OR Spektrum (2001) 23: 325-334
Spektrum

(© Springer-Verlag 2001

Project scheduling with calendars

Birger Franck, Klaus Neumann, and Christoph Schwindt

Institut fur Wirtschaftstheorie und Operations Research, University of Karlsruhe,
76128 Karlsruhe, Germany (e—mdjfranck,neumann,schwinpg®wior.uni-karlsruhe.de)

Received: July 26, 2000 / Accepted: May 15, 2001

Abstract. For many applications of project scheduling to real-life problems, it is
necessary to take into account calendars specifying time intervals during which
some resources such as manpower or machines are not available. Whereas the
execution of certain activities like packaging may be suspended during breaks, other
activities cannot be interrupted due to technical reasons. Minimum and maximum
time lags between activities may depend on calendars, too. In this paper, we address
the problem of scheduling the activities of a project subject to calendar constraints.
We devise efficient algorithms for computing earliest and latest start and completion
times of activities. Moreover, we sketch how to use these algorithms for developing
priority-rule methods coping with renewable-resource constraints and calendars.

Key words: Project scheduling-calendars — Minimum and maximum time lags —
Priority-rule methods

1 Introduction

Project scheduling is concerned with the assignment of execution time intervals to
the activities of the project (for a detailed introduction to project scheduling, we
refer to Neumann and Schwindt, 1997, or to Franck et al., 2001, appearing in this
issue). Letv’ = {0,1,... ,n,n + 1} be the set of all activities and lpt € Z>

be the duration of activity € V, where 0 anch + 1 with pg = p,,+1 = 0 denote
dummy activities which represent the project beginning and the project termination,
respectively. Between the start timgs .S; > 0 of two different activities, j € V'

* The authors would like to acknowledge the helpful comments of two anonymous referees.
This research has been supported in part by the Deutsche Forschungsgemeinschaft (Grant
Ne 137/4).

Correspondence tcC. Schwindt

326 B. Franck et al.

there may be a prescrib@tinimum time Iagimi" € Z> (a prescribednaximum
time lagd;}** € Z o) saying that activityi can be startedmm units of time after
the start of activity at the earliest (that activitymust be starteal;’]““C units of time
after the start of activity at the latest). Activities and time lags can be represented
by an activity-on-node project network with node sel” and arc sek. For each
minimum time Iagd;?;i”, we introduce an arg, j) from nodei to nodej weighted
byd;; = di;;/i”. Maximum time lags/;?** correspond to backward ar¢g i) from
nodej to nodei with weighté;; = —d;}*. By Pred(i) and Succ(i) we denote
the set of all (direct) predecessors and (direct) successors, respectively, fmode
network N. Thetemporal constraintgiven by minimum and maximum time lags
can be written as

S;—8; >0 ((i,j) € E) (1)

When scheduling real-life projects, make-to-order production, or process flows
inchemical industries (for the latter two applications of resource-constrained project
scheduling, we refer to Neumann and Schwindt, 1997, and Neumann et al., 2001,
respectively), we have to take into account breaks like weekends or holidays where
manpower or machines are not available (cf. Schwindt and Trautmann, 2000).
Scheduling the activities subject to sumeak calendarss termedcalendarization
(see Zhan, 1992). Some activities may be interrupted during a break, whereas others
must not be interrupted due to technical reasons. Therefore, we have to distinguish
between (break-)interruptible activitiess 1" ¢ V and non-interruptible activi-
tiesj € V" =V \ V¥ wherei € V™ if p; = 0. For each interruptible activity
i € Vb, aminimum execution time; € IN is prescribed during which has to
be in progress without interruption (where the completion isfnot regarded as
interruption). In practices; is generally chosen such that the processing ime
an integral multiple o;, e.g.c; = 1. For activitiesi € V"¢, we sets; := p;, that
is, i has to be processed duripgunits of time without suspending the execution
and thus cannot be interrupted at all.

A break calendar(or calendar for short) is a functior : IR>o — {0, 1} with
the following interpretationd(¢) = 1 indicates that time belongs to a working
period (we then speak ofas aworking timg wherea$(t) = 0 means that falls
into a break (in that case,is called aspare tim¢. Without loss of generality, we
assume that a calendais a step function, i.eb is piecewise constant, and ttés
continuous fromthe right atits jump points. Thbis integrable, and fdr < o < 3,
fﬁ) dr is thetotal working timein interval [«, 5[. Figure 1 shows an example
ofa calendar functiohwith the corresponding total working tin}%t b(t) dr upto

timet. fo) dr is a continuous and piecewise linear functiort whose corner
pomts commde with the start and end of breaks in calend@he total working
time [, b(r) dr in interval[4, 15| equalsf T)dr — fo T)dr =10-3 =7,
which corresponds to the (total) area of the shaded boxes

The processing of the real activities- 1, ... , n of the project requiresenew-
able resourcesuch as manpower or machines. [Rtlenote the set of renewable
resources. For the present, we suppose that the capacity of the renewable resources
k € R is not limited. This assumption will be dropped in Section 4, where we deal

Project scheduling with calendérs 327

b(t), f3 b(r) dr

13
12
11 —
10
9%
87 Legend:
7%
6 — b(t)
5 — _ Otb(T)dT
4%
3
2%
1 —_— —

—r 1 1 Y1 1 117 1 71717t

2 4 6 8 10 12 14 16 18 20

Fig. 1. Calendan and total working timef b(r)dr

with the case of resource constraints arising from the scarcity of resources. In prac-
tice, different resourcek € R generally have different calendars. We obtain the
correspondingctivity calendarb; for activity i € V' by settingb;(¢) equal to zero

if there is a resourcké € R used by:i which due to a break is not available at time

t, and equal to one, otherwise.lf(t) = 0, we have to suspend the execution of
activity: € V** being in progress right before point in timie~or what follows, we
establish the convention that first an activitg V** cannot be interrupted during
working time, i.e., an interruption afat a timet with b;(¢t) = 1 is not allowed,

and that second the executioniofterrupted at some timehas to be resumed
exactly at the end of the current break, i.e. at tithe= min{r > ¢ | b;,(7) = 1}.

This convention is generally accepted in practice, in particular, if the processing
of activities requires the setup of certain resources such as machines or chemical
reactors. Furthermore, we suppose that for activitied’**, the minimum length

of a working time interval between two successive breaks in caléndsgreater

than or equal to minimum execution time. This ensures that ondehas been
started at time5; such that is continuously in progress durirg units of time, the
working time between the completion and start of any two successive interruptions
of 7 is not less than;.

2 Modelling

The requirement that no activitye V' can be interrupted beforiehas been pro-
cessed for (at least); units of time, i.e., that there is no spare time in interval
[Si, Si + €;], can be stated as

bi(r)=1forallT € [S;,S;+¢&;] (i€eV) 2

328 B. Franck et al.

Let B; be the number of breaks in calendarGiven some time > 0, the earliest
start timeS, > ¢ observing constraints (2) can then be foundifB;) time.

There is no one-to-one correspondence between start Spreesd completion
timesC; of activities: if the processing of activities may be suspended at arbitrary
points in time (in machine scheduling, interruptions are then referredaeamp-
tion, cf. Brucker, 2001). Nevertheless, in our case the assumption that activities can
only be interrupted at the beginning of a break and have to be resumed immediately
at the end of the break means that in intefl C;[, activity ¢ is in progress at
time ¢ exactly if b;(t) = 1 (recall that by assumption, the time lag between two
breaks in calenddr; is not less tham;). Thus, given start timé; the completion
time of activity: € V' is uniquely determined by

C;(S;) := min{t > S; —|—p2\/ T)dr =p;}

(notice that smcgfs) d7 is a continuous function in, the minimum always
exists).C; depends on start tim and activity calenddr;. We have’;(S;) —S; >
p; for all i € V¥ whereag’;(S;) — S; = p; forall i € V™,

Minimum and maximum time lags may depend on calendars, too. For example,
if a spare part has to be delivered within three working days, we have to consider a
corresponding calendar. Therefore, we introdutiena lag calendar;; for each
prescribed time Iag"”" andd’;**, which has to be specified when modeling the
problem. Point in tlme is taken into account when computing the (working) time
lag between the start of activitiésandj exactly ifb;;(t) = 1, i.e. fs i (T) dT
equals the total working time in intervgl;, S;[if S; < S; and equals the negat|ve
total working time in intervalsS;, S;|, otherW|se In general the time lag calendar
b;; for a minimum time Iagig’}”” coincides withb; or b;. The time lag calenda;;
of a maximum time la@/}/;** may contain the spare times of activity calendars
where activitiesh lie on a path from to j in project networkV. The case where
time Iagsd;’;i” andd;** are independent of calendars is obviously contained as
the special case whebg;(¢t) = 1 for all ¢t > 0.

The actual minimum differencﬂ” between start timeS; and.S; induced by
minimum time Iagd"”" or maximum time lagl/}/;**, respectively, depends on start
time S; and calendab”

Ay (S:) = min{t > 0| /S by (7) dr > 65} =S ({i§) € B)

whered;; = d;?*" in case of a minimum time lag between the start of activities
iandj andd;; = fd;’}“ if there is a maximum time lag between the start of
activitiesj andi. S; + A;;(.S;) is the earliest point in time for which the total
working time in interval[S;, t[or [t, S;[, respectively, is greater than or equal to
|6ij|- Sincebi(t) € {0, 1} forallt > 0, it holds thaﬂAij (Sl)| > |(S”‘, andA”(Sl)
andJ;; have the same sign.

As a consequence, the temporal constraints (1) have to be replaced by

Sj =8 > A(8) (i, 4) € E)

Project scheduling with calendérs 329

which can also be written as

Sj
/S biy(r) dr > 65 ((ir]) € B) @)

The interpretation of (3) is as follows. &; > 0, then the total working time

/. SS ’ b;;(T) dr between the start of activityat time S; and the start of activity
at time S; must be at least;;. If §;; < 0, thenfSSi" bij(T) dr > é;; means that
the total working timefSSf by (1) dr = — fSSJ bi;(T) dr betweenS; and.S; must
not exceed-4;;. Notice that in case af;; > 0, inequality (3) is tighter than the
ordinary temporal constrairt; — S; > 4,;, whereas fow,;; < 0, inequality (3)
does not implyS; — S; > ¢;;. For given start time5; of activity ¢, the minimum
start timeS; of activity j satisfying (3) is

t
P min{t > 0 | / bij (1) dr > 6.5}
Si

t* can obviously be computed (B, ;) time, whereB;; designates the number
of breaks in calenda;;.

In what follows, we refer to constraints (2) and (3)cadendar constraintsA
scheduleS complying with all calendar constraints is termealendar-feasible
The problem of finding the earliest calendar-feasible schedule can be formulated
as follows:

Minimize > 5;
) eV (4)
subject to(2) and(3)
So=0

Note that the requirement that activitiesc V** are not interrupted during
working time and immediately resumed after a break is implicitly satisfied by the
definition of the corresponding completion tir6g(S;). Thetemporal scheduling
problem(4) has been addressed for the first time by Zhan (1992), who has devised
a pseudo-polynomial solution method of type label-correcting. In the next section,
we will discuss a similar approach with polynomial time complexity, where polyno-
miality is achieved by considering only events such as the beginning or termination
of breaks or the end of time lags instead of time periods. The procedures generalize
algorithms for finding an earliest and a latest calendar-feasible schedule discussed
in Franck (1999, Ch. 3) for the case of integral start times and without minimum
execution times.

3 Temporal scheduling

For solving problem (4), we use a modification of a label-correcting longest-
path algorithm (cf. Franck, 1999, Sect. 3.3). We start the algorithm with=

330 B. Franck et al.

(0,—0,...,—o0) and successively delay activities until all calendar constraints
are satisfied. Lef) be a queue containing activities for which a (tentative) earliest
start timeE S; has been determined. In each iteration, we delete an actifribyn

Q. First, we check whether or not start tirhS; complies with calendar; by com-
puting the earliest point in tim& > ES; for which interval[t*, t* + ¢, does not
contain spare times (cf. constraints (2)). In cas&6f < t*, the start of activity
must be delayed until timg&. Next, we check inequalities (3) and (2) for all direct
successorg € Succ(i) of activity i in project networkV. To this end, we compute
the earliest start timé* := min{t > max(0, ES;) | f;si bij(T) dr > 0;;} of
activity j given start timef.S; for activity <. If £.S; < t*, schedulel’’S does not
satisfy the corresponding prescribed time lag, and thus we inciegisep tot*. In

that case orib;(7) = 0 for somer € [t*,t* +¢;[,weaddjtoQif j ¢ Q. Figure 2
summarizes this procedure, where for convenience we defind := oc.

Forall: € V'\ {0} do ES; :== —c0
ESy:=0,Q :={0} (xQis aqueue)
While @ # () do
Deletei from queueR
Determinet™ := min{t > ES; | bi(r) = 1forallt € [t,t +&;[}
If t* = oo then terminate(x there is no feasible solutiar)
elseif ES; < t* then ES; :=t*
For all j € Suce(z) do
Determinet™ := min{t > maX(O, ESJ) | f;si bij (T) dr > 5”}
If ES; < t¢*orb;(r)=0forsomer € [t*,t* + ;] then
If ES; < t*then ES; :=t*
If j ¢ Q then push; onto queu&)
end (xif x)
end (x for x)
end (x while x)
Return ES

Fig. 2. Calendarization — earliest schedule

LetB :=3 .y Bi+ > jyer Bij denote the number of breaks in all activity
andtime lag calendars. Clearly, the (tentative) earliest start ifnsesf all activities
¢ € V are nondecreasing in the course of the algorithm. If temporal scheduling
problem (4) is solvable, the algorithm of Figure 2 yields schediSeafter having
inspected each arg, j) at most|V|(B + 1) times, where each of thB breaks is
considered at most once. If the calendars are given as sorted lists of start and end
times of breaks, the time complexity of the algorithm of Figure 2|8/ || E|(B +
1)]. There is no calendar-feasible schedule exactly if aF&E|(B + 1) iterations,
gueueq still contains some activity € V.

The latest scheduleS maximizing) _, ., S; can be computed as follows. Let
d denote the maximum project duration given either by a prescribed deadline for the
termination of the project or by an upper bound on the minimum project duration.
We start withLS = (0,00, ... ,00,d) and@ = {0,n + 1}. In each iteration,
an activity j is removed from queu€ and LS; is set equal to the latest tinté

Project scheduling with calendérs 331

for which calendab; allows the start of activity. Then, the tentative latest start
times of alli € Pred(j) are set equal to the largest timgs< min(d, LS;) with
tfsj b;;(T) dr > 6;;. The corresponding procedure is given by Figure 3, where

max () := —oo.

Forallj e V\{0,n+1}doLS; := 0
LSy :=0,LSnt1:=d,Q :={0,n+ 1} (*Q is a queue)
While @ # () do
Deletej from queuel
Determinet” := max{t < LS; | b;(7) = 1forall r € [t,t + ¢;[}
If t* = —oo then terminate(x there is no feasible solutiar)
else if LS; > t* then LS; :=¢*
For all : € Pred(j) do
Determinet™ := max{t < min(ﬁ, LSZ) | ftLSj bZJ(T) dr > (Sl]}
If LS; > t* or bi(7) = 0 for somer € [t*,t" + ;[then
If LSZ > t* then LSZ =t*
If ¢ ¢ Q then pushi onto queue
end (xif x)
end (x for)
end (x while x)
Return LS

Fig. 3. Calendarization — latest schedule

4 Resource-constrained scheduling

We now turn to the problem of minimizing the project durati8p,; subject to
calendar constraints (2) and (3) and renewable-resource constraints which arise
from the use of scarce manpower or machinery. For each resbwd@, we have
alimited capacity?; € IN. The processing of real activitiés= 1, ... ,nininterval

[S:, C;[takes upry, € Z > units of resourcé:. In particular, we assume that the
interruption of activities does not release resources. Note that otherwise each break
would incur a new setup of the resources before resuming the interrupted activities.
With 74 (S,1) := > ;cv.s.<i <, Tik denoting the utilization of resourdeat time

t, the resource constraints read as

re(S,t) < Ri (k€ R;t>0) 5)

A scheduleS which satisfies inequalities (5) is termegsource-feasibleThe
problem of finding a resource- and calendar-feasible schedule is strongly NP-hard
even ifp; = 1 foralli € V andb;; = 1 for all (i,j) € E (see Bartusch et al.,
1988).

In what follows, we sketch the adaptation of a priority-rule method (see Franck
etal., 2001) for the problem of minimizing the project duratthn ; subjectto tem-
poral and resource constraints to the following more gemesalurce-constrained
calendarized scheduling problem

332 B. Franck et al.

Minimize S, 1
subject to(2) and(3)
So=0
r(S,t) < R, (k€ R;t>0)

The priority-rule method by Franck et al. (2001) is, in principle, as follows. Let
~< be some strict order in s&t, e.g. given by < j exactly if either (a)l;; > 0 or
(b) d;; = 0 as well asd;; < 0, whered;; is the longest path length from node
to nodej in network N. The algorithm is based on tiserial schedule generation
schemewhich schedules the activitigse V' one after the other. Laf be the
completed sebf activities that have already been scheduled. In each iteration, an
eligible activity j* (i.e. an activityj € C := V \ C for which h € C holds for
all activitiesh with h < j) is scheduled at its earliest resource-feasible start time
t* > ES;- provided that* < LS;-. Ifthere are several eligible activitigsactivity
j*is chosen according to soméority rule. Then, the earliest and latest start times
of all activitiesj € C as well as the available resource capacities are updated. If
t* > LS;-, activity j* cannot be scheduled without violating a maximum time lag
d;;¢" between some scheduled activitg C andj*. In that case, we perform an
unschedulmg stephich deletes all activitiesd € C with S, < S; from setC and
increases the earliest start time of activityy t* — L.S;-

For computing the latest start times, the algorithm requires an upper damd
the minimum project duration, which in case of calendars can be found as follows.
For each ar¢i, j) € F, we determine an upper bount; on A;;(.S;) for any start
time S; > ES;. If §;; < 0, it follows from A;;(S;) < 0 and|A;;(S;)| > |945]
thatd;; > A;;(S;). If 6;; > 0, AU can be chosen to be the largest time lag
A;;(t) =t' — t between the start of activityat some time5; = ¢ and the earliest
point in timet’ > t 4 §,, for which the total working time in intervdt, ¢'[equals
di;. Thus, we set

J— 51]7 if 6ij S 0
i "=) max A;;(t), otherwise
t>ES,

An upper bound; on the time lag between some time> ES; and the earliest
completion of activity; € V after point in timet can be determined as follows.
The smallest start tim§; > ¢ of activity ¢ is the minimum time’ > ¢ satisfying
b;(t) = 1forall T € [¢/,t'+¢;[. By taking the “largest” time lag’; (') —t between
t and the earliest completion ofat timeC;(t') > ¢ + p; with respect to all times
t > ES; (where the maximum does not necessarily exist), we obtain

p; := sup min{C;(t') —t | b;(r) =1forall 7 € [t',t' + &;[}
t>ES; V2t

Figure 4 illustrates the computation of upper bogndor an activityi € V¢
with ES; = 0,p; = 6,ande; = 1. For5 < t < 8, we have’ = 8 andC;(t') = 17.
Since for all other points in timg C;(t') — t is less than or equal to 11 (where we

Project scheduling with calendérs 333

ﬁzi12
bu(0) e ¥ cult)
4 ' ' ' '
1 e] Q 9—0 o—o ~—
N I G G N D G ? T T T T T 1 ?—Hﬁﬁ_’t
2 4 6 8 10 12 14 16 18 20

Fig. 4. Upper boundp,

suppose that;(t) = 1 forallt > 18), p; equalssups,<5(17 —1) = 17 -5 = 12.
Note that there is no maximuf; (¢') — ¢ with respect ta.
Analogously to the case without calendars (cf. Franck et al., 2001),

d:= ax(p; ax Ay
ize‘;m X(p“jegluc)c((i) i7)

is an upper bound on the minimum project duration provided that there exists a
schedule observing the calendar and resource constraints. Since upperBgunds
andp; for (i,j) € E andi € V, respectively, can be determined by considering
starts and ends of break&can be computed i®[max(|E|, B)] time.

A calendar- and resource-feasible schedule can be found by the priority-rule
method using an adaptation of the serial schedule generation scheme. For updating
the earliest and latest start timéxS; and LS; of activitiesj € C, we use the
algorithms from Figures 2 and 3, respectively. In contrast to the problem without
calendars, not all points in tintes [ES;-, LS;-] with (S, t) < Ry forallk € R
represent feasible start times for the activityselected. Thus, it may happen that
a resource-feasible start time with £5;- < ¢t* < LS, for activity j* has to
be rejected because start tirig. = ¢* does not comply with constraints (2). In
that case, the start gf* must be delayed by increasirgS;- up to the earliest
point in timet with t* < t < LS« for which activity j* can be processed without
interruption for at least;- units of time.

The priority-rule method has been tested by Franck (1999, Sect. 5.2) using a
set of 1080 projects with 100 activities and five resources each (test$ptBis
test set extends a collection of benchmark instances without calendars by adding
activity and time lag calendars, where 20% of the time periods fall into a break.
The experimental performance analysis has shown that for the resource-constrained
project scheduling problem with calendar constraints, the priority-rule method re-
quires about ten times as much computing time as for the corresponding problem
with ordinary temporal constraints on the average. This is mainly due to a larger
number of unscheduling steps and the more time-consuming temporal scheduling
algorithm (where temporal scheduling with calendars is the more expensive the
greater is the numbédB of all breaks in calendars). For both problems, the mini-
mum latest start time first (LST) rule selecting the eligible actiyityith smallest
LS; provides the best results among the five priority rules tested (LST, minimum
slack time first MST, most total successors first MTS, longest path following first
LPF, and resource scheduling method RSM; for details see Franck et al., 2001). In

334 B. Franck et al.

particular, the LST rule is well-suited for both finding a large number of feasible
schedules and computing schedules with small project duration.

References

Bartusch M, Mbhring RH, Radermacher FJ (1988) Scheduling project networks with re-
source constraints and time windows. Annals of Operations Research 16:201-240

Brucker P (2001) Scheduling Algorithms. Springer, Berlin Heidelberg New York

Franck B (1999) Prioréitsregelverfahrerif die ressourcenbesémkte Projektplanung mit
und ohne Kalender. Shaker, Aachen

Franck B, Neumann K, Schwindt C (2001) Truncated branch-and-bound, schedule-
construction, and schedule-improvement procedures for resource-constrained project
scheduling. OR Spektrum 23: 297-324 (this issue)

Neumann K, Schwindt C (1997) Activity-on-node networks with minimal and maximal
time-lags and their application to make-to-order production. OR Spektrum 19:205-217
Neumann K, Schwindt C, Trautmann N (2001) Short-term planning of batch plantsin process

industries. In: Kischka P, Leopold-Wildburger U,dHring RH, Radermacher FJ (eds.)
Models, methods and decision support for management, pp. 211-226. Physica, Heidelberg
Schwindt C, Trautmann N (2000) Batch scheduling in process industries: An application of
resource-constrained project scheduling. OR Spektrum 22:501-524
Zhan J (1992) Calendarization of time-planning in MPM networks. ZOR — Methods and
Models of Operations Research 36:423-438

