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Abstract. The forward checking algorithm for solving constraint satisfaction
problems is a popular and successful alternative to backtracking. However, its
success has largely been determined empirically, and there has been limited work
towards a real understanding of why and when forward checking is the superior
approach.
This paper advances our understanding by showing that forward checking is
closely related to backmarking, which is a widely used improvement of ordinary
backtracking. This result is somewhat surprising, because(as their names suggest)
forward checking is superficially quite different from backtracking and its variants.
The result may also help in predicting when forward checking will be the best
method.
Finally, the paper shows how the relationship to backmarking helps understand
a recently introduced improvement to the forward checking algorithm, known as
minimal forward checking. We argue that the new algorithm is best viewed as a
hybrid combination of backmarking and forward checking.

1 Introduction

Constraint satisfaction problems (CSPs) [Mac87] are typical of the NP-complete com-
binatorial problems that are so pervasive in AI. Plain backtracking (BT) is an algorithm
for solving CSPs that has been known for at least a century [BE75], but it is far from the
best. There are easy improvements to backtracking such as backjumping (BJ) [Gas78]
and backmarking (BM) [Gas77], which never do worse than backtracking [Kon94], and
generally do much better. There are also simple alternatives to backtracking, notably
forward checking (FC) and its variants [HE80].

Our main topic in this paper is to further our understanding of forward checking,
which has extensive empirical but limited theoretical support as one of the very best
among the class of simple, general, CSP algorithms [Nad89]. Because of its demon-
strated practical success, it is important to discover as much as possible about when and
why FC is superior to other approaches.

It can be argued that since the general class of CSPs are NP-complete, there are
unlikely to be any major distinctions between the various algorithms. But this is too
pessimistic. While any NP-complete family must contain impractically hard problems,
it is also likely to contain large subclasses of simpler problems. Indeed, the “region”
of truly hard classes can be rather small [CKT91], and the particular instances we
encounter in practice may well be outside of this region. Ideally we would identify the



simple classes and develop special purpose fast algorithms to solve them, but this is
usually impractical. Instead, we can search for better general techniques that less often
display exponential behavior. Backmarking, backjumping, and forward checking have
all shown themselves to be practical improvements over backtracking: they are all able
to solve problems that defeat plain backtracking.

All these CSP algorithms examine partial solutions, which are assignments to a
subset of the variables, and try to extend these until all variables are assigned. BM
is a variant of BT that saves a number of redundant consistency checks by some
straightforward bookkeeping. BJ is another variant of BT that saves a distinct set of
consistency checks from BM, this time by detecting and avoiding parts of the search
tree that cannot contain any solutions. FC, on the other hand, is quite different from
BT. In particular, it orders its consistency checks in a completely different way. BT
and its variants do all of their checks backwards: whenever a new assignment is make,
it is checked for compatibility against all previous assignments. FC does all of its
checks forward: whenever a new assignment is made, it checks that assignment against
all future, as yet uninstantiated, variables, keeping track of the implications of these
checks. In Section 2 we discuss the FC algorithm in detail and present some additional
background. FC can do exponentially better than BT and its variants, but it can also
do worse. However, in Section 3 we observe that there is a tight polynomial bound on
how much worse it can do. The seemingly very different nature of FC, coupled with
the known fact that it can do worse, appears to have hindered a serious study of its
relationship to the other algorithms. However, as we show, there are in fact important
connections between FC and BT, BM, and BJ.

There seem to be a couple of different ways in which FC can be beaten by BT and its
variants, and both lead to important insights about their relationship. We examine one
example in Section 3, where we present the first of our main results. Roughly speaking,
this is as follows. FC achieves its success (or otherwise) over the backward checking
algorithms in two ways. First, it optimizes checks over its search tree in exactly the
same way that BM does. And second, it performs other checks that work as an “early-
warning-system” of inconsistency. Our result requires some care in formulation, but it
essentially says that, were one to provide BM with an oracle that provides the same
warnings, and simultaneously ignore the cost that FC incurs in finding these warnings,
the two algorithms would have equivalent complexity.

So we see that there is a particular cost/benefit tradeoff that must be considered when
comparing FC to BM, and in specific types of problem the net effect of this tradeoff may
be apparent. While it is hard to make many further generalizations about the value of
FC, another interesting result is due to Kondrak [Kon94]. He shows that every node that
BJ avoids searching (over BM or BT) is also avoided by FC. In a sense, then, FC always
includes the specific savings of both BM and BT, but it also incurs some additional cost
in the hope of being even more efficient than either. The connection between BM and
FC that we derive here has, to the best of our knowledge, never been noticed before.
Prosser [Pro93a] has previously presented a modification of FC that allows it to realize
some additional BM-type savings. But his modification is distinct from the results we
prove here. We will discuss Prosser’s work in more detail in Section 3.

In Section 4 we briefly discuss an improved version of forward checking first pro-



posed by Zweben and Eskey [ZE89], and subsequently presented independently, and
in greater detail, by Dent and Mercer [DM94]. Dent and Mercer call their improved
algorithm minimal forward checking (MFC). MFC was proposed as a “lazy” version of
forward checking which avoids doing checks until they are absolutely necessary. MFC
provably never does worse than the original FC algorithm. Its gains over plan FC are
typically modest (10-40% in our own experiments, which seems to be in fair agreement
with [DM94]), but are nevertheless worthwhile.

We re-discovered this algorithm not by thinking about lazy evaluation, but instead as
a corollary of our results connecting backmarking and forward checking. As we show,
there is a strong sense in which minimal forward checking is a logical hybrid of regular
forward checking and backmarking that benefits from the advantages of both. Thus the
algorithm that Zweben and Eskey, and Dent and Mercer, present as essentially a clever
optimization of regular forward-checking has what is arguably quite a deep foundation.

In this section we also point out that MFC can be combined with dynamic variable
reordering heuristics in a manner that preserves its performance edge over plain FC
(with variable reordering). Thus showing that some of the conclusions of Dent and
Mercer [DM94] on this issue are overly pessimistic. In fact, MFC in combination with
dynamic variable reordering showed itself to be one of the most effective algorithms
when tested against a wide range of other algorithms.

2 Preliminaries

A binary CSP is a finite set of variables, each with a finite domain of potential values, and
a collection of pairwise constraints between the variables. The goal is to assign a value
to each variable so that all of the constraints are satisfied. Depending on the application
the goal may be to find all consistent assignments, or to find just one. Formally:

Definition 1. A binary constraint satisfaction problem, P, consists of:

– A finite collection of N variables, V�� � � � � VN .
– For each variable Vi, a finite domain of ki values, Di �

�
vi�� v

i
�� � � � � v

i
ki

�
�

– For each pair of variables fVi� Vjg � a constraint Cfi�jg between Di and Dj which
is simply a subset of Di � Dj . If �vil � v

j
m� � Cfi�jg we say that the assignment�

Vi � vil � Vj � vjm
�

is consistent.

A solution to P is an assignment
�
V� � v�s� � � � � � Vi � visi � � � � � VN � vNsN

�
such that

for all i� j,
n
Vi � visi � Vj � vjsj

o
is consistent.

The forward checking algorithm [HE80] constructs solutions by considering as-
signments to variables in a particular order, which for concreteness we take to be
V�� V�� V�� � � � � VN .� Suppose that we have found a consistent assignment to the first
i�� variables, which means that all pairwise comparisons involving only these i��
variables are satisfied. At this point, we call V�� � � � � Vi�� the past variables, Vi the

� That is, we assume a static ordering in this paper. But see Section 4 for a discussion of dynamic
variable orderings.



current variable, and the others the future variables. The characteristic data structure
of the FC algorithm is a two dimensional array Domain. The idea is that Domainjm
will contain 0 if and only if the assignment Vj � vjm is consistent with the assignments
chosen for all the past variables. Otherwise, it contains the index of the first (i.e., the
lowest) assigned variable with which Vj � vjm is inconsistent.

procedure FC(i)
%Tries to instantiate Vi, then recurses

for each vil � Di

si � vil
if Domainil � � then

if i � N then
print s�� � � � � sN

else
if Check-Forward(i) then

FC(i+1)
Restore(i)

procedure Restore(i)
%Returns Domain to previous state

for j � i� � to N
for each vjm � Dj

if Domainjm � i then
Domainjm � �

function Check-Forward(i)
%Checks si against future variables

for j � i� � to N
dwo = true
for each vjm � Dj

if Domainjm � � then
if �si� vjm� � Cfi�jg then

dwo = false
else

Domainjm � i
if dwo then return(false)

return(true)

Fig. 1. Pseudo-code for Forward Checking

It follows that, when we are considering a possible value vil for the current variable
Vi, it is sufficient to look for a zero in Domainil . Any such value is guaranteed to be
consistent with all past choices. Hence, we do not need to do the backwards consistency
checks that are characteristic of BT and its variants. The price, of course, is that when
we make a successful assignment to the current variable, we must check it against all
outstanding values of the future variables, updating Domain as necessary. Figure 1
gives the important parts of the algorithm in more detail; after initialization, the call
FC(1) will print all solutions. Note that the current partial assignment is remembered in
program variables s�� � � � � sN . An assignment to si fails if there is a “domain wipe-out”
(DWO), which means that we have discovered that every value of some future variable is
inconsistent with our choices so far. DWO means, of course, that no solution can exist in
the subtree below this assignment. Note also that, after we finish considering a choice
for si, we must undo any changes made to the Domain array before continuing.�

� We have designed this code for clarity; there are many alternatives that are more efficient. The
Restore procedure could be improved, and a common presentation of the FC algorithm [HE80]
uses a loop over Vi’s current domain, i.e., the elements of Domaini that are zero, instead of
over Di. (The latter “improvement” may or may not be more efficient in practice as it requires
maintaining a data structure containing the current domain.)



It may seem as if FC can end up doing many redundant checks, as it checks against
future variables that may never be visited. For example, checking V� against VN is
wasted work if the assignment to V� ends up forcing V� and V� to be completely
inconsistent with each other. But balanced against this is the chance that it can detect
domain wipe-outs and avoid parts of the search tree explored by the backward checking
algorithms.

Our own experiments and those of Haralick and Elliot [HE80], Nadel [Nad89],
Prosser [Pro93b] and van Run [vR94], have shown that the work expended by FC to
perform DWO detection generally results in a net gain. In the n-Queens problem FC is
slightly outperformed by BM, but in Nadel’s confused queens, Prosser’s version of the
Zebra problem, and in a number of random tests (includingextensive tests from Frost and
Dechter’s table of 50% solvable classes [FD94]) FC outperforms BM, is generally much
better than BJ, and always totally out classes BT. In most of these tests the measure of
complexity was taken to be the number of consistency checks. Several other complexity
measures have been considered in the literature, the most popular being the number of
nodes visited and CPU time. Counting the nodes visited is not an appropriate measure
for comparing the performance of FC and the backward checking algorithms, as the
amount of work FC does at each node is completely different from the other algorithms.�

CPU time, on the other hand, is a very difficult measure to evaluate correctly as it is
extremely implementation dependent. For this reason we also will focus on counting
the number of consistency checks in our theoretical and experimental results.

Another major advantage of FC is that the number of remaining consistent values for
each of the future variables can be computed without any additional constraint checks.
This means that the highly effective minimal remaining values (MRV) heuristic, in
which we instantiate next that variable with fewest remaining values (also known as the
fail-first (FF) heuristic), can be used “for free” to perform dynamic variable reordering.
Bacchus and van Run [BvR94] have shown that FC and its variant FC-CBJ, when
equipped with dynamic variable reordering using the MRV heuristic, outperform a wide
range of similarly equipped backwards checking algorithms.

3 Forward checking—some theoretical results

Gashnig’s backmarking algorithm [Gas77] improves backtracking by eliminating some
redundant consistency checks. Recall that when an assignment Vi � vil of the cur-
rent variable Vi is made, BT checks the consistency of this assignment against all of

the previous assignments
n
V� � v�s� � � � � � Vi�� � vi��si��

o
. If any of these consistency

checks fail, BM takes the additional step of remembering the first point of failure in an
array Mclil (“maximum check level”). This information is used to save later consistency
checks. Say that later we backtrack from Vi up to the variable Vj , assign Vj a new value,
and then progress down the tree, once again reaching Vi. At Vi we might again attempt

the assignment Vi � vil . The assignments
n
V� � v�s� � � � � � Vj�� � vj��sj��

o
have not

changed since we last tried Vi � vil , so there is no point in repeating these checks.
Furthermore, if Vi � vil had failed against one of these assignments, we need not make

� Nodes visited can be a useful measure for comparing features other than performance.



any checks at all; the assignment will fail again, so we can immediately reject it. To
realize these savings, the Mcl array is not quite enough by itself, because its entries are
not necessarily up to date. Thus BM uses an additional array Mbl (“minimum backtrack
level”) which for each variable keeps track of how far we have backtracked since trying
to instantiate this variable. (In the example above, Mbli will store the information that
we have only backtracked to Vj since last visiting Vi. Thus we know to ignore any in-
formation in Mclil that pertains to variable Vj or later.) Figure 2 gives the backmarking
algorithm in more detail.

procedure BM(i)
%Tries to instantiate Vi , then recurses

for each vil � Dl

si � vil
if Mclil � Mbli then

ok� true
for j � Mbli to i � � and while ok

Mclil � j
if �sj� si� �� Cfi�jg then

ok� false
� if ok then

if i � N then
print s�� � � � � sN

else
BM(i+1)

Mbli � i��
Restore(i)

procedure Restore(i)
%Updates Mbl

for j � i� � to N
if Mblj � i then Mblj � i��

Fig. 2. Backmarking

As we have mentioned, in empirical tests BM and FC often vie for top honors.
But the differences can be enormous. It is easy to see that FC can do much better. For
example, if the first and last variables are incompatible with each other FC will realize
this almost immediately, whereas BM might search the entire search tree—which can
be exponentially large—before declaring failure. Kondrak [Kon94] has shown that FC
always explores a subset (not necessarily proper) of the nodes (i.e., partial instantiations)
that BT, BM, and BJ visit. Nevertheless, since FC can perform more checks per node,
FC may perform more consistency checks.

Example 1. Suppose V� and V� are mutually inconsistent. The backward checking
algorithms can discover this quickly, only searching three variables deep (thus making
at most k�k� � k�k� � k�k� consistency checks). Forward checking can take much
longer. For each assignment to V�, it checks against all subsequent variables, so that it
does as many as k�

PN

i�� ki additional checks over the backward checking algorithms.
These extra checks do not reveal the inconsistency between V� and V� and hence are
wasted work.



The problem is, of course, that FC delves deeply into the search tree to find DWO,
and this does not always pay off. But the cost is never exponential in the size of the
problem. The following simple corollary of Kondrak’s result is worth making explicit.

Remark. Let K be the largest domain size. FC never performs more than NK times as
many consistency checks as BT, BJ or BM, but the performance loss can be arbitrarily
close to this bound. On the other hand, there are families of problems in which BT, BJ
and BM all perform e��N lnK� more checks than FC.

Proof. Reasoning as in Example 1, we see that forward checking from a node costs
at most NK checks. The example can be arranged (by choosing N large enough,
k� � k� � �, and ki � K for i � �) so that the actual number of checks divided
by NK is arbitrarily close to one. Our first claim now follows from Kondrak’s result
showing that FC explores no more nodes than BT, BM or BJ. There is a slight subtlety
in the case of BM, as at some nodes BM does not perform any consistency checks.
However, these nodes correspond to inconsistent assignments to the current variable so
FC does no work at these nodes either.

For our second claim, simply consider a CSP problem in which BM, BJ, and BT
do an exponential amount of work without finding a solution. Modify the problem by
adding a new variable VN	� that is incompatible with all assignments to V�. In the new
tree FC will detect that no solution exists in no more than NK � checks, while BT, BM
and BJ will still require an exponential amount of work.

It is obvious that the important feature of FC is that it can use DWO detection to prune
large amounts of the search space, and in doing so save itself a considerable amount
of work over BT (as well as over BJ and BM). However, it turns out that FC improves
over BT in another way as well. In particular, FC avoids many redundant checks in a
manner that is exactly the same as BM. This connection between FC and BM has, to
our knowledge, never been made before, and the main result in this section is to make
precise this connection. Taking account of the similarity between FC and BM allows
us to make the difference—which is exactly DWO detection—clear. Our first definition
partitions the work (i.e., the consistency checks) that FC performs into two groups.

Definition 2. A particular consistency check �si� v
j
�� � Cfi�jg performed during the

execution of the FC algorithm (Figure 1) is called a tree-check if the algorithm later
attempts the partial assignment sj � v

j

� ,
 while s�� � � � � si remain the same as at the
time the check was made. (That is, sj � v

j
� is later attempted in the subtree below the

node where the check was make).

Example 2. Consider the example shown in Figure 3. The diagram shows a backtracking
tree explored by FC. In the CSP there are four variables each with the two element
domain fa� bg. At the top level of the tree the variable V� is instantiated with the value

� We consider an assignment to be attempted as soon as FC executes the code s i � vil (line 4 in
FC procedure), even if the subsequent code immediately discovers that this value has already
been pruned from the current domain of Vi .



V2 = a     T

V2 = b     T

V3 = a     T

V3 = b     T

V4 = a

V4 = b

V4 = a

V4 = b

V2 = a V2 = b

V3 = a     T

V3 = b     T

V4 = a

V4 = b

V1 = a

V3 = bV3 = a

V4 = a

V4 = b

V3 = a     

V3 = b     

Pruned

DWO

DWO

Fig. 3. Tree Checks: only the checks labled with “T” are tree checks.

a. Then the domains of the future variables are checked against this instantiation. The
checks performed at this stage are shown in the box below the assignment statement. Six
constraints are checked: all possible values of the future variables against the assignment
V� � a. The search trees show that a node that makes an assignment to V� is never
visited by FC. Hence, the checks against V� � a and V� � b are non-tree checks. The
other four checks are, on the other hand all tree checks, as is indicated by the label “T”
that follows them. In all cases a node that “attempts” that instantiation is later visited by
the search process.

It should be noted that the node V� � b is in a sense never visited by the search
process, since this value forV�has been pruned prior to ariving at this node. Nevertheless,



we consider FC to have visited that node, as it executes the assignment s� � v�l (line
4 in FC procedure) prior to checking to see if the value v�l has already been pruned.
Hence, we show this node as being connected via a dotted line, and we count the check
against V� � b to be a tree check.

Many of the checks are non-tree checks. For example, all the checks performed at a
node where DWO is detected are non-tree checks. More generally, all checks against a
variable that is never visited in the subtree below are non-tree checks.

Non-tree-checks have the sole purpose of looking for DWO’s, and if no DWO is found
they are, in a sense, wasted. A tree-check may help in finding a DWO, but it is also
used at least once in evaluating the correctness of a proposed instantiation to the current
variable (in a sense, it directly helps in “building” the search tree). This distinction is an
natural one, although it has the practical disadvantage that it can only be made after the
fact.�

The concept of tree-checks is not the only idea we need. The other issue that makes
a direct comparison between BM and FC impossible is simply that BM explores a
different set of nodes: it does not detect DWO. To overcome this, we must imagine that
BM is supplied with an “oracle” that, given any partial assignment, can tell whether
there is DWO at some future variable. We can imagine line ��� in Figure 2 being replaced
by:

� if ok and not(DWO(i)) then

where DWO(i) is a call to the oracle testing for DWO at some variable in the future of
Vi. This change now makes the comparison between BM and FC fair. The surprising
result is that, after accounting for this change, FC and BM are essentially identical
algorithms. In particular, we have the following theorem, whose proof is omitted due to
space limitations.

Theorem 3. BM, supplied with an oracle as described above, explores exactly the same
nodes as FC. Furthermore, the number of consistency checks it makes is the same as
the number of tree-checks FC makes.

That BM, when equipped with a DWO oracle should visit exactly the same nodes
as FC is not surprising. However, that BM does no fewer checks than the tree-checks
of FC is. It must be remembered that BM utilizes some subtle bookeeping in order to
eliminate many redundant checks over BT. FC, on the other hand, simply prunes its
future domains, a process that is, on the surface, quite distinct from BM’s bookeeping.
It would seem that except for DWO detection FC would simply be doing its checks in the
same manner as BT. Our theorem show that this is not the case. FC’s domain pruning
allows it to achieve all of the savings of BM’s sophisticated bookeeping; it is doing its
checks in a much more “intelligent” manner than plain BT.

This theorem aids our understanding of these algorithms by getting to the heart of
their similarities and differences. It also has some practical implications. For instance,

� That is, we do not know whether or not a particular consistency check is a tree-check until
somewhat later in the search process. However, should one wish to, it is quite easy to code the
FC algorithm so that it keeps an accurate count of the tree-checks.



for some CSPs it may be clear that few DWO’s will occur for distant future variables, in
which case we now know (as contrasted to merely having a vague intuition) that FC will
be outperformed by BM: BM does its checks as efficiently as FC without expending
extra checks on the gamble of DWO detection. Perhaps deeper analysis will help us get a
more quantitative understanding of the cost/benefit tradeoff of DWO detection in various
problems. This result also helps us explain the empirical effectiveness of FC; BM’s
savings over BT can be very substantial in practice, so FC ability to capture all of these
savings can make it very efficient even in cases where not much is saved by its DWO

detection. This suggests that on some problems, the “forward looking” aspect of FC
might be a misleading explanation for its success and that what is really important is its
embedding of backmarking savings. Finally, we present another practical application of
our result in the next section, where it is used to motivate an improvement to FC. Not
coincidentally, the improvement makes the connection to BM more apparent.

Besides optimizing its tree-checks in exactly the same manner as BM, FC’s DWO

detection allows FC to achieve BJ savings. This observation is essentially a corollary of
Kondrak’s result, but we present a different proof that serves to make our point more
clearly.

Theorem 4. Let n be a node visited by BT that is skipped by BJ. Then any algorithm
that uses DWO detection would never visit n either.

Proof. � BJ can skip nodes only when it backjumps from some node n� (which is a
partial assignment to the variables V�� � � � � Vi), to a lower level node n
 (which is a
partial assignment to the variable V�� � � � � Vj, j � i). Any skipped node n will be a node
in the subtree under some such n
. For the backjump to have occurred from n� directly
to n
, every value of Vi must have been inconsistent with the partial assignment at n
.
But then DWO detection would have discovered that Vi had a domain wipe-out at n
.
Hence, any algorithm that used DWO detection would never have explored any node in
the subtree under n
, and in particular would not have visited n.

A very similar argument can be used to show that, if all algorithms are supplied with
a DWO oracle, then BT becomes equivalent to BJ, and BM becomes equivalent to BMJ
(Prosser’s [Pro93b] backmark-jumping algorithm). So Theorem 3 also holds for BMJ
supplied with an oracle.

Theorem 3 demonstrates that FC optimizes its tree-checks in the same manner as
BM. In particular, it realizes all of the BM savings in doing these checks. Prosser,
in [Pro93a], has developed a technique whereby FC can achieve even more BM-type
savings by maintaining information gathered whenever a domain wipe-out occurs. This
information and the savings that can be realized from it are orthogonal to the BM savings
already embedded with in FC. That FC already embeds the savings of standard BM was
not noticed by Prosser. Interestingly, it would appear that Prosser’s technique can easily
added to the minimal forward checking technique described below. Such a combination
would be worth exploring.

� Here we assume some familiarity with details of the BJ algorithm which, due to space limita-
tions, we are unable to provide in the text.



4 Minimal Forward checking

The simplest example for which plain backtracking outperforms FC is where the as-
signments Vi � vi� (i.e., each variable is assigned the first value in its domain) are
consistent, and where we are content to find a single solution. In this case, backtracking
can descend immediately to a solution (the leftmost branch of the backtrack tree), while
forward checking is held up checking each variable on that branch against all possible
values of future variables. This example of BT outperforming FC is often mentioned in
the literature, e.g., [Pro93b].

However, it is possible to improve the behavior of forward checking in such cases.
The technique has been noted by Zweben and Eskey in [ZE89] and in more detail by Dent
and Mercer in [DM94]. The idea motivating this technique is that of lazy evaluation, a
notion from functional programming languages [ASJ85]. This is the notion of delaying
computing things until absolutely necessary.

Standard FC checks every value in the remaining domains of the future variables,
pruning those values that are inconsistent with the current assignment. If during this
pruning phase it detects DWO it retracts the current assignment. Hence, we see that to
apply the notion of lazy evaluation, all we need to compute immediately is whether or
not DWO occurs. We do not need to check every value in the future domains at this stage,
and we can delay these checks until we absolutely need it. By delaying these checks
it may turn out that a DWO is detected before we need to perform them, hence a lazy
version of FC can avoid performing some of the checks standard FC performs.

In the example, we only need to check forward against the first value of each
subsequent variable’s domain. In general, it is enough to find a single consistent value in
the domain of each future variable to determine whether or not DWO occurs. In delaying
the other consistency checks, however, when we backtrack, and need to re-instantiate a
variable, we are no longer guaranteed that all relevant backward consistency checks have
been performed. But whenever this happens, we can simply “catch up” by performing
the appropriate checks. That is, we reach a stage where we must complete the delayed
computations. If these tree checks are performed only “on demand” we can end up
doing far fewer than if all potentially useful checks had been done during the forward
checking phase. The overhead needed to keep track of what checks have been done is
negligible, and so this idea leads to worthwhile gains.

The results of Section 3 led us to rediscover the MFC algorithm, but from notions
quite different from lazy evaluation. Consider Theorem 3, which we can roughly para-
phrase as saying that FC is essentially BM with DWO detection added. Our idea was
to take this literally; i.e., implement BM and then enhance it with DWO detection. The
point of this is that it becomes quite clear that we have the freedom to implement DWO

detection as efficiently as possible—in particular, we can stop checking a future vari-
able as soon as we have found a consistent value. In the regular presentation of forward
checking, the forward consistency checks are doing several different things at once, and
so it takes more insight to notice safe optimizations. Given our theorem, the situation is
much more obvious.

Admittedly, some care is necessary. If we were to implement BM and DWO detection
entirely independently, we may end up repeating checks. In particular, the DWO detection
phase will perform some checks that BM also needs to perform. One feature of FC is



that it can avoid repeating these checks. Nevertheless, it is easy to can arrange things
so that relevant checks in the DWO (forward checking) stage are remembered, and made
available to the backmarking component. With this modification the hoped for gains do
appear.

In our implementation of this idea, the main step is to modify the interpretation
and use of the Domain array slightly. Now, we will use a negative value to note that a
domain value was inconsistent with some past assignment. That is, Domainil � �j will
signify that Vi � vil was consistent with the current assignments up to sj��, but failed
against sj . We do this because the algorithm no longer checks every future value right up
to the current assignment, even if it is consistent to that point. Furthermore, we wish to
use positive values to remember the latest variable successfully checked against. Thus,
Domainil � j means that Vi � vil is consistent up to and including sj . In particular,
the initial value Domainil � � means that Vi � vil has not yet been checked against
anything at all. We note that this is a different “accounting scheme” than that used by
Dent and Mercer, who keep track of exactly which checks have been performed against
earlier variables (rather than just the (signed) index of the last variable). Our scheme is
more efficient as it requires O�NK� space as compared to the O�NK�� space required
by Dent and Mercer’s scheme (where N is the number of variables and K is the size of
the largest domain). More importantly, however, it makes the connection to BM much
clearer. Nevertheless, we emphasize that this is a relatively minor implementation detail
and the algorithm we were lead to by Theorem 3 is identical with Dent and Mercer’s in
all important respects.

Figure 4 shows the pseudo-code for the algorithm. The changes over FC have been
marked and in addition the Update procedure is completely new. Procedure Check-
Forward implements DWO, in the efficient fashion discussed above. In the main procedure
MFC, we can no longer automatically assign values to si, as we did in FC. Rather, we
must first catch up on any of the consistency checks that have been omitted. Catch up
occurs in Update, which performs backwards checks. Note that it only checks the value
vjm against the assignments it has not yet been checked against (i.e., the assigned values
after the Domainjm’th). Furthermore, if Domainjm is initially negative we perform no
checks at all, as we know that this value is still inconsistent. This corresponds precisely
to BM rejecting a value without incurring any checks when Mcljm � Mblj . The only
real difference between Update and BM is that the forward checking phase may have
done more work than plain BM. That is, Domainjm, which plays a similar but more
flexible role to the Mbl array in BM, may have a value greater than Mblj in BM. This
allows MFC to avoid repeating checks performed during the forward checking phase.
Our purpose in presenting this pseudo-code is to highlight the Update procedure and
its connection to BM. Of course, our whole point is that this is not a coincidence: the
update code essentially is doing backmarking.

Clearly MFC performs no more checks than regular FC. Furthermore, as might be
expected from the argument we gave, the relation that FC has to BM still holds:

Theorem 5. BM with an oracle as in Section 3 explores the same nodes as MFC, and
the number of consistency checks it makes is equal to the number of tree checks MFC
makes.

Thus, as should be expected from our description of the algorithm, MFC gains solely



procedure MFC(i)
%Tries to instantiate Vi

for each vil � Di

si � vil
! if Update(i,l,i-1) then

if i � N then
print s�� � � � � sN

else
if Check-Forward(i) then

MFC(i+1)
Restore(i)

procedure Restore(i)
%Returns Domain to previous state

for j � i� � to N
for each vjm � Dj

! if Abs�Domainjm� � i then
Domainjm � i��

function Check-Forward(i)
%Checks si against future variables
%Only does enough work to find DWO

for j � i� � to N
DWO = TRUE

! for vjm � Dj and while DWO

! if Update(j,m,i) then
DWO = false

if DWO then return(false)
return(true)

function Update(j,m,i)
%Checks vjm against s� to si
%Updates Domainjm appropriately

if Domainjm � � then
ok� true

else
ok� false

for p � Domainjm � � to i and while ok
if �sp� vjm� �� Cfp�jg then

ok� false
Domainjm � �p

if ok then
Domainjm � i

return(ok)

Fig. 4. “Minimal” Forward Checking

by performing fewer non-tree checks.

We have tested MFC on various problems, including n-Queens, Prosser’s version of
the Zebra problem [Pro93b], and many random CSPs drawn from Frost and Dechter’s
table of 50% solvable classes [FD94]. As can be seen in Figure 5, MFC results in modest
gains over FC, typically in the range of 10–30%. But in view of the fairly small changes
over forward checking this is surely worthwhile. Figure 6 gives a comparison of the
number of non-tree checks for both FC and MFC, to give some idea of the size of the
savings here (which are surprisingly uniform across problem type). These results are in
agreement with those of [DM94].

For the 10, 11, and 12 Queen problems we see that FC and MFC perform fewer tree
checks than the number of checks performed by plain BM. Subtracting these numbers
of tree checks from the corresponding number of checks performed by plain BM gives
us the amount of savings that DWO detection yields. The data indicates that for these
problems we do get savings from DWO detection, but looking at the non-tree checks we
see that these savings are approximately equal to their costs. Hence, there is very little
benefit, for n-Queens, in doing DWO detection. The main reason then, that FC performs
about as well as BM in n-Queens is that FC optimizes its tree-checks just like BM.

We have also tested MFC using dynamic variable reordering, (MFCvar in the tables).



MFC FC BM BT MFCvar	 FC-CBJvar�


10 Q�� 220 242 220 1298 199 204
11 Q 1038 1155 1027 7417 904 935
12 Q 5298 5959 5225 — 4471 4635
Zebra�� 129 182 1608 16196 2.8 2.9
R1�� 11.6 15.1 73.8 511.1 0.84 0.86
R2 439 685 2447 — 23.6 27.7
R3 311 469 5753 — 3.6 3.9
R4 54 80 115 908 12 14

Fig. 5. Number of consistency checks (thousands) for various algorithms

10 Queens 11 Queens 12 Queens Zebra R1 R2
Tree checks 134 616 3127 30 2.9 82.2
FC non-tree 108 539 2832 152 12.2 602
MFC non-tree 86 422 2171 99 8.7 357

Fig. 6. Tree and non-tree checks (1000’s)

The reordering heuristic we used was the minimum remaining values heuristic whereby
the next variable instantiated is that variable with fewest remaining consistent values (a
fail-first heuristic). Because MFC delays performing consistency checks on the future
variables, it does not provide an accurate count of the real number of remaining consistent
values. Some of the values in the future domains will have been eliminated in MFC’s
search for the first consistent value, so the number of unpruned values can be used as a
rough estimate of the true number of remaining values. This is the estimate used by Dent
and Mercer [DM94]. However, they found that since they were only using an estimate,
MFCvar was often beat by FCvar (which has the exact values). They concluded that
MFCvar was inappropriate for large problems.

This conclusion is, however, overly pessimistic. Although MFC does not know
the exact numbers of remaining values, it does have information that can be used to
optimize the computation of which variable has the smallest domain. That is, it is not
necessary to find the sizes of all future domains (as FC does) but only to find the
smallest domain. To compute this we need to perform some additional consistency

	 On demand forward check with dynamic variable reordering.
�
 FC with conflict directed backjumping and dynamic variable reordering.
�� 10, 11, and 12 Queen problems. Number of checks to find all solutions.
�� Prosser’s Zebra problem. The number given is for finding all solutions, averaged over Prosser’s

original set of 450 different orderings of the problem variables [Pro93b].
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. R3
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checks, but not as many as FC will. Furthermore, these additional checks performed can
be noted so they do not have to be repeated. We omit further details, because they are
straightforward. But the important point is that in all of our experiments, this version
of MFCvar performed the fewest checks when compared with 24 other algorithms; see
[BvR94] for details. The second best algorithm (which is very close in performance)
was FC-CBJvar, forward checking with conflict directed backjumping [Pro93b] using
dynamic variable reordering. It appears feasible to combine MFC with conflict directed
backjumping, and with Prosser’s additional BM savings [Pro93a]. The combination
would be an interesting algorithm to examine.

5 Conclusion

Strictly speaking, forward checking and backtracking, or backmarking, are incomparable
by worst-case complexity measures. This, coupled with the seemingly radical difference
between looking forward and looking into the past, might lead to the view that no
interesting formal comparison is possible.

On the contrary, there is as much similarity as there is difference. To stretch a point,
we may say that forward-checking is backmarking augmented by a scheme to detect
certain “obvious” wastes of time. The relative merits of the two depends only on whether
or not the scheme pays off enough to be worth its cost, and simply knowing this may be
sufficient to determine which will be better in a particular application.

Ordinary forward checking is not as efficient as it might be, and removing the
inefficiency reveals its connection to backmarking even more clearly. This leads directly
to the previously known idea of “minimal forward checking”. Our reconstruction of
MFC is interesting for two reasons, however. First, it emphasizes that MFC is a natural
algorithm—a mixture of BM and FC—rather than an ad hoc optimization. Second, it
is a good illustration of how greater understanding of the connections between various
CSP algorithms can lead directly to even better techniques.
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