
Hybrid Approaches for Rostering: a Case Study

in the Integration of Constraint Programming

and Local Search

Raffaele Cipriano1, Luca Di Gaspero2, and Agostino Dovier1

1 Dip. di Matematica e Informatica
raffaele.cipriano@gmail.com|dovier@dimi.uniud.it
2 Dip. di Ingegneria Elettrica, Gestionale e Meccanica

l.digaspero@uniud.it
Università di Udine, via delle Scienze 208, I-33100, Udine, Italy

Abstract Different approaches in the hybridization of constraint pro-
gramming and local search techniques have been recently proposed in
the literature. In this paper we investigate two of them, namely the
employment of local search to improve a solution found by constraint
programming and the exploitation of a constraint model to perform the
exploration of the local neighborhood. We apply the two approaches to a
real-world personnel rostering problem arising at the department of neu-
rology of the Udine University hospital and we report on computational
studies on both real-world and randomly generated structured instances.
The results highlight the benefits of the hybridization approach w.r.t.
their component algorithms.

1 Introduction

Constraint Satisfaction Problems (CSPs) are a useful formalism for modeling
many real problems, either discrete or continuous. Remarkable examples are
planning, scheduling, timetabling, and so on. A CSP is generally defined as the
problem of associating values (taken from a set of domains) to variables subject
to a set of constraints. A solution of a CSP is an assignment of values to all
the variables so that the constraints are satisfied. In some cases not all solu-
tions are equally preferable, but we can associate a cost function to the variable
assignments. In these cases we talk about Constrained Optimization Problems
(COPs), and we are looking for a solution that (without loss of generality) min-
imizes the cost value. The solution methods for CSPs and COPs can be split
into two categories:

– Complete methods, which systematically explore the whole solution space in
search of a feasible (for CSPs) or an optimal (for COPs) solution.

– Incomplete methods, which rely on heuristics to focus on interesting areas of
the solution space with the aim of finding a feasible solution (for CSPs) or
a “good” one (COPs).

Constraint programming (CP) languages [2] are usually based on complete
methods that analyze the search space alternating deterministic phases (con-
straint propagation) and non-deterministic phases (variable assignment), explor-
ing implicitly or explicitly the whole search space. Local search (LS) methods
[1], instead, rely on the definition of “proximity” (or neighborhood) and they ex-
plore only specific areas of the search space. Local search method, concentrating
on some parts of the search space, can approximate optimal solutions in shorter
time.

Two major types of approaches for combining the abilities of constraint pro-
gramming and local search are presented in the literature [6,7] (in [8] constraint
programming and local search are hybridized in a more liberal context):

1. a systematic-search algorithm based on constraint programming can be im-
proved by inserting a local search algorithm at some point of the search
procedure, e.g.:
(a) at a leaf (i.e., on complete assignments or on an internal node (i.e.,

on a partial assignment) of the search tree explored by the constraint
programming procedure, in order to improve the solution found;

(b) at a node of the search tree, to restrict the list of child-nodes to explore;
(c) to generate in a greedy way a path in the search tree;

2. a local search algorithm can benefit of the support of constraint program-
ming, e.g.:
(a) to analyze the neighborhood and discarding the neighboring solution

that do not satisfy the constraints;
(b) to explore a fragment of the neighborhood of the current solution;
(c) to define the search of the best neighboring solution as a problem of

constrained optimization (COP).

In this work we adopt the two hybrid techniques 1(a) and 2(b) and we ap-
ply them to a hospital personnel rostering problem. In the first approach we
employ constraint programming for searching an initial feasible solution and
subsequently we improve it by means of local search, using classical algorithms
like hill climbing, steepest descent and tabu search. In the second approach we
devise a local search algorithm (called hybrid steepest descent) that exploits a
constraint programming model for the exploration of neighborhood fragments.

The employment of constraint programming for finding an initial feasible
solution exhibits several advantages w.r.t. generating an initial random solution.
Indeed, constraint programming allows us to find in short times (about 5-10
seconds) a feasible solution, providing a good starting point for local search.

The local search methods that exploits the constraint programming neigh-
borhood model has evidenced how constraint programming can be used in the
exhaustive exploration of neighborhood fragments, obtaining competitive local
search procedures; furthermore, this approach is favorable only with huge search
spaces. since for small problems the high computational overhead of the con-
straint programming is not payed back by remarkable improvements of the cost
function.

The remainder of the paper is organized as follows: in Section 2 we present
the formalization of the rostering problem analyzed. In Section 3 we provide
some details about the implementation of the hybrid methods and in Section 4
we report the comparisons among the different solution techniques employed.
Possible future directions of research are discussed in Section 5.

2 Hospital Personnel Rostering

The personnel rostering problem consists in the assignment of personnel re-
quirements (usually expressed in terms of shift types) to qualified personnel
over a certain planning period. The goal is to find a feasible assignment which
minimizes a suitable objective function. Finding high-quality solutions to this
problem is of extreme importance in knowledge-intensive labors, where the very
specialized skills of personnel make impossible to exchange the duties among
persons thus hardening the problem. This situation especially arises in hospital
departments, which need an optimal schedule of the workforce that balances the
trade-off between internal and external requirements such as the fair distribution
of the workload among the different doctors and the assurance of a constant and
efficient medical service to citizens.

Although in the last 30 years several studies proposes different solutions to
this problem (e.g., by means of mathematical programming, multi-objective pro-
gramming, constraint programming, expert systems, heuristic and meta-heuristic
methods, see [3] for a comprehensive review), at present in Italian hospitals the
problem is usually solved with pencil-and-paper by a doctor (self-scheduling).
In this work we studied a particular family of rostering problems we called Neu-

Rostering (NR for short), which model the personnel assignment problem of the
department of Neurology of the University Hospital of Udine.

The problem is described in details in the following. Given m doctors, n days
(the temporal horizon) and k possible shifts, the NR problem consists in assigning
to each doctor the shifts to cover during the temporal horizon considered. In
particular, for each day some shifts must be covered, based on the type of day
(a workday or in the weekend) and of the weekday (some shifts are required
only on Mondays, other on Tuesdays, and so on). Each shift must be assigned to
one (and only one) doctor. Some shifts (e.g., the most general ones like urgent
calls shifts) can be covered by any doctor, while others can be covered only by
a restricted number of doctors on the basis of their competence. Every doctor
can specify a list of days of the temporal horizon in which he/she is not available
(e.g., because of days off, conferences, courses, teaching, . . .). Moreover, there
are a set of “temporal” restrictions that regulate the coverage of the shifts: every
shift has fixed working times, every doctor can be assigned to consecutive shifts
but, in this case, there is an upper bound on the number of consecutive working
hours that cannot be exceeded, a doctor should have a rest between two assigned
shifts.

2.1 Formulation of NR as CSP

Let E = {e1, . . . , ek} be the set of all possible shifts; we consider the variables
G1, ..., Gn, one for each of the n days, where Gi ⊆ E is defined as follows:

Gi = {ek ∈ E | ek is a shift to be covered on the day i}

The skills of each doctor j ∈ 1..m are encoded in a set Mj ⊆ E, defined as
follows:

Mj = {ek ∈ E | ek is a shift that doctor j is allowed to cover}

Furthermore, let consider m sets Fj ⊆ {1, . . . , n} that represent the days of
the temporal horizon in which doctor j is not available.

Let C ⊆ E × E be the set of pairs (ei, ej) of shifts that can be covered in
the same day by the same doctor. Then, we define as T the set of shift sets
(singletons or doubletons) that can be covered by a doctor in the same day:

T = {{ei} | ei ∈ E} ∪ {{ei, ej} | (ei, ej) ∈ C}

Let S ⊆ E × E be the set of pairs of shifts (ei, ej) that can be covered by
the same doctor in consecutive days.

The problem input is defined by the sets generated above. In order to coding
the problem constraints we consider for all i ∈ 1..n, j ∈ 1..m the variables Oi,j

whose domains are the sets T ∪ {∅}. Oi,j = set of shifts means that in day i

doctor j will cover the set of shifts indicated. An assignment to these variables
is an (admissible) solution if and only if:

1. ∀i ∈ 1..n∀j ∈ 1..m Oi,j ⊆ Mj (competence: each doctor can only cover
shifts he/she is qualified for);

2. ∀i ∈ 1..n∀j ∈ 1..m i ∈ Fj ⇒ Oi,j = ∅ (availability : each requirements for
days off is satisfied);

3. ∀i ∈ 1..n∀j ∈ 1..m Oi,j ∈ T (max hours: each assignment is coherent with
the maximum number of hours per day);

4. ∀i ∈ 1..n− 1∀j ∈ 1..m ∀t ∈ Oi,j∀t� ∈ Oi+1,j (t, t�) ∈ S (legal rules: there
is the suitable distance between consecutive shifts for the same doctor);

5. ∀i ∈ 1..n ∪m
j=1 Oi,j = Gi (coverage: all required shifts are covered);

6. ∀i ∈ 1..n∀j1 ∈ 1..m∀j2 ∈ 1..m(j1 �= j2 → Oi,j1 ∩ Oi,j2 = ∅) (mutual exclu-
sion: each shift is covered by at most one doctor).

Let us observe that our encoding of the NR problem uses m·n·k Boolean vari-
ables with the following intuitive meaning: ∀i ∈ 1..m∀j ∈ 1..n∀z ∈ 1..k Xi,j,z = 1
if and only if doctor i covers shift z in the day j. Let us observe that establish
the existence of a solution to an instance of NR is NP-complete (by means of a
straightforward encoding of 3-GRAPHCOLORING).

2.2 COP model for NR

Our NR implementation is endowed with an objective function used to model
some soft constraints associated to the problem and to choose one solution w.r.t.
others. This function has been obtained by eliciting information from the man-
ager of the Neurology Dept. and it is based on five parameters.

Weekend, Nights, and Guards. One of the objectives is to balance the work
of the doctors in the week-ends. In the week-ends there are only two types of
shifts, denoted by Urgent calls Morning and Afternoon (UMUP) and Urgent calls
Night (UN). We looked for an expression that assumes high values when shifts
are badly distributed among the doctors. Given a doctor i we propose to sum
all the values (actually Boolean values are seen as integer values here) related
to shifts UMUP and UN in the weekends and in the holidays:

Wk =
�m

i=1(
�

j∈GWE,z∈TWE Xi,j,z)2

In the above formula, i ranges over doctors, j over days to be selected in the
set GWE of days in weekends and holidays (e.g., if December 1st is on Monday,
then n = 31 and GWE = {6, 7, 13, 14, 20, 21, 25, 27, 28}), and z ranges over shifts
in the set TWE (in this case TWE = {UMUP,UN}). In order to balance the
amounts of night shifts UN and of Urgent calls morning UM (save those in the
weekends and holidays, already considered in Wk—shifts UMUP) we define the
two following formulas in analogous way:

Nt =
�m

i=1(
�

j∈1..n\GWE Xi,j,UN)2, Gu =
�m

i=1(
�

j∈1..n\GWE Xi,j,UM)2

Undesired Pairs. Here we take care of the number of days where a doctor works
either in a morning and in a afternoon shift. This is highly undesirable for doctors
that work both in the public hospital and as private professionals. We define the
following formula for the variable Dp:

Dp =
�

i∈1..m,j∈1..n

�
�

z∈AM

Xi,j,z ·
�

z∈PM

Xi,j,z

�

where AM (resp., PM) is the set of all morning (resp., afternoon) shifts. Let us
observe that the product of the two inner sums assume value 1 only when a
doctor is employed either in the morning or in the afternoon and 0 elsewhere
(values greater than 1 are forbidden by max hours constraints).

Consecutive shifts. Here we consider situations where a doctor is employed in
the same type of shifts for three consecutive days. Some of these sequences are
penalize (we count as 1), other (e.g. RMu and RMg) are encouraged (we count
as -1). Therefore, we assign to Cn the following formula, where E is the set of
all possible shifts:

Cn =
�

i ∈ 1..m, j ∈ 1..n − 2,
z ∈ E \ {RMu, RMg}

(Xi,j,zXi,j+1,zXi,j+2,z)−
�

i ∈ 1..m, j ∈ 1..n − 2,
z ∈ {RMu, RMg}

(Xi,j,zXi,j+1,zXi,j+2,z)

Objective functions. Finally, we assign a weight to each one of the just defined
five variables in order to balance solutions to NR. In the case studied, where
m = 20, k = 28, and n ∈ 28..31 (for a temporal horizon of one month there are
more or less 16000 variables) is the following:

FObj = 50Wk + 40Nt + 30Dp + 20Gu + 10Cn

Weights have been chosen in the following way. Starting from the by hand
computed solutions for the year 2005, we deduced the holidays and the various
constraints required by the doctors. Then we generated some sequences of so-
lutions and showed them to the responsible of the Neurology. We modified the
weights using his feedback in such a way that minimal values of the function are
associated to more preferable solutions.

3 Implementation

In this work, for the solution of the NR problem we adopt two hybrid techniques,
which integrate constraint programming and local search. In the first approach
we employ constraint programming for searching an initial feasible solution and
subsequently we improve it by means of local search. In the second approach we
devise a local search algorithm that exploits a constraint programming model
for the exploration of the neighborhood.

3.1 Application architecture

In order to solve the NR we design a software tool made up of two main modules:

1. the FirstSolution module, a program implemented by means of the clpfd
SICStus Prolog package [4] which models the NR problem. The module let
the user specify a problem instance and it starts processing it as soon as a
feasible solution is found. If a feasible solution does not exists this module
raises an error and stops the execution or, whenever possible, it relaxes some
parts of the model leading to an approximate solution.

2. the LocalSearch module, which implements a set of local search algorithms
for the NR problem. This module has been developed using the JEasyLo-
cal framework, a Java version of the C++ framework EasyLocal++ [5].
The module takes as input a feasible solution obtained by the FirstSolution
module and improves it by means of a local search algorithm that can be
chosen by the user. The final solution found by this module can be further
improved applying a different local search algorithm in an iterative process.
The local search techniques implemented in this module are hill climbing,
steepest descent and tabu search. Moreover, this module features a local
search solver that uses the steepest descent technique for driving a constraint
programming formulation of the exploration of the neighborhood.

Dr. 1 2 . . .

Jones . . . DH . . .
.
Freud UM . . .
.

=⇒

Dr. 1 2 . . .

Jones . . . UM . . .
.
Freud DH . . .
.

Figure 1: An example of an exchange move

Local Search Among other entities (i.e., the definition of the search space and
the cost function that in this case are borrowed from the constraint programming
formulation), to specify a local search algorithm it is necessary to define the
move; that is, the local perturbation to be applied to a solution in order to obtain
a neighboring one. To this aim we define the following move, called exchange:

“Given a specific day and working time, exchange the shifts of two doctors”

For example, if Dr. Freud covers the shift UM in the morning of day 2 and
Dr. Jones covers the shift DH (Day Hospital) in the morning of the same day, a
possible exchange move consists in swapping the shifts UM and DH between the
two doctors, so that in the morning of day 2 Dr. Jones will be assigned to the
shift UM and Dr. Freud will cover the shift DH as shown in Figure 1.

The shifts involved in the exchange move can be working shifts or rest periods.
When we exchange a working shift with a rest one, the doctor currently in rest
will get the working shift and the doctor currently working will get a rest shift.
Exchange moves that involve doctors that are both currently in a rest period do
not affect the solution and therefore are idle moves; conversely, all other types of
exchange moves are meaningful and modify the solution. An exchange move is
therefore identified by: the two doctors participating in the exchange, the day of
the time horizon and the working time (that can be “Morning” or “Afternoon”).

Notice that, given a solution, the size of the neighborhood (i.e., the number
of neighboring solutions of the current state) is equal to m(m−1)

2 2n = O(m2n).
It is possible to generalize the concept of exchange move by introducing the
compound exchange move defined as follows:

“A compound exchange move is a sequence of one or more exchange moves”

The compound moves are very useful to handle consecutive shifts that must
(or it is preferable to) be moved together. It is worth to notice that the definition
of the exchange moves always lead to states where the covering constraints are
satisfied: indeed, if solution A satisfy the covering constraints so will solution B

obtained by an exchange move since no shift is added or removed from a day col-
umn, but simply the assignment of two doctors are swapped. As a consequence,
making sure that the local search procedure will start from a feasible solution
(like the one obtained by the FirstSolution module) and applying only exchange
moves there is no need to make the covering constraint explicit. However, we

observe that an exchange move could lead to a state where other types of con-
straints are violated: for example a doctor could be assigned a shift for which
he/she is not qualified, or he/she could be not available on that day. These vi-
olations are taken into account by an objective function FObj which penalizes
such situations.

In the following sections we briefly outline the local search algorithms we
have developed.

Hill climbing. The hill climbing (HC) strategy adopted in this work is the so-
called randomized hill climbing: an exchange move is randomly drawn and ap-
plied to the current solution. If the solution obtained improves or has an equal
value of the objective function, then it is accepted and it becomes the new in-
cumbent solution; conversely, if the new solution worsens the cost function it is
discarded and a new random move is drawn. This procedure is iterated and the
whole process stops when a user specified time-out has expired.

The crucial aspect in the implementation of this method concerns the random
generation of the moves, which could lead to the generation and testing of a lot of
idle moves. The random procedure has been therefore biased toward meaningful
moves by enforcing that the first doctor of the exchange move must not be on a
rest period, thus avoiding the generation of idle moves.

Steepest descent. The steepest descent (SD) strategy consists in the full explo-
ration of the neighborhood of the current solution, looking at the solution that
gives the biggest improvement of the objective function. This move is then ap-
plied to the current state to obtain the new incumbent solution. The procedure
is iterated and it stops as soon as no improving move can be found.

Compared to HC, this procedure is more time-consuming but it generally
leads toward bigger improvements of the objective function. The key aspect of
this method is the procedure employed for the enumeration of the moves. Since
the evaluation of the objective function is a costly operation it is advisable to
avoid unnecessary computations, especially on moves that lead to states where
the constraints are violated. The enumeration procedure we have implemented
makes use of a basic knowledge about the constraints and it skips such moves,
allowing us to save computation time.

Tabu search. This method (TS) explores a subset of the neighborhood of the
current solution and applies the move that gives the minimum value of the
objective function, regardless the fact that this value is better or worse than the
one of the previous solution. This allows the method to escape from local minima,
but at the risk of cycling among a set of solution. To avoid the latter phenomenon
the method employs the so-called “Tabu List”, a memory of recently applied
moves, and it forbids the application of moves that are inverses of the moves in
the list (which would lead to an already visited state).

Among different variants of the memory mechanism presented in the litera-
ture we employ the so-called dynamic tabu list. The list contains a number of
moves comprised between two values kmin e kmax, which are parameters of the

method. Once a move enters the list it is assigned a random integer value in
the range kmin..kmax that corresponds to the number of iterations the move is
kept in the tabu list. For this problem we find out experimentally that the best
setting of these parameters is kmin = 5 and kmax = 10.

As for the aspiration criterion, which overrides the prohibition status of the
moves, we choose to accept also moves in the tabu list when they lead to a state
that is better than the current best solution.

Hybrid steepest descent. Finally, we implemented an hybrid local search algo-
rithm driven by the steepest descent strategy (HSD), which employs a neigh-
borhood model encoded in SICStus Prolog. The idea behind this algorithm is
to explore fragments of the neighborhood of the current solution by letting the
constraint programming solver to find a representative solution (the best neigh-
bor) of the current fragment. The neighborhood fragments have to be chosen so
that they form a partition of the whole neighborhood of the current solution.
The algorithm then accepts the best among the representative solutions that
improve the objective function, inspired by the steepest descent strategy. The
search of the best representative solution is performed by the labeling predicate
of SICStus Prolog.

The concept of “neighborhood fragment” we had taken into account is based
on a single day: given a solution S and a day of the temporal horizon x, the
neighborhood of S w.r.t. the day x consists in the set of all solutions S� that
are identical to S for all days d �= x and they differ from S for the shifts of
day x. Hence, every solution will have n possible neighborhood fragments. The
exploration of a neighborhood fragment w.r.t. the day x means the evaluation
of all possible permutations of shifts on that day: the best permutation will be
the representative of that neighborhood fragment.

This approach shares some similarities with the work of Pesant and Gendreau
[9], however it differs in the type of move employed and in the granularity of the
neighborhood exploration. In our case, indeed, we explore a full set of exchange
moves (i.e., duty exchanges between doctors) whereas in [9] the authors use a
insertion move (i.e., a duty is assigned to a doctor and not removed elsewhere).
Furthermore, our neighborhood model involves a portion of shifts that insist on
a single day only, while [9] neighborhood is restricted to a single shift.

4 Experiments

To the aim of comparing the four hybrid algorithms described in the previous
section, we carried out an experimental evaluation of the solvers. Three types
of experiments have been performed: (i) on randomly built structured instances
of variable size; (ii) on real-world instances in long-runs; (iii) the best solver is
compared with self-scheduling solutions.

First test — Methodology. The goal of the first test is to analyze the behavior
of the algorithms on sets of structured instances that are similar to real-world

0 10 20 30 40 50 60

80
0

10
00

12
00

14
00

16
00

n = 10

Time (s)

FO
bj

HC
SD
TS
HSD

0 100 200 300 400 500

20
00

25
00

30
00

35
00

40
00

n = 20

Time (s)

FO
bj

HC
SD
TS
HSD

0 200 400 600 800 1000 1200

35
00

40
00

45
00

50
00

55
00

60
00

65
00

70
00

n = 30

Time (s)

FO
bj

HC
SD
TS
HSD

0 500 1000 1500

60
00

70
00

80
00

90
00

10
00

0
11

00
0

n = 40

Time (s)

FO
bj

HC
SD
TS
HSD

Figure 2: Average evolution of the objective function on instances with temporal hori-
zon n equals to 10, 20, 30 and 40 days

ones. We randomly generate 4 series of 10 instances whose temporal horizon n

consists of 10, 20, 30 and 40 days, respectively.
All the instances have been solved by the four algorithms, accounting for a

total of 160 runs. Each algorithm was granted a running time proportional to the
instance size, namely of 80 · n seconds. During each run, we record the values of
the objective function that corresponds to improvements of the current solution
together with the running time spent. These data have been aggregated in order
to analyze the average behavior of the different algorithms on each group of 10
instances. To this aim we perform a discretization of the data on regular time
intervals; subsequently, for each discrete interval we compute the average value
of the objective function on the 10 instances.

First test – Results. Figure 2 reports the evolution of the objective function for
the different methods on the instances with temporal horizon n equals to 10, 20,
30 and 40 days.

From the picture it is apparent that HC outperforms all the other methods
on all groups of instances. Indeed, thanks to the non-exhaustive sampling of the
neighborhood this method is able to find reasonably good improvements quickly,
leading to a fast decrease of the objective function from the very beginning of the
search process. Furthermore, HC does not get stuck in local minima (as other

methods do) but it keeps perturbing the current solution with sideways moves
that could possibly lead to explore new regions of the search space.

The classical SD strategy, instead, is the worst method among the ones tested.
Because of the full exploration of the neighborhood, the method is slower than
the hill climbing. Furthermore, the thoroughness of the exploration at each search
step is not rewarded by a substantial decrease of the objective function. Finally,
the method shows the intrinsic shortcoming of getting stuck in local minima and
the search stagnates as soon as the first local minimum is found.

The behavior of TS lies between the two previous methods: in early stages
of the search the method behaves exactly as the steepest descent (indeed, ini-
tially in the graph the two lines overlap), while the prohibition mechanisms start
playing its role in diversifying the solution as soon as the first local minimum is
found. Unfortunately, due to the high computational cost of the neighborhood
exploration (especially on mid- and big-sized instances) the method performs
worse than hill climbing.

HSD deserves a more thorough analysis since its behavior varies on the basis
of the size of the instances. On smaller instances (10 days) its behavior is the
worst in terms of decrease speed of the objective function. This can be explained
by the high computational overhead needed to setting up the exploration of
the neighborhood fragments. In fact, for each fragment a new constraint model
should be posted to the constraint store giving rise to a significant computation
effort. This overhead, on smaller instances, is not rewarded by a high decrease
of the objective function at each step of the search. Conversely, on the mid-sized
instances (20 and 30 days) the increased computational effort is repaid by a
greater decrease of the objective function and this method result more compet-
itive than tabu search just after the first tens of seconds. However, the method
does not scale well on big-sized instances (40 days): although the tendency of
having a better behavior than tabu search is confirmed, this behavior is apparent
only after some hundred of seconds.

Second test — Methodology. The aim of this experiment is to analyze the behav-
ior of the four methods on two real-world instances in a deployment situation,
i.e., the methods are granted a running time of 12 hours in order to evaluate
more precisely their behavior on longer runs. Both the instances have a temporal
horizon of 30 days. The recorded data are the same of the previous experiment.
However, differently from the previous test we need not to process the data since
the results are relative to singular instances.

Second test — Results. The behavior of the objective function on the two in-
stances is comparable to the outcomes of the previous test on the instances of
size 30, therefore we do not show it here for brevity. Here we report in Table 1a
the values of the objective function reached by the four methods after 12 hours.

In the last line we report also the best value reached after 12 hours by the
exhaustive search performed by the constraint solver employing the constraint
programming model alone. Those values are about two times higher than the
results of the hybrid methods and they fully justify the employment of the hybrid

Method FObj
Instance 1 Instance 2

HC 3500 3240
SD 4120 3760
TS 3520 3350
HSD 3630 3460
CLP(FD) 7590 5990

(a) Final results of the four meth-
ods and of the constraint solver

Instance 1 Instance 2
Method +5% +2% +1% +5% +2% +1%

HC 111 1381 4815 329 752 2758
SD – – – – – –
TS 983 1343 1471 1590 – –
HSD 664 – – – – –

(b) Time (in seconds) to reach an approx-
imation within x% of the best value found

Table 1: Results in 12 hours of computation

approaches for this problem. For both instances the hill climbing method is able
to find the best result and it is not outperformed by any other method. However,
it is worth to notice that, when granted with sufficient time, tabu search shows
a good behavior and its result is not that far from the one of hill climbing.

Finally, in Table 1b we report the time needed to reach an approximation
within a given percentage of the best solution value found by the methods after
12 hours.

From the table it is possible to notice that, for hill climbing and tabu search
on instance 1, the convergence to good values (2% from the best value known) is
obtained in less than 25 minutes. However, only HC could reach values close to
the best known for instance 2. The reasons of this modest performance of tabu
search will be matter of further investigation.

Third test — Methodology. From the previous tests, hill climbing results the
best method (especially when provided with a short time limit), so we decided
to compare the solutions obtained from this method with solutions manually ob-
tained by the doctor who is in charge of self-scheduling. The available data ranges
from the monthly requirements of September to December 2005. We compare
the values obtained for the various components of the objective functions.

Third test — Results. For the four months considered in the experiment we show
in Figure 3 the outcomes of the self-schedule (the left-hand column of each pair)
and the result of a short hill climbing run (5 minute of CPU time). In Table 2
we report the the percentage of improvement over the self-schedule. The data
is disaggregated for the various components of the objective function and is 1
minus the ratio of the cost value found by hill climbing over the cost found by
the human (so that positive values indicate improvements).

You can notice that, even though the self-schedules are really high-quality
ones, the hill climbing method is able to achieve some further improvements,
especially on critical components like Guards and Undesired Pairs. For Consec-
utive Shifts (which is a negative component, since they are preferred), instead,
we can improve the values only in two cases out of the four instances.

Figure 3: Comparison of HC solver runs of 5 minutes with self-scheduling

Component Sep Oct Nov Dec

Wk 0% 0% 0% 29%
Nt -22% 6% 0% 12%
Dp 56% 5% 30% 29%
Gu 41% 6% 22% 22%
Cn -143% 31% 50% -17%
FObj 15% 6% 12% 20%

Table 2: Percentage of improvement of HC with respect to self-scheduling

5 Future work and Conclusions

This work is still ongoing and the presented results are still preliminary. We wish
to extend the research pursued in this paper along the following two lines:

1. integrating the tool with new local search methods, and
2. improving the resolution technique implemented.

We have experimentally verified that HC outperforms other tested meth-
ods: it employs less time than the others to find a good move. We plan to test
other local search methods, such as Tabu Search with First Improvement or
Elite Strategy that, visiting a small part of the neighbors, should be comparable
with HC w.r.t. the time for finding a good move. We also plan to implement a
Simulated Annealing method. However, we believe that a long stage for tuning
parameters is needed in order to effectively use this method.

Moreover, we would like to develop a constraint solver on finite domains ad
hoc for this problem in order to speed-up this stage, to ease the integration with

JEasylocal, and to be independent from commercial languages. From a method-
ological point of view, we would like to analyze more carefully the behavior of
our algorithms, using statistical methods and tuning more precisely the vari-
ous parameters. In particular, further insight is needed to explain the modest
behavior of tabu search.

Our system is currently in use in the Neurology Dept. of the Udine University
Hospital. Acceptable solutions (with 20 doctors and a temporal horizons of one
month) are obtained in a couple of minutes on a (average) PC. Future works
will also include the generalization of the system in order to be usable by other
hospital departments.

Acknowledgments

This work is partially supported by MIUR project PRIN 2005015491 and FIRB
project RBNE03B8KK.

References

1. Emile Aarts and Jan Karel Lenstra. Local Search in Combinatorial Optimization.
John Wiley & Sons, Chichester (UK), 1997.

2. Krzysztof R. Apt. Principles of Constraint Programming. Cambridge University
Press, Cambridge (UK), 2003.

3. Edmund K. Burke, Patrick De Causmaecker, Greet Vanden Berghe, and Hendrik
Van Landeghem. The state of the art of nurse rostering. Journal of Scheduling,
7(6):441–499, 2004.

4. Mats Carlsson, Greger Ottosson, and Björn Carlson. An open-ended finite domain
constraint solver. In H. Glaser, Hartel P., and Kucken H., editors, Programming Lan-
guages: Implementations, Logics, and Programming, number 1292 in Lecture Notes
in Computer Science, pages 191–206. Springer-Verlag, Berlin (Germany), 1997.

5. Luca Di Gaspero and Andrea Schaerf. EasyLocal++: An object-oriented frame-
work for flexible design of local search algorithms. Software — Practice & Experi-
ence, 33(8):733–765, July 2003.

6. Filippo Focacci, François Laburthe, and Andrea Lodi. Local search and constraint
programming. In F. Glover and G. Kochenberger, editors, Handbook of Metaheuris-
tics, chapter Local Search and Constraint Programming, pages 369–403. Kluwer
Academic Publishers, 2003.

7. Narendra Jussien and Olivier Lhomme. Local search with constraint propagation
and conflict-based heuristic. Artificial Intelligence, 139(1):21–45, 2002.

8. Eric Monfroy, Frédéric Saubion, and Tony Lambert. On hybridization of local search
and constraint propagation. In Bart Demoen and Vladimir Lifschitz, editors, Pro-
ceedings of the 20th International Conference on Logic Programming (ICLP 2004),
number 3132 in Lecture Notes in Computer Science, pages 299–313. Springer-Verlag,
Berlin (Germany), 2004.

9. Gilles Pesant and Michel Gendreau. A constraint programming framework for local
search methods. Journal of Heuristics, 5:255–279, 1999.

