is assumed that X and /0 are not ele-
ments ofR(X). The first k elements ofR(X) have the same index as the corresponding
singletons of X . The remaining elements of R(X) are grouped in classes according to
the number j of singletons they contain. The class is then called ”class j”, meaning
that all elements belonging to class j have cardinality j. The actual number of elements
belonging to each class is determined by the Choose Function C(κ , j) which dictates
the number of ways that j out of κ singletons can be chosen. The Choose Function,
equivalent to the binomial coefficient, is defined as:

C(κ , j) =
(

κ
j

)
=

κ!
(κ − j)! j!

. (2)
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Within a class each element is indexed after the order of the lowest indexed single-
tons from X that it contains. For example in case of the frame X = {x 1,x2,x3,x4}, class
1 has 4 elements, and class 2 has 6 elements, which together makes 10 elements. The
first element of class 3 therefore has index 11. Table 1 defines the index and class of all
the elements ofR(X) according to this scheme in case of |X |= 4.

Singleton selection per element

Si
ng
le
to
ns x4 ∗ ∗ ∗ ∗ ∗ ∗ ∗

x3 ∗ ∗ ∗ ∗ ∗ ∗ ∗
x2 ∗ ∗ ∗ ∗ ∗ ∗ ∗
x1 ∗ ∗ ∗ ∗ ∗ ∗ ∗

Element Index: 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Element Class: 1 2 3

Table 1. Index and class of elements ofR(X) in case |X |= 4.

Class-1 elements are the original singletons fromX , i.e. we can state the equivalence
(xi ∈ X)⇔ (xi is a class-1 element in R(X)). The frame X = {x1,x2,x3,x4} does not
figure as an element of R(X) in Table 1 because excluding X is precisely what makes
R(X) a reduced powerset.

3.2 Belief Distribution over the Reduced Powerset

Subjective logic allows various types of belief mass distributions over a frame X , which
in this study is interpreted as a preference mass distribution. The distribution vector
can be additive (i.e. sum = 1) or sub-additive (i.e. sum < 1), and it can be restricted to
elements of X or it can include proper subsets of X . A belief mass on a proper subset
of X is equivalent to a belief mass on an element of R(X). In case of sub-additive be-
lief mass distribution, (i.e. sum < 1) the complement is defined as uncommitted belief
mass, which in this study is interpreted as indifference mass. An additive belief mass
distribution means that there is no uncommitted mass. In general, the belief vector "bX
specifies the distribution of belief masses over the elements of R(X), and the uncom-
mitted mass denoted as uX represents the uncertainty about the probability expectation
value, as will be explained below. The sub-additivity of the belief vector and the com-
plement property of the uncommitted mass (uncertainty) are expressed by Eq.(3) and
Eq.(4) below:

Belief sub-additivity: ∑
xi∈R(X)

"bX(xi)≤ 1 , "bX(xi) ∈ [0,1] (3)

Belief and uncertainty additivity: uX + ∑
xi∈R(X)

"bX(xi) = 1 , "bX(xi),uX ∈ [0,1] . (4)
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An element xi ∈R(X) is a focal element when its belief mass is non-zero, i.e. when
"bX(xi)> 0. The frame X is not considered to be a focal element, even when u X > 0.

3.3 Base Rates over Frames

The concept of base rates is central in the theory of probability, and also in subjective
logic. Given a frame of cardinality k, the default base rate of for each singleton in the
frame is 1/k, and the default base rate of a subset consisting of n singletons is n/k. In
other words, the default base rate of a subset is equal to the number of singletons in the
subset relative to the cardinality of the whole frame. A subset also has default relative
base rates with respect to every other fully or partly overlapping subset of the frame.

In practical situations base rates are normally different from the default values.
When modelling preferences, base rates can express average preferences in the pop-
ulation. The base rate function is denoted as a so that a(x i) represents the base rate of
element xi ∈ X . The base rate function is formally defined below.

Definition 1 (Base Rate Function). Let X be a frame of cardinality k, and let "aX be
the function from X to [0,1]k satisfying:

"aX( /0) = 0, "aX(xi) ∈ [0,1] and
k

∑
i=1

"aX(xi) = 1 . (5)

Then"aX is a base rate distribution over X .

Two different observers can share the same base rate vectors. However, it is obvi-
ous that two different observers can also assign different base rates to the same frame,
in addition to assigning different beliefs to the frame. This naturally reflects different
views, analyses and interpretations of the same situation by different observers. Base
rates can thus be partly objective and partly subjective.

Events that can be repeated many times are typically frequentist in nature, meaning
that the base rates for these often can be derived from statistical observations. For events
that can only happen once, the analyst must often extract base rates from subjective
intuition or from analyzing the nature of the phenomenon at hand and any other relevant
evidence. However, when no specific base rate information is known, the default base
rate of the singletons in a framemust be defined to be equally partitioned between them.
More specifically, when there are k singletons in the frame, the default base rate of each
element is 1/k. For this study, the base rates are interpreted as average preferences in
the population.

The usefulness of base rate function emerges from its application as the basis for
probability projection. Because belief mass can be assigned to any subset of the frame
it is necessary to also represent the base rates of such subsets. This is defined below.

Definition 2 (Subset Base Rates). Let X be a frame of cardinality k, and let R(X) =
2X \{X , /0} be its reduced powerset of cardinality κ = (2k−2). Assume that a base rate
function"aX is defined over X according to Def.1. Then the base rates of the elements of
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the reduced powersetR(X) are expressed according to the powerset base rate function
"aR(X) fromR(X) to [0,1]κ expressed below:

"aR(X)( /0) = 0 and "aR(X)(xi) = ∑
x j∈X
x j⊆xi

"aX(x j) , ∀xi ∈ R(X) . (6)

Note that x j ∈ X means that x j is a singleton in X , so that the subset base rate in
Eq.(6) is the sum of base rates on singletons x j ∈ xi. Trivially, it can be seen that when
xi ∈ X then "aR(X)(xi) ≡ "aX(xi), meaning that "aR(X) simply is an extension of "aX . Be-
cause of this strong correspondence between"aR(X) and"aX we will simply denote both
base rate functions as "aX . Because belief masses can be assigned to fully or partially
overlapping subsets of the frame it is necessary to also derive relative base rates of
subsets as a function of the degree of overlap with each other. This is defined below.

Definition 3 (Relative Base Rates). Assume frame X of cardinality k where R(X)
is its reduced powerset of cardinality κ = (2k− 2). Assume the base rate function "aX
defined over X according to Def.2. Then the base rates of an element x i relative to an
element x j is expressed by the relative base rate function"aX(xi/x j) expressed below:

"aX(xi/x j) =
"aX(xi∩ x j)
"aX(x j)

, ∀ xi,x j ∈ R(X) . (7)

4 Opinion Classes

An opinion is a composite function consisting of the belief mass vector "bX , uncommit-
ted belief mass uX and the base rate vector "aX , and can also indicate ownership when-
ever required. A subjective opinion is normally denoted as ω A

X where A is the opinion
owner, also called the subject, and X is the target frame to which the opinion applies [5].
An alternative notation is ω(A : X). There can be different classes of opinions, of which
hyper opinions are the most general. Multinomial opinions and binomial opinions are
specific sub-types. More specific opinion classes are DH opinion (Dogmatic Hyper),
UB Opinion (Uncertain Binomial) etc. The six main opinion classes defined in this way
are listed in Table 2 below, and are described in more detail in the next sections.

Binomial Multinomial Hyper
Binary frame n-ary frame n-ary frame

Focal element x ∈ X Focal elements x ∈ X Focal elements x ∈ R(X)
Uncertain UB opinion UM opinion UH opinion
u> 0 Beta pdf Dirichlet pdf over X Dirichlet pdf overR(X)
Dogmatic DB opinion DM opinion DH opinion
u= 0 Scalar probability Probabilities on X Probabilities onR(X)

Table 2. Opinion classes with equivalent probabilistic representations
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The propositions of a frame are assumed to be exhaustive and mutually disjoint. For
binary frames the opinion is binomial. In case the frame is larger than binary, and only
singletons of X (i.e. class-1 elements of R(X)) are focal elements, then the opinion
is multinomial. In case the frame is larger than binary and there are focal elements of
any class ofR(X)), then it is a hyper opinion. In case of uncommitted belief mass, i.e.
uX > 0, it is called an uncertain opinion which expresses degrees of indifference. In
case uX = 0 it is called a dogmatic opinion which represents dogmatic preferences.

The six entries in Table 2 also mention the equivalent probability representation of
opinions, e.g. as Beta pdf, Dirichlet pdf or as a distribution of scalar probabilities over
elements of X or R(X) [8]. This offers a frequentist interpretation of subjective opin-
ions and preferences, and provides a method for deriving opinions and preferences from
statistical data. Alternatively it is possible to map subjective opinions and preferences
to Beta pdfs or Dirichlet pdfs, for further processing and analysis within classical sta-
tistical frameworks. The detailed description of the equivalence between opinions and
probability density functions is outside the scope of this paper.

4.1 Binomial Opinions

A special notation is used for representing opinions over binary frames. A general n-ary
frame X can be considered binary when seen as a binary partitioning consisting of one
of its proper subsets x and the complement x.

Definition 4 (Binomial Opinion). Let X = {x,x} be either a binary frame or a binary
partitioning of an n-ary frame. A binomial opinion about the truth of state x is the
ordered quadruple ωx = (b,d,u,a) where:

b : belief belief mass in support of x being true (preference for x),
d : disbelief belief mass in support of x being false (negative preference for x),
u : uncertainty the amount of uncommitted belief mass (indifference about x),
a : base rate the a priori probability of x (average preference for x).

These components satisfy b+d+u= 1 and b,d,u,a ∈ [0,1]. The characteristics of
various binomial opinion classes are listed below. A binomial opinion:

where b= 1 is equivalent to binary logic TRUE (hard positive constraint),
where d = 1 is equivalent to binary logic FALSE (hard negative constraint),
where b+ d = 1 is equivalent to a traditional probability (preference),
where b+ d < 1 expresses degrees of uncertainty (indifference), and
where b+ d = 0 expresses total uncertainty (indifference).

Binomial opinions can be represented on an equilateral triangle as shown in Fig.1.
A point inside the triangle represents a (b,d,u) triple. The belief, disbelief, and

uncertainty-axes run from one edge to the opposite vertex indicated by the b x axis, dx
axis and ux axis labels. The base rate1, is shown as a point on the base line, and the prob-
ability expectation, Ex, is formed by projecting the opinion point onto the base, parallel
to the base rate director line. The opinion ωx = (0.2, 0.5, 0.3, 0.6) with expectation
value Ex = 0.38 is shown as an example.
1 Also called relative atomicity in case of default base rates [5]
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Base rate

Opinion 
ZX

Ex ax

bx  axis

Expectation value

Projector

Director

ux  axis

dx  axis

Fig. 1. Opinion triangle with example opinion

Binomial opinionswith u≥ 0 are called UB opinions (UncertainBinomial), whereas
binomial opinions with u = 0 are called DB opinions (Dogmatic Binomial). DB opin-
ions are equivalent to classical probabilities. In case the opinion point is located at
one of the three vertices in the triangle, i.e. with b = 1, d = 1 or u = 1, the reason-
ing with such opinions becomes a form of three-valued logic that is an extension of
Kleene logic [4]. Because the three-valued arguments of Kleene logic do not contain
base rates, probability expectation values can not be derived from Kleene logic argu-
ments. The conjunction of multiple Kleene logic arguments is therefore incompatible
with multiplication of probabilities or opinions [7], and is inconsistent in general be-
cause the conjunction of an infinity of UNKNOWN arguments produces UNKNOWN
in Kleene logic, whereas realistically it should converge towards FALSE. Eq.(8) defines
the probability projection of a binomial opinion on proposition x:

Ex = b+ au . (8)

In case the opinion point is located at the left or right bottom vertex in the triangle,
i.e. with d= 1 or b= 1 and u= 0, the opinion is equivalent to boolean TRUE or FALSE,
and is called an AB (Absolute Binomial) opinion. Reasoning with AB opinions is an
extension of reasoning within binary logic.

4.2 Multinomial Opinions

An opinion on a frame X that is larger than binary and where the set of focal elements is
restricted to class-1 elements is called a multinomial opinion. The uncommitted belief
mass, which can be interpreted as uncertainty mass on the frame X , represents indiffer-
ence in the present model. A UM (Uncertain Multinomial) opinion has u X > 0, and a
DM (Dogmatic Multinomial) has uX = 0. Multinomial opinions on ternary frames can
be presented as a point inside a tetrahedron, as shown in Fig.2.
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bx1

bx2

bx3

uX

Opinion 

Xa
&

Expectation value 
vector point Base rate 

vector point

ZX

XE
&

Projector

Fig. 2. Opinion tetrahedron with example opinion

The vertical elevation of the opinion point inside the tetrahedron represents the un-
certainty mass in Fig.2. The distances from each of the three triangular side planes to
the opinion point represents the respective belief mass values. The base rate vector"a X is
indicated as a point on the base plane. The line that joins the tetrahedron summit and the
base rate vector point represents the director. The probability expectation vector point
is geometrically determined by drawing a projection from the opinion point parallel to
the director onto the base plane.

A multinomial opinion thus contains (2k+ 1) parameters. However, given Eq.(4)
and Eq.(5), multinomial opinions only have (2k− 1) degrees of freedom.

In general, the triangle and tetrahedron belong to the simplex family of geometrical
shapes. Multinomial opinions on frames of cardinality k can in general be represented
as a point in a simplex of dimension (k+1). The probability projection of multinomial
opinions is expressed by Eq.(9) below:

"EX(xi) ="bX(xi) + "aX(xi) uX , ∀ xi ∈ X . (9)

The probability projection of multinomial opinions expressed by Eq.(9) is a gener-
alisation of the probability projection of binomial opinions expressed by Eq.(8).

4.3 Hyper Opinions

An opinion on a frame X of cardinality k > 2 where any element x ∈ R(X) can be a
focal element is called a hyper opinion. The special characteristic if this opinion class
is thus that possible focal elements x ∈ R(X) can be overlapping subsets of the frame
X . The frame X itself can have uncertainty mass assigned to it, but is not considered as
a focal element. Definition 5 below not only defines hyper opinions, but also represents
a general definition of subjective of opinions. In case uX ,= 0 it is called a UH opinion
(uncertain hyper opinion), and in case uX = 0 it is called a DH opinion (dogmatic hyper
opinion).
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Definition 5. Hyper Opinion
Assume X be to a frame where R(X) denotes its reduced powerset. Let "bX be a belief
vector over the elements of R(X), let uX be the complementary uncertainty mass, and
let "a be a base rate vector over the frame X, all seen from the viewpoint of the opinion
owner A. The composite function ω A

X = ("bX ,uX ,"aX ) is then A’s hyper opinion over X.

The belief vector"bX has (2k− 2) parameters, whereas the base rate vector "aX only
has k parameters. The uncertainty parameter uX is a simple scalar. A hyper opinion thus
contains (2k + k− 1) parameters. However, given Eq.(4) and Eq.(5), hyper opinions
only have (2k+ k− 3) degrees of freedom.

Hyper opinions represent the most general class of opinions. It is challenging to de-
sign meaningful visualisations of hyper opinions because belief masses are distributed
over the reduced powerset with partly overlapping elements. It can be seen that for a
frame X of cardinality k = 2 a multinomial and a hyper opinion both have 3 degrees of
freedom which is the same as for binomial opinions. Thus both multinomial and hyper
opinions collapse to binomial opinions in case of binary frames.

The integration of the base rates in opinions allows the probability projection to
be independent from the internal structure of the frame. The probability expectation of
hyper opinions is a vector expressed as a function of the belief vector, the uncertainty
mass and the base rate vector.

Definition 6 (Probability Projection of Hyper Opinions).
Assume X to be a frame of cardinality k where R(X) is its reduced powerset of cardi-
nality κ = (2k− 2). Let ωX = ("bX , uX , "aX) be a hyper opinion on X. The probability
projection of hyper opinions is defined by the vector "EX from R(X) to [0,1]κ expressed
as:

"EX(xi) = ∑
x j∈R(X)

"aX(xi/x j)"bX(x j) + "aX(xi) uX , ∀ xi ∈ R(X) . (10)

5 The Belief Constraint Operator

The belief constraint operator described here is an extension of Dempster’s rule which
in Dempster-Shafer belief theory is often presented as a method for fusing evidence
from different sources [11]. Many authors have however demonstrated that Dempster’s
rule is not an appropriate operator for evidence fusion [12], and that it is better suited
as a method for combining constraints [8], which is also our view.

Assume two opinions ωA
X and ωB

Y over the frame X . The superscripts A and B are
attributes that identify the respective belief sources or belief owners. These two opin-
ions can be mathematically merged using the belief constraint operator denoted as ”-”
which in formulas is written as: ωA&B

X = ωA
X -ωB

X . Belief source combination denoted
with ”&” thus represents opinion combination with ”-”. The algebraic expression of
the belief constraint operator for subjective opinions is defined next.
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Definition 7 (Belief Constraint Operator).

ωA&B
X = ωA

X -ωB
X =






"bA&B(xi) = Har(xi)
(1−Con) , ∀ xi ∈ R(X), xi ,= /0

uA&BX =
uAXu

B
X

(1−Con)

"aA&B(xi) =
"aA(xi)(1−uAX )+"aB(xi)(1−uBX )

2−uAX−uBX
, ∀ xi ∈ X , xi ,= /0

(11)

The term Har(xi) represents the degree of Harmony, or in other words overlapping
belief mass, on xi. The term Con represents the degree of belief Conflict, or in other
words non-overlapping belief mass, between ω A

X and ωB
X . These are defined below:

Har(xi) ="bA(xi)uBX +"bB(xi)uAX +∑y∩z=xi
"bA(y)"bB(z), ∀ xi ∈ R(X) .

Con = ∑y∩z= /0"bA(y)"bB(z) .
(12)

The purpose of the divisor (1−Con) in Eq.(11) is to normalise the derived belief
mass, or in other words to ensure belief mass and uncertainty mass additivity. The use
of the belief constraint operator is mathematically possible only if ω A and ωB are not
totally conflicting, i.e., if Con ,= 1.

The belief constraint operator is commutative and non-idempotent. Associativity is
preserved when the base rate is equal for all agents. Associativity in case of different
base rates requires that all preference opinions be combined in a single operation which
would require a generalisation of Def.7 for multiple agents, i.e. for multiple input argu-
ments, which is relatively trivial. A totally indifferent opinion acts as the neutral element
for belief constraint, formally expressed as:

IF (ωA
X is totally indifferent, i.e. with uAX = 1) THEN (ωA

X -ωB
X = ωB

X ) . (13)

Having a neutral element in the form of the totally indifferent opinion is very useful
when modelling situations of preference combination.

6 Examples

6.1 Expressing Preferences with Subjective Opinions

Preferences can be expressed e.g. as soft or hard constraints, qualitative or quantitative,
ordered or partially ordered etc. It is possible to specify a mapping between qualitative
verbal tags and subjective opinions which enables easy solicitation of preferences [9].
Table 3 describes examples of how preferences can be expressed.

All the preference types of Table 3 can be interpreted in terms of subjective opin-
ions, and further combined by considering them as constraints expressed by different
agents. The examples that comprise two binary frames could also have been modelled
with a quaternary product frame with a corresponding 4-nomial product opinion. In fact
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Example & Type Opinion Expression
”Ingredient x is mandatory” Binary frame X = {x,x}
Hard positive Binomial opinion ωx : (1,0,0, 12 )
”Ingredient x is totally out of the question” Binary frame X = {x,x}
Hard negative Binomial opinion ωx : (0, 1, 0, 12 )
”My preference rating for x is 3 out of 10 Binary frame X = {x,x}
Quantitative Binomial opinion ωx : (0.3, 0.7, 0.0, 12 )
”I prefer x or y, but z is also acceptable” Ternary frame Θ = {x,y,z}
Qualitative Trinomial opinion ωΘ : (b(x,y) = 0.6, b(z) = 0.3,

u= 0.1, a(x,y,z) = 1
3 )

”I like x, but I like y even more” Two binary frames X = {x,x} and Y = {y,y}
Positive rank Binomial opinions ωx : (0.6, 0.3, 0.1, 12 ),

ωy : (0.7, 0.2, 0.1, 12 )
”I don’t like x, and I dislike y even more” Two binary frames X = {x,x} and Y = {y,y}
Negative rank Binomial opinions ωx : (0.3, 0.6, 0.1, 12 ),

ωy : (0.2, 0.7, 0.1, 12 )
”I’m indifferent about x, y and z” Ternary frame Θ = {x,y,z}
Neutral Trinomial opinion ωΘ : (uΘ = 1.0, a(x,y,z) = 1

3 )
”I’m indifferent but most people prefer x” Ternary frame Θ = {x,y,z}
Neutral with bias Trinomial opinion ωΘ : (uΘ = 1.0, a(x) = 0.6,

a(y) = 0.2,a(z) = 0.2)

Table 3. Example preferences and corresponding subjective opinions

product opinions over product frames could be a method of simultaneously considering
preferences over multiple variables, and this will be the topic of future research.

Default base rates are specified in all but the last example which indicates total
indifference but with a bias which expresses the average preference in the population.
Base rates are useful in many situations, such as for default reasoning. Base rates only
have an influence in case of significant indifference or uncertainty.

6.2 Going to the Cinema, 1st Attempt

Assume three friends, Alice, Bob and Clark, who want to see a film together at the
cinema one evening, and that the only films showing are Black Dust (BD), Grey Matter
(GM) andWhite Powder (WP), represented as the ternary frameΘ = {BD, GM, WP}.
Assume that the friends express their preferences in the form of the opinions of Table 4.

Alice and Bob have strong and conflicting preferences. Clark, who only does not
want to watch Black Dust, and who is indifferent about the two other films, is not sure
whether he wants to come along, so Table 4 shows the results of applying the preference
combination operator, first without him, and then including in the party.

By applying the belief constraint operator Alice and Bob conclude that the only film
they are both interested in seeing is Grey Matter. Including Clark in the party does not
change that result because he is indifferent to Grey Matter and White Powder anyway,
he just does not want to watch the film Black Dust.
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Preferences of: Results of preference combinations:
Alice Bob Clark (Alice & Bob) (Alice & Bob & Clark)
ωA

Θ ωB
Θ ωC

Θ ωA&B
Θ ωA&B&C

Θ
b(BD) = 0.99 0.00 0.00 0.00 0.00
b(GM) = 0.01 0.01 0.00 1.00 1.00
b(WP) = 0.00 0.99 0.00 0.00 0.00
b(GM∪WP) = 0.00 0.00 1.00 0.00 0.00

Table 4. Combination of film preferences

The belief mass values of Alice and Bob in the above example are in fact equal
to those of Zadeh’s example [12] which was used to demonstrate the unsuitability of
Dempster’s rule for fusing beliefs because it produces counterintuitive results. Zadeh’s
example describes a medical case where two medical doctors express their opinions
about possible diagnoses, which typically should have been modelled with the aver-
aging fusion operator [6], not with Dempster’s rule. In order to select the appropriate
operator it is crucial to fully understand the nature of the situation to be modelled. The
failure to understand that Dempster’s rule does not represent an operator for cumulative
or averaging belief fusion, combined with the unavailability of the general cumulative
and averaging belief fusion operators for many years (1976[11]-2010[6]), has often led
to inappropriate applications of Dempster’s rule to cases of belief fusion [8]. However,
when specifying the same numerical values as in [12] in a case of preference com-
bination such as the example above, the belief constraint operator which is a simple
extension of Dempster’s rule is very suitable and produces perfectly intuitive results.

6.3 Going to the Cinema, 2nd Attempt

In this example Alice and Bob soften their strong preference by expressing some indif-
ference in the form of u= 0.01, as specified by Table 5. Clark has the same opinion as
in the previous example, and is still not sure whether he wants to come along, so Table 5
shows the results without and with his preference included.

Preferences of: Results of preference combinations:
Alice Bob Clark (Alice & Bob) (Alice & Bob & Clark)
ωA

Θ ωB
Θ ωC

Θ ωA&B
Θ ωA&B&C

Θ
b(BD) = 0.98 0.00 0.00 0.490 0.000
b(GM) = 0.01 0.01 0.00 0.015 0.029
b(WP) = 0.00 0.98 0.00 0.490 0.961
b(GM∪WP) = 0.00 0.00 1.00 0.000 0.010
u = 0.01 0.01 0.00 0.005 0.000
a(BD) = 0.6 0.6 0.6 0.6 0.6
a(GM) = a(WP) = 0.2 0.2 0.2 0.2 0.2

Table 5. Combination of film preferences with some indifference and with non-default base rates
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The effect of adding some indifference is that Alice and Bob should pick film Black
Dust or White Powder because in both cases one of them actually prefers one of the
films, and the other finds it acceptable. Neither Alice nor Bob prefersGray Matter, they
only find it acceptable, so it turns out not to be a good choice for any of them. When
taking into consideration that the base rate a(BD) = 0.6 and the base rate a(WP) = 0.2,
the preference expectation values according to Eq.(10) are such that:

EA&B(BD)> EA&B(WP) . (14)

More precisely, the preference expectation values according to Eq.(10) are:

EA&B(BD) = 0.493 , EA&B(WP) = 0.491 . (15)

Because of the higher base rate, Black Dust also has a higher expected preference
thanWhite Powder, so the rational choice would be to watch Black Dust.

However, when including Clark who does not want to watch Black Dust, the base
rates no longer dictates the result. In this case Eq.(10) produces EA&B&C(WP) = 0.966
so the obvious choice is to watchWhite Powder.

6.4 Not Going to the Cinema

Assume now that the Alice and Bob express totally conflicting preferences as specified
in Table 6, i.e. Alice expresses a hard preference for Black Dust and Bob expresses a
hard preference for White Powder. Clark still has the same preference as before, i.e he
does not want to watch Black Dust and is indifferent about the two other films.

Preferences of: Results of preference combinations:
Alice Bob Clark (Alice & Bob) (Alice & Bob & Clark)
ωA

Θ ωB
Θ ωC

Θ ωA&B
Θ ωA&B&C

Θ
b(BD) = 1.00 0.00 0.00 Undefined Undefined
b(GM) = 0.00 0.00 0.00 Undefined Undefined
b(WP) = 0.00 1.00 0.00 Undefined Undefined
b(GM∪WP) = 0.00 0.00 1.00 Undefined Undefined

Table 6. Combination of film preferences with hard and conflicting preferences

In this case the belief constraint operator can not be applied because Eq.(11) pro-
duces a division by zero. The conclusion is that the friends will not go to the cinema to
see a film together. The test for detecting this situation is when Con = 1 in Eq.(12). It
makes no difference to include Clark in the party because a conflict can not be resolved
by including additional preferences. However it would have been possible for Bob and
Clark to watchWhite Powder together without Alice.
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7 Conclusion

The flexibility of subjective logic makes it simple to express positive and negative
preferences within the same framework, as well as indifference/uncertainty. This pa-
per describes how subjective logic can be used to express preferences over a variable
represented as the possible states in a frame, and how the belief constraint operator,
which is an extension of Dempster’s rule, can be applied for combining preferences of
multiple agents in order to determine the most preferred choice for the whole group.
Because preference can be expressed over arbitrary subsets of the frame this is in fact
a multi-polar model for expressing and combining preferences. Even in the case of no
overlapping focal elements the belief constraint operator provides a meaningful answer,
namely that the preferences are incompatible.

Multi-agent preference combination with subjective logic assumes that individual
preferences have been predefined. Future research will focus on applying subjective
logic for determining subjective preferences of each agent e.g. in situations with multi-
ple criteria, and on combining preferences frommultiple agents over different variables
in the form of different frames.
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Abstract. Several combinatorial problems can be formulated as Valued
Constraint Satisfaction Problems (VCSPs) where constraints are defined
through the use of valuation functions to reflect degrees of coherence.
Despite the NP-hardness of solving VCSPs in general, tractable versions
can be obtained by forcing the allowable valuation functions to have
specific features. This is the case, for instance, of VCSPs with submodular
valuation functions [16].
In this paper, we are concerned with a problem that generalizes sub-
modular binary VCSP, called permuted submodular binary VCSP. The
latter problem is obtained by independently applying permutations on
the domains of submodular binary VCSP. We show that instances in
the permuted binary VCSP class can be identified and solved in polyno-
mial time provided that the employed value domain is bounded and the
valuation functions are prime.

1 Introduction

Constraint Satisfaction Problems (CSPs) provide a general and convenient frame-
work to model and solve numerous combinatorial problems including planning
and scheduling. In the standard CSP framework, the constraints are defined by
crisp relations, which specify the consistent combinations of values. However, in
real-world situations, one may need to express various degrees of consistency in
order to reflect the specificity of the problem at hand. The valued constraint sat-
isfaction problems (VCSPs) approach [18] is intended to model such situations.
Basically, a VCSP consists of a set of variables taking values in discrete sets
called domains. A valued constraint is defined through the use of a valuation
function, which associates a degree of desirability to each combination of values.
The problem is to find an assignment of values to variables from their respective
domains with a finite and optimal global valuation. Finding such an assignment
or proving that none exists is known to be an NP-hard task [3].

The computational complexity of finding the optimal solution to a VCSP has
been studied in many works and several classes of tractable VCSPs have been
identified and solved [4, 11, 3]. Recall that a problem is said to be tractable if
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and only if there exists a polynomial-time algorithm that solves it. Binary VCSP
with submodular binary valuation functions is one of these tractable class. By
expressing VCSP instances with submodular binary functions as the problem of
finding a minimum weighted cut of a weighted directed graph, it is possible to
solve them only in O(n3d3) steps, where n is the number of variables and d is
the size of the largest value domain [2].

Nonetheless, VCSPs resulting from modeling real situations are rarely limited
to submodular functions. In such cases, can we proceed in a more e�cient manner
than an exhaustive search while keeping solution optimality? Is there any mean
to exploit submodularity in a less restrictive context? This paper is intended
to contribute to providing positive answers to these questions. More precisely,
we are concerned with a problem generalizing submodular binary VCSP, called
permuted submodular binary VCSP. The latter problem is obtained by indepen-
dently applying permutations on the value domains of submodular binary VCSP.

In [17], the author proposed a polynomial-time algorithm for identifying per-
muted submodular binary VCSPs which works only with finite valuations and
assumes that the operator employed to aggregate local valuations into a global
one is strictly monotonic. Our aim is to avoid these two limitations, because
infinite valuations is the more natural mean to express unsatisfiability and this
latter notion is essential in modeling real-world problems. Furthermore, the val-
uations needed to encode certain problems are bounded by a constant, which
imposes a non strictly monotonic aggregation operator. This occurs, for instance,
when modeling fuzzy or probabilistic systems.

Our approach is inspired by the one proposed in [9], which consists in trans-
forming a crisp CSP instances into instances in the max-closed tractable CSP
class [10]. If the identification of the transformable instances and the trans-
formation process are tractable then the overall solution process for the per-
muted max-closed CSP is tractable. In our case, the target tractable VCSP is
the submodular binary VCSP. The transformation process consists in perform-
ing permutations on the value domains of the instances to be solved, so that
the resulting instances fall into the submodular binary VCSP class. The trans-
formed instances are polynomially solved by dedicated algorithms [2, 16], and
then a solution to the original instances can be deduced by applying the reverse
permutations to the obtained solution. Of course, only instances in the permuted
submodular binary VCSP class could be transformed in this way.

In this paper, we show that instances in the permuted submodular binary
VCSPs class can be polynomially identified and transformed into instances in
the submodular binary VCSPs class provided that the involved value domain is
bounded and the valuation functions are prime. In compensation, the proposed
approach does not impose restrictive conditions on the valuations used or on the
way these valuations are aggregated.

The paper is organized as follows: the next section introduces some definitions
and notations. Section 3, is devoted to specifying the particular VCSPs we are
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concerned with. In Section 4, we describe how the domain permutation theory
proposed in [9] is extended in order to e�ciently solve the VCSPs specified in
Section 3. Some related works are discussed in Section 5. We conclude in Section
6.

2 Definitions and notations

In the valued CSP framework (VCSP) [18], the set of possible valuations E
is assumed to be a totally ordered set with a minimum (?) and a maximum
(>) element, equipped with a single monotonic binary operation � known as
aggregation. These assumptions can be gathered in a valuation structure that
can be specified as follows:

Definition 1. A valuation structure is defined as a tuple S = (E,�,�) such

that:

– E is a set of valuations;

– � is a total order on E;

– � is a binary commutative, associative and monotonic operator.

An aggregation operator � is said to be strictly monotonic if for all ↵,�, � in E
such that ↵ � � and � 6= >, we have ↵� � � � � �.

Contrary to many widely used valuation structures, the valuation structure
employed in this paper does not suppose a strictly monotonic aggregation op-
erator. This is a crucial advantage, because this makes the proposed approach
e↵ective in dealing with many specific VCSP like Weighted CSP (WCSP) and
Fuzzy CSP (FCSP).

Once the valuation structure is specified, we define the valued constraint
satisfaction problem (VCSP) we are concerned with as follows:

Definition 2. A valued constraint satisfaction problem (VCSP) instance is de-

fined by a tuple (X,D,C, S) such that:

– X is a finite set of variables;

– D is a finite set called the domain of the instance;

– S = (E,�,�) is a valuation structure which matches Definition 1.

– C is a set of valued constraints. Each valued constraint c is an ordered pair

(�,�) where � ✓ X is the scope of c and � is a function from D|�|
to E.

The arity of a valued constraint is the size of its scope. The arity of a problem
is the maximum arity over all its constraints. In this work, we are mainly con-
cerned with binary VCSPs, that is, VCSPs with unary and binary constraints
only. Furthermore, the scopes of binary constraints are assumed to be ordered
tuples. Hence, the constraint c = (hxi, xji , �) di↵ers from cT = (hxj , xii , �T ),
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where �T , the transpose3 of �, is such that �T (u, v) = �(v, u), for all u, v 2 D.
Of course, if c or cT is in C then both of them is in C.

The valuation of an assignment t to a subset of variables V ✓ X is obtained
by

�P (t) =
X

(�,�)2~C,�✓V

�(t # �) (1)

where t # � denotes the projection of t on the variables of � and ~C is the sub-
set {(hxi, xji , �) 2 C | i < j}. Hence, an overall optimal solution for a VCSP
instance P on n variables is an n-tuple t such that �P (t) is finite and minimal
over all possible n-tuples.

In this paper, we are also led to cope with (crisp) constraint satisfaction prob-
lem (CSP), which is a VCSP with a valuation set E limited to {0,1}. In this
special case and since only solutions with finite costs are relevant, we can replace
every valuation function with a relation that exactly contains those tuples that
have zero cost. The valuation structure S is, thereby, not necessary any more.
Consequently, a CSP can be defined by a triple (X,D,C), where every (crisp)
constraint is defined by a scope and a relation specifying the tuples of values
allowed by the constraint.

Since only one valuation set (E) is used throughout the paper, we will simply
write FD to designate the set of all functions from D2 to E.

The valuation functions employed in defining the VCSPs considered in this
paper are elements of FD. These elements can be limited to specific subsets of
FD in order to obtain tractable VCSPs. Restricting the functions employed in
defining a VCSP is captured in the notion language. Hence, a valued binary con-
straint language over domain D is any subset of FD. For any valued constraint
language GD ✓ FD, we will refer to the set of all VCSP instances with valuation
functions in GD by VCSP(GD).

We also use the bijective binary CSP, a tractable binary CSP class which can
be defined as follows. Let R be a binary relation.

– R is said to be functional on its first argument if and only if whenever hu, vi
and hu0, vi are in R, we have u = u0.

– R is said to be functional on its second argument if and only if whenever
hu, vi and hu, v0i are in R, we have v = v0.

– R is bijective if and only if it is functional on both of its arguments.

3 We use the term transpose because, when binary functions are stored in matrices,
the matrix associated to �T is the transpose of the matrix associated to �.
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Denote by funct1V (resp. funct2V ) the (crisp) constraint language of all
binary relations over domain V that are functional on their first (resp. second)
argument and by bijectV the valued constraint language of all bijective binary
relations over domain V . Hence, CSP(bijectV ) will refer to the set of all binary
CSP instances with relation in bijectV .

3 Modularity related VCSPs

To specify the VCSPs we are concerned with, we need to introduce the following
two predicates. Let � be any function of FD, we associate to � the quaternary
predicates mod� and submod� that are defined as follows

mod�(u, u0, v, v0) def, �(u, u0)� �(v, v0) = �(u, v0)� �(v, u0)

submod�(u, u0, v, v0) def, �(u, u0)� �(v, v0) � �(u, v0)� �(v, u0)

where u, v, u0, v0 are any elements of D.

Definition 3. A binary function � 2 FD is submodular if and only if

submod�(u, u0, v, v0) holds for all u, v, u0, v0 2 D such that u < v and u0 < v0.

Example 1. For any m 2 IN⇤ [ {+1} and any integer � � �2, consider the
valuation structure Sm,� = (E,�,) where the valuation set is

E = {0, . . . , (2 + �̄)(m� 1)2}

where �̄ = max(0, �) and the aggregation operator � is defined by

↵� � = min(↵ + �, (2 + �̄)(m� 1)2)

The � operator is not always strictly monotonic since, if m � 3, then

(2 + �̄)(m� 2)2 < (2 + �̄)(m� 1)2

and

(2 + �̄)(2m� 3) < (2 + �̄)(m� 1)2

but

(2 + �̄)(m� 2)2 � (2 + �̄)(2m� 3) = (2 + �̄)(m� 1)2 � (2 + �̄)(2m� 3)

Consider the family of binary functions f� defined on the domain D =
{0, . . . ,m� 1} by

f�(u, v) = u2 + v2 + �uv
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We show that f� is submodular if and only if �  0.

Let u, v, u0, v0 2 D such that u < v, u0 < v0. By observing that �uu0+�vv0 
�uv0 + �vu0 for all �  0, we obtain

f�(u, u0)� f�(v, v0) = (u2 + u02 + �uu0)� (v2 + v02 + �vv0)
= min(u2 + u02 + �uu0 + v2 + v02 + �vv0, (2 + �̄)(m� 1)2)
 min(u2 + u02 + �uv0 + v2 + v02 + �vu0, (2 + �̄)(m� 1)2)
 f�(u, v0)� f�(v, u0)

On the other hand, if � > 0 then we have ¬mod��(0, 0, 1, 1), since

f�(0, 0)� f�(1, 1) = 2 + � > 2 = f�(0, 1)� f�(1, 0)

Hence, if � > 0 then f� is not submodular. ut

Submodular functions of any arity are widely studied because they are in-
volved in many tractable discrete optimization problems [14, 15, 19, 20, 22].

Denote by submodD the language of all submodular functions of FD. Hence,
VCSP(submodD) will designate the class of VCSPs with valuation functions
in submodD. This VCSP class will be called the class of submodular VCSP
instances.

Definition 4. Let � be in FD. Two values u, v 2 D are said to be modular with

regard to (w.r.t) � if and only if mod�(u, u0, v, v0) holds for all u0, v0 2 D.

Example 2. Consider the family of binary function f� defined in Example 1. All
the values of D are pairwise modular w.r.t f0 since, for all u, v, u0, v0 2 D, we
have

f0(u, u0)� f0(v, v0) = (u2 + u02)� (v2 + v02)
= min(u2 + u02 + v2 + v02, (2 + �̄)(m� 1)2)
= (u2 + v02)� (v2 + u02)
= f0(u, v0)� f0(v, u0)

ut

Definition 5. Let � be in FD. � is said to be prime if and only if there is no

modular values in D w.r.t. �.

Example 3. Consider again the family of binary function f� defined in Example
1. Then f� is prime for all m � 2 and � 6= 0. Indeed, we have ¬modf�(u, 0, v, 1)
for all u, v 2 D, u < v, since
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f�(u, 0)� f�(v, 1) = u2 � (v2 + 1 + �v)
= u2 + v2 + 1 + �v

6= u2 + v2 + 1 + �u

6= (u2 + 1 + �u)� v2

6= f�(u, 1)� f�(v, 0)

The latter equalities and inequalities hold because u2+v2+1+�v  (2+ �̄)(m�
1)2 and u2 + v2 + 1 + �u  (2 + �̄)(m� 1)2. ut

Denote by primeD the language of all prime functions of FD. VCSP(primeD)
will designate the class of VCSPs with valuation functions in primeD. This
VCSP class will be called the class of prime VCSP instances.

4 Domain permutation for VCSP

The VCSP(submodD) class highlighted in the previous section is essential to
our present work because it is known to be tractable [2]. In other respects, in [9],
the authors proposed a theory relying on domain permutations whose aim is to
transform (crisp) CSP instances into CSP instances over a tractable constraint
language, namely the max-closed constraint language [10].

In this section, we study the problem of discovering domain permutations
that transform binary VCSP instances into instances in the VCSP(submodD)
class. We call the set of all binary VCSP instances for which such a transfor-
mation exists permuted submodular binary VCSP. The tool that will be used to
discover the required permutations is the domain permutation reduction theory
[9], which is adapted and extended to cope with valued constraints.

4.1 Definitions

We begin by presenting the definitions needed for applying the domain permu-
tation reduction theory to the VCSP framework.

Denote by ⇧D the set of all permutations of D. Let h⇡, ⇡0i be an ordered
pair of permutations of D, that is, h⇡, ⇡0i 2 ⇧2

D and let (v, v0) be an ordered
pair of D2. Applying h⇡, ⇡0i to (v, v0) results in the ordered pair h⇡, ⇡0i (v, v0) =
(⇡(v), ⇡0(v0)) and applying h⇡, ⇡0i to a binary function � 2 FD, yields the binary
function h⇡, ⇡0i� defined by

h⇡, ⇡0i�(v, v0) = �(⇡�1(v), ⇡0�1(v0)), for all (v, v0) 2 D2 (2)

Definition 6. Let P = (X, D,C, S) be a VCSP instance. A domain permuta-
tion for P is a mapping ⇧ assigning to each variable x 2 X a permutation from

⇧D.
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– For any scope � = hxi, xji, we define ⇧(�) = h⇧(xi), ⇧(xj)i 2 ⇧2
D.

– For any valued constraint (�,�) 2 C, we define ⇧(�,�) = (�,⇧(�)�), where

⇧(�)� is defined by (2).

– The permuted constraint set is given by ⇧(C) = {⇧(�,�) | (�, ⇢) 2 C}.
– The permuted instance is defined by ⇧(P ) = (X,D, ⇧(C), S)

Let P be a VCSP instance. If there exists a domain permutation ⇧ for
P such that ⇧(P ) is in VCSP(submodD) then we say that P is reductible to
submodD. Our aim is to determine whether a given VCSP instance is deductible
to submodD. This problem is called the reduction problem into submodD and
resolving it e�ciently is the key to extending the VCSP(submodD) tractable
class. To express this problem in the constraint satisfaction framework, we need
to adapt the notion of a lifted relation, (see Definition 20 of [9]), in order to
handle valued constraints.

Definition 7. We define the relation lifting any function � 2 FD into submodD,

⇢(�, submodD), to be the following binary relation over ⇧D:

⇢(�, submodD) = {h⇡, ⇡0i 2 ⇧2
D | h⇡, ⇡0i� 2 submodD}

Example 4. Consider again the family of binary functions f� defined in Exam-
ple 1. We focus on the prime functions, then we assume that � 6= 0. Furthermore,
for the simplicity of the example, we take m = 2, then D = {0, 1}. There is two
permutations on D: the identity permutation: ◆ = (0, 1), and the reverse permu-
tation: ⌧ = (1, 0).

We saw that the f�’s are prime and submodular if and only if � < 0. If
we apply the reverse permutation to the domains of both variables of a prime
and submodular function, we get a prime and submodular function. Conversely,
if we apply the reverse permutation to exactly one of the domains of a prime
and submodular function, we loose submodularity. Then the relation lifting the
function f�, � < 0 in submodD, ⇢(f�<0, submodD), is

⇢� = {h◆, ◆i , h⌧, ⌧i}

On the other hand, the functions f�, � > 0 are called supermodular. They are
closely related to submodular functions since they verify the inequality obtained
by inverting the comparison operator in the definition of the submodularity
predicate. It is easy to transform a supermodular binary function on D = {0, 1}
into submodular one by means of permutations. It su�ces to apply the identity
permutation to the domain of one of the variables and apply the reverse permu-
tation to the domain of the other variable. Then, the relation lifting the function
f�, � > 0 in submodD, ⇢(f� > 0, submodD), is

⇢+ = {h◆, ⌧i , h⌧, ◆i}

ut
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4.2 Reducing prime VCSPs

Our aim is to show that the reduction problem into submodD is tractable if the
considered VCSP instance is defined on a bounded value domain and valuation
function in the primeD valued constraint language.

Definition 8. The lifted (crisp) constraint language of primeD into submodD

is L(primeD, submodD) = {⇢(�, submodD) | � 2 primeD}.

Definition 9. Let P = (X, D,C, S) be a VCSP instance. We define the lifted

instance for P into submodD, L(P, submodD), to be the (crisp) CSP instance

(X,⇧D, {(�, ⇢(�, submodD)) | (�,�) 2 C}).

Example 5. Consider the binary VCSP instance P = (X,D,C, S), on the vari-
ables X = {x1, x2, x3, x4}, with the value domain D = {0, 1}, the valuation
structure used is the one described in Example 1, except that we fix m to 2.
All the possible binary constraints are present in the instance (see Fig. 1-Left).
Their valuation functions are defined as follows:

�i,j =
⇢

f�1 if i and j have the same parity
f1 otherwise

where f1 and f�1 are define as in Example 1. It follows that c1,3 and c2,4 are
submodular while c1,2, c2,3, c3,4 and c1,4 are supermodular4.

The lifted instance for P into submodD is, therefore, a crisp CSP on four
variables with value domain ⇧D = {◆, ⌧}. It contains all the possible binary
constraints on four variables (see Fig 1-Right) and, in accordance with Example
4, the relations constraining the di↵erent pairs of variables are defined as follows

⇢i,j =
⇢

⇢� if i and j have the same parity
⇢+ otherwise

Note that the resulting CSP instance is consistent since the assignment (◆, ⌧, ◆, ⌧)
satisfies all the constraints. This means that the initial VCSP instance is re-
ductible to submodD. ut

Lemma 1. L(primeD, submodD) ✓ Funct1⇧D .

Proof. We have to prove that every relation in L(primeD, submodD) is func-
tional on its first argument. To this end, we assume that there exists ⇢ in
L(primeD, submodD) such that ⇢ is not functional on its first argument and
proceed to get a contradiction. If ⇢ is not functional on its first argument then
there must exist h⇡1, ⇡i , h⇡2, ⇡i 2 ⇢ such that ⇡1 6= ⇡2. This implies that there
exists u, v 2 D,u < v such that
4 In fact, the ci,j ’s such that i > j are also present in the VCSP.
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Fig. 1. The constraint graph of the four-variables VCSP instance given in Example 5
(Left) and the constraint graph of its lifted CSP instance (Right).

(⇡1(u) < ⇡1(v) ^ ⇡2(u) > ⇡2(v)) _ (⇡1(u) > ⇡1(v) ^ ⇡2(u) < ⇡2(v))

Assume, without loss of generality, that the left-hand side of the disjunction
holds. On the other hand, ⇢ 2 L(primeD, submodD) implies that there exists
� 2 primeD such that ⇢ = ⇢(�, submodD). Furthermore, since � 2 primeD,
there must exist u0 < v0 such that ¬mod�(u, u0, v, v0), otherwise, u and v would
be modular and therefore � would not be prime. Here, we distinguish two cases:

– ⇡(u0) < ⇡(v0): let �1 = h⇡1, ⇡i�. Since h⇡1, ⇡i 2 ⇢, we must have �1 2
submodD, and then submod�1(⇡1(u), ⇡(u0), ⇡1(v), ⇡(v0)) must be true. By
(2), we obtain submod�(u, u0, v, v0). Similarly, let �2 = h⇡2, ⇡i�. Since h⇡2, ⇡i 2
⇢, we must have �2 2 submodD, and then submod�2(⇡2(v), ⇡(u0), ⇡2(u), ⇡(v0)).
By (2), we obtain submod�(v, u0, u, v0). But submod�(u, u0, v, v0) and
submod�(v, u0, u, v0) yield mod�(u, u0, v, v0), thus a contradiction.

– ⇡(u0) > ⇡(v0): we can proceed in the same manner as in the first case to
deduce the same contradiction.

Hence, every relation in L(primeD, submodD) is functional on its first argument.
ut

Lemma 1 is the first stage for proving that the lifted instance into submodD

of a VCSP(primeD) instance is built from a particular constraint language,
namely, the biject⇧D constraint language. To derive this result, we need to
establish the following two identities.

Lemma 2. Let � 2 FD and let ⇡, ⇡0 2 ⇧D, then (h⇡, ⇡0i�)T = h⇡0, ⇡i�T
.
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Proof. For all u, v 2 D, we have 5

(h⇡, ⇡0i�)T (u, v) = h⇡, ⇡0i�(v, u)

= �(⇡�1(v), ⇡
0�1(u))

= �T (⇡
0�1(u), ⇡�1(v))

= h⇡0, ⇡i�T (u, v)

ut

Lemma 3. For all � 2 FD, we have ⇢(�, submodD) = ⇢(�T , submodD)T
.

Proof. Exploiting the fact that the transpose of a submodular binary function
is also submodular and using the identity given in Lemma 2, we obtain

⇢(�, submodD) = {h⇡, ⇡0i 2 ⇧2
D | h⇡, ⇡0i� 2 submodD}

= {h⇡, ⇡0i 2 ⇧2
D | (h⇡, ⇡0i�)T 2 submodD}

= {h⇡, ⇡0i 2 ⇧2
D | h⇡0, ⇡i�T 2 submodD}

= {h⇡0, ⇡i 2 ⇧2
D | h⇡0, ⇡i�T 2 submodD}T

= ⇢(�T , submodD)T

ut

Theorem 1. If P 2 VCSP(primeD) then L(P, submodD) 2 CSP(biject⇧D ).

Proof. Let P = (X,D, C, S) be in VCSP(primeD). We have to prove that every
constraint ⇢(�, submodD) of L(P, submodD) is in biject⇧D .

Let (�,�) 2 C. Since P is in VCSP(primeD), � must be in primeD. By
Lemma 1, this guarantees that ⇢(�, submodD) is in funct1⇧D . On the other
hand, (�,�) 2 C implies (�T , �T ) 2 C, where �T is � in the reverse order. It
follows that �T is also in primeD. Again by Lemma 1, this guarantees that
⇢(�T , submodD) 2 funct1⇧D , and then ⇢(�T , submodD)T 2 funct2⇧D . Ac-
cording to Lemma 3, we obtain ⇢(�, submodD) 2 funct2⇧D , and since we have
already proved that ⇢(�, submodD) 2 funct1⇧D , we get ⇢(�, submodD) 2
biject⇧D . Hence, the result. ut

In [21], the authors proposed a O(|X|2|D|) algorithm for solving bijective
binary CSP. Hence, the lifted CSP instance resulting from the reduction into
submodD of a VCSP(primeD) instance, can be solved in O(|X|2|⇧D|) steps.
Unfortunately, this time complexity is not polynomial on the size of the VCSP
instance to be reduced, because |⇧D| = |D|! is factorial, unless |D| is in O(1),
which implies that |D|! is also in O(1). Hence, assuming a bounded value do-
main, Theorem 1 suggests that the reduction problem into submodD is O(|X|2)
5 We assume that the transpose operation has more priority than applying permuta-

tions to functions.
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solvable for binary VCSP(primeD) instances.

Next, we show that it is tractable to determine whether a given binary VCSP
instance is prime or not. This can be done by checking whether there is any mod-
ular pair of value with regard to any valuation function used in the instance.
This can be achieved in O(|X|2) since the number of valued binary constraints
is in O(|X2|) and we assumed that |D| 2 O(1). Hence the identifiability problem
for the class of permuted submodular binary VCSP with a bounded domain and
prime valuation functions is tractable.

For the solution algorithm, we can use the one proposed in [2] which per-
forms in O(|X|3) on binary VCSP with a bounded domain. Finally, to retrieve
a solution to the initial VCSP instance, we need to compute the reverse of ev-
ery domain permutation obtained by solving the lifted CSP instance. This can
be done in O(|X|) steps. Hence, the overall solution process for permuted sub-
modular binary VCSP with a bounded domain and prime valuation functions is
tractable.

4.3 Domain permutation for VCSP decomposition

The approach described above may fail to find a set of domain permutations
that transforms a given binary VCSP instance into an instance whose valuation
functions are all submodular. This simply occurs when the instance at hand is
not in the permuted binary VCSP class. Nevertheless, the idea of domain pemu-
tation could be employed to derive a problem decomposition schema that can
be integrated into a solution algorithm in order to accelerate problem solving.
We have already presented such a decomposition schema [13], except that, in
the latter work, the target valued constraint language was that of modular bi-
nary functions. Intuitively, a decomposition schema based on the superclass of
submodular functions is more attractive.

In what follows, we briefly describe a decomposition schema whose main is
to decompose any binary VCSP instance into a set of subproblems that involve
submodular valuation functions only. This schema can be summarized is the
following two steps:

– As a first step, chose an arbitrary ordering 6 for the value domain considered
at the root of the search tree, keep this domain unchanged and move to the
other domains.

– At each non-root node of the search tree, reduce the current value domain
so that the remaining values can be ordered in such a way that renders ev-
ery valuation function connecting the current variable to a preceding one

6 In the present section, we rather use the more generic term ordering instead of
permutation.
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submodular. The ordering of the current domain is (in part) deduced from
those of the preceding domains, because the latter orderings may induce
the relative ordering of many value pairs in the current domain. Ideally, a
total ordering of the current value domain is induced. In that case, the cur-
rent domain is not reduced, i.e., it keeps all its values. But, due to domain
reductions and constraint propagations, it may occur that the induced or-
dering is only partial, even if all the valuation functions are initially prime.
In such a situation, the partial order should be (arbitrarily) completed into
a total one. Conversely, the orderings of the preceding domains may induce
incompatible orderings on some of the value pairs of the current domain. In
such a situation, the current domain must be reduced so that only one value
from each problematic pair is left in the domain. In the extreme case, the
current domain will be reduced to a single value to meet the submodularity
requirement.

The execution of these two steps produces, at each leaf of the search tree, a
submodular and then tractable subproblem that can be solved by the algorithm
proposed in [2].

We have already carried out many experiments with a solution algorithm
that integrates the decomposition schema described above to a standard solu-
tion algorithm for weighted CSPs: MAC-star [12]. We have also compared the
performances of the resulting solution algorithm to those of the standard MAC-
star and the version of MAC-star proposed in [13]. These experiments showed
that the version using the present decomposition schema is very competitive
with the two others7.

5 Related work

In [9], the authors proposed a theory whose aim is to extend the max-closed CSP
tractable class. Their approach consists in discovering permutations which, when
applied to every value domain, result in a max-closed CSP instance. If such per-
mutations exist, the permuted instance is solved in polynomial time and then a
solution to the original instance is deduced by simply inverting the permutations.
The primary advantage of the approach is that the search for domain permu-
tations is itself expressed as a CSP referred to as the lifted constraint instance.
In some cases, the latter CSP has the advantage of being tractable. This is the
case for bounded arity CSP with Boolean domain. Nonetheless, the authors have
proved that the reduction problem into the max-closed constraint language is
NP-complete even for binary CSPs with three-valued domains.

The idea of domain permutation was also used by E. Chen et al in view
of transforming binary CSPs into the connected row convex (CRC) tractable
7 We have not reported the details of the algorithm and the experimentation in the

present paper for lack of space.
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class [1]. But it appeared that their algorithm recognizes only a subset of the
binary CSP instances that can be transformed into the CRC class. In fact, it has
been proved that the permuted connected row convex identification problem is
intractable for domains of size four or more [9].

Some soft local consistency algorithms, like optimal soft arc consistency
(OSAC) [6] and virtual arc consistency (VAC) [7], can solve submodular VC-
SPs even on non-binary VCSPs. However, the aggregation operator employed
by these algorithms is assumed to be strictly monotonic and the permutations
that transforms the input VCSP instance into a submodular instance cannot be
obtained.

In [17] Schlesinger proposed a polynomial-time algorithm which identifies
permuted submodular binary VCSPs. Contrary to the soft local consistency al-
gorithms, the present one computes the permutations that make the instance
at hand submodular. This algorithm, however, works only on VCSPs with finite
valuations and uses a strictly monotonic aggregation operator: the arithmetic
sum.

6 Conclusion

In this work, we showed that permuted submodular binary VCSP, with possibly
infinite valuations and a non strictly increasing aggregation operator, can be
polynomially identified if we assume that the size the value domains are bounded
by a constant and that the valuation functions are prime. For VCSP instances
in this class, the proposed approach provides an explicit permutation for every
value domain.

References

1. Chen E., Zhang Z., Wang X., Aihara K. An algorithm for fast recognition of con-
nected row-convex constraint networks. In JFPLC 2001, The Tenth International

French Speaking Conference on Logic and Constraint Programming, 43–58, April
2001.

2. Cohen, D. A., Cooper, M. C., Jeavons, P. G., Krokhin, A. A.: A maximal tractable
class of soft constraint satisfaction. Journal of Artificial Intelligence Research 22
1–22, 2004.

3. Cohen, D. A., Cooper, M. C., Jeavons, P. G.: Generalizing submodularity and
horn clauses: Tractable optimization problems defined by tournament pair multi-
morphisms. Theoretical Computer Science 401, 36–51, 2008.

4. Creignou, N., Khanna, S., Sudan, M.: Complexity Classification of Boolean Con-
straint Satisfaction Problems. In SIAM Monographs on Discrete Mathematics and

Applications, 7 SIAM, 2001.
5. Cooper, M. C.: Arc consistency for soft constraints. Artificial Intelligence 154

199–227, 2004.

89 of 138



6. Cooper, M. C. Minimization of locally-defined submodular functions by Optimal
Soft Arc Consistency. Constraints 13 (4), 2008.

7. Cooper M. C., de Givry S., Sanchez M., Schiex T., Zytnicki M. Virtual arc con-
sistency for weighted csp. In Proceeding of AAAI-08 Chicago, IL, 2008a.

8. Cooper, M. C., de Givry S., Sanchez M., Schiex T., Zytnicki M., Werner T. Soft
arc consistency revisited. Artificial Intelligence 174, 449–478, 2010.

9. Green, M., Cohen, D. Domain permutation reduction for constraint satisfaction
problems. Artificial Intelligence, 172, 1094–1118, 2008.

10. Jeavons, P.G., Cooper, M.C. Tractable constraints on Ordered domains. Artificial

Intelligence, 79 (2) : 327339, 1995.
11. Khatib, L., Morris, P., Morris, R., Rossi, F. Temporal constraint reasoning with

preferences. In Proceedings of the 17th
International Joint Conference on Artificial

Intelligence IJCAI-01 Seattle, USA (2001) 322–327, 2001.
12. Larrosa, J., Schiex, T. Solving weighted CSP by maintaining arc consistency. Ar-

tificial Intelligence, 159 (2004) 126.
13. Naanaa, W., Helaoui, M., Ayeb, B. A decomposition method for valued CSPs In

Soft’10 - 10th Workshop on Preferences and Soft Constraints, 2010.
14. Narayanan, H. Submodular Functions and Electrical Networks, North-Holland,

Amsterdam, 1997.
15. Nemhauser, G., Wolsey, L. Integer and Combinatorial Optimization, John Wiley

and Sons, 1988.
16. Orlin J.B. A faster strongly polynomial time algorithm for submodular function

minimization. Mathematical Programming, 118 (2) 237–251, 2009.
17. Schlesinger, D. Exact Solution of Permuted Submodular MinSum Problems, In

Energy Minimization Methods in Computer Vision and Pattern Recognition, num-
ber 4679–2007 in LNCS, 28–38, 2007.

18. Schiex, T., Fargier, H., Verfaillie, G.: Valued constraint satisfaction problems: hard
and easy problems. In Proceedings of the 14th
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Abstract. The Pareto dominance relation, widely used in a number of
decision making areas, can su↵er from a lack of discriminatory power,
which may result in a large number of undominated or optimal solutions.
By strengthening this relation, we can narrow down this optimal set fur-
ther, which is desirable e.g., for presenting a smaller number of more
interesting solutions to a decision maker. This paper looks at a particu-
lar strengthening of the Pareto dominance relation, called Sorted-Pareto
dominance, giving a semantics for the relation, and explores some possi-
ble usages within a Soft Constraints setting for providing a set of optimal
solutions to a Soft Constraints problem. We also look at some further
possible usages of the relation, with a view to future work and providing
some empirical results.

1 Introduction

The notion of Pareto optimality originated in social welfare and economic theory,
and the Pareto dominance relation is widely used in that field and many other
related decision fields, such as collective decision and voting theory (where it is
also known as ‘unanimity’ [13]), decision making under uncertainty (where it is
also known as ‘dominance’ [3]), and multi-criteria decision making and optimi-
sation [5, 10]. In a general decision-making context, a decision Pareto dominates
another if it is strictly preferred in at least one aspect of the decision (where an
aspect can be: a criterion in multi-criteria decision-making; a state of the world
or a scenario in decision making under uncertainty; a voter in collective decision
making, etc.) and at least as good as the other in all other aspects [13].

A problem with the Pareto dominance relation is its lack of discriminatory
power, as many comparisons between pairs of decisions do not result in dom-
inance, and this leads to a large number of undominated (also called ‘Pareto
optimal’) solutions. Therefore, it is desirable to look at relations that extend the
Pareto dominance relation, where the extending relation has more power when
comparing decisions, which leads to a smaller set of undominated solutions that
are still Pareto optimal.
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In this paper we look at an extension to the Pareto dominance relation called
Sorted-Pareto dominance. Section 2 describes a general decision making frame-
work and the Pareto dominance relation. Section 3 defines the Sorted-Pareto
relation and gives a semantics for the relation, while Section 4 introduces a gen-
eral Soft Constraints problem framework, along with a Sorted-Pareto instance,
and looks at a depth first branch and bound algorithm for solving such problems.
Section 5 looks at various extensions to Sorted-Pareto, and Sections 6 and 7 look
at related and possible future work in this area.

2 Preliminaries

First we describe a simple setup for decision making. Let A represent a set of
decisions, and let S = {1, . . . ,m}, represent a finite set of decision aspects. Let
↵i represent an evaluation, on a totally ordered scale T , of decision ↵ in aspect
i, where the scale T is ordered by �. This induces a relation <i on A defined
as, for all ↵,� 2 A, ↵ <i �, if and only if, ↵i � �i, i.e., ↵ is as least as good as
� in aspect i. Let �i represent the strict (or asymmetric) part of <i, and let ⌘i

represent the indi↵erence (or symmetric) part of <i.
An extension <⇤ to a relation <, is a new relation such that, if ↵ is preferred

to � according to the original relation, then it is still preferred according to the
extension, i.e., ↵ < � ) ↵ <⇤ �.

2.1 Pareto Dominance

We now describe the various preference relations associated with Pareto domi-
nance [13], along with some of the classifications of Pareto optimality.

Weak-Pareto Dominance: For all ↵,� 2 A, ↵ weak-Pareto dominates �,
written as ↵ <P �, if and only if, for all i 2 {1, . . . ,m}, ↵ <i �. This is also
called “Pareto preference or indi↵erence”.

Pareto Dominance: For all ↵,� 2 A, ↵ Pareto dominates �, written as ↵ �P

�, if and only if, for all i 2 {1, . . . ,m}, ↵ <i �, and there exists j 2 S
such that ↵ �j �. Equivalently, this can be defined in terms of weak-Pareto
dominance, as, ↵ �P �, if and only if, ↵ <P � and � 6<P ↵.

Strict-Pareto Dominance: For all ↵,� 2 A, ↵ strict-Pareto dominates �,
written as ↵ �PS �, if and only if, for all i 2 {1, . . . ,m}, ↵ �i �.

Pareto Indi↵erence/Equivalence: For all ↵,� 2 A, ↵ is Pareto-indi↵erent
to �, written as ↵ ⌘P �, if and only if, for all i 2 {1, . . . ,m}, ↵ ⌘i �.
Equivalently, this can be defined in terms of weak-Pareto dominance, as,
↵ ⌘P �, if and only if, ↵ <P � and � <P ↵.

A decision ↵ 2 A is Pareto non-dominated (or Pareto optimal/e�cient), if
and only if, it is not Pareto dominated by any other decision, i.e., there is no
� 2 A such that � �P ↵. The set of these decisions, which we will denote as
PND(A), is often called the Pareto frontier. A decision is weakly Pareto non-
dominated (or weak-Pareto optimal/e�cient), if and only if, it is not strictly-
Pareto dominated by any other decision, i.e., there is no � 2 A such that � �PS
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↵. We will denote the set of these decisions as WPND(A). The set PND(A) is
a subset of WPND(A) since ↵ �PS � ) ↵ �P �.

3 Sorted-Pareto Dominance

We now define the Sorted-Pareto dominance relation, which is an extension to the
Pareto dominance relation. This is based on an ordering defined in [11]. Firstly,
in addition to the above notation, we have the following. A sorted-permutation

↵

" of a decision ↵ is a reordering of the evaluations of the aspects of the decision
in ascending order, i.e., ↵" = (↵(1), . . . ,↵(m)), such that, ↵(1)  . . .  ↵(m).

Definition 1 (Weak Sorted-Pareto Dominance:). For all ↵,� 2 A, ↵

Weak Sorted-Pareto dominates �, written as ↵ <S �, if and only if, ↵

" <P �

"
,

i.e., ↵(i) � �(i), for all i 2 {1, . . . ,m}.

Definition 2 (Sorted-Pareto Dominance:). For all ↵,� 2 A, ↵ Sorted-

Pareto dominates �, written as ↵ �S �, if and only if, ↵

" �P �

"
, i.e., ↵(i) � �(i),

for all i 2 {1, . . . ,m} and there exists j 2 {1, . . . ,m} such that ↵(j) > �(j).

Equivalently, this can be defined in terms of Weak Sorted-Pareto dominance, as,

↵ �S �, if and only if, ↵ <S � and � 6<S ↵.

Definition 3 (Strict Sorted-Pareto Dominance:). For all ↵,� 2 A, ↵

Strict Sorted-Pareto dominates �, written as ↵ �SS �, if and only if, ↵

" �PS �

"
,

i.e., ↵(i) > �(i), for all i 2 {1, . . . ,m}.

Definition 4 (Sorted-Pareto Equivalence:). For all ↵,� 2 A, ↵ is Sorted-

Pareto equivalent to �, written as ↵ ⌘S �, if and only if, ↵(i) ⌘ �(i), for all

i 2 {1, . . . ,m}. Equivalently, this can be defined in terms of Weak Sorted-Pareto

dominance, as, ↵ ⌘S �, if and only if, ↵ <S � and � <S ↵.

A decision ↵ 2 A is Sorted-Pareto non-dominated, if and only if, it is not
Sorted-Pareto dominated by any other decision, i.e., there is no � 2 A such
that � �S ↵. We will denote this set as SPND(A). We will see that the set of
Sorted-Pareto non-dominated decisions SPND(A) is a subset of the Pareto non-
dominated decision PND(A), therefore we have a smaller set of undominated
solutions that are still Pareto optimal. Let us look at an example.

Example 1. Consider, for example, a trivial group decision making problem,
where the evaluation occurs of two decisions, A = {↵,�}, by three di↵erent deci-
sion makers, S = {1, 2, 3}, on the ordered scale T = {superb, good, ok, poor, bad}
(where of course superb � good � ok � poor � bad). Suppose decision ↵ is eval-
uated as (ok, poor, superb) and decision � is evaluated as (poor, good, superb).
According to Pareto dominance, we can see that ↵ 6<P �, and � 6<P ↵, i.e.,
neither decision dominates each other, and therefore both ↵ and � are in the
set of undominated decisions, i.e., PND(A) = {↵,�}, (so either could be cho-
sen as the actual decision). Now, if we use Weak Sorted-Pareto dominance in-
stead of Pareto dominance, then the sorted permutations of the decisions are
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↵

" = (poor, ok, superb) and �

" = (poor, good, superb), and we can see that
↵

" 6<P �

" and �

" <P ↵

", i.e., ↵ 6<S � and � <S ↵, i.e., � dominates ↵ using
the Weak Sorted-Pareto relation. Therefore, in this instance, � is the only un-
dominated decision, i.e., SPND(A) = {�}, and therefore it could make sense to
choose decision � over ↵.

The Sorted-Pareto class of relations can be useful in decision making situa-
tions where the evaluations of the aspects are using the same scale, for example
in the situation where the aspects correspond to di↵erent voters or experts, or
even di↵erent criteria that may use the same scale. However, even in situations
where evaluations of aspects may not be on the same scale, then there are meth-
ods for modifying or normalising the di↵erent scales, e.g., using [11], so that
the scales are commensurate. We assume that each of the aspects are of equal
importance, however we look further at dealing with situations where this is not
the case in Section 5.

3.1 Some Properties of Weak Sorted-Pareto Dominance

We now look at some properties of the Weak Sorted-Pareto dominance relation.
<S is reflexive and transitive, (i.e., it is a preorder), and it extends the Pareto
dominance relation.

Proposition 1. <S is a preorder: it is transitive, i.e., 8↵,�, � 2 A, if ↵ <S �

and � <S �, then ↵ <S �; and reflexive, i.e., 8↵ 2 A, ↵ <S ↵.

Proof. Suppose ↵ <S � and � <S �. Therefore, by definition of <S , ↵" <P �

"

and �

" <P �

". By transitivity of <P , ↵" <P �

", which by definition of <S ,
implies that ↵ <S �. Therefore <S is transitive.

For any ↵ 2 A, consider its sorted permutation, ↵" = (↵(1), . . . ,↵(m)). Since
T is a totally ordered scale, then for any scale value � 2 T , � � �, which means
for any ↵(i) 2 ↵

", ↵(i) � ↵(i), i.e., for all i 2 {1, . . . ,m}, ↵(i) � ↵(i). Therefore,
by definition of <P , ↵" <P ↵

", which by definition of <S implies that ↵ <S ↵.
Therefore <S is reflexive. ⌅

Proposition 2. <S extends the Pareto ordering, i.e., 8↵,� 2 A, if ↵ <P �,

then ↵ <S �.

Proof. Suppose ↵ <P �. Therefore, by definition of <P , ↵i � �i, for all i =
1, . . . ,m. Consider any j 2 {1, . . . ,m}. �(j) is the j-th smallest element of �,
so there are at least (m � j) components �i of � with �i � �(j). If �i � �(j),
then ↵i � �(j), since ↵i � �i by definition of <P . Therefore, there are at least
(m� j) components ↵i of ↵ with ↵i � �(j), in particular ↵(j) � �(j). Therefore,
↵

" <P �

", which by definition of <S , implies that ↵ <S �. ⌅
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3.2 A Semantics for Sorted-Pareto Dominance

We now look at a semantics for the Sorted-Pareto dominance class of relations.
Firstly, as already given in the preliminaries, this semantics assumes some totally
ordered qualitative or ordinal scale T , which is ordered by �. Also we consider
each decision ↵ 2 A to be characterised by its vector of m evaluations, (over
the m decision aspects), where each evaluation is on the scale T , and so for
simplicity we interchangeably refer to some ↵ 2 A as either a decision or as a
vector of evaluations corresponding to a decision.

One way of comparing decisions using these evaluations is to map the qual-
itative scale values onto quantitative values, possibly representing some sort
of utility, e.g., one can define a weights function f on the scale values, i.e.,
f : T ! R+, where the function is monotonic with respect to the ordering of the
scale, i.e., 8�, �0 2 T , � � �

0 , f(�) � f(�0). Therefore, for our set of decisions
A, and using a particular weights function f , the decisions can be compared and
ordered using a order relation �f , which is given by the sum of the m weights,
i.e., for some ↵,� 2 A, ↵ �f �, if and only if:

Pm
i=1 f(↵i) �

Pm
i=1 f(�i). This

order relation �f is a total preorder on decisions, but for di↵erent mappings
(i.e., di↵erent f), the resulting orders may be di↵erent.

Table 1. Example 2

f1(�) f2(�)
� = good 6 5
� = ok 3 4
� = bad 2 1

µ = (µ1, µ2)
Pm

i=1 f1(µi)
Pm

i=1 f2(µi)
↵ = (good, good) 12 10
� = (ok, good) 9 9
� = (ok, ok) 6 8
� = (bad, good) 8 6
✏ = (bad, ok) 5 5
� = (bad, bad) 4 2

Example 2. Consider some ordinal scale T = {good, ok, bad}, where of course
good � ok � bad. Table 1 defines the functions f1 and f2, which are weights
functions that map an evaluation on the scale T to an associated utility in R+,
and also shows the resulting sum of weights for a particular set of decisions
A = {↵,�, �, �, ✏,�}. For function f1, the resulting order �f1 is [↵ �f1 � �f1

� �f1 � �f1 ✏ �f1 �], and for function f2, the resulting order �f2 is [↵ �f2

� �f2 � �f2 � �f2 ✏ �f2 �]. We can see that both f1 and f2 are monotonic with
respect to the scale T but the resulting orders �f1 and �f2 are di↵erent.

When it is possible to provide a weights function (like f1 or f2) to map the
scale values to some quantitative measure, then it is easy to compare decisions
by using the sum of these weights. However, sometimes it is not possible to
create this quantitative mapping, e.g., when this information is not available,
so in these such cases, we can consider a di↵erent order that does not rely
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on this quantitative information. If we consider all possible weights functions
f : T ! R+ (such that f is monotonic with respect to the ordering of T ), then
we can define an order relation �F on A as:

8↵,� 2 A, ↵ �F � , ↵ �f �, 8f : T ! R+

This relation is the intersection of all possible order relations �f , for all
monotonic functions f defined on T , i.e.,

�F=
\

�f , 8f : T ! R+

This order �F is a preorder on A, i.e., it is reflexive (8↵,� 2 A,↵ �F �),
transitive (8↵,�, � 2 A,↵ �F � ^� �F � ) ↵ �F �), and by Theorem 1 below,
is equal to the Weak Sorted-Pareto order <S .

Theorem 1. �F is equal to the Weak Sorted-Pareto order <S.

Proof. First we show that 8↵,� 2 A,↵ <S � ) ↵ �F �. Assume ↵ <S �.
Therefore, by definition of <S , ↵" <P �

", which means that ↵(i) � �(i), 8i 2
{1, . . . ,m}. Therefore, for any f ,

Pm
i=1 f(↵(i)) �f

Pm
i=1 f(�(i)). Since ↵

" and �

"

are permutations of ↵ and � respectively, then
Pm

i=1 f(↵(i)) �f
Pm

i=1 f(�(i)) ,Pm
i=1 f(↵i) �

Pm
i=1 f(�i), which implies, for any monotonic function f , ↵ �f �.

Since this is true for any f , then ↵ �F �.
Now we show that 8↵,� 2 A, ↵ 6<S � ) ↵ ⇤F �. Assume ↵ 6<S �.

Therefore, by definition of <S , ↵

" ✏P �

". Therefore, 9i 2 {1, . . . ,m} such
that ↵(i) ⇤ �(i). We can construct a monotonic function f such that ↵ ⇤f �,
and therefore ↵ ⇤F �. For example, for f : T ! {0, 1}, assign f such that
f(↵(i)) = 0 and f(�(i)) = 1, e.g., f(�) = 0 if �  ↵(i), and f(�) = 1 oth-
erwise. Therefore,

Pm
j=1 f(↵(j))  m � i and

Pm
j=1 f(�(j)) � m � i + 1, soPm

j=1 f(↵(j)) <

Pm
j=1 f(�(j)), therefore 9f such that ↵ ⇤f �, and therefore

↵ ⇤F �. ⌅

This gives a semantics to the Sorted-Pareto order, as a relation that can be
used in decision making situations where there may only be ordinal or qualitative
information available, and it provides an ordering that is consistent with any
possible weights function selected to map an ordinal scale to a numerical one. It
can be viewed as a more cautious representation than a weighted constraints one,
and it can be applied in many of the application areas of weighted constraints.
The weighted constraints formalism assumes that the costs are on an additive
scale, where the cost of A and B is the sum of the costs of A and B; however, in
many situations this can be questionable. For example, suppose one is using a
weighted constraints solver to find a most probable explanation (MPE problem).
Elicitation of probabilities can be problematic and unreliable. If instead of taking
the elicited values at face value, one considers them as just representing the
ordering between the probabilities, then Theorem 1 shows that the Sorted-Pareto
ordering represents the ordered pairs that all compatible probability assignments
agree with.
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4 Sorted-Pareto and Soft Constraints

In this section, we briefly introduce Soft Constraints, and look at how the Sorted-
Pareto dominance relation can be used within a Soft Constraints setting. We
look at a depth first branch and bound algorithm for solving a Soft Constraints
problem, using the Sorted-Pareto dominance relation to prune parts of the search
tree, to provide a set of Sorted-Pareto optimal solutions.

4.1 A General Framework for Soft Constraints Problems

Soft constraints [12] can be used to model many real-world problems where there
is a need to specify preferences on particular aspects of the problem solutions. A
soft constraint associates a preference degree to a particular aspect of a solution,
e.g., an assignment to a set of problem variables, and the preference levels of a
complete solution provided by the soft constraints can be combined to give the
overall preference degree of that solution, with a view to ordering the solution
set and obtaining optimal solutions.

A Preference Degree Structure (PDS), (similar to as defined in [4]), is a tuple
P = hI,⌦,⌫i, where I is an ordered set of preference degrees, ⌫ is a partial order
on I, and ⌦ is a commutative and associative operator, monotonic with respect
to ⌫, which is used to combine the preference degrees. We define a general Soft
Constraints problem [16] to be a tuple F = hX ,D, C,Pi, where X is a set of
variables, with finite domain D, and C is a set of soft constraints, where a soft
constraint c 2 C is a mapping from an assignment of a subset V of the variables
in X to a preference degree, i.e., c : D|V | ! I. The subset V of the variables
in X to which the constraint is applied is called the scope of the constraint, we
also denote this by scope(c), i.e., scope(c) = V .

For some assignment u, each soft constraint is applied to the subtuple of
the assignment which corresponds to the scope of the constraint, i.e., c(u#V ),
(where u

#V is the projection of u to the variables in V ), and we abbreviate this
to c(u). The overall preference degree ⇢(u) of that assignment is the combination
of all the preference levels of all constraints, i.e. ⇢(u) =

N
c2C c(u). An optimal

assignment u is one such that there is no other assignment u0 such that ⇢(u0) is
preferred to ⇢(u), i.e., there is no other assignment u0 such that ⇢(u0) ⌫ ⇢(u).

Sorted-Pareto Instance. First, we recall the general decision making setup
in Section 2, where we have a scale T , and � is a total order on T . For a Sorted-
Pareto instance of a general Soft Constraints problem, we use a PDS P = hI,⌦,⌫
i, where I is the set of multisets of T , (denoted byM

T ), the combination operator
⌦ is multiset sum, i.e., ⌦ = ], so the combination of the preference degrees for
an assignment is just the multiset containing all the preference degrees, e.g., for
some c, c0 2 C, and for some assignment u, if c(u) = {�} and c

0(u) = {�0}, (where
�, �

0 2 T ), then c(u) ⌦ c

0(u) = {�, �0}. For ⌫, we use the Weak Sorted-Pareto
ordering <S as defined in Section 3, extended in the obvious way to multisets in
T of the same cardinality.
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Using the Sorted-Pareto instance of the PDS, P = hMT
,],<Si, the overall

preference degree of an assignment u is ⇢(u) =
N

c2C c(u) =
U

c2C c(u) = {c(u} :
c 2 C}. Therefore, an optimal assignment u is one that is not Sorted-Pareto
dominated by any other assignment, i.e., there is no other assignment u

0 such
that ⇢(u0) <S ⇢(u).

4.2 DFBB Search

One way of solving a Soft Constraints problem is to use a Depth First Branch and
Bound search (DFBB), we now briefly describe a general setup for such a search
and we look at one such DFBB algorithm for solving Soft Constraints problems.
We assume a standard Constraint Satisfaction Problem, where there is a set of
hard constraints, as well as some strict partial order � on the set of complete
assignments (or solutions), and the domains of the variables are updated when
a new assignment is made (e.g., using arc consistency). For ease of presentation,
we use a fixed variable ordering (X1, X2, . . . , Xm) of the variables in X . Let level
i in the search tree correspond to the variable Xi in the variable ordering. A path
from root to a particular node at level i corresponds to some partial assignment
to the variablesX1, . . . , Xi�1, and a full path from root to a leaf node corresponds
to a complete assignment. Therefore, for some partial assignment u at a node at
level i, each successor node represents an extension to assignment u with variable
Xi being assigned a value from D(Xi). For some partial assignment u, let S(u)
represent the set of possible full extensions (solutions) to partial assignment u.

We consider two conditions that may hold for some partial assignment u and
how they can be used to either prune the search tree at a particular node or
reduce the amount of dominance checks that occur at subsequent nodes during
the search.

Partial Assignment Dominated (PAD) condition: Given partial assignment
u at node N , and set S of undominated solutions, if all extensions of u are
strictly dominated by some x 2 S, i.e., there is no x 2 S, such that for all
y 2 S(u), ⇢(x) � ⇢(y), then we can prune the tree at node N .

Partial Assignment Non-Dominated (PAND) condition: Given partial as-
signment u at nodeN , and set S of undominated solutions, for some complete
assignment x 2 S, if all extensions of u are not strictly dominated by x, i.e,
for all y 2 S(u), ⇢(x) 6� ⇢(y), then we do not need to include x in subsequent
dominance checks for extensions of u below node N .

4.3 DFBB Algorithm

We now present a DFBB algorithm for computing a set of undominated solu-
tions for our Soft Constraints problem (see Algorithm 1). First we describe the
auxiliary functions used within the main DFBB function.

The function HAS-NEXT-VAR(u,X ) returns true if there is another variable
to assign, false otherwise. The function NEXT-VAR(u,X ) is a variable selec-
tion function, that selects the next uninstantiated variable from X for which
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Algorithm 1 Recursive algorithm for DFBB with hRUS,NEWi
1: function DFBB(Tuple: u, hSet : RUS, Set : NEWi) ! hSet : RUS0

, Set : NEW0i
2: if HAS-NEXT-VAR(u,X ) = false then . u is complete assignment...
3: if ¬ IS-DOMINATED(u,RUS) then . ... and not strictly dominated
4: NEW := {u} . update NEW set
5: end if

6: return hRUS,NEWi
7: else . u is partial assignment
8: for all x 2 RUS do

9: if PAD(u, x) then . PAD condition holds
10: return hRUS,NEWi . backtrack with hRUS,NEWi unchanged
11: end if

12: end for

13: NEW0 := NEW
14: X := NEXT-VAR(u,X ) . next variable in ordering
15: for all a 2 D(X) do
16: u

0 := u [ (X, a) . assign domain value to variable
17: RUS0 := RUS0 [NEW0

18: OTHERS := ;
19: NEW0 := ;
20: for all x 2 RUS0

do . Reduce RUS0

21: if hPAND(u0
, x)i then . PAND condition holds...

22: RUS0 := RUS0 \ {x} . ... remove x from future checks
23: OTHERS := OTHERS [ {x}
24: end if

25: end for

26: hRUS0
,NEW0i := DFBB(u0

, hRUS0
,NEW0i)

27: OTHERS := REMOVE-DOMINATED(OTHERS,NEW0)
28: RUS0 := RUS0 [OTHERS
29: end for

30: end if

31: return hRUS0
,NEW0i

32: end function

to assign a domain value. The function IS-DOMINATED(u, S) returns true if
some complete assignment u is strictly dominated by any x 2 S, false otherwise.
The function REMOVE-DOMINATED(S, S0) returns a new set, containing the
elements of S that are not dominated by any element of S0.

The main function DFBB takes as input a partial assignment u and a pair
of sets hRUS,NEWi, where RUS is the set of relevant undominated solutions
inherited from the parent node, and NEW is the set of undominated solutions
found so far in leaf nodes. At any return point during the algorithm, when
the solution pair hRUS0,NEW0i is being returned, the following property holds:
Max(RUS0 [NEW0) = (RUS0 [NEW0).

The algorithm will backtrack if it encounters a partial assignment that will
not extend to a non-dominated solution, (PAD condition holds), i.e., if there is
some solution in RUS that dominates u. Also, if it can be shown that some com-
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plete assignment x 2 RUS fails to dominate any complete assignment extending
partial assignment u, (PAND condition holds), then there is no need to consider
x in nodes below the current node in the search tree, so the algorithm removes x
from RUS (and adds x to a set variable OTHERS to allow such x to be restored
on backtracking).

4.4 Sorted-Pareto Problem Instances

We consider a couple of di↵erent general types of situations where we can use
DFBB search for Sorted-Pareto soft constraints instances:

Situation 1. For each variable, there is a unary soft constraint representing the
preference degree of the assignment to that variable, i.e., for a Soft Constraint
Problem hX ,D, C,Pi, where P is as previously defined in Section 4.1, and C is a
set of soft constraints, such that for all c 2 C, scope(c) = {X} for some X 2 X ,
i.e., |scope(c)| = 1.

Situation 2. There are non-unary soft constraints on two or more variables,
representing a preference degree of an assignment to those variables, i.e., for a
Soft Constraint Problem hX ,D, C,Pi, where P is as previously defined in Section
4.1, and C is a set of soft constraints, such that for all c 2 C, scope(c) = V ✓ X ,
i.e., |scope(c)| � 1.

4.5 Su�cient Checks for PAD/PAND Conditions.

We now look at some su�cient checks for both the PAD and PAND conditions,
for use in the two described situations.

PAD Check for Situation 1: For some partial assignment u at node N in
the search tree, let ⇢⇤(u) be an upper bound multiset of preference degrees
for complete extensions of u, defined as:

⇢

⇤(u) = ⇢(u) [ {max c(D(scope(c))) : c 2 C, scope(c) 2 X \ U}

If, for some x 2 RUS, ⇢(x) <S ⇢

⇤(u), then the PAD condition holds, and the
search tree can be pruned at node N .

PAD Check for Situation 2: For some partial assignment u at node N in
the search tree, let ⇢⇤(u) be an upper bound multiset of preference degrees
for complete extensions of u, defined as:

⇢

⇤(u) = ⇢(u) [ {max c(D(scope(c))) : c 2 C, scope(c) 6✓ U}

If, for some x 2 RUS, ⇢(x) <S ⇢

⇤(u), then the PAD condition holds, and the
search tree can be pruned at node N .
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PAND Check for Situation 1: For some partial assignment u at node N in
the search tree, let ⇢⇤(u) be a lower bound multiset of preference degrees for
complete extensions of u, defined as:

⇢⇤(u) = ⇢(u) [ {min c(D(scope(c))) : c 2 C, scope(c) 2 X \ U}

If, for some x 2 RUS, ⇢(x) 6�S ⇢⇤(u), then the PAND condition holds, and
we do not need to include x in subsequence dominance checks for extensions
of u below node N .

PAND Check for Situation 2: For some partial assignment u at node N in
the search tree, let ⇢⇤(u) be a lower bound multiset of preference degrees for
complete extensions of u, defined as:

⇢⇤(u) = ⇢(u) [ {min c(D(scope(c))) : c 2 C, scope(c) 6✓ U}

If, for some x 2 RUS, ⇢(x) 6�S ⇢⇤(u), then the PAND condition holds, and
we do not need to include x in subsequence dominance checks for extensions
of u below node N .

5 A Sorted-Pareto extension

In this section, we look at one possible extension to the Sorted-Pareto rela-
tion, in particular, we look at a lexicographic extension, where some decision
aspects are given higher priority than others, for example, the aspects might be
states that are more likely to occur, criteria that are more important, or vot-
ers with more weight. This is similar to the approach taken by [8] for handling
preferences between criteria in multi-criteria problems, and to Lexicographic
Constraint Satisifaction Problems in [6].

5.1 Lexicographic Sorted-Pareto

In addition to the general decision making setup in Section 2, (where we have a
set of decisions A, a set of decisions aspects S, and an ordered scale T , ordered
by �), we consider the following.

Let L = {L1, . . . , Lk} represent an ordered partition of the set of aspects
S, ordered by >z in terms of importance, i.e., for some L,L

0 2 L, L >z L

0, if
and only if L has a higher importance than L

0. Each i 2 S appears in only one
L 2 L, and for i, j 2 S, i ⌘z j if they appear in the same L 2 L, i.e., i and j

are equally important. The Lex-Sorted permutation, for some ↵ 2 A, is defined
as ↵

"
L = (↵"[L1],↵"[L2] . . . ,↵"[Lk]), where ↵

"[Li] is the sorted permutation of
↵[Li], i.e., the sorted permutation of the evaluations of ↵ for the aspects of Li.
We can now define the Lex-Sorted-Pareto dominance relation <L

S .

Definition 5 (Lexicographic Sorted-Pareto). For a partition L of S, L =
{L1, L2, . . . , Lk}, where L is ordered by >z, and 8↵,� 2 A, ↵ Lex-Sorted-Pareto

dominates �, written as ↵ <L
S �, if and only if, 9j, such that, 8i < j, ↵

"[Li] ⌘P

�

"[Li] ^ ↵

"[Lj ] �P �

"[Lj ]
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Consider the following example.

Example 3. Consider the evaluations of two decisions ↵,� 2 A, over five decision
aspects S = {1, 2, 3, 4, 5}, on an ordered scale T = {good, ok, bad}. Let L =
({5}, {2, 4}, {1, 3}) be an ordered partition on S, where L1 = {5}, L2 = {2, 4}
and L3 = {1, 3}, and L1 >z L2 >z L3. Suppose decision ↵ is evaluated as
(good, bad, ok, ok, good), and decision � is evaluated as (bad, ok, bad, good, good).
The Lex-Sorted permutation for ↵ is ↵"

L = ((good), (bad, ok), (good, ok)), and the

Lex-Sorted permutation for � is �"
L = ((good), (ok, good), (bad, bad)). We can see

that � Lex-Sorted-Pareto dominates ↵, since, for L1, ↵"[L1] ⌘P �

"[L1], i.e., the
decisions are equivalent with respect to L1, and for L2, �"[L2] �P ↵

"[L2], i.e.,
(ok, good) �P (bad, ok), therefore � <L

S ↵.

When |L| = |S|, then this ordering is equal to a lexicographic ordering, and
when |L| = 1, then this ordering is equal to the Sorted-Pareto order. When |L| >
1 and |L| < |S|, this represents some situation where there is some information
available on the relative importance of some decision aspects.

6 Related Work

The notion of Strict Sorted-Pareto appears in [11], where it is used in a method
for comparing and ranking alternatives in a multicriteria decision making prob-
lem. Another version appears in [9], where it is called “Ordered Pareto”, and
is used for handling preferences and comparing alternatives using possibilistic
logic. [15] looks at Pareto dominance between non-decreasingly ordered income
distributions, which is called “Pareto-rank dominance”. This amounts to Sorted-
Pareto dominance, however it is the nature of problem itself that these income
distributions are already ordered before the Pareto dominance relation is applied.

Some work that looks at di↵erent Branch and Bound algorithms for various
soft constraints and multi-criteria problems includes [16], which looks at algo-
rithms for Depth First Branch and Bound search for Soft Constraints, and [7]
looks at an algorithm for partially ordered Constraint Optimisation Problems
(PCOP). [14] looks at algorithms for multi-criteria optimisation in Soft CSPS for
approximating Pareto Optimal solution sets, and the work in [1] looks at meth-
ods for the computation of leximin optimal solutions in Constraint Networks,
which include various Branch and Bound algorithms.

7 Future Work and Discussion

In this section we briefly discuss some future work. As mentioned in Section 4.3,
the current version of the algorithm is one such approach, so the future work
will involve other versions and improvements of this algorithm, e.g., to improve
e�ciency. Currently, the implementation of Sorted-Pareto DFBB search is at an
early stage of development, and we present no empirical results at this point,
but the future work will involve further implementation, possibly on top of the
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Choco CSP solver [2], along with some empirical analysis. Also the future work
will involve implementing extensions of Sorted-Pareto as discussed in Section 5,
along with developing further extensions and implementations thereof.

Acknowledgements. This material is based upon works supported by the
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Abstract. Function filtering enhances dynamic programming methods working
on a tree decomposition of the constraint graph. It is based on bounds for tuples:
if the lower bound of tuple t is equal to or higher than a suitable upper bound,
t can be discarded, decrementing the size of the message to travel in the tree
decomposition. We present a new form of lower bound that tightens the lower
bound of the original function filtering, so this new version –called two-sided

function filtering– is more powerful. We provide experimental evidence of its
benefits.

1 Introduction

In constraint satisfaction, inference is widely used but in a very limited form. A simple
example is arc consistency: by the inspection of constraints and domains, it is able to
deduce that some values will never be in a solution so they can be removed. Arc consis-
tency is incomplete inference since it cannot always produce a solution. Inference can
also be complete. Some algorithms are adaptive consistency [5], cluster tree methods
[7] and bucket elimination [3]. Their temporal and spatial complexities are exponential
in some parameters of the constraint graph (see [4] for details). When compared with
search methods (exponential complexity in time but linear complexity in space), they
look unattractive, especially when search is enhanced with the powerful machinery of
local consistency coupled with global constraints [14].

In the soft constraints realm, satisfaction is replaced by optimization. This causes
that problems with soft constraints become more difficult to solve than their hard coun-
terparts. The same solving ideas are recreated here. Search methods, based on a branch-
and-bound schema, are combined with soft local consistencies to filter domains [10].
Complete inference methods are easily adapted to compute the optimum, at the cost
of dragging large arity constraints. Their high spatial complexity is the main drawback
to be used in practice. Nevertheless, this issue is not always unavoidable: when there
are ways to control the spatial complexity, complete inference can provide excellent
performance [9].

While search algorithms consider assignments of individual variables, dynamic pro-
gramming methods handle whole cost functions which are combined and exchanged
among nodes of a suitable decomposition of the problem instance. Function filter-
ing [13] reduces the size of cost functions by filtering out those tuples that are found
unfeasible to be extended into an optimal solution. Provided a lower bound on the cost
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of the best extension of the tuple, and an upper bound on the cost of the optimal solu-
tion, a tuple is filtered out when its lower bound reaches the upper bound. Authors of
[13] proposed a form of computing a lower bound of the cost of the best extension of
a tuple t, that we call one-sided lower bound. It works as follows. When computing a
cost function at node i for node j, the cost of the best extension of t is computed com-
bining the cost of t in one particular cost function at node i with the cost of functions
on t variables coming from node j. We extend this form of lower bound, producing the
two-sided lower bound where all functions at node i (and not only one) are taken into
account when computing the cost of the best extension of t. Since the new lower bound
tightens the old one, it is direct to see that this new approach is more powerful than
the original one. Combining this new lower bound with the function filtering idea, we
obtain the two-sided function filtering approach, that is the paper contribution.

The structure of the paper is as follows. Section 2 contains some concepts used
throughout the paper. Section 3 details the original one-sided filtering method. Sec-
tion 4 focuses on improving lower bounds, presenting the two-sided function filtering
approach. This approach is empirically evaluated in Section 5. Finally, Section 6 draws
some conclusions from this work.

2 Preliminaries

In this paper we consider soft constraints that are represented as cost functions using
the weighted model [12]. A weighted CSP (WCSP) is defined as hX,D,C, S(k)iwhere
X and D are variables and domains as in CSP. C is a finite set of constraints as cost
functions; f

T

2 C (T is the scope of f
T

) assigns costs to value tuples t 2 Q
xi2T

D
i

,
such that,

f(t) =

8
<

:

0 if t is allowed
1 . . . k � 1 if t is partially allowed
k if t is totally forbidden

S(k) = h[0, 1, ..., k],�,�i is a valuation structure such that a � b = min{k, a + b},
> = k, ? = 0 [8]. We assume that the reader is familiar with assignments or value
tuples t

S

with scope S, complete tuples (S = X), projections over S0 ⇢ S, t
S

[S0], and
concatenation of two tuples t

S

· t0
T

, defined only if common variables coincide in their
corresponding values. We assume that f

T

(t
S

) (with T ⇢ S) always means f
T

(t
S

[T ]).
A complete tuple t

X

is consistent if
L

fT2C

f
T

(t
X

) < k, else t
X

is inconsistent. A
solution is a complete consistent assignment with minimum cost. Finding a solution is
NP-hard. With k = 1 WCSP reduces to CSP.

We define the combination of two functions f
T

and g
S

as a new function f
T

./
g

S

with scope T [ S and 8t 2 Q
xi2T

D
i

, 8t0 2 Q
xj2S

D
j

such that t · t0 is defined,
f

T

./ g
S

(t · t0) = f
T

(t) � g
S

(t0). Let F = {f
T1 , . . . , fTm} be a set of functions, the

combination of F , ./F , is the function resulting from the joint combination of every
function in F , namely,

./F = f
T1 ./ . . . ./ f

Tm

Let V ✓ X be a subset of the variables of the problem and t
V

a tuple that assigns
values to each of the variables in V . An extension of t

V

to X is a tuple that keeps the

105 of 138



assignments of t
V

and assigns new values to the variables in X \ V . If the cost of each
possible extension of t

V

is larger than or equal to LB, we say that LB is a lower bound
of the cost of the best extension of tuple t

V

. Likewise, a function f
T

is a lower bound

of function f
S

, noted f
T

 f
S

, iff T ✓ S, and 8t
S

f
T

(t
S

[T ])  f
S

(t
S

). A function g
V

is a lower bound of a set of functions F if it is a lower bound of its combination ./F .
The min-marginal f

S

[T ] of a cost function f
S

over T ⇢ S is a new cost function on
T variables which assigns to each tuple t

T

the minimum cost among all the extensions
of t

T

to S. Formally,

8t
T

f
S

[T ](t
T

) = min

tS extension of tT

f
S

(t
S

[T ]).

The tightest lower bound is provided by the min-marginal. Similarly, the min-marginal

of F over V is the min-marginal of the combination of all the functions in F , that is
(./F )[V ].

Given a set of functions F , the time to compute the min-marginal of F over V is
bounded by O(d|T |

), where T =

S
m

i=1 T
i

, and d is the size of the common domain of
the variables in T . In some scenarios, this can be overdemanding. For that reason we
introduce a less costly way of computing a lower bound of a set of functions. Specif-
ically, we define

V
./F , the combination of F under V as the result of combining the

min-marginals of each of its functions over V . That is,

V
./F = f

T1 [T1 \ V ] ./ . . . ./ f
Tm [T

m

\ V ].

V
./F is a lower bound of F and can be assessed in O(dk

) time, where parameter k =

max (max

m

i=1 |Ti

|, |V |) 1, which can be way smaller than O(d|T |
). However, this lower

bound can be inferior to (./F )[V ].

To apply dynamic programming methods, we need a suitable decomposition of the
problem instance. A tree decomposition (also called joint tree or junction tree) of a
WCSP hX,D,C, S(k)i is a triplet hT,�, i, where T = hN,Ei is a tree (N is a set
of nodes and E is a set of edges), � and  are labeling functions which associate with
each node i 2 N two sets, �(i) ✓ X and  (i) ✓ C such that: (1) for each function
f

S

2 C, there is exactly one node i 2 N such that f
S

2  (i) and S ✓ �(i); (2)
for each variable x 2 X , the set {i 2 N |x 2 �(i)} induces a connected subtree of
T . The tree-width of a tree decomposition is tw = max

i2N

|�(i)|. If (i, j) 2 E, the
separator is sep(i, j) = �(i) \ �(j). In the following, nodes of the tree decomposition
are called clusters. The neighbors of cluster i, neigh(i), is the set of clusters linked
to i in the tree decomposition. Figure 1 shows cluster i and j linked by an edge in a
tree decomposition. Observe that removing the edge connecting i and j splits the tree
decomposition into two different connected components, which we call subproblems
(see Figure 1). Formally, we say that the i-subproblem involves every cost function in
the component containing i after the edge is removed. Subproblems i and j are coupled
by a set of variables they share and must agree upon, namely their separator sep(i, j).

1 Computing each f

Ti [Ti

\V ] takesO(d|Ti|) time, while computing the whole expression takes
O(d|V |) time.
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j -subproblem
i-subproblem

j
i

Fig. 1: Subproblems in a tree decomposition.

Cluster-Tree Elimination (CTE) is an algorithm that optimally solves WCSP by
sending messages along tree decomposition edges [11, 6, 7]. CTE can be seen as the
fully serial version of the Generalized Distributive Law (GDL) algorithm for the all-
nodes (or all-clusters) problem [1]. Edge (i, j) 2 E has associated two CTE messages:
ĝ(i!j), from i to j, and ĝ(j!i), from j to i. ĝ(i!j) is the min-marginal computed com-
bining all functions in B(i, j) (set of functions formed by  (i) with all incoming CTE
messages except ĝ(j!i)) over sep(i, j). CTE complexity is time O(dtw

) and space
O(ds

), where d is the largest domain size and s is the maximum separator size.
Mini-Cluster-Tree Elimination (MCTE(r) [7]) approximates CTE (and therefore it

computes solutions that are not necessarily optimal). If the number of variables in a
cluster is high, it may be impossible to compute ĝ(i!j) due to memory limitations.
MCTE(r) computes a lower bound by limiting by r the arity of the functions sent in
the messages. A MCTE(r) message, Gi!j , is a set of functions that approximate the
corresponding CTE message ĝ(i!j). It is computed as ĝ(i!j) but instead of combining
all functions of set B(i, j), it computes a partition P = {B1, B2, . . . , Bp

} of B(i, j)
such that the combination of the functions in every B

k

does not exceed arity r. The
MCTE(r) algorithm is time and space complexity O(dr

).

3 One-sided Function Filtering

Function filtering [13] is a technique that reduces the size of cost functions by filtering
out those tuples that are found unfeasible to be extended into an optimal solution, be-
cause their cost reach or surpass a suitable upper bound. To perform function filtering,
each cluster i intending to send a cost function f

U

to cluster j needs: (1) a lower bound
lb

U

(t
U

) on the cost of the best extension of each tuple t
U

; and (2) an upper bound UB
on the value of the optimal solution. Provided that, we say that the cluster i filters f

U

with lb
U

and UB when it filters out those tuples t
U

such that lb
U

(t
U

) � UB (i.e. the
ones that cannot be extended into an optimal solution), and sends the remaining ones.

While CTE exchanges exact cost functions among clusters, MCTE(r) exchanges
approximate cost functions (one or several of arity up to r), first bottom-up and then top-
down the tree decomposition. After this, each cluster i has: (1) a set of functions  (i),
containing its stake at the problem; and (2) for each neighbor j a set of functions Gj!i

defined on the variables sep(i, j). Gj!i stands for a summary of the j-subproblem,
namely a lower bound on the cost of each tuple in that subproblem. Observe that cluster
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i can assess the cost of an assignment by adding its own costs and the costs of its
neighbors’ subproblems. Likewise, the cluster can assess a lower bound for the costs of
a tuple in the complete problem by combining its own cost functions with those received
from its neighbors. Formally,

lb
�(i)(t�(i)) = (./F )(t

�(i)) (1)

where F =  (i) [S
j2neigh(i) Gj!i (that is, the combination of all received functions

in cluster i with the functions initially present in cluster i). However, the lower bound
assessed in Equation (1) requires O(d|�(i)|

) time, where �(i) are the variables of cluster
i and d the common domain size. This can be very costly to compute, both in terms of
time and memory (in fact, this is the temporal complexity of the exact CTE algorithm).

As an alternative, [13] proposes the following. Let us assume that cluster i wants to
send a set of functions to cluster j. Let f

U

be one of these functions, U ✓ sep(i, j) (
�(i). A lower bound of the cost of the best extension of tuple t

U

can be computed by
adding a lower bound on the cost of the best extension of tuple t

U

in the j-subproblem
to the cost that f

U

assigns to t
U

. Formally,

lb
U

(t
U

) = (gj!i

U

./ f
U

)(t
U

), (2)

where gj!i

U

=

U
./Gj!i. Henceforth we shall refer to this lower bound as one-sided

lower bound. In this case, the complexity of combining under U is O(dk

) time, where
now parameter k is the maximum between |U | and the arity of any function in Gj!i,
that could be cheaper than using Equation (1).

When MCTE(r) runs with increasing r, the cost of the best solution found so far is
an upper bound UB . At each iteration, cluster i willing to send a set of cost functions
to cluster j can filter each of them separately. For each function, cluster i (a) uses
Equation (2) to assess a lower bound from the last message received from j; and (b)
filters the function with this lower bound and UB . The resulting algorithm is known as
IMCTEf [13].

4 Two-sided Function Filtering

Next, we aim at tightening the one-sided lower bound described above. Consider that
cluster i has already received Gj!i from cluster j. After that, it intends to send a set
of functions Gi!j (set that contains the function f

U

mentioned in Equation (2)), sum-
marizing the cost information in the i-subproblem, to cluster j. Since no cost function
appears in both the i-subproblem and the j-subproblem, we can assess a lower bound
for the complete problem by adding a lower bound of each of them. Notice that the
one-sided lower bound in Equation (2) already assesses the summary of the costs of
the j-subproblem from Gj!i. Likewise, we can assess the summary of the costs of
the i-subproblem from Gi!j . Therefore, we can employ the cost summaries of both
subproblems to obtain a tighter bound.

Formally, when sending cost function f
U

2 Gi!j , we compute the lower bound of
tuple t

U

as:
lb

U

(t
U

) = (gj!i

U

./ gi!j

U

)(t
U

) (3)
where
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Given

x y g

j!i

xy

a a 3
a b 4
b a 3
b b 3

,

x y f

xy

a a 5
a b 2
b a 8
b b 6

,

x z f

xz

a a 4
a b 3
b a 5
b b 2

, and UB=10

One-sided Two-sided
x y f

xy

./ f

xz

[x] = g

i!j

xy

f

xy

./ g

j!i

xy

g

i!j

xy

./ g

j!i

xy

a a 5 3 8 5 + 3 8 + 3 7
a b 2 3 5 2 + 4 5 + 4
b a 8 2 10 8 + 3 7 10 + 3 7
b b 6 2 8 6 + 3 8 + 3 7

Fig. 2: One-sided vs. two-sided filtering. Ticked tuples (7) are the ones being filtered out.

• gi!j

U

=

U
./Gi!j is a lower bound on the contribution of the i-subproblem.

• gj!i

U

=

U
./Gj!i is a lower bound on the contribution of the j-subproblem.

Observe that there is no double counting of costs because no cost function appears
in both the i-subproblem and the j-subproblem. Henceforth, we will refer to the lower
bound in Equation (3) as two-sided lower bound. The name stems from the symmetrical
use of both subproblems. Hereafter, two-sided filtering refers to filtering employing the
two-sided lower bound.

Comparing both lower bounds, we observe that one-sided lower bound computes
a different lower bound for each function f

U

that cluster i wants to send to cluster
j (Equation (2)), while two-sided lower bound computes the same lower bound for
all functions to be sent from cluster i to cluster j, namely the lower bound given by
Equation (3).

As example, consider that cluster i has received a set of functions Gj!i, which
combined under {x, y} produces the function gj!i

xy

shown in Figure 2. Furthermore,
cluster i knows that the cost of the optimal solution is smaller than or equal to 10
(UB = 10). Now, it wants to send functions Gi!j

= {f
xy

, f
xz

} (in Figure 2) to cluster
j. Consider that it starts by sending function f

xy

. Cluster i can calculate the one-sided
lower bound using Equation (2), filtering out tuple (x=b, y=a) as shown in Figure 2.
Alternatively, the cluster can compute the two-sided lower bound using Equation (3), by
assessing the lower bound on the contribution of its own subproblem, namely gi!j

xy

=

xy

./ Gi!j

= f
xy

./ f
xz

[x]. Figure 2 shows that two-sided filtering performs better,
keeping only the tuple (x=a, y=b) as feasible.

5 Empirical evaluation

In this section we empirically compare the performance of IMCTEf when using one-
sided filtering and two-sided filtering. For each experiment, we track the amount of
memory used by the algorithm (the maximum amount of memory required by the algo-
rithm in its whole execution, from r = 2 until the problem is solved) along with the total
amount of computation (as the number of constraint checks performed, which are di-
rectly related with the CPU time used). Moreover, we conducted signed rank tests [15]
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(a) Increasing treewidth, con-
stant domain 8 and 100 vari-
ables.

(b) Increasing number of
variables, constant treewidth
8.

(c) Increasing domain size,
constant treewidth 9 and 100
variables.

Fig. 3: Experimental results of one-sided filtering against two-sided filtering. Median of
constraint checks and bytes exchanged are reported.

on all results to ensure that differences between methods are statistically significant
(↵ = 0.01).

One may be curious about the number of tuples that are filtered by our method. We
report the amount of memory used and not the number of filtered tuples because not
all filtered tuples cause the same savings in memory (savings depends on tuple’s arity).
Since we provide results aggregating increasing arity limits, we believe that the number
of saved bytes is a more precise measure than the number of filtered tuples. It is worth
noting that filtering a tuple in an early iteration implies that none of its extensions have
to be considered in the future ones; therefore, filtering a tuple at a given iteration has a
multiplicative effect in future iterations.

It is well-known that the treewidth is the most important indicator of problem hard-
ness for CTE-based algorithms (the temporal complexity is exponential in such pa-
rameter). Hence, we segmented our experiments according to this parameter, and en-
sured that all algorithms use the very same tree decomposition when solving the same
problem instance. We generated hard instances characterizing each scenario by three
parameters: number of variables, variables’ domain size, and treewidth. For each sce-
nario, we generated 100 problems by: (1) randomly drawing problem structures fol-
lowing an Erdös-Rényi G(n, p) model [2]; (2) selecting those structures having the
treewidth requested for the scenario; and (3) randomly drawing costs from a N (0, 1)

normal distribution (function costs are made positive by adding its minimum value to
each function).

First, we ran an experiment to evaluate the savings as the treewidth increases. We
generated scenarios with 100 variables of domain 8, and treewidths ranging from 6 to
9. Figure 3a shows that two-sided filtering reduces, with respect to one-sided filtering,
the amount of memory required by a median of more than 25% for the easier problems
(treewidth 6). It achieves even better results for the harder problems (more than 50%

for the set with treewidth 9).
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Next, we arranged an experiment to assess the impact of increasing numbers of
variables. Hence, we generated 5 sets of 100 problems, with an increasing number of
variables for each set. Since we only wanted to measure the impact of the varying
number of variables, we generated many random problem structures and selected only
those that yielded a fixed treewidth of 8. Figure 3b shows the median results achieved
by both approaches on each set of problems. Notice that using two-sided instead of one-
sided filtering reduces the total amount of bytes by more than 40% in most cases, while
achieving a 54% reduction in the 100-variables problems set. Nevertheless, there is an
interesting trend change in both computation and memory requirements past the 80-
variables set. The cause of this change is that all problems have the very same treewidth
of 8. Therefore, as the number of variables increases, the resulting problems are sparser.

Finally, we designed an experiment to measure the trend of both filtering styles
as the variables’ domain sizes increase. Thus, we generated scenarios with 100 vari-
ables, treewidth 9 and domain sizes ranging from 2 to 8. Once again, two-sided filtering
achieves significant memory savings for all the experiment’s problems. Further, as the
domain increases, so do the savings with respect to one-sided filtering: starting with a
narrow 7% reduction for domains of size 2, and reaching more than 50% reduction for
the toughest scenario (domain size 8).

6 Conclusions

We have presented the two-sided function filtering approach in the context of WCSP,
when soft constraints are represented as cost functions. This approach comes from the
combination of the two-sided lower bound computation with the function filtering idea.
Given a tree decomposition, two-sided lower bound considers the aggregation of costs
coming from the two disjoint subproblems, such that its union constitutes the whole
problem instance. Specifically, two-sided lower bound for tuple t at cluster i considers
the costs of t in the subproblem i coming not only from function f

U

to be send to
cluster j, but also from other functions of cluster i. This cost is combined with the cost
coming from subproblem j, to compute the cost of t’s best extension. This two-sided
lower bound directly extends one-sided lower bound, and it is straightforward to see
that it is more powerful. Experimentally, we have shown the benefits of this approach
with respect to one-sided function filtering in both time and memory, using a number
of experiments.
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Abstract. In this paper we express nonlinearity constraints in terms of soft

global n-ary constraints. We describe a method to decompose nonlinearity con-

straints to obtain redundant hard constraints as projections of global lower-arity

constraints. The nonlinearity constraints apply to the inputs and outputs of dis-

crete functions f : Z2n → Z2m mapping n-bit inputs to m-bit outputs, n > m.

No output bit of the function f should be too close to a linear function of (a subset

of) its input bits. That is, if we select any output bit position and any subset of the

six input bit positions, the fraction of inputs for which this output bit equals the

exclusive-OR of these input bits should not be close to 0 or 1, but rather should

be near 1
2 . We analyze this constraint and find that the obtained redundant con-

straints increase the efficiency of arc consistency maintenance solver by several

orders of magnitude.

Keywords: CSP Model, Soft Constraint, S-boxes, DES, 3DES, Nonlinearity,

Cryptanalysis, Global Constraint, Projection, Decomposition, n-ary Constraint

1 Introduction

The nonlinearity constraint is proposed in [9] to model nonlinearity requirements that
are essential for the security of cryptographic algorithms (ciphers). If substitution op-
erations in ciphers could be represented as linear relations, their parameters could be
easily obtained by solving a system of such equations connecting pairs of inputs and
outputs. Even when the functions are not perfectly linear, any success in approximat-
ing them with linear functions can increase the chances of success in guessing their
parameters. As such, [4] and [7] define one of the main nonlinearity requirements as:
No output bit of the function f should be too close to a linear function of the input bits.

That is, if we select any output bit position and any subset of the six input bit posi-

tions, the fraction of inputs for which this output bit equals the exclusive-OR of these

input bits should not be close to 0 or 1, but rather should be near 1
2 . In this paper,

we discuss our formulation of the nonlinearity constraint as a soft global n-ary con-
straint, and prove a method to obtain a set of equivalent hard, redundant constraints by
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2

13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7

1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2

7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8

2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

Fig. 1. The 3DES 6× 4 S-box S8

S-1 Each S-box has six bits of input and four bits of output.

S-2 No output bit of an S-box should be too close to a linear function of the input bits.

(That is, if we select any output bit position and any subset of the six input bit positions,

the fraction of inputs for which this output bit equals the exclusive-OR of these input

bits should not be close to 0 or 1, but rather should be near 1
2 ).

S-3 If we fix the leftmost and rightmost input bits of the S-box and vary the four middle

bits, each possible 4-bit output is attained exactly once as the middle four input bits

range over their 16 possibilities.

S-4 If two inputs to an S-box differ in exactly one bit, the corresponding outputs must

differ in at least two bits.

S-5 If two inputs differ in the two middle bits exactly, the outputs must differ in at least

two bits.

S-6 If two inputs differ in the first two bits and are identical in the last two bits, the two

outputs must be different.

S-7 For any nonzero 6-bit difference between inputs ∆Ii,j , no more than eight of the 32

pairs of inputs exhibiting ∆Ii,j may result in the same output difference ∆Oi,j .

Table 1. The nonlinearity criteria used by IBM for designing 3DES S-boxes [4]

employing projections. The nonlinearity constraints apply on the inputs and outputs of
discrete functions f : Z2n → Z2m mapping n-bit inputs to m-bit outputs, n > m. Such
functions are commonly referred to as Substitution boxes (S-boxes). We analyze these
constraints and find that the obtained redundant constraints increase the efficiency of
arc consistency maintenance solver by orders of magnitude.

2 Background

We now introduce the nonlinearity requirement, originally defined in [4].

S-box Criteria and Nonlinearity An n × m substitution box (S-box) that scrambles
(substitutes) an n-bit input data to yield an m-bit output, is a function S : Z2n → Z2m

where Zk stands for the set {0, ...k − 1}. S is not necessarily invertible. Substitution-
permutation networks [10], a common cipher architecture, use S-boxes in the genera-
tion of a parametrized substitution of x. These S-boxes have to be nonlinear and in-
vertible. One of the SP-network versions, the Feistel cipher architecture [5], relaxes
this constraint by removing the invertibility requirement. Namely, it proceeds through
iterations of the function:

F : Z2n × Z2m → Z2n × Z2m , F (x, y) = split(y||f(x, y), n,m),
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where a||b stands for the concatenation of the bits of a and b. The function f is:

f : Z2n × Z2m → Z2n , f(x, y) = x⊕ S(y),

and the function split is:

split : Z2n+m × Z× Z → Z2n × Z2m , split(z, n,m) = (z >> n, z&(2m − 1))

which splits the (n+m)-bit number z in two parts of n bits and m bits respectively, Z
being the set of (non-negative) integers. The definition uses the operator a >> b which
right-shifts a number a by b bits, and & for bit-wise AND. The obtained substitution
function f(x, ·) is a parametrized bijection, and it is therefore often referred to as a
permutation function. This function of parameter y should necessarily be nonlinear [4].
Since it is difficult to design and verify a nonlinear S-box function that works on a large
sequence of bits n, cipher designers replace them with a set of smaller S-boxes, where
each handles a fraction of the sequence of bits.

One of the most commonly-used ciphers in Netscape’s Secure Sockets Layer (SSL)
protocol and the newer Transport Layer Security (TLS) protocol is Triple-DES (3DES),
which is an example of a Feistel architecture. Other known Feistel architectures are
Blowfish, Twofish, RC5, Camellia, etc. 3DES works by a triple-application of the old
Data Encryption Standard (DES) developed by IBM [1]. It employs eight 6×4 S-boxes
numbered S1, S2, . . . , S8, with S8 shown in Fig. 1. An S-box substitution of 4 bits for
a 6-bit input i is obtained by indexing into the row number formed by the first and
last bits of i, and the column number formed by the middle bits of i. For example,
input of 45 (= 1011012) to S-Box S8 yields 8 = (10002), obtained by reading the
entry in row 3 (= 112), column 6 (= 01102) of Fig. 1. The S-boxes are so designed to
satisfy criteria numbered S-1, S-2, and so on [4], which are listed in Table 1. The S-box
nonlinearity constraint S-2 states that the output of an S-box should be highly nonlinear.
A proposal by Matsui [7] compiles this criteria into a complex metric but which allows
for a quantitative comparison of S-boxes. This is the metric that we employ here under
the form of a soft global nonlinearity n-ary constraint.

3 Concepts and Problem Formulation

Notations A 0x prefixed to the left of a number, such as 0x2ab3, specifies it is in
hexadecimal notation. |x| denotes the absolute value of a number x. For a set S, |S|
represents its cardinality while for a set expressed using braces, its cardinality is denoted
by preceding the braces with a #. The symbols · and ⊕ represent the bit-wise AND
and exclusive-OR (XOR) operation respectively, on two identical-sized bit patterns. A
linear Boolean function Lω(x) on an n-bit pattern x = x0 . . . xn−1 selected by an n-bit
pattern ω = ω0 . . .ωn−1 is defined [3] as:

Lω(x) = ω0 · x0 ⊕ . . .⊕ ωn−1 · xn−1 =
n−1⊕

i=0

ωi · xi (1)

The Hamming weight of a bit pattern x, denoted by wt(x), is equal to the number of 1’s
in x. The amount by which x and y differ, as mentioned in Table 1, equals wt(x⊕ y).
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3.1 Variables and Domains

i1i2i3i4
i0i5 0 1 2 3 ... 13 14 15

0 x0 x2 x4 x6 . . . x26 x28 x30

1 x1 x3 x5 x7 . . . x27 x29 x31

2 x32 x34 x36 x38 . . . x58 x60 x62

3 x33 x35 x37 x39 . . . x59 x61 x63

Fig. 2. Diagrammatic relationship between the defined CSP variables and 6× 4 S-box entries

We now define the elements of the (X,D,C)-based CSP model for the general case
of designing a nonlinear and non-invertible n×mS-box. Our concrete examples are for
6×4 S-boxes such as those used in 3DES. Note that invertible S-boxes can be obtained
when n = m by simply adding an alldiff constraint, which makes the function one
to one.

To model our nonlinearity criteria, we define the set X of 2n variables X =
{x0, x1, . . . , x2n−1} = {xi|i ∈ Z2n}, each representing an entry in the S-box. The
domain in D of each variable is Z2m = {0, 1, . . . , 2m − 1}.

To adapt the CSP for our case study of n×m S-boxes, the ith variable xi specifies
the m-bit S-box output for an n-bit input i. Using the variables in X , a 6 × 4 S-box
such as the ones used in 3DES, is organized as shown in Fig. 2, addressed by incre-
menting the input. In Fig. 2, a 6-bit input i, 0 ≤ i ≤ 63 is represented by the bit pattern
i0i1i2i3i4i5 for clarity. Criterion S-1 in Table 1 is already satisfied based on our choice
of variables.

3.2 Nonlinearity Metrics for Variable Assignments

Since for each input i the S-box returns the value of xi, therefore the nonlinearity of
the S-box can be stated as a nonlinearity between each index i and the value of xi. The
ability of expressing each bit of an m-bit value e ∈ Z2m in the assignment xi = e, as
a linear combination of the bits in the n-bit subscript i ∈ Z2n [7, 6], is now examined.
Here, we use this measure as the score of a solution (to be optimized) and extend the
definition to a partial assignment.

Consider an n-bit subscript i = i0 . . . in−1 of a variable xi, and a corresponding as-
signment to xi of a value from Z2m . The linear combinations to be checked for equality
are obtained by selecting bits in i and the value assigned to xi using selectors a and b
respectively, ∀a, b, 0 ≤ a < 2n and 0 ≤ b < 2m. We denote, by Lω(xi), the application
of the function Lω of Equation 1 on the value assigned to the CSP variable xi. For a
complete assignment Φ with all variables in X assigned, let NΦ

X(a, b), quantifying the
success of linearization of the relation between i to xi using coefficients a and b, be:

NΦ
X(a, b)=#{i|xi ∈ X;La(i)=Lb(xi)} (2)

Observe that 0 ≤ NΦ
X(a, b) ≤ 2n.
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Given a partial-assignment Φ′ resulting from a partial instantiation of variables
X ′ ⊆ X , we further define the partial success of linearization NΦ′

X′(a, b) as follows:

NΦ′

X′(a, b)=#{i|xi ∈ X ′;La(i)=Lb(xi)} (3)

Besides the properties for NΦ
X(a, b) [7], the following properties are also inferred di-

rectly from the definition of NΦ′

X′(a, b).

Property 1. ∀a, b, X ′, Φ′, 0 ≤ NΦ′

X′(a, b) ≤ |X ′|.

Property 2. ∀a, b, u,X ′,Φ′, and u ∈ X \X ′, NΦ′

X′∪{u}(a, b)−NΦ′

X′(a, b) ∈ {0, 1}.

Proof. Property 2 states the immediate observation that the consideration of each ad-
ditional input can raise the number of correctly linearized inputs by at most 1. This
reasoning applied consecutively to each variable in X ′ is used to explain Property 1.

Q.E.D.

These two properties are used to design heuristics that improve the efficiency of
search for solutions to satisfy the nonlinearity constraint S-2.

Nonlinearity as a Probability Measure For each variable xi corresponding to input i in
a complete assignment Φ, given selectors a and b defined as above, let p(a, b) denote
the fraction of cases when La(i) = Lb(xi), computed as:

p(a, b) =
NΦ

X(a, b)

2n
(4)

p(a, b) = 1 is the condition where the linear combination of the bits in the value as-
signed to xi selected by b equals a linear combination of the bits in i selected by a,
i.e., ∀i, La(i) = Lb(xi). If p(a, b) is equal to zero, the linear combination of the output
bits selected by b is always equal to the negation of the linear combination of input bits
selected by a. According to the nonlinearity requirement S-2, p(a, b) should be near 1

2 .

Linear Approximation Table (LAT) The Linear Approximation Table [7] for a complete
assignment is a 2n × 2m matrix. Its rows are headed by selector a, 0 ≤ a < 2n, and
columns by selector b, 0 ≤ b < 2m (see Table 2). Each entry specifies the quantity

NΦ
X(a, b)− |X|

2 , with one entry in row a and column b representing an offsetted measure
of the correlation between the bits of xi selected by b and the bits of i selected by a.
As an example, for the 3DES S-box S8, the first and last two rows of its LAT are in
Table 2. The LAT of a solution is formed by an arithmetic accumulation of individual
contributions due to each variable assignment xi = e, i ∈ Z2n , e ∈ Z2m . A contribution
arising from an assignment xi = e is equal to La(i) ⊕ Lb(e) ⊕ 1, a ∈ Z2n , b ∈ Z2m ,

that is, 0 or 1. The offset quantity
|X|
2 is subtracted from each entry in the LAT of a

solution.
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b 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a

0 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

62 0 -8 4 0 -2 2 -2 6 10 6 2 2 0 0 -4 0

63 0 -8 0 4 2 -2 -10 -2 -6 6 -2 6 -4 4 -4 0

Table 2. The Linear Approximation Table for the S-box S8 of Fig. 1

The Score of an Assignment The most effective linear approximation of a complete

assignment Φ containing |X| variables is obtained if, for some a and b, |NΦ
X(a, b)− |X|

2 |
is maximal. To reduce the weakest point of the assignment Φ, we use the so-called
effectiveness of linearization [8] as the optimization score:

σX(Φ) = max
a,b

{|NΦ
X(a, b)−

|X|

2
| : 1 ≤ a < |X|; 1 ≤ b < |D|} (5)

A complete assignment with a smaller score is considered better. We look for
argmin

Φ
(σX(Φ)). The score σX′ , X ′ ⊆ X , of a partial assignment Φ′ is defined as:

σX′(Φ′) = max
a,b

{|NΦ′

X′(a, b)−
|X|

2
| : 1 ≤ a < |X|; 1 ≤ b < |D|} (6)

4 The Nonlinearity Global Constraint

The straightforward modeling of the nonlinearity requirement leads to a soft constraint
that minimizes σX(Φ). When used as a hard constraint for a threshold τ , it becomes:

σX(Φ) ≤ τ (7)

The following property of a partial assignment allows for projection of Equation 7
to lower-arity constraints.

Property 3 (Projections). A partial assignment Φ′ with values for variables in X ′, X ′ ⊆
X , cannot be extended to a solution with score better than a threshold τ if the following
inequality is not satisfied:

|X ′|− τ −
|X|

2
≤ max

a,b
NΦ′

X′(a, b) ≤
|X|

2
+ τ (8)

Proof. During projection, the goal is for the score of S-box Φ′ to never exceed the
maximum threshold τ :

max
a,b

|NΦ′

X′(a, b)−
|X|

2
| ≤ τ (9)
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D

G

H
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C

A

EI

NΦ′

X′ (a, b)

|X′|O(0, 0)

45◦

NΦ
X(a, b)

|X|

NΦ′

X′ (a, b)

+|X|− |X′|

Number of variables assigned, φ

Values of NΦ′

X′ (a, b)

|X|

Fig. 3. Evaluating partially instantiated S-boxes.

Figure 3 depicts the distribution of NΦ′

X′(a, b) (Equation 3) for a partially instantiated
S-box Φ′. The horizontal axis is the number of variables instantiated, φ. After |X ′|
variables are instantiated at point A along the solid line, the dashed line at a 45-degree
angle with the horizontal represents the pathological case where the count NΦ′

X′(a, b)
increases by one for every subsequent extension of Φ′ up to point D. The solid zig-zag
lines connecting points A and C represents the corresponding, actual distribution of
NΦ′

X′(a, b) for the complete S-box Φ to attain the count equal to NΦ
X(a, b) at point C.

From this construction, we have OF = NΦ′

X′(a, b), OG = NΦ
X(a, b), FH = BD =

AB = |X|− |X ′|, and OH = OF + FH = NΦ′

X′(a, b) + |X|− |X ′|.
By construction, (|X|− |X ′|) remaining variables are to be instantiated in order to

extend Φ′ to Φ. To guarantee extensibility: OG ≤ OH , i.e.,

NΦ
X(a, b) ≤ NΦ′

X′(a, b) + |X|− |X ′|

This is true for all selectors a and b, and in particular, holds for the maximum value of
NΦ

X(a, b) (resp. NΦ′

X′(a, b)) over all a, b:

max
a,b

NΦ
X(a, b) ≤ |X|− |X ′|+max

a,b
NΦ′

X′(a, b) (10)

From Equation 9, |X|
2 −maxa,b NΦ

X(a, b) ≤ τ

i.e.
|X|

2
− τ ≤ max

a,b
NΦ

X(a, b) (11)

Combining Equation 10 and Equation 11,

|X|

2
− τ ≤ max

a,b
NΦ

X(a, b) ≤ |X|− |X ′|+max
a,b

NΦ′

X′(a, b) (12)
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By transitivity and regrouping, maxa,b NΦ′

X′(a, b) ≥
|X|
2 − τ − |X|+ |X ′|

i.e. max
a,b

NΦ′

X′(a, b) ≥ |X ′|− τ −
|X|

2
(13)

Given a partial S-box assignment Φ′ with variables in X ′, by the end of the construction
of any solution Φ obtained by extending Φ′, the following inequality holds: OF ≤ OG.

i.e. NΦ′

X′(a, b) ≤ NΦ
X(a, b) (14)

This is true for all selectors a and b, and in particular, holds for the maximum value of
NΦ′

X′(a, b) (resp. NΦ
X(a, b)) over all a, b:

max
a,b

NΦ′

X′(a, b) ≤ max
a,b

NΦ
X(a, b) (15)

From Equation 9, maxa,b NΦ
X(a, b)− |X|

2 ≤ τ

i.e. max
a,b

NΦ
X(a, b) ≤

|X|

2
+ τ (16)

Combining Equations 15 and 16,

maxa,bN
Φ′

X′(a, b) ≤ max
a,b

NΦ
X(a, b) ≤

|X|

2
+ τ (17)

The result follows by combing Equation 13 and Equation 17.
Q.E.D.

5 Results

The experimentation setup consists of an Intel Pentium Core-2 Duo 3-GHz CPU, 3.3
GB RAM and GNU/Linux with kernel version 2.6.28-11. The constraints are precom-
piled for DES criteria S-3, S-4, S-5, S-6 and S-7. The precompiled constraints are fed to
our implementation of a solver that supports Maintenance of Arc Consistency (MAC)
with AC2001 [2]. The soft constraint of Equation 7 modeling S-2 is transformed into
a hard constraint by setting the threshold value for τ . We experiment with τ = 16 and
τ = 10.

Better-quality S-boxes based on the score The score for the standard 3DES S-box S4

is found to be 10 (minimum), while the score for S7 is 18 (maximum). Our approach

yielded S-boxes with score 8, superior in quality to any of the standard 3DES S-boxes.
Fig. 4 reports one such S-box.

Performance Statistics The MAC solver is initially started only with the binary con-
straints. We test three heuristics for integrating the n-ary constraints in this solver.

120 of 138



9

0 3 5 6 9 10 15 12 7 4 14 13 2 1 8 11

3 0 6 5 10 9 12 15 4 7 13 14 1 2 11 8

3 15 0 12 5 6 9 10 4 8 7 11 14 13 2 1

0 12 3 15 9 10 5 6 7 11 4 8 2 1 14 13

Fig. 4. A 6× 4 S-box with score 8, generated by our CSP solver

Time r(6×4)
× 1049 S-box Count

(hrs) σX(Φ) = 10 σX(Φ) = 8
1 355, 940 8, 562 3, 583
2 572, 810, 000 17, 827 4, 999
3 646, 070, 000 27, 875 7, 836
4 688, 140, 000 37, 875 10, 883
5 1, 030, 000, 000 47, 671 13, 602

Table 3. Solver Performance Using Incomplete, Incremental Heuristic H64,10
I

– Complete, Non-incremental heuristic, Hφ,τ
S . This is the basic case where the n-ary

constraint for S-2 is checked only after all assignments, without using them in any
domain-filtering.

– Incomplete, Incremental heuristic, Hφ,τ
I . At each node in the search tree, incre-

mentally assign and check if the constraint in Equation 7 is partially satisfied. On
violation, abandon the assignment and proceed with the next one.

– Complete, Incremental heuristic Hφ,τ
C . At each node in the search tree, project the

constraint in Equation 7 by enforcing Property 3 on the current partial assignment.

Within the first hour, with a threshold τ = 10 specified, the incomplete, incremental
heuristic H64,10

I found around 3, 600 6 × 4 S-boxes with the “best” score equal to 8.
This count went up to more than 13, 500 in the 5-hour run that Table 3 reports.

Although this heuristic yields S-boxes with the “best” score, it is not complete.
In order to know whether we have found the optimal quality S-boxes we would have
to exhaust the whole search space. If the search space is too large to be exhausted,
we would like to at least know what fraction of this search space we have managed to
explore, as a measure of the probability that the optimal solution could have been found.

We therefore quantify the size of the search space, as the total number of potential
S-boxes. As shown later, the search space of our problem instances is very large, and
additional research is needed in order to be able to exhaust it. Assuming that the solver is
systematic and chronological (visiting alternatives in lexicographic order), each partial
or full assignment of values to all variables (whether it satisfies the constraints or not),
and visited or skipped by the search tree, is defining a traversed distance (explored
search space):

S(n×m)
p =

|X′|−1∑

i=0

xi · (2
m)|X

′|−i−1 (18)
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Time Non-incremental (H64,16
S ) Incremental (H64,16

C )

(hrs) r(6×4)
× 1049 S-box Count r(6×4)

× 1049 S-box Count

1 1.198 4 102,160 20,786

2 21.725 14 265,040 35,957

3 42.091 15 915,420 49,110

4 42.091 26 993,950 80,933

5 61.340 40 1,061,500 94,069

Table 4. Solver Performance Using Complete Heuristics, with S-box threshold τ = 16.

Here, X ′ ⊆ X is a set of already-instantiated variables in the current partial assign-
ment, xi ∈ X ′ is assigned a specific value from its domain D, and in Equation 18, xi

stands for the specific value assigned to the variable xi.

With dynamic reordering of values and variables, Equation 18 still applies and one
only has to use the current order.

For 6 × 4 S-boxes, S
(6×4)
p evaluates to 78-digit base-10 numbers. Given the large

size of this search space, distances typically covered by the MAC solver in reasonable
time differed only in their last few assignments (78-digit numbers differed in approxi-
mately the last 15 digits). Sometimes, certain constraints rule out much larger areas of
the search space. To conveniently report this, we define a search offset metric S-box

S
(n×m)
p1 :

r(n×m) =
S
(n×m)
p − S

(n×m)
p1

2m×2n
(19)

Here, S
(n×m)
p1 denotes the value for S

(n×m)
p (determined from Equation 18) for the

first S-box obtained by the solver. The solver has yielded S
(6×4)
p1 ≈0x033× 16

60. (The
hexadecimal form is for convenience and Sp1

could be alternatively written in decimal.)

The difference between S
(6×4)
p1 for the incomplete and complete heuristics is ≈ 3×1652

even when they use the same value for τ (graphs not shown due to lack of space). Table 3
reports the (scaled) search offsets of the solver using incomplete heuristics.

Performance Analysis of the three Heuristics Table 3 reports performance of the in-
complete, incremental heuristic, with threshold τ = 10. Table 4 compares the non-
incremental and complete, incremental heuristics. The quantities reported at each hour
represent the (scaled) fraction r of Equation 19, and the number of S-boxes generated
up to that point in each case. Based on a 5-hour run of the experiment, the complete,
incremental heuristic is observed to relatively vary between a factor of 17 and 85 times
faster than the non-incremental heuristic (in terms of size of explored search space).
The number of S-boxes generated is observed to correspondingly increase by an aver-
age factor of over 3,300. We tried all values of τ and report in Table 4 only for τ = 16.
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6 Conclusion

A soft global nonlinearity n-ary constraint, is projected onto fewer variables and thereby
applied for dynamic domain filtering during search. This heuristic yielded a 17–85-fold
relative increase in 6× 4 S-box generation efficiency.
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Abstract. The paper present a formalization of the m-best task within
the unifying framework of semirings. As a consequence, known inference
algorithms are defined and their correctness and completeness for the
m-best task are immediately implied. We also describe and analyze a
Bucket Elimination algorithm for solving the m-best task, elim-m-opt,
presented in an earlier workshop1 and introduce an extension to the
mini-bucket framework, yielding a collection of bounds for each of the
m-best solutions. Some empirical demonstration of the algorithms and
their potential for approximations are provided.

1 Introduction

Given an optimization problem, the objective is typically to find an optimal
solution, i.e., a solution that provides the best value of the objective function.
However, in many applications it is desirable to obtain not just a single optimal
solution but a set (of a given size m) of the best possible solutions. Such a set
can be useful, for example, in assessing the sensitivity of the optimal solution to
variation of the parameters of the problem, or when a set of diverse assignments
with approximately the same cost is wanted.

Lawler [11] provided a general scheme for using any optimization algorithm
to solve the m-best task. Its main idea is to compute the m-best solutions by
successively computing the best solution, each time using a slightly different
reformulation of the original problem. This approach has been extended and im-
proved over the years and is still one of the primary strategies to date for finding
the m-best solutions. The approach used in this paper is to develop direct algo-
rithms that avoid the repeated computation inherent in Lawler’s scheme. The
main idea is to integrate the m-best task into existing optimization schemes. In
particular we focus on graphical models. This work is the continuation of our
previous efforts [7], [8], where we derived and analyzed algorithm elim-m-opt
that extends the widely-used Bucket Elimination (BE) to compute the m-best
solutions by a relatively simple modification of its underlying combination and
marginalization operators [4] and proposed extensions to Mini-Bucket Elimi-
nation to compute bounds on each of the m-best solutions, yielding algorithm
mbe-m-opt.

1 [7]
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The main contribution of this paper is the formalization of the m-best task
within the framework of semirings [14, 1, 10, 2]. This unifying formulation ensures
the soundness and correctness of inference algorithms applied to any problem
that fits into the framework. In particular, we show that elim-m-opt solves the
m-best optimization task and we provide new empirical analysis for mbe-m-opt
demonstrating its effectiveness both as an exact and approximation scheme.

2 Background

We consider problems expressed as graphical models. Let X = (X1, . . . , Xn) be
an ordered set of variables and D = (D1, . . . ,Dn) an ordered set of domains.
Domain Di is a finite set of potential values for Xi. The assignment of variable
Xi with a ∈ Di is noted (Xi = a). A tuple is an ordered set of assignments to
different variables (Xi1 = ai1 , . . . , Xik = aik). A complete assignment to all the
variables in X is called a solution. Let t and s be two tuples having the same
instantiations to the common variables. Their join, noted t · s, is a new tuple
which contains the assignments of both t and s (this notation is also used for
multiplication, so we assume the meaning will be clear from the context). If t
is a tuple over a set T ⊆ X and S is a set of variables, then t[S] is a relational
projection of t on S.

We denote by DY the set of tuples over a subset of variables Y, also called
the domain of Y. Let f : DY → A be a function defined over Y. A is a set of
elements called valuations . Typical sets of valuations A are natural, real and
booleans. If f : DY → A is a function the scope of f , denoted var(f), is Y. In
the following, we will use Df as a shorthand for Dvar(f).

We assume two binary operations over valuations: ⊗ : A × A → A called
combination and ⊕ : A×A → A called addition. Both operators are associative
and commutative. Typical combination operators are sum and product over
numbers, and logical and (i.e., ∧) over booleans. Typical addition operators are
min, max and sum over numbers and logical or (i.e., ∨) over booleans. We extend
these operators to operate over functions.

Definition 1 (combination operator, marginalization operator). Let f :
Df → A and g : Dg → A be two functions. Their combination, noted f

⊗

g is
a new function with scope var(f)∪var(g), s.t. ∀t ∈ Dvar(f)∪var(g), (f

⊗

g)(t) =
f(t) ⊗ g(t). Let f : Df → A be a function and W ⊆ X be a set of variables.
The marginalization of f over W, noted ⇓W f , is a function whose scope is
var(f) −W, s.t. ∀t ∈ Dvar(f)−W, (⇓W f)(t) = ⊕t′∈DW

f(t · t′).

Definition 2 (graphical model).
A graphical model is a tuple M = (X,D,A,F,

⊗

), where: X = {X1, . . . , Xn}
is a set of variables; D = {D1, . . . , Dn} is the set of their finite domains of val-
ues; A is a set of valuations; F = {f1, . . . , fr} is a set of discrete functions where
var(fj) ⊆ X and fj : Dfj → A; and

⊗

is a combination operator over func-
tions as defined in Definition 1. The graphical model M represents the function
F (X) =

⊗

f∈F f .

125 of 138



Definition 3 (reasoning task).
A reasoning task is a tuple P = (X,D,A,F,

⊗

,⇓) where (X,D,A,F,
⊗

) is a
graphical model and ⇓ is a marginalization operator over functions as defined in
Definition 1. The reasoning task is to compute F (X) ⇓X.

For a reasoning task P = (X,D,A,F,
⊗

,⇓) the choice of (A,⊗,⊕) deter-
mines the combination

⊗

and marginalization ⇓ operators over functions, and
thus the nature of the graphical model and its reasoning task. For example, if
A is the set of non-negative reals and

⊗

is product, the graphical model is a
Markov network or a Bayesian network. If ⇓ is max, the task is to compute the
Most Probable Explanation (MPE), while if ⇓ is sum, the task is to compute
the Probability of the Evidence.

The correctness of the algorithmic techniques for computing a given reason-
ing task relies on the properties of its set of valuations and operators. These
properties are axiomatically described by means of an algebraic structure over
(A,⊗,⊕). In this paper we consider reasoning tasks P = (X,D,A,F,

⊗

,⇓)
such that their valuation structure (A,⊗,⊕) is a semiring. Several works [14, 1,
10] showed that the correctness of inference algorithms over a reasoning task P
is ensured whenever P is defined over a semiring.

Definition 4 (semiring). A commutative semiring is a triplet (A,⊗,⊕) which
satisfies the following three axioms:

A1. The operation ⊕ is associative, commutative and idempotent, and there
is an additive identity element called 0 such that a⊕ 0 = a for all a ∈ A. In
other words, (A,⊕) is a commutative monoid.
A2. The operation ⊗ is also associative and commutative, and there is a
multiplicative identity element called 1 such that a⊗ 1 = a for all a ∈ A. In
other words, (A,⊗) is also a commutative monoid.
A3. ⊗ distributes over ⊕, i.e., (a⊗ b)⊕ (a⊗ c) = a⊗ (b⊕ c)

Example 1. MPE task is defined over semiring K = (R,×,max), a CSP is defined
over semiring K = ({0, 1},∧,∨), and a Weighted CSP is defined over semiring
K = (N ∪ {∞},+,min). The task of computing the Probability of the Evidence
is defined over semiring K = (R,×,+).

Bucket elimination (BE) [4] is a well-known inference algorithm that gener-
alizes dynamic programming for many reasoning tasks.

Definition 5 (bucket elimination). The input of BE is a reasoning task
P = (X,D,A,F,

⊗

,⇓) and an ordering o = (X1, X2, . . . , Xn), dictating an
elimination order for BE, from last to first. Each function from F is placed in
the bucket of its latest variable in o. The algorithm processes the buckets from
Xn to X1, computing for each BucketXi

, noted Bi, ⇓Xi

⊗n
j=1 λj, where λj are

the functions in the Bi, some of which are original f ′
is and some are earlier

computed messages. The result of the computation is a new function, also called
message, that is placed in the bucket of its latest variable in the ordering o.
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The message passing between buckets follows a bucket-tree structure.

Definition 6 (bucket tree). Bucket elimination defines a bucket tree, where
the bucket of each Xi is linked to the destination bucket of its message (called
the parent bucket). A node of the bucket is associated with its bucket variable.

Theorem 1 [4] Given a reasoning task P = (X,D,A,F,
⊗

,⇓), BE is sound
and complete. The time and space complexity of BE(P) is exponential in a
structural parameter called induced width, which is the largest scope of all the
functions computed.

3 M-best Optimization Task

In this section we formally define the problem of finding a set of best solutions
over an optimization task. We consider optimization tasks defined over a set of
totally ordered valuations. In other words, we consider reasoning tasks where
the marginalization operator ⇓ is min or max. Without loss of generality, in the
following we assume minimization tasks (i.e., ⇓ is min).

Definition 7 (optimization task). Given a graphical model M, its optimiza-
tion task is P = (M,min). The goal is to find a complete assignment t such that
∀t′ ∈ DX, F (t) ≤ F (t′). F (t) is called the optimal solution.

Definition 8 (m-best optimization task). Given a graphical model M, its
m-best optimization task is to find m complete assignments T = {t1, . . . , tm}
such that F (t1) ≤, · · · ,≤ F (tm) and ∀t′ ∈ DX\T and ∀t ∈ T, F (t′) ≥ F (t). The
solution is the set of valuations {F (t1), . . . , F (tm)}, called m-best solutions.

The main goal of this paper is to phrase the m-best optimization task as a
reasoning task over a semiring, so that well known algorithms can be immediately
applied to solve this task. Namely, given an optimization task P over a graphical
model M, we need to define a reasoning task Pm that corresponds to the set of
m-best solutions of M.

We introduce the set of ordered m-best elements of a subset S ⊆ A.

Definition 9 (set of ordered m-best elements, m-space). Let S be a
subset of a set of valuation A. The set of ordered m-best elements of S is
Sortedm{S} = {s1, . . . , sj} such that s1 ≤ s2 ≤ . . . ≤ sj where j = m if |S| ≥ m
and j = |S| otherwise, and ∀s′ 0∈ Sortedm{S}, sj ≤ s′. The m-space of A,
denoted Am, is the set of subsets of ordered m-best elements of A. Formally,
Am = {S ⊆ A | Sortedm{S} = S}.

The combination and addition operators over the m-space Am, noted ⊗m

and sortm respectively, are defined as follows.

Definition 10 (combination and addition over the m-space). Let A be a
set of valuations, and ⊗ and min be its combination and marginalization oper-
ators, respectively. Let S, T ∈ Am. Their combination, noted S ⊗m T , is the set
Sortedm{a ⊗ b | a ∈ S, b ∈ T }, while their addition, noted sortm{S, T }, is the
set Sortedm{S ∪ T }.
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Theorem 1. The valuation structure (Am,⊗m, sortm) is a semiring.

We will refer to functions over the m-space Am f : Df → Am as vector
functions. Abusing notation, we extend the ⊗m and sortm operators to operate
over vector functions similar to how operators ⊗ and ⊕ were extended to operate
over scalar functions in Definition 1.

Definition 11 (combination and marginalization over vector functions).
Let f : Df → Am and g : Dg → Am be two vector functions. Their com-

bination, noted f
⊗

g, is a new function with scope var(f) ∪ var(g), s.t. ∀t ∈
Dvar(f)∪var(g), (f

⊗

g)(t) = f(t)⊗m g(t).
Let W ⊆ X be a set of variables. The marginalization of f over W, noted

sort
W

m{f}, is a new function whose scope is var(f) −W, s.t. ∀t ∈ Dvar(f)−W,

sort
W

m{f}(t) = sortmt′∈DW
f(t · t′).

h1: X1 X2 h2: X2 h1 ⊗m h2: X1 X2 sortmX2
{h1}: X1

a a {2,4} a {1,3} a a {3,5} a {1, 2}
a b {1,3} b {1} a b {2,4} b {3, 4}
b a {4} b a {5,7}
b b {3} b b {4}

Fig. 1: Combination and marginalization over vector functions. For each pair of values
of (X1, X2) the result of h1 ⊗m h2 is an ordered set of size 2 obtained by pair-wise
summation of the corresponding elements of h1 and h2. The result of sortmX2

{h1} is an
ordered set containing the two lower values of function h1 for each value of X1.

Example 2. Figure 1 shows the combination and marginalization over two vector
functions h1 and h2 for m = 2.

The m-best extension of an optimization problem P is a new reasoning task
Pm that expresses the m-best task over P .

Definition 12 (m-best extension). Let P = (X,D,A,F,
⊗

,⇓) be an opti-
mization problem defined over a semiring (A,⊗,min). Its m-best extension is a
new reasoning task Pm = (X,D,Am,Fm,

⊗

, sortm) over semiring (Am,⊗m, sortm).
Each function f : Df → A in F is trivially transformed into a new vector func-
tion f ′ : Df → Am defined as f ′(t) = {f(t)}. In words, function outcomes of
f are transformed to singleton sets in f ′. Then, the set Fm contains the new f ′

vector functions.

The following theorem shows that the optimum of Pm corresponds to the set
of m-best valuations of P .
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Theorem 2 Consider an optimization problem P = (X,D,A,F,
⊗

,⇓) defined
over a semiring (A,⊗,min). Let {F (t1), . . . , F (tm)} be its m-best solutions. Let
Pm be the m-best extension of P . The optimization task Pm computes the set of
m-best solutions of P . Formally,

sortX
m{

⊗

f∈Fm
f} = {F (t1), . . . , F (tm)}

It is easy to see how the same extension applies to maximization tasks. The
only difference is the set of valuations selected by operator sortm.

4 Algorithm elim-m-opt

In this section we extend the bucket elimination algorithm to solving the m-best
reasoning task. We subsequently show the derivation of the algorithm through
an example.

4.1 The Algorithm Definition

Consider an optimization task P . The bucket-elimination algorithm elim-m-opt
solving Pm (i.e., the m-best extension of P ) is described in Algorithm 1. First, the
algorithm transforms scalar functions in F to their equivalent vector functions as
described in Definition 12. Then, the algorithm processes the buckets from last
to first as usual, using the two new combination and marginalization operators
⊗

and sortm, respectively. Roughly, the elimination of variable Xi from a vector
function will produce a new vector function λi such that λi(t) will contain the
m-best extensions of t to the eliminated variables Xi+1, . . . , Xn with respect to
the subproblem below the bucket variable in the bucket tree.

Since we are interested in recovering at least one complete assignment for each
m-best solution, the algorithm propagates the variable assignments along with
the vector messages when processing each bucket. These variable assignments
are generated using the argsortm operator defined as follows.

Definition 13. Operator argsortmXi
f returns a vector function xi(t) such that

∀t ∈ Dvar(f)\Xi
, where 〈f(t · xi

1), . . . , f(t · xi
m)〉, are the m-best valuations

extending t to Xi.

In words, xi(t) is the vector of assignments to Xi that yields the m-best exten-
sions to t.

The correctness of the algorithm follows from the formulation of the m-best
optimization task as a reasoning task over a semiring.

Theorem 3 Algorithm elim-m-opt is sound and complete for finding the m-best
solutions over a graphical model.

The details of how to efficiently compute combination and marginalization
are one of the main contributions of our previous work [7]. We recap the main
algorithmic issues and demonstrate the intuition behind the method in the fol-
lowing section by deriving elim-m-opt through an example. For clarity reasons,
we omit the generation of actual m-best solution assignments.
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Algorithm 1 elim-m-opt algorithm

Input: An optimization task P = (X,D,A,F,
⊗

,min); An ordering of variables o =
{X1, . . . , Xn};

Output: A zero-arity function λ1 : ∅ → Am containing the solution of the m-best
optimization task.

1: Initialize: Transform each function f ∈ F into a singleton vector function h(t) =
{f(t)}; Generate an ordered partition of vector functions h in buckets B1, . . . ,Bn,
where Bi contains all the functions whose highest variable in their scope is Xi.

2: Backward:

3: for i← n down to 1 do

4: Generate λi = sortmXi
(
⊗

f∈Bi
f)

5: Generate assignment xi = argsortmXi
(
⊗

f∈Bi
), concatenate with relevant ele-

ments of the previously generated assignment messages.
6: Place λi and corresponding assignments in the bucket of the largest-index vari-

able in var(λi)
7: end for

8: Return: λ1

4.2 Deriving the Algorithm Using an Example

Consider a graphical model with three functions F = {f1(z, x), f2(z, y), f3(t, z)},
and its optimization task over semiring (N∪{∞},+,min) (i.e., the task is to find
the minimum cost assignment). Finding the m-best valuations of the function
F (t, z, x, y) = f3(t, z)+f1(z, x)+f2(z, y) can be expressed as finding Sol, defined

by Sol = sort
t,x,z,y

m

(

f3(t, z) + f1(z, x) + f2(z, y).

Since operator sortm is an extention of operator min, it inherits its distributive
properties over summation. Due to this distributivity, we can apply symbolic
manipulation and migrate each of the functions to the left of the sortm operator
over variables that are not in its scope. In our example we rewrite as:

Sol = sort
t

msort
z

m

(

f3(t, z) + (sort
x

mf1(z, x)) +

(

sort
y

mf2(z, y)

))

(1)

The output of sortm is a set, so in order to make equation 1 well defined, we
replace the summation operator by the combination over vector functions as in
Definition 11.

Sol = sortm
t

sortm
z

(f3(t, z)
⊗

(sortm
x

f1(z, x))
⊗

(sortm
y

f2(z, y))) (2)

BE computes expression 2 from right to left, corresponding to elimination
ordering o = {T, Z,X, Y }. Figure 2 shows the messages passed between buckets
and its bucket tree under o. Bucket BY containing function f2(z, y) is processed
first. The algorithm applies operator sortm

y
to f2(z, y), generating a vector func-

tion called amessage and denoted by λY (z) which is placed inBZ . Note that this
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message associates each z with the vector ofm best valuations of f2(z, y).Namely,

sortm
y

f2(z, y) = (λ1
Y (z), . . . ,λ

j
Y (z), . . . ,λ

m
Y (z)) = λY (z) (3)

where for z each λj
Y (z) is the jth best value of f2(z, y). Similar computation is

carried in BX yielding λX(z) which is also placed in BZ .
When processing BZ , we need to compute, (see expression 2)

λZ(t) = sortm
z

f3(t, z)
⊗

λX(z)
⊗

λY (z)

The result of the combination of the scalar function f3(t, z) with the two mes-
sages λX(z) and λY (z) is a new vector function that has m2 elements for each
tuple (t, z). Applying sort

z

m to the resulting combination generates the m best

elements out of those m2 yielding message λZ(t). As we show in [7], it is possible
apply a more efficient procedure that would calculate at most 2m elements per
tuple (t, z) instead. Finally, processing the last bucket yields the vector of m best
solution costs for the entire problem: Sol = λT = sortm

t
λZ(t) (see Figure 2a).

Bucket Y :

Bucket X :

Bucket Z :

Bucket T :

f2(z, y)
︸ ︷︷ ︸

f1(z, x)
︸ ︷︷ ︸

λZ(t)

f3(t, z) λX(z) λY (z)
︸ ︷︷ ︸

(a) Bucket messages

T

Z

X Y

λX(z) λY (z)

λZ(t)

f3(t, z)

f1(z, x) f2(z, y)

(b) Bucket-tree

Fig. 2: Example of applying elim-m-opt

4.3 Complexity of elim-m-opt

Given n buckets, one for each variable Xi, Bi containing degi (i.e., the degree of
the respective node in the bucket-tree) functions and at most w∗ different vari-
ables with largest domain size k, it is possible to efficiently compute a messages
between two buckets in O(kw

∗

m · degi logm), yielding the total time complex-
ity of elim-m-opt of O(

∑n
i=1 k

w∗

m · degi logm) as we showed in [7]. Assuming
degi ≤ deg and since

∑n
i=1 degi ≤ 2n, we get the total time complexity of

O(nmkw
∗

logm). The space complexity is dominated by the size of the mes-
sages between buckets, each containing m costs-to-go for each of O(kw

∗

) tuples.
Having at most n such message yields the total space complexity of O(mnkw

∗

).
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4.4 The Mini-Bucket for the m-best

Mini-bucket Elimination (MBE) [5] is an approximation designed to avoid the
space and time complexity of BE. Consider a bucket Bi and an integer bounding
parameter z. MBE creates a z-partition Q = {Q1, ..., Qp} of Bi, where each set
Qj ∈ Q, called mini-bucket, includes no more than z variables. Then, each mini-
bucket is processed separately, thus computing a set of messages {λij}

p
j=1, where

λij =⇓Xi
(
⊗

f∈Qj
f). In general, greater values of z increase the quality of the

bound.

Theorem 4 [5] Given a reasoning task P, MBE computes a bound on P. Given
an integer control parameter z, the time and space complexity of MBE is expo-
nential in z.

Recall that throughout this paper, we are assuming minimization tasks. In this
case, MBE computes a lower bound.

Algorithm mbe-m-opt (Algorithm 2) is a straightforward extension of MBE
to solve the m-best reasoning task, where the combination and marginalization
operators are the ones defined over vector functions. The input of the algorithm is
an optimization task P , and its output is a m-best bound on the m-best solutions
of P .

Definition 14 (m-best lower bound). Let S = {a1, . . . , aj} and T = {b1, . . . , bk}
be two sets of ordered m-best elements (i.e., S, T ∈ Am). S is a m-best lower
bound of T iff: (i) |S| ≥ |T |, (ii) b1, b2, . . . , bl−1 ∈ S and bl, bl+1, . . . , bk 0∈ S, and
(iii) aj < bl (where by definition bl = 0 if l − 1 = |T |).

The idea behind this definition is that S contains all elements in T from b1 up
to bl−1 plus some other elements, and the maximum element in S (i.e., aj) is
smaller than the first element in T not included in S (i.e., bl). For example,
S = {4, 6, 10} is not a 3-best lower bound of T = {4, 7, 10}, but it is a 3-best
lower bound of R = {4, 11}.

Theorem 5 (mbe-m-opt bound and complexity) Given a minimization task
P , mbe-m-opt computes an m-best lower bound on the m-best optimization task
Pm. Given an integer control parameter z, the time and space complexity of mbe-
m-opt is O(mnkz log(m)) and O(mnkz), respectively, where k is the maximum
domain size and n is the number of variables.

Sketch of proof. mbe-m-opt solves a relaxed version of the original problem. The
relaxation is based on adding duplicates of the variables eliminated in differ-
ent mini-buckets. In the limit (i.e., when m is infinity), the relaxed problem’s
solution set contains all solutions to the original problem (corresponding to as-
signments where duplicated variables take on the same domain value), plus a set
of other solutions (corresponding to assignments where duplicated variables take
on different domain values). When m is different to infinity, and depending on its
value, the output of mbe-m-opt will contain all solutions to the original problem,
some of them, or none. In all cases, the output satisfies the conditions to be an
m-best lower bound of the set of m-best solutions to the original problem.
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Algorithm 2 mbe-m-opt algorithm

Input: An optimization task P = (X,D,A,F,
⊗

,min); An ordering of variables
o = {X1, . . . , Xn}; parameter z.

Output: bounds on each of the m-best solution costs and the corresponding assign-
ments for the expanded set of variables (i.e., node duplication).

1: Initialize: Generate an ordered partition of functions f(t) = {f(t)} into buckets
B1, . . . ,Bn, where Bi along o.

2: Backward:

3: for i← n down to 1 (Processing bucket Bi) do
4: Partition functions in bucket Bi into {Qi1 , ..., Qil}, where each Qij has no more

than z variables.
5: Generate cost messages λij = sortmXi

(
⊗

f∈Qij
f) and place each in the largest

index variable in var(Qij )
6: end for

7: Return: The set of all buckets, and the vector of m-best costs bounds in the first
bucket.

4.5 Using the m-best bound to tighten the first-best bound

Here is a simple, but quite fundamental observation. Recall that whenever upper
or lower bounds are generated by solving a relaxed version of a problem, the
relaxed problem’s solution set contains all the solutions to the original problem.
We next discuss the ramification of this observation.

Proposition 1. Given the m-best solutions generated by mbe-m-opt (for clarity
we consider minimization problem, the results can be extended for maximization)
C̃ = {p̃1 ≤ p̃2 ≤, ...,≤ p̃m}, let popt be the optimal value (the minimum cost)
and let j0 be the first index such that p̃j0 = popt, or else we assign j0 = m + 1.
Then, if j0 > m, p̃m is a lower bound on popt, which is as tight or tighter than
all other p̃1, ...p̃m−1. In particular p̃m is tighter than the bound p̃1.

Proof. Let C̃ = {p̃1 ≤ p̃2 ≤, ...,≤ p̃N1
be an ordered set of costs of all tuples over

the relaxed problem (with duplicate variables). By the nature of any relaxation,
C̃ must also contain all the cost values associated with solutions of the original
problem denoted by C = {p1 ≤ · · · ≤ pN2

}. Therefore, if j0 is the first index
such that p̃j0 coincides with popt, then clearly for all i < j0, popt ≥ p̃i with p̃j−1

being the tightest lower-bound. Also, when j0 > m we have p̃m ≤ copt

In other words if j ≤ m, we already have the optimal value, otherwise we can
use p̃m as our better lower bound. Such tighter bounds would be useful during
search algorithm such as A*. It is essential therefore to decide efficiently if a
bound coincides with the exact optimal cost. Luckily, the nature of the MBE
relaxation supplies us with an efficient decision scheme.

Proposition 2. Given a m-best lower bound produced by mbe-m-opt p̃1 ≤ p̃2 ≤
, ... ≤ p̃m, deciding if p̃j = popt can be done efficiently.
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Proof. mbe-m-opt provides both the bounds on the m-best costs and for each
bound a corresponding tuple, where assignments to duplicated variables is main-
tained. The first assignment from these m-best bounds (going from largest to
smallest), that corresponds to a tuple whose duplicate variables are assigned
identical value, is optimal. And, if no such tuple is observed, the optimal value
is smaller than p̃m. Since the above tests require just O(nm) steps applied to
m-best assignments already obtained in polytime, the claim follows.

5 Related work

Comparing with exact schemes. Lawler’s approach, whose complexity is
O(nmT (n)), where T (n) is the complexity of finding a single best solution, was
applied by Nilsson [12] to a join-tree. Nilsson utilizes the results from previous
computations, achieving worst case complexity of O(mT (n)). If applied to a
bucket-tree his algorithm dominates schemes mentioned here, with run time of
O(nkw∗+mn log(mn)+mnk). Yanover and Weiss [15] developed a belief propa-
gation approximation scheme for loopy graphs, called BMMF. When applied to
juction tree it can function as an exact algorithm with complexity O(mnkw∗).

Two algorithms that are similar to elim-m-opt, both based on dynamic pro-
gramming, are [13] and [6]. Seroussi and Golmard algorithm extracts the m
solutions directly, by propagating the m best partial solutions along a junction
tree that is pre-compiled. Given a junction tree with p cliques, each having at
most deg children, the complexity of the algorithm is O(m2p ·kw

∗

deg). Elliot [6],
explores the representation of Valued And-Or Acyclic Graph, i.e., smooth deter-
ministic decomposable negation normal form (sd-DNNF) [3]. He propagates the
m best solutions partial assignments to the problem variables along the DNNF
structure which is pre-compiled as well. The complexity of Elliot’s algorithm
is O(nkw

∗

m logm · deg). Clearly our elim-m-opt algorithm does not boast the
best complexity compared to the related methods. However, it demonstrates the
direct applicability of established inference schemes to the generalized formula-
tion of the m best solution problem as the m-best reasoning problem. Moreover,
the main significance elim-m-opt is in the natural extension to an approximation
scheme with guarantees on the solution quality that provides flexible trade off
between accuracy and complexity.

Comparing with approximation schemes. In addition to BMMF, another
extension of Nilsson’s and Lawler’s idea that yields an approximation scheme
is an algorithm called STRIPES by [9]. They focus on m-MAP problem over
binary Markov networks, solving each new subproblem by an LP relaxation.
The algorithm solves the task exactly if the solutions to all LP relaxations are
integral, and provides an upper bound of each m MAP assignments otherwise.
In contrast, our algorithm mbe-m-opt can compute bounds over any graphical
model (not only binary) and over a variety of m-best optimization tasks.
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Fig. 6: The change in the cost of the jth solution as j increases for chosen WCSP
instances, n ∈ [25, 475], w∗ ∈ [18, 293], k ∈ [2, 4]. Results obtained by mbe-m-opt with
z-bound=10.

6 Empirical demonstrations

The first part of our experiments assumes solving m-best MPE task. We eval-
uated empirically algorithm mbe-m-opt with m = {1, 5, 10, 20, 50, 100, 200} and
with z-bound 10 on two sets of instances. The first set contained grid instances
with a hundred to 2.5 thousand variables and tree-width from 12 to 50, the
second - pedigree instances with several hundred variables and tree width from
15 to 30. Those instances were taken from the UAI 2008 evaluation. For clarity
and space reasons we present only a subset of instances illustrating typical be-
haviour. Figures 3 and 4 present the dependence of the run-time on m, for a few
selected instances.

Figure 5 shows the change in the upper bound as a function of index of the
solution j. For these grid instances as j increases, the bound on the cost of the
jth solution approaches the exact best solution, but extremely slowly. However,
as can be seen in Figure 6, it is not the case for all type of instances. This figure
depicts some of the results of the experiments on the set of weighted CSPs from
UAI 2008 competition. The instances in question have from 25 to 450 variables,
domain size 2-4 and induced width 18-293. We can see considerable differences
between the costs of the 1st and 10th for some instances. This demonstrates that
there is a potential of improving the bound on the optimal assignment using the
m-best bounds as discussed in Section 4.5.

We carried some comparison with BMMF by [15] on randomly generated 10
by 10 grids for MPE task. The run times of the algorithms are not compara-
ble since our algorithm is implemented in C and BMMF in Matlab, which is
inherently slower. For most instances that mbe-m-opt can solve exactly in under
a second, BMMF takes more than 5 minutes. The algorithms also differ in the
nature of the outputs: BMMF provides approximate solutions with no guaran-
tees while mbe-m-opt generates bounds on all the m-best solutions. Still some
information can be learned from viewing the two algorithms side by side as is
demonstrated by a typical result in Figure 7. We know that in this case the
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solutions obtained with z-bound equal to 1000 are exact, while z-bound equal
to 10 yields an upper bound. BMMF outputs significantly less accurate results
than mbe-m-opt with even a low z-bound. Admittedly, these experiments are
quite preliminary and not conclusive.
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Fig. 7: Comparison of mbe-m-opt with z-bounds 10 and BMMF on random 10 by 10
grids. The exact solutions were obtained by mbe-m-opt with z-bound> w∗. While mbe-
m-opt provides upper bounds on the solutions, BMMF gives no guarantees whether it
outputs an upper or a lower bound. Also, its accuracy on these instances are clearly
worse.

7 Conclusions

We presented a formulation of the m-best reasoning task within a framework of c-
semiring. Such problem definition make existing inference and search algorithms
immediately applicable for the task, as we demonstrated on the example of a new
bucket-elimination algorithm for solving the m-best task over a graphical model,
analyzed its performance and related it to other approaches in the literature.

The significance of the proposed algorithm is primarily in providing an infer-
ence framework for the m-best task that can both suggest approximation schemes
and yield heuristic advice. Indeed, optimization tasks that seek a single optimal
solution are solved far more effectively by search (e.g., branch and bound and
best-first search), than by variable elimination, because they can benefit from
the bounding power of the guiding cost function. It is also likely that search will
be more effective for m-best task. The promise of the elim-m-opt inference algo-
rithm is in its potential to yield viable lower- and upper-bounds for the m-best
solutions via the mini-bucket algorithm, as we discussed.

Furthermore, it could also lead to loopy propagation message-passing schemes
that are now the most common way for approximations in graphical models, since
those schemes are relaxation of exact message-passing schemes such as bucket-
elimination. In particular, our algorithm can be extended into a loopy max-prod
for the m-best task. This approach will yield a direct loopy-propagation for the
m-best reasoning problem, while the approach by Yanover and Weiss uses loopy
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max-prod for solving a sequence of optimization problems in the style of Lawler’s
approach. Moreover, all such approximation extensions would be applicable to
the broad range of graphical models captured by the unifying framework of c-
semiring. Future work will focus on such extensions and on empirical evaluations
of the emerging schemes.

The empirical analysis we provided is only preliminary. Yet it shows thatmbe-
m-opt scales even better than worst-case predict as a function of m. Comparison
with other exact and approximation algorithms is left for future work.
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