Introduction to production scheduling

Industrial Management Group School of Engineering University of Seville

Introduction to production scheduling

- Scheduling
- Production scheduling
- Gantt Chart
- Scheduling environment
- Constraints
- Scheduling objectives

Scheduling (I)

Definition

- Scheduling deals with the efficient allocation of tasks over resources
- The general scheduling problem is, given a number of tasks and a number of resources, set the dates when each task should be accomplished on each resource
- We are interested in scheduling in the manufacturing context, although it has many applications in other fields

Scheduling (II)

Real-life examples

- Timetabling
 - Scheduling of the PC room at Duisburg University: a number of different courses (tasks) have to be given using the PC room (resource)
- Workforce scheduling
 - Assign shifts for nurses and doctors in a Hospital
- Sports scheduling

Production Scheduling (I)

Production Scheduling (II)

- The MRP tell us the quantities of products to manufacture in every time bucket
 - However, MRP does not make any assumption about the resources (i.e. labour, machines) currently available in the factory
 - E.g. two different components have to be manufactured in the same section. How to schedule them?
- Therefore, we have a number of jobs (*j*) to be manufactured over a number of machines (*i*)
 - The production scheduling problem deals with obtaining the date for each job to enter on each machine
 - Not necessarily physical machines, they may be stages (consisting on several machines or labour) in a manufacturing process

Production Scheduling (III)

- Jobs have to be manufactured in each machine in a certain order (known as route) during a certain time period (known as processing time)
 - Processing time of job *j* in machine *i* is usually denoted by *p*_{*i*,*j*}
- Both route and time period are given by the technological process

Example1: Computer assembly (I)

- Tomcat Ltd. is a company that assembles computers. Three main steps can be distinguished in this process:
 - Motherboard & microprocessor are installed
 - Peripheral devices are plugged in the motherboard
 - The number and type of devices that have been order by each customer
 - The computer (all its components) are tested
 - This process depends on the number and type of components
- The route through the steps is given by the technological process and does not depend on the specific order of the customer

Example1: Computer assembly (II)

- The plant in which Tomcat Ltd. assembles the computers is organised in three sections, according to the three main steps:
 - Section 1: Motherboard & microprocessor
 - Section 2: Peripheral devices
 - Section 3: Computer test
- On each section, one worker is performing the corresponding operation
 - Obviously, a new order cannot start until the worker completes the current order
 - Let us assume that an order cannot overtake another order, i.e. the job sequence is the same for all steps

Example1: Computer assembly (III)

- Let us assume that we have three orders (computers to manufacture).
 - According to the nature of each order (components, type, etc.), we can have some estimate of the average times (minutes) for each step:

•	Motherboard	Devices	Test
Order #1	2	15	7
Order #2	3	10	5
Order #3	2	12	5

 The objective of the company is to keep the average time to assembly a computer as lowest as possible

Example1: Computer assembly (IV)

- Which of the following sequences is the most convenient for the objective of the company:
 - **#1, #2, #3**?
 - **#**3, **#**2, **#**1?
 - Or the order of the jobs is not relevant for the final result?

	Motherboard	Devices	Test
Order #1	2	15	7
Order #2	3	10	5
Order #3	2	12	5

Gantt chart

- A representation of an specific solution of a scheduling problem in terms of the machines and jobs
 - Eg. job1 , job2 , job3 , job4
 - Sequence [1,2,3,4]

Time

Example2: Representation of solutions (I)

Using the data of the Example1, try to represent the sequences [1,2,3] and [3,2,1] by a Gantt chart
job1 , job2 , job3

	Motherboard	Devices	Test
Order #1	2	15	7
Order #2	3	10	5
Order #3	2	12	5

Solution of Example2

Scheduling environment (I)

- The environment or framework of a scheduling problem refers to the way the jobs must visit the machines:
 - Single machine
 - Parallel machines
 - Flow shops
 - Flexible flow shops
 - Job shops
 - Flexible job shops
 - Open shop
- The environment largely determines the difficulty of the scheduling problem

Scheduling environment (II)

Single machine

- The simplest of all machine environments
- One may reduce the different steps (sections) in the plant to a single machine
- Interesting case: bottleneck process, the important issue is scheduling jobs in the bottleneck

$$J_1, J_2, \dots, J_n \longrightarrow M_1$$

Scheduling environment (III)

Parallel machines

- All machines are identical
- A job can be processed on any machine
- Generalization of the single machine
- Special case of the flexible flow shop and flexible job shop

Scheduling environment (IV)

- Flow shops
 - All jobs have the same routing

- Additionally, most of the times it is consider than the sequence is the same for all machines
 - Permutation flow shop, e.g. in Tomcat Ltd

Scheduling environment (V)

Flexible flow shop

- stages with m_s machines in parallel
- A job can be processed on any machine at each stage

19

Generalization of parallel machines and flow shop

Scheduling environment (VI)

Job shops

- Each job has, in general, a different route to be processed by the machines
- It is one of the most complex cases

Scheduling environment (VII)

Flexible Job shops

- Each job has, in general, a different route to be processed at all stages
- Each stage has *m_s* machines in parallel
- It is even more complex than the job shop

Constraints

- There may be additional constraints for the scheduling problem:
 - Release dates
 - Setup-times
 - Pre-emption
 - Precedence constraints
 - Blocking
 - No-wait

....

Scheduling objectives (I)

- A scheduling objective is a measure to evaluate the quality of certain schedule
 - In real-life situations, there are many (sometimes conflicting) objectives
- There are based on the completion times:
 - $C_{i,j}$. Time in which job *j* is finished in machine *I*
 - $C_{j:}$ Time in which the job *j* is finished in the last machine
- It is easy to see that, for the flow shop case, the completion time for a job in the position [k] is:

$$\begin{aligned} C_{[k],j} &= \max(C_{[k-1],j}; \ C_{[k],j-1}) + \mathsf{p}_{[k],j} \\ \text{assuming } C_{[k],0} &= 0, \text{ and } C_{[0],j} = 0 \end{aligned}$$

Scheduling objectives (II)

- Rather often, not all jobs (customers) are equally important
 - Therefore, one can assign a weight w_j to each job representing the relative importance of each job
- In general, one can distinguish two types of objectives:
 - Due date related objectives
 - Non-due date related objectives

Scheduling objectives (III)

Due date related objectives (I)

- For this kind of problems, we assume that each job j has, in general, a due date d_i and a release date r_i
 - The due date represents the commitment of the company with a customer
 - The release date implies the non availability of raw materials from the beginning
- When each job has a due date, a basic objective is fulfilling this due date
 - Indicator of the service level
 - However, finishing the order as soon as possible (much before the due date) is not a good idea
 - Inventory costs

Scheduling objectives (IV)

Due date related objectives (II)

- Lateness of a job: $L_j = C_j d_j$
 - Maximum lateness: $L_{max} = max(L_j)$
 - Average (total) lateness: $\underline{L} = \Sigma L_{ij} / n$
 - Weighted lateness: $wL = \Sigma w_j L_j$
- Tardiness of a job: $T_j = max(0, L_j)$
 - Maximum tardiness $T_{max} = max(T_j)$
 - Average (total) tardiness: $\underline{T} = \Sigma T_j / n$
 - Weighted tardiness: $wT = \Sigma w_j T_j$
 - Number of tardy jobs: $U = \Sigma U_j$; $U_j = 0$ if $T_j = 0$, $U_j = 1$ if $T_j \neq 0$
- Earliness of a job: $E_j = max(0, -L_j)$
 - Maximum earliness $E_{max} = max(E_j)$
 - Average (total) earliness: $\underline{E} = \Sigma E_j / n$
 - Weighted earliness: $wE = \Sigma w_j E_j$

Scheduling objectives (V)

Non due date objectives

- Machine utilisation
 - Makespan: $C_{max} = max(C_j)$
 - Idle time
 - Time after finishing one job and before starting the next one
 - It can be shown that minimising makespan is equivalent to minimising idle time
- Average lead time
 - Average (total) completion time: ΣC_i
 - Average weighted completion times $\Sigma w_i C_i$

Break

