
OR Spektrum (2001) 23: 325–334

c© Springer-Verlag 2001

Project scheduling with calendars∗

Birger Franck, Klaus Neumann, and Christoph Schwindt

Institut für Wirtschaftstheorie und Operations Research, University of Karlsruhe,
76128 Karlsruhe, Germany (e–mail:{franck,neumann,schwindt}@wior.uni-karlsruhe.de)

Received: July 26, 2000 / Accepted: May 15, 2001

Abstract. For many applications of project scheduling to real-life problems, it is
necessary to take into account calendars specifying time intervals during which
some resources such as manpower or machines are not available. Whereas the
execution of certain activities like packagingmaybe suspendedduring breaks, other
activities cannot be interrupted due to technical reasons. Minimum and maximum
time lags between activities may depend on calendars, too. In this paper, we address
the problem of scheduling the activities of a project subject to calendar constraints.
Wedevise efficient algorithms for computing earliest and latest start and completion
times of activities. Moreover, we sketch how to use these algorithms for developing
priority-rule methods coping with renewable-resource constraints and calendars.

Key words: Project scheduling-calendars – Minimum and maximum time lags –
Priority-rule methods

1 Introduction

Project scheduling is concerned with the assignment of execution time intervals to
the activities of the project (for a detailed introduction to project scheduling, we
refer to Neumann and Schwindt, 1997, or to Franck et al., 2001, appearing in this
issue). LetV = {0, 1, . . . , n, n + 1} be the set of all activities and letpi ∈ ZZ≥0

be the duration of activityi ∈ V , where 0 andn + 1 with p0 = pn+1 = 0 denote
dummyactivitieswhich represent the project beginning and the project termination,
respectively. Between the start timesSi, Sj ≥ 0 of two different activitiesi, j ∈ V

∗ The authors would like to acknowledge the helpful comments of two anonymous referees.
This research has been supported in part by the Deutsche Forschungsgemeinschaft (Grant
Ne 137/4).

Correspondence to:C. Schwindt

326 B. Franck et al.

there may be a prescribedminimum time lagdmin
ij ∈ ZZ≥0 (a prescribedmaximum

time lagdmax
ij ∈ ZZ≥0) saying that activityj can be starteddmin

ij units of time after
the start of activityi at the earliest (that activityj must be starteddmax

ij units of time
after the start of activityi at the latest). Activities and time lags can be represented
by an activity-on-node project networkN with node setV and arc setE. For each
minimum time lagdmin

ij , we introduce an arc〈i, j〉 from nodei to nodej weighted
by δij = dmin

ij . Maximum time lagsdmax
ij correspond to backward arcs〈j, i〉 from

nodej to nodei with weightδji = −dmax
ij . By Pred(i) andSucc(i) we denote

the set of all (direct) predecessors and (direct) successors, respectively, of nodei in
networkN . Thetemporal constraintsgiven by minimum and maximum time lags
can be written as

Sj − Si ≥ δij (〈i, j〉 ∈ E) (1)

When scheduling real-life projects, make-to-order production, or process flows
inchemical industries (for the latter twoapplicationsof resource-constrainedproject
scheduling, we refer to Neumann and Schwindt, 1997, and Neumann et al., 2001,
respectively), we have to take into account breaks like weekends or holidays where
manpower or machines are not available (cf. Schwindt and Trautmann, 2000).
Scheduling the activities subject to suchbreak calendarsis termedcalendarization
(see Zhan, 1992). Some activities may be interrupted during a break, whereas others
must not be interrupted due to technical reasons. Therefore, we have to distinguish
between (break-)interruptible activitiesi ∈ V bi ⊂ V and non-interruptible activi-
tiesj ∈ V ni = V \ V bi wherei ∈ V ni if pi = 0. For each interruptible activity
i ∈ V bi, a minimum execution timeεi ∈ IN is prescribed during whichi has to
be in progress without interruption (where the completion ofi is not regarded as
interruption). In practice,εi is generally chosen such that the processing timepi is
an integral multiple ofεi, e.g.εi = 1. For activitiesi ∈ V ni, we setεi := pi, that
is, i has to be processed duringpi units of time without suspending the execution
and thus cannot be interrupted at all.

A break calendar(or calendar, for short) is a functionb : IR≥0 → {0, 1} with
the following interpretation:b(t) = 1 indicates that timet belongs to a working
period (we then speak oft as aworking time) whereasb(t) = 0 means thatt falls
into a break (in that case,t is called aspare time). Without loss of generality, we
assume that a calendarb is a step function, i.e.,b is piecewise constant, and thatb is
continuous from the rightat its jumppoints.Thus,b is integrable, and for0 ≤ α < β,∫ β

α
b(τ) dτ is thetotal working timein interval [α, β[. Figure 1 shows an example

of a calendar functionbwith the corresponding total working time
∫ t

0 b(τ) dτ up to

time t.
∫ t

0 b(τ) dτ is a continuous and piecewise linear function int whose corner
points coincide with the start and end of breaks in calendarb. The total working
time

∫ 15
4 b(τ) dτ in interval[4, 15[equals

∫ 15
0 b(τ) dτ − ∫ 4

0 b(τ) dτ = 10−3 = 7,
which corresponds to the (total) area of the shaded boxes.

The processing of the real activitiesi = 1, . . . , n of the project requiresrenew-
able resourcessuch as manpower or machines. LetR denote the set of renewable
resources. For the present, we suppose that the capacity of the renewable resources
k ∈ R is not limited. This assumption will be dropped in Section 4, where we deal

Project scheduling with calendars∗ 327

✲

✻

t

b(t),
∫ t
0 b(τ) dτ

2 4 6 8 10 12 14 16 18 20

1

2

3

4

5

6

7

8

9

10

11

12

13

� �❛

� �❛

� �❛

� �❛

� �❛

� �❛

� �❛

� �❛

�

�
��

�
�

�
�

�
�

�
�

�
��

��
�

��

Legend:

� �❛ b(t)
∫ t

0 b(τ) dτ

Fig. 1.Calendarb and total working time
∫

b(τ)dτ

with the case of resource constraints arising from the scarcity of resources. In prac-
tice, different resourcesk ∈ R generally have different calendars. We obtain the
correspondingactivity calendarbi for activity i ∈ V by settingbi(t) equal to zero
if there is a resourcek ∈ R used byi which due to a break is not available at time
t, and equal to one, otherwise. Ifbi(t) = 0, we have to suspend the execution of
activity i ∈ V bi being in progress right before point in timet. For what follows, we
establish the convention that first an activityi ∈ V bi cannot be interrupted during
working time, i.e., an interruption ofi at a timet with bi(t) = 1 is not allowed,
and that second the execution ofi interrupted at some timet has to be resumed
exactly at the end of the current break, i.e. at timet′ := min{τ > t | bi(τ) = 1}.
This convention is generally accepted in practice, in particular, if the processing
of activities requires the setup of certain resources such as machines or chemical
reactors. Furthermore, we suppose that for activitiesi ∈ V bi, the minimum length
of a working time interval between two successive breaks in calendarbi is greater
than or equal to minimum execution timeεi. This ensures that oncei has been
started at timeSi such thati is continuously in progress duringεi units of time, the
working time between the completion and start of any two successive interruptions
of i is not less thanεi.

2 Modelling

The requirement that no activityi ∈ V can be interrupted beforei has been pro-
cessed for (at least)εi units of time, i.e., that there is no spare time in interval
[Si, Si + εi[, can be stated as

bi(τ) = 1 for all τ ∈ [Si, Si + εi[(i ∈ V) (2)

328 B. Franck et al.

LetBi be the number of breaks in calendarbi. Given some timet ≥ 0, the earliest
start timeSi ≥ t observing constraints (2) can then be found inO(Bi) time.

There is no one-to-one correspondence between start timesSi and completion
timesCi of activitiesi if the processing of activities may be suspended at arbitrary
points in time (in machine scheduling, interruptions are then referred to aspreemp-
tion, cf. Brucker, 2001). Nevertheless, in our case the assumption that activities can
only be interrupted at the beginning of a break and have to be resumed immediately
at the end of the break means that in interval[Si, Ci[, activity i is in progress at
time t exactly if bi(t) = 1 (recall that by assumption, the time lag between two
breaks in calendarbi is not less thanεi). Thus, given start timeSi the completion
time of activityi ∈ V is uniquely determined by

Ci(Si) := min{t ≥ Si + pi |
∫ t

Si

bi(τ) dτ = pi}

(notice that since
∫ t

Si
bi(τ) dτ is a continuous function int, the minimum always

exists).Ci depends on start timeSi and activity calendarbi. We haveCi(Si)−Si ≥
pi for all i ∈ V bi whereasCi(Si) − Si = pi for all i ∈ V ni.

Minimum and maximum time lags may depend on calendars, too. For example,
if a spare part has to be delivered within three working days, we have to consider a
corresponding calendar. Therefore, we introduce atime lag calendarbij for each
prescribed time lagdmin

ij anddmax
ji , which has to be specified when modeling the

problem. Point in timet is taken into account when computing the (working) time
lag between the start of activitiesi andj exactly if bij(t) = 1, i.e.,

∫ Sj

Si
bij(τ) dτ

equals the total working time in interval[Si, Sj [if Si ≤ Sj and equals the negative
total working time in interval[Sj , Si[, otherwise. In general, the time lag calendar
bij for a minimum time lagdmin

ij coincides withbi or bj . The time lag calendarbij

of a maximum time lagdmax
ji may contain the spare times of activity calendarsbh,

where activitiesh lie on a path fromi to j in project networkN . The case where
time lagsdmin

ij anddmax
ij are independent of calendars is obviously contained as

the special case wherebij(t) = 1 for all t ≥ 0.
The actual minimum difference∆ij between start timesSj andSi induced by

minimum time lagdmin
ij or maximum time lagdmax

ji , respectively, depends on start
timeSi and calendarbij :

∆ij(Si) := min{t ≥ 0 |
∫ t

Si

bij(τ) dτ ≥ δij} − Si (〈i, j〉 ∈ E)

whereδij = dmin
ij in case of a minimum time lag between the start of activities

i and j andδij = −dmax
ji if there is a maximum time lag between the start of

activitiesj andi. Si + ∆ij(Si) is the earliest point in timet for which the total
working time in interval[Si, t[or [t, Si[, respectively, is greater than or equal to
|δij |. Sincebi(t) ∈ {0, 1} for all t ≥ 0, it holds that|∆ij(Si)| ≥ |δij |, and∆ij(Si)
andδij have the same sign.

As a consequence, the temporal constraints (1) have to be replaced by

Sj − Si ≥ ∆ij(Si) (〈i, j〉 ∈ E)

Project scheduling with calendars∗ 329

which can also be written as∫ Sj

Si

bij(τ) dτ ≥ δij (〈i, j〉 ∈ E) (3)

The interpretation of (3) is as follows. Ifδij ≥ 0, then the total working time∫ Sj

Si
bij(τ) dτ between the start of activityi at timeSi and the start of activityj

at timeSj must be at leastδij . If δij < 0, then
∫ Sj

Si
bij(τ) dτ ≥ δij means that

the total working time
∫ Si

Sj
bij(τ) dτ = − ∫ Sj

Si
bij(τ) dτ betweenSj andSi must

not exceed−δij . Notice that in case ofδij ≥ 0, inequality (3) is tighter than the
ordinary temporal constraintSj − Si ≥ δij , whereas forδij < 0, inequality (3)
does not implySj − Si ≥ δij . For given start timeSi of activity i, the minimum
start timeSj of activity j satisfying (3) is

t∗ := min{t ≥ 0 |
∫ t

Si

bij(τ) dτ ≥ δij}

t∗ can obviously be computed inO(Bij) time, whereBij designates the number
of breaks in calendarbij .

In what follows, we refer to constraints (2) and (3) ascalendar constraints. A
scheduleS complying with all calendar constraints is termedcalendar-feasible.
The problem of finding the earliest calendar-feasible schedule can be formulated
as follows:

Minimize
∑
i∈V

Si

subject to(2) and(3)
S0 = 0


 (4)

Note that the requirement that activitiesi ∈ V bi are not interrupted during
working time and immediately resumed after a break is implicitly satisfied by the
definition of the corresponding completion timeCi(Si). Thetemporal scheduling
problem(4) has been addressed for the first time by Zhan (1992), who has devised
a pseudo-polynomial solution method of type label-correcting. In the next section,
we will discuss a similar approach with polynomial time complexity, where polyno-
miality is achieved by considering only events such as the beginning or termination
of breaks or the end of time lags instead of time periods. The procedures generalize
algorithms for finding an earliest and a latest calendar-feasible schedule discussed
in Franck (1999, Ch. 3) for the case of integral start times and without minimum
execution times.

3 Temporal scheduling

For solving problem (4), we use a modification of a label-correcting longest-
path algorithm (cf. Franck, 1999, Sect. 3.3). We start the algorithm withES =

330 B. Franck et al.

(0,−∞, . . . ,−∞) and successively delay activities until all calendar constraints
are satisfied. LetQ be a queue containing activities for which a (tentative) earliest
start timeESi has been determined. In each iteration, we delete an activityi from
Q. First, we check whether or not start timeESi complies with calendarbi by com-
puting the earliest point in timet∗ ≥ ESi for which interval[t∗, t∗ + εi[does not
contain spare times (cf. constraints (2)). In case ofESi < t∗, the start of activityi
must be delayed until timet∗. Next, we check inequalities (3) and (2) for all direct
successorsj ∈ Succ(i) of activity i in project networkN . To this end, we compute
the earliest start timet∗ := min{t ≥ max(0, ESj) | ∫ t

ESi
bij(τ) dτ ≥ δij} of

activity j given start timeESi for activity i. If ESj < t∗, scheduleES does not
satisfy the corresponding prescribed time lag, and thus we increaseESj up tot∗. In
that case or ifbj(τ) = 0 for someτ ∈ [t∗, t∗ +εj [, we addj toQ if j /∈ Q. Figure 2
summarizes this procedure, where for convenience we definemin ∅ := ∞.

For all i ∈ V \ {0} do ESi := −∞
ES0 := 0, Q := {0} (∗ Q is a queue∗)
While Q /= ∅ do

Deletei from queueQ
Determinet∗ := min{t ≥ ESi | bi(τ) = 1 for all τ ∈ [t, t + εi[}
If t∗ = ∞ then terminate(∗ there is no feasible solution∗)
else if ESi < t∗ then ESi := t∗

For all j ∈ Succ(i) do
Determinet∗ := min{t ≥ max(0, ESj) | ∫ t

ESi
bij(τ) dτ ≥ δij}

If ESj < t∗ or bj(τ) = 0 for someτ ∈ [t∗, t∗ + εj [then
If ESj < t∗ then ESj := t∗

If j /∈ Q then pushj onto queueQ
end (∗ if ∗)

end (∗ for ∗)
end (∗ while∗)
Return ES

Fig. 2.Calendarization — earliest schedule

LetB :=
∑

i∈V Bi +
∑

〈i,j〉∈E Bij denote the number of breaks in all activity
and time lagcalendars.Clearly, the (tentative)earliest start timesESi ofall activities
i ∈ V are nondecreasing in the course of the algorithm. If temporal scheduling
problem (4) is solvable, the algorithm of Figure 2 yields scheduleES after having
inspected each arc〈i, j〉 at most|V |(B + 1) times, where each of theB breaks is
considered at most once. If the calendars are given as sorted lists of start and end
times of breaks, the time complexity of the algorithm of Figure 2 isO[|V ||E|(B +
1)]. There is no calendar-feasible schedule exactly if after|V ||E|(B+1) iterations,
queueQ still contains some activityi ∈ V .

The latest scheduleLS maximizing
∑

i∈V Si can be computed as follows. Let
d denote the maximum project duration given either by a prescribed deadline for the
termination of the project or by an upper bound on the minimum project duration.
We start withLS = (0,∞, . . . ,∞, d) andQ = {0, n + 1}. In each iteration,
an activityj is removed from queueQ andLSj is set equal to the latest timet∗

Project scheduling with calendars∗ 331

for which calendarbj allows the start of activityj. Then, the tentative latest start
times of alli ∈ Pred(j) are set equal to the largest timest∗ ≤ min(d, LSi) with∫ LSj

t∗ bij(τ) dτ ≥ δij . The corresponding procedure is given by Figure 3, where
max ∅ := −∞.

For all j ∈ V \ {0, n + 1} do LSj := ∞
LS0 := 0, LSn+1 := d, Q := {0, n + 1} (∗ Q is a queue∗)
While Q /= ∅ do

Deletej from queueQ
Determinet∗ := max{t ≤ LSj | bj(τ) = 1 for all τ ∈ [t, t + εj [}
If t∗ = −∞ then terminate(∗ there is no feasible solution∗)
else if LSj > t∗ then LSj := t∗

For all i ∈ Pred(j) do
Determinet∗ := max{t ≤ min(d, LSi) | ∫ LSj

t
bij(τ) dτ ≥ δij}

If LSi > t∗ or bi(τ) = 0 for someτ ∈ [t∗, t∗ + εi[then
If LSi > t∗ then LSi := t∗

If i /∈ Q then pushi onto queueQ
end (∗ if ∗)

end (∗ for ∗)
end (∗ while∗)
Return LS

Fig. 3.Calendarization — latest schedule

4 Resource-constrained scheduling

We now turn to the problem of minimizing the project durationSn+1 subject to
calendar constraints (2) and (3) and renewable-resource constraints which arise
from the use of scarce manpower or machinery. For each resourcek ∈ R, we have
a limited capacityRk ∈ IN. Theprocessingof real activitiesi = 1, . . . , n in interval
[Si, Ci[takes uprik ∈ ZZ≥0 units of resourcek. In particular, we assume that the
interruption of activities does not release resources. Note that otherwise each break
would incur a new setup of the resources before resuming the interrupted activities.
With rk(S, t) :=

∑
i∈V :Si≤t<Ci

rik denoting the utilization of resourcek at time
t, the resource constraints read as

rk(S, t) ≤ Rk (k ∈ R; t ≥ 0) (5)

A scheduleS which satisfies inequalities (5) is termedresource-feasible. The
problem of finding a resource- and calendar-feasible schedule is strongly NP-hard
even if bi ≡ 1 for all i ∈ V andbij ≡ 1 for all 〈i, j〉 ∈ E (see Bartusch et al.,
1988).

In what follows, we sketch the adaptation of a priority-rule method (see Franck
et al., 2001) for the problemofminimizing the project durationSn+1 subject to tem-
poral and resource constraints to the following more generalresource-constrained
calendarized scheduling problem

332 B. Franck et al.

Minimize Sn+1

subject to(2) and(3)
S0 = 0
rk(S, t) ≤ Rk (k ∈ R; t ≥ 0)

The priority-rule method by Franck et al. (2001) is, in principle, as follows. Let
≺ be some strict order in setV , e.g. given byi ≺ j exactly if either (a)dij > 0 or
(b) dij = 0 as well asdji < 0, wheredij is the longest path length from nodei
to nodej in networkN . The algorithm is based on theserial schedule generation
scheme, which schedules the activitiesi ∈ V one after the other. LetC be the
completed setof activities that have already been scheduled. In each iteration, an
eligible activity j∗ (i.e. an activityj ∈ C := V \ C for which h ∈ C holds for
all activitiesh with h ≺ j) is scheduled at its earliest resource-feasible start time
t∗ ≥ ESj∗ provided thatt∗ ≤ LSj∗ . If there are several eligible activitiesj, activity
j∗ is chosen according to somepriority rule. Then, the earliest and latest start times
of all activitiesj ∈ C as well as the available resource capacities are updated. If
t∗ > LSj∗ , activity j∗ cannot be scheduled without violating a maximum time lag
dmax

ij∗ between some scheduled activityi ∈ C andj∗. In that case, we perform an
unscheduling stepwhich deletes all activitiesh ∈ C with Sh ≤ Si from setC and
increases the earliest start time of activityi by t∗ − LSj∗ .

For computing the latest start times, the algorithm requires an upper boundd on
the minimum project duration, which in case of calendars can be found as follows.
For each arc〈i, j〉 ∈ E, we determine an upper bound∆ij on∆ij(Si) for any start
time Si ≥ ESi. If δij ≤ 0, it follows from ∆ij(Si) ≤ 0 and |∆ij(Si)| ≥ |δij |
that δij ≥ ∆ij(Si). If δij > 0, ∆ij can be chosen to be the largest time lag
∆ij(t) = t′ − t between the start of activityi at some timeSi = t and the earliest
point in timet′ ≥ t + δij for which the total working time in interval[t, t′[equals
δij . Thus, we set

∆ij :=

{
δij , if δij ≤ 0
max

t≥ESi

∆ij(t), otherwise

An upper boundpi on the time lag between some timet ≥ ESi and the earliest
completion of activityi ∈ V after point in timet can be determined as follows.
The smallest start timeSi ≥ t of activity i is the minimum timet′ ≥ t satisfying
bi(τ) = 1 for all τ ∈ [t′, t′+εi[. By taking the “largest” time lagCi(t′)−t between
t and the earliest completion ofi at timeCi(t′) ≥ t + pi with respect to all times
t ≥ ESi (where the maximum does not necessarily exist), we obtain

pi := sup
t≥ESi

min
t′≥t

{Ci(t′) − t | bi(τ) = 1 for all τ ∈ [t′, t′ + εi[}

Figure 4 illustrates the computation of upper boundpi for an activityi ∈ V bi

withESi = 0, pi = 6, andεi = 1. For5 < t ≤ 8, we havet′ = 8 andCi(t′) = 17.
Since for all other points in timet, Ci(t′) − t is less than or equal to 11 (where we

Project scheduling with calendars∗ 333

✲

✻

t

bi(t)

2 4 6 8 10 12 14 16 18 20

1

t t + εi t′ Ci(t′)

pi = 12︷ ︸︸ ︷
� �❜

� �❜

� �❜

� �❜

� �❜

� �❜

� �❜

� �❜

�

Fig. 4.Upper boundpi

suppose thatbi(t) = 1 for all t ≥ 18), pi equalssup5<t≤8(17− t) = 17− 5 = 12.
Note that there is no maximumCi(t′) − t with respect tot.

Analogously to the case without calendars (cf. Franck et al., 2001),

d :=
∑
i∈V

max(pi, max
j∈Succ(i)

∆ij)

is an upper bound on the minimum project duration provided that there exists a
schedule observing the calendar and resource constraints. Since upper bounds∆ij

andpi for 〈i, j〉 ∈ E andi ∈ V , respectively, can be determined by considering
starts and ends of breaks,d can be computed inO[max(|E|, B)] time.

A calendar- and resource-feasible schedule can be found by the priority-rule
method using an adaptation of the serial schedule generation scheme. For updating
the earliest and latest start timesESj andLSj of activities j ∈ C, we use the
algorithms from Figures 2 and 3, respectively. In contrast to the problem without
calendars, not all points in timet ∈ [ESj∗ , LSj∗] with rk(S, t) ≤ Rk for all k ∈ R
represent feasible start times for the activityj∗ selected. Thus, it may happen that
a resource-feasible start timet∗ with ESj∗ ≤ t∗ ≤ LSj∗ for activity j∗ has to
be rejected because start timeSj∗ = t∗ does not comply with constraints (2). In
that case, the start ofj∗ must be delayed by increasingESj∗ up to the earliest
point in timet with t∗ < t ≤ LSj∗ for which activityj∗ can be processed without
interruption for at leastεj∗ units of time.

The priority-rule method has been tested by Franck (1999, Sect. 5.2) using a
set of 1080 projects with 100 activities and five resources each (test set Bcal). This
test set extends a collection of benchmark instances without calendars by adding
activity and time lag calendars, where 20% of the time periods fall into a break.
The experimental performance analysis has shown that for the resource-constrained
project scheduling problem with calendar constraints, the priority-rule method re-
quires about ten times as much computing time as for the corresponding problem
with ordinary temporal constraints on the average. This is mainly due to a larger
number of unscheduling steps and the more time-consuming temporal scheduling
algorithm (where temporal scheduling with calendars is the more expensive the
greater is the numberB of all breaks in calendars). For both problems, the mini-
mum latest start time first (LST) rule selecting the eligible activityj with smallest
LSj provides the best results among the five priority rules tested (LST, minimum
slack time first MST, most total successors first MTS, longest path following first
LPF, and resource scheduling method RSM; for details see Franck et al., 2001). In

334 B. Franck et al.

particular, the LST rule is well-suited for both finding a large number of feasible
schedules and computing schedules with small project duration.

References

Bartusch M, M̈ohring RH, Radermacher FJ (1988) Scheduling project networks with re-
source constraints and time windows. Annals of Operations Research 16:201–240

Brucker P (2001) Scheduling Algorithms. Springer, Berlin Heidelberg New York
Franck B (1999) Prioriẗatsregelverfahren für die ressourcenbeschränkte Projektplanung mit

und ohne Kalender. Shaker, Aachen
Franck B, Neumann K, Schwindt C (2001) Truncated branch-and-bound, schedule-

construction, and schedule-improvement procedures for resource-constrained project
scheduling. OR Spektrum 23: 297–324 (this issue)

Neumann K, Schwindt C (1997) Activity-on-node networks with minimal and maximal
time-lags and their application to make-to-order production. OR Spektrum 19:205–217

NeumannK,SchwindtC, TrautmannN (2001)Short-termplanningof batchplants in process
industries. In: Kischka P, Leopold-Wildburger U, Möhring RH, Radermacher FJ (eds.)
Models, methods and decision support for management, pp. 211–226. Physica, Heidelberg

Schwindt C, Trautmann N (2000) Batch scheduling in process industries: An application of
resource-constrained project scheduling. OR Spektrum 22:501–524

Zhan J (1992) Calendarization of time-planning in MPM networks. ZOR – Methods and
Models of Operations Research 36:423–438

