MULTI-PROJECT SCHEDULING AND CONTROL: A PROCESS-BASED COMPARATIVE STUDY OF TH...
Izack Cohen; Avishai Mandelbaum; Avraham Shtub

Project Management Journal; Jun 2004; 35, 2; ABI/INFORM Global
pg. 39

MuLTI-PROJECT SCHEDULING AND CONTROL:
A PrROCESS-BASED COMPARATIVE STUDY

oF THE CRiTicAL CHAIN METHODOLOGY AND
SOME ALTERNATIVES

ABSTRACT

Critical Chain (CC) is a popular project
management technique in many multi-
project organizations. It applies the
Theory of Constraints (TOC) to offer a prac-
tical .and easy method for planning,
scheduling and ' control of multi-project
systems. While some prior studies exam-
ined CC performance for single-project
management, ‘little attention' has been
given to its performance in a:multi-project
environment. In this paper, we examine
the control mechanisms of CC and some
alternatives. We demonstrate that, when
CC'is not enough to prevent projects’ late-
ness, such-alternatives may give rise to
similar ‘and- sometimes better, possibly
much better performance.

Keywords: multi-project management;
critical chain; project scheduling; control

©2004 by the Project Management Institute
Vol. 35, No. 2, 39-50, ISSN 8756-9728/03

1ZACK COHEN, Industrial Engineering and Management, Technion Israel Institute of Technology,
Haifa, Israel 32000

AVISHAI MANDELBAUM, Industrial Engineering and Management, Technion [srael Institute
of Technology, Haifa, Israel 32000

AVRAHAM SHTUB, Industrial Engineering and Management, Technion Israel Institute of Technology,

Haifa, Israel 32000

Introduction

ritical Chain (CC) methodology for project management (Goldratt, 1997)

applies the Theory of Constraints (TOC) to multi-project scheduling and

control. Specific software packages, based on CC methodology, have been
developed (Speed to Market's Concerto and ProChain Solutions Inc.). In paral-
lel, a growing number of articles relating to CC have been published—some are
criticizing the approach (Herroelen & Leus, 2001; Herroelen, Leus, &
Demeulemeester, 2002; Shou & Yeo, 2000) and others are praising it (Steyn,
2000; Leach, 1999). None of these papers have thoroughly examined the per-
formance of CC methodology in a multi-project environment. Yet, a growing
number of multi-project organizations have chosen the CC methodology for
planning, scheduling, and control of their projects, and that has motivated our
efforts to understand it better.

It is thus our intention to obtain new insights on the CC methodology in a
multi-project environment, while comparing its performance with alternative
methodologies. To this end, we consider an environment of multiple concurrent
projects in which projects compete for the same set of scarce resources. The envi-
ronment is random (stochastic) in that uncertainty plays a significant role.
Projects are unique in that their operational requirements and activity durations
differ. Yet, projects are also “non-unique” in that they share common character-
istics that enable their classification; for example, within a class, precedence rela-
tions between projects’ activities can be identical and, for each activity, the
historical realizations of activity times fit a common distribution function.
According to co-author Cohen’s experience, such an environment prevails in
organizations that process maintenance or retrofit projects, which are common
in the aircraft industry (for a description of maintenance projects in the aircraft
industry, see also Gemmill & Edwards, 1999). Here, the realization of each proj-
ect in the project portfolio is unique (e.g., due to its unexpected delays, different
technical findings, or even differences in aircraft structures). However, despite
the differences between the projects, one can model such an organization as one
that processes several classes of projects with, for example, each different type of
aircraft giving rise to a different project class. This approach of separating proj-
ects in a multi-project organization into different classes has been found useful

,:Ju_ne 2004 PROJECT MANAGEMENT JOURNAL & 39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in past research (e.g., Adler,
Mandelbaum, Nguyen, & Schwerer,
1995, for product development proj-
ects in the chemical industry; Leung,
2002, for software maintenance proj-
ects; and Griffin, 2002, who suggested
a general classification of all projects
in an organization into four project
classes).

A natural modeling framework for
non-unique multi-projects was
described by Adler et al. (1995), in
terms of stochastic processing net-
works. The building blocks of such a
network are interdependent resources
that process project activities accord-
ing to some pre-specified discipline. At
any given moment, each activity is
either receiving service from a
resource, queuing up for access to a
resource, or waiting to join a prerequi-
site activity that is being processed or
delayed elsewhere. The network model
is stochastic, or random; for example,
activity durations are modeled by ran-
dom variables. Randomness here cap-
tures unpredictable variability that is
prevalent and significant in most proj-
ect environments.

The stochastic network paradigm
is also natural for the analysis of
buffer management, as defined by the
CC methodology. A buffer stores
“time-units,” specifically time by
which the project activities correspon-
ding to this buffer could be delayed
without causing a delay to the
planned project due date. A buffer,
thus, stores slack time that is added
during planning. Buffer management
then amounts to the dynamic man-
agement of resources according to
buffer contents or, equivalently, to
buffer consumption levels. For exam-
ple, among several competing activi-
ties, top priority in resource allocation
is given to the activity whose buffer
consumption is the highest, namely
its slack time is the least.

Through the comparison of CC to
other alternative methodologies, we
address two aspects of broad signifi-
cance to project management. The first
is the trade-off between resource uti-
lization and project throughput: proj-
ect throughput times get longer as
resources’ utilization become higher.

40 o PROJECT MANAGEMENT JOURNAL June 2004

We quantitatively demonstrate this
trade-off for the different management
methodologies. The second aspect is
implementation costs. Here we
demonstrate that some simple man-
agement methodologies, requiring
low implementation costs, can achieve
very good performance compared to
the CC methodology. We note that the
implementation of CC methodology
in an organization usually requires
some organizational changes and con-
siderable implementation costs
(mainly training costs for both man-
agement and workers, and purchase
costs for special software packages).
Buffer management gives rise to addi-
tional ongoing costs.

The rest of the paper is organized
as follows: In the next section, we dis-
cuss the fundamentals of CC method-
ology. Then, we introduce the process
management approach for modeling
dynamic multi-project environments.
Next, we elaborate on our experimen-
tal design, accompanied by a section
with notation and formulas. In the fol-
lowing two sections, we present our
main results: a comparative simula-
tion analysis of the CC methodology
for the management of non-unique
multi-projects. We then conclude with
a summary and some suggestions for
further research.

Fundamentals of CC Methodology

CC methodology (Goldratt, 1997)
aims at developing a sound schedule,
using buffer management, in order to
avoid project overruns. The methodol-
ogy is not well defined in the sense
that it does not provide precise defini-
tions for some project entities and sce-
narios. Rather, it gives a heuristic
framework and guidelines for project
managers on how to plan, schedule,
and control their projects, and it is up
to the user of the method to complete
the details. (For further discussion of
the merits and pitfalls in CC method-
ology, refer to Herroelen and Leus,
2001.) We now review the steps of CC
methodology as they apply to the
models discussed in the sequel. We
start with a single-project environ-
ment, and then generalize to a multi-
project environment.

The CC steps for single project
planning, scheduling, and control are
as follows:

Step S1: Reduce activity durations
by eliminating safety margins.

Estimates of activity durations
include “padding” times. Indeed,
based on their experience, managers
tend to quote late due dates so that
they can meet them with a high degree
of certainty. The result is inflated activ-
ity durations that become self-fulfill-
ing, or even overrun due to the
combined effects of stochastic vari-
ability and Parkinson’s Law (whereby
work expands to fill the time given for
execution; Parkinson, 1957).
Therefore, CC methodology, applied
at the outset, reduces predicted activi-
ty times to their median (which
ensures 50% probability of on-time
completion, Goldratt, 1997) or to
their average duration (Product
Development Institute, 1999;
Herroelen & Leus, 2001).

Step S2: Identify the critical chain.

A critical chain is a sequence of
activities that determines the project
duration, taking into consideration
both precedence dependencies and
resource constraints. Such a critical
chain arises from a project plan that
assumes deterministic estimations
for the reduced activity durations and
resource requirements, as in Step 1.
(When a critical chain is non-unique
or difficult to identify, the advice is
to pick one up arbitrarily.) The proj-
ect plan is then further revised
according to the “late starts” of the
project activities.

Step S3: Create a project buffer.

Some of the padding that was
eliminated in Step 1 from activity
durations is shifted to the end of the
critical chain and “stored” in a time
buffer. This buffer, called project-
buffer, is used dynamically to protect
the project due date against variations
in critical chain activities. A standard
approach is to set the project-buffer
capacity to 50% of the total duration
of the critical chain (Leach, 1999).

Step S4: Create feeding buffers.

Delays in non-critical activity
chains (activity chains merging into
the critical chain) could cause undesir-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

able delays of the critical chain.
Consequently, feeding buffers are
added at the end of each non-critical
activity chain (“pushing” the latter
back in time, in response to a “late
start”). The feeding buffers thus pro-
tect the critical chain from variations
of non-critical chains and allow criti-
cal-chain activities to start early, when
possible. According to Leach (1999),
a feeding-buffer capacity is set to 50%
of the duration of its non-critical
activity chain.

Step S5: Control.

Buffer monitoring provides a
quick grasp of project status, which, in
turn, enables adaptive control.
Specifically, buffer consumption that
reaches a predefined threshold (e.g.,
two-thirds of the buffer size or, equiva-
lently, one-third of the slack time
remains unused; Leach, 1999) triggers
an early warning toward taking some
preventive managerial action. More
details are provided later in this paper.

Multiple projects are accommo-
dated by combining single-project
scheduling with TOC (Goldratt, 1984)
and CC principles, notably the
emphasis on reducing multi-tasking
(Herroelen & Leus, 2001; Leach,
1999). To this end, project start-times
are staggered, which turns the multi-
project system into a “pull” system
with newly determined release/start
times. Following are the relevant
details.

Scheduling and control of a multi-
project system:

Step M1: Treat each project as a
single project.

Individually schedule each of the
multi-projects, using the four steps for
scheduling a single project, as described
in Steps S1-S4.

Step M2: Stagger projects
according to the bottleneck resource.

First identify the bottleneck,
namely the most constraining
resource (often by simply using
managerial experience). Then
release projects sequentially, by stag-
gering them, so that the bottleneck
works continuously and there is no
idle time.

Step M3: Create a capacity buffer.

A time buffer, called a capacity
buffer, is associated with the bottle-
neck, and its role is to ensure bottle-
neck availability. The capacity buffer
decouples between bottleneck activi-
ties that belong to successive projects,
thus determining projects’ start times.
Since, based on a literature survey,
there is no standard way to set the size
of this capacity buffer, we set its base-
case size at 50% of the duration of the
bottleneck activity. We then analyze
the effect of alternative sizes by varying
the values through 8.3%, 16.7%,
83.3% and 116.7%.

From Project to Process Management
Following Adler et al. (1995), we
model a multi-project organization as
a stochastic processing network. Adler
et al. (1995) validated the model
based on an actual research and devel-
opment organization, showing that
the model simulated quite accurately
its performance.

In the model of a stochastic pro-
cessing network, each network node
represents a group of (one or more)
statistically identical resources, who
perform the same type of activities and
who are able to do so in parallel.
When several activities of a project can

A — A[]] c3

S
b,

B, 2

~[]| b4

|:| Resource Queue /\ Synchronization Queue Activity Type (I), Resource Type (#)

Figure 1. The Stochastic Processing Network approach for representing a multi-project system

Step M4: Control.

As with single projects, scheduling
control of multi-projects is buffer-
based: when allocating an idle
resource, top priority is given to criti-
cal-chain activities over non-critical-
chain activities; secondary priority is
given to activities of projects with the
highest level of project buffer utiliza-
tion or, equivalently, the least slack
time. Least priority, in turn, is given to
activities of projects with the highest
feeding buffer consumption.

start being processed at the same time,
we refer to the phenomenon as a
“fork;” when an activity cannot begin
until its predecessor activities have
been completed, we call it a “join.”
(Consequently, such models are often
referred to as fork-join queues. For
example, see Nelson & Tantawi, 1988.)
The time required to complete an
activity is called its processing time
(duration) and the intervals between
successive project releases are “inter-
arrival times.” The reciprocal of the

Resource Number of Time
Type Resources Distribution
Inter-arrival Exp(1/3.25)
Activity A 1 3 Exp(1/6)
Activity B 2 2 Exp(1/5)
Activity C 3 3 Exp(1/4)
Activity D 4 1 Exp(1/3)

Table 1. Characteristics of our multi-project system: number of resource-units per type,
processing time distribution and inter-arrival time distribution. The notation Exp(\) represents an
exponential distribution with probability density function f(t)= Ae™ (and expectation 1/\)

June 2004 PROJECT MANAGEMENT JOURNAL © 41

mean inter-arrival time is the project’s Figure 1, to illustrate activities’ prece- ments are subject to random (stochas-
input rate (expressed in number of dence requirements. The network is tic) variability. Projects are of the same
projects per unit of time). stochastic since inter-arrival times, pro- type if they are characterized by the

We use network diagrams, as in cessing times, and precedence require- same set of probability distributions

MAY JULY AUG SEPT 0CT

JUNE

TASK NAME
1| Start
2 | Activity A
3 | Activity B
4 | Feeding Buffer 1
5 | Activity C
6
7
8
9

~R3

Activity D
Feeding Buffer 2
Finish

Project Buffer R

MAY JULY AUG SEPT OCT

JUNE

TASK NAME
Start
Activity A
Activity B
Feeding Buffer 1
Activity C
Activity D
Feeding Buffer 2
Capacity Buffer
Finish

Project Buffer [T T
Start

Activity A
Activity B
Feeding Buffer 1
Activity C
Activity D
Feeding Buffer 2
Capacity Buffer
Finish

Project Buffer
Start

Activity A
Activity B
Feeding Buffer 1
Activity C
Activity D
Feeding Buffer 2
Capacity Buffer
Finish

Project Buffer

R3

Wl Nl || || —

-
[=1

o
=

—i
[p]

—
(%]

—
BN

—_
o

—
(=2]

p—y
-J

—t
(==}

—_
w

[a~]
[=]

o
—_

=]
ra

L]
(4]

L]
E=Y

R3

Mo
o

el
[=7]

(]
-

Il
(==]

[ae]
w

(%]
=

Figure 2. Critical Chain representation of a single project (a) and a corresponding multi-project system (b). For concreteness, one time unit is a week.
The critical chain consists of Activity A and Activity C. Feeding buffers are added at the end of non-critical chains: the non-critical chain that includes
Activity B (Feeding Buffer 1) and one that includes activities B and D (Feeding Buffer 2). At the end of the critical chain we add a project buffer. Capacity
buffers decouple successive projects: such a buffer is placed after an activity performed by Resource 4 (bottleneck resource) in one project and this
activity in the following project

42 o PROJECT MANAGEMENT JOURNAL June 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(precedence, inter-arrival times, and
processing times). This representation

can thus model a multi-project system
with different project types. When a
project activity “arrives” to a
node/resource, it either starts its pro-
cessing immediately or it joins a queue
and waits there till its processing starts.
Such queues are called resource-
queues—they are managed according
to priority rules and are subject to
resource availability. Another type of
waiting takes place in synchronization
queues, where activities are delayed
due to precedence constraints. We
shall now make these abstract notions
concrete via a simple example of a pro-
cessing network.

Model Construction

Consider the multi-project system
depicted in Figure 1. The system has
four resource types, numbered 1-4,
which process projects of a single type.
Each project consists of four activities,
denoted A-D: Type 1 resources are

dedicated to processing type A activi-
ties, type 2 resources are dedicated to

type B, etc. (The more general model
could have a resource type processing
several activities.) The start and finish
activities are milestones— they have
neither a duration nor a resource
requirement. Figure 1 could be viewed
as representing a simple multi-project
organization, for example, an aircraft
maintenance company or a chemical
product development process.

The system characteristics are
given in Table 1. From the table, we
read that release times between succes-
sive projects have an exponential dis-
tribution with a mean 3.25 units of
time, that three resources of type 1 are
dedicated to processing activities of
type A, and that the processing dura-
tions of such type A activities have an
exponential distribution with an aver-
age of 6 units of time. (The depend-
ence of performance on the
distribution of the processing-duration
will be discussed in our concluding

section.) The bottleneck resource,
namely the resource that determines

the system’s processing capacity (Step
M2), is resource 4. This choice finds
ample support in our subsequent
analysis (see Table 2). But it can be
roughly justified, by observing that a
mere single type 4 resource is dedicat-
ed to activity D, with an anticipated
utilization level of about 3/3.25 = 92%
in steady state, which is by far the high-
est among all the resources.

Figure 2 illustrates the buffered
single- and multi-project systems,
according to the CC scheduling
methodology described in Steps S1-54
and M1-M3, respectively; as already
noted in Step M3, we set the size of the
capacity-buffer to 50% of the duration
of the bottleneck activity D.

Experimental Design

Our experimental tool is a simulation
model, written in Visual Basic on a
personal computer. Each simulation
run started with a warm-up period

A Instance No Control (HH MinSLK QSC(6) QSG(3) ConPIP
X 51.42 32.44 30.40 20.18 17.33 32.93
bt SN 3.86 1.24 0.88 0.19 0.11 0.69
0.31 SD 33.46 18.92 17.67 9.42 8.64 13.45
PLPBPPE 62,78,42,93 61,78,41,92 61,76,40,90 58,72,39,86 52,66,35,78 61,76,41,92
X 32.44 21.87 21.59 18.62 16.62 22.79
b SR 1.75 0.41 0.37 0.13 0.12 0.20
e sD 20.55 1.15 1157 8.80 8.28 9.44
P12, 3, 4 57,72,38,85 57,72,38,85 57,71,38,85 56,69,36,82 51,63,33,75 57,72,38,86
X 18.9 15.50 15.27 15.25 14,60 15.33
= bt SN 0.27 0.12 0.09 0.07 0.12 0.07
sD 10.10 7.71 7.97 7.74 7.52 7.56
P1,P2PEPe 45,56,30,67 45,56,29,67 44,55,29,66 45,56,29,66 42,53,28,63 44,55,30,67
X 16.49 1417 14.26 14.26 14,12 14.81
46 bt SN 0.17 0.08 0.06 0.05 0.09 0.07
SD 8.72 7.32 7.53 7.48 7.44 7.52
P1, P P34 37,46,25,55 36,45,24,55 37,46,24,55 37,46,24,56 36,45,23,55 36,45,24,54
X 15.32 13.71 13.84 14.00 13.69 14.48
— | SN 0.10 0.07 0.05 0.12 0.06 0.06
SD 7.99 7.18 7.42 7.23 7.33 7.51
P1, P2 P3P 32,40,21,48 31,39,20,46 31,39,20,47 32,39,21,48 31,38,20,46 31,38,20,46

Table 2. Summary for different control methodologies. NPIP values for ConPIP control are: 13,8,4,4,4 for throughput rates 0.31,0.29,0.22,0.18,0.15,
respectively. QSC controls’ A, values corresponding to A= 0.31,0.29,0.22,0.18,0.15 are: QSC(6) 0.29,0.27,0.22,0.18,0.15, respectively. QSC(3)
0.26,0.25,0.21,0.18,0.15, respectively

June 2004 PROJECT MANAGEMENT JOURNAL * 43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that lead to steady state. This tran-
sient phase was discarded from the
analysis. The system was then simu-
lated in steady-state for a predefined
time interval that was chosen accord-
ing to Welch’s moving average proce-
dure, as described in Law and Kelton
(1991). Each simulation was replicat-
ed 50 times.

The experiment compares system
performance under CC with perform-
ance under alternative control
methodologies. Performance measures
are mean project duration, its standard
deviation, and throughput rate, that is,
the number of completed projects per
unit of time.

We analyze two types of controls:
open control, under which all candi-
date projects are actually initiated, and
closed or semi-closed control, where
projects must adhere to some prede-
fined criteria in order to be started.
Our open controls are termed No
Control, CC and MinSLK; the closed
and semi-closed group consists of
ConPIP and QSC. Here are their
details:

Open Controls:

1. No Control—A push system
with FCFS (first come first served)
queues priority rules.

(A thorough analysis of this spe-
cific model is carried out in Barron &
Mandelbaum, 2003.)

2. Critical Chain (CC)—New
projects are initiated according to the
CC methodology, as was described in
Step M2-M3. Guided by Step M4,
buffer management determines the
priority of the next activity to be
processed by a resource.

When viewing CC methodology
as a process management model, we
make the following observations.
Buffer consumption determines the
priority of its corresponding activity in
a resource queue: the higher the con-
sumption (less slack), the higher the
priority. While an activity is delayed in
queue (either synchronization or
resource), its buffer consumption
increases until it reaches a predefined
threshold. In this scenario, the thresh-
old is two-thirds of the associated
buffer size, for both feeding and proj-

44 » PROJECT MANAGEMENT JOURNAL June 2004

ect buffer, and when it is reached, a
resource is allocated to the activity by
preempting activities with lower buffer
consumption.

3. Highest Priority in Queue to a
Minimum Slack Activity (MinSLK)—
When an activity is completed, the
prevalent critical path is reevaluated
and slack times are updated for the rest
of the projects’ activities. (Here, slack-
time is defined as the difference
between the late start time and early
start time.) MinSLK (also called
MinSLK[DD] by Bock & Patterson,
1990) employs the following priority
rule for allocating resources to activi-
ties: the lower the slack time, the high-
er the priority. Thus, as a project is
delayed, the priorities of its activities
increase. (Note that slack times can
turn negative, specifically when the
start time of an activity is later than
the late start time that is needed in
order to complete the project on its
due date.)

Closed and Semi-Closed Controls:

4. Constant Number of Projects
in Process (ConPIP)—New projects
are started based on a predetermined
number of projects in process, called
NPIP (Adler et al., 1995; and Anavi-
Isakow & Golany, 2003). Specifically,
an arriving project starts its processing
immediately if the number of projects
concurrently in process within the sys-
tem is below NPIP; otherwise, it is
placed in an external queue and waits
till it can be processed. We define the
throughput time of a project as the
time span from its start-time (S), when
it leaves the external queue, until its
finishing time (F), when it leaves the
system. For varying values of project
input rates, we determined NPIP val-
ues as the maximal number of projects
allowed concurrently in the system, so
that the mean waiting time in the
external queue does not exceed half of
the average throughput time. (The lat-
ter condition is plausible for the air-
craft maintenance industry, according
to the experience of one of the
authors.)

5. Queue Size Control (QSC)—A
predetermined maximal number of
activities is allowed, at any given time,

within the resource queue of the bot-
tleneck. An arriving project is then
allowed into the system to be
processed if the length of the bottle-
neck’s resource queue is below this
maximal number; otherwise, the arriv-
ing project is discarded, never to
return.

Notation and Formulas

Consider n replications, each of
length m; Y;; is the duration of the it"
project from the ! replication
(i=1,2,...,m;j=1,2,...n). The average
project duration for replication j is
taken to be (Law & Kelton, 1991):

r =41

" m-l’
where [is the length of the transient
period, counted in number of projects.
Assuming that replications are
independent, the X,'s are independent
random variables with E(X;)=p (the
true steady-state mean value). The over-
all mean duration X, where

X=25

is approximately an unbiased point
estimator for p. An alpha-level confi-
dence interval is given by:
X+t S
il |
where §?, the estimator for the variance
equals

P
iy L

n—1

The mean standard deviation (SD)
of a replication is

[$ (Y%
A m—F1
SD: n
The arrival rate of projects, \, is a
given parameter, while the effective
throughput rate, A, is a measured
output of the model—or simulation.
For each resource type, we estimate its
mean traffic intensity p, by

§ e

Pr= n+N,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

0.16 4 B i i B B o ol | 0.16 4 - |
e ._.-l—‘.
al 0.9 0.9
0.14 e 0.14-] s
- 0.8 I | - 0.8
0.12 4 0.12 4 |
L 0.7 | - 0.7
0.1 4 06 0.1 4 06
0.08 - 0.5 0.08 - 0.5
0.06 04 0.06 104
- 03 - 0.3
0.04 4 : 0,04 4
; ‘ - 0.2 - 0.2
o024 | ‘ ‘ | i 0.02 iy
i 4 l BiE, | B,
0 T T L | L § T T T { STEEL R O] T L T T T T T T T D 0 T T 'Qj' T T T T T T T T T U
G G @ o @ “] o o o @ @
ARSI S A A R A v AR SR A
d|
0.16 4 e i e S 0.16 4 e——— R R |
o e
0.44 , i 0.4 -8
| - 08 - 08
0.12 | 012 4
L 0.7 - 0.7
014 L 06 014 06
0.8 J ’/ 11 - 05 0.08 L o5
0.06 1 - 04 0.06 - 04
i r - 0.3 - 0.3
0044 0.04
(14 | i L 02 - 0.2
o.oz-./l/ | | ‘ _ - 0.02 1 ‘ | ‘ . (B
0 =t |1| o e e o 3 lll I]lllllrl r=r=r=r=r—1—1-T1+ 0 0 -lu[ululrl =1 0
a2 A% {L‘fb ’:*? "\';? 'i\‘ﬁ '{‘:? X ‘:\‘9 ‘&‘?) @f? a2 'g‘f_ﬂ 'S\‘.ﬂ Q:? ‘;\‘P @"? é\‘? @"3

Figure 3. Throughput time distribution for throughput rate, A=0.22, for the following controls: (a) CC. A , =0.22, X=15.34, SD=7.66,
(b) MinSLK, A, =0.22, X=15.27,5D=7.97, (c) QSC (3). A ,=0.21,X=14.60,5D=7.52 (d) No control \ ,=0.22,X=18.9, SD=10.10

Here, Tj;, is the processing-time of
project i by resource type k in replica-
tion j; Uj is the simulation duration in
steady-state for replication j; and Ny is
the number of resource units for
resource type k.

Simulation Results

Table 2 summarizes the performance
measures of our simulation experi-
ments, in steady state. Applying CC
methodology, specifically Step S2, to
the multi-project system described by
Figure 1 and Table 1, yields a project
plan with throughput time of 17.5 time
units and a throughput rate of 0.22
projects per unit of time. Our simula-
tion analysis reveals a mean project
throughput time of 15.50, which is
below the planned 17.5 wvalue.
Nevertheless, 34% of the projects are
expected to have a throughput time that
exceeds the plan: P(T>17.5)=0.340,

eff

where T denotes a random variable that
models project duration in steady state,
and its distribution is here determined
by the histogram in Figure 3a.

A reduction of the capacity buffer
(from the 50% that the CC methodol-
ogy often guides as default) results in
an increase of both project throughput
time and its standard deviation.
Reduction of buffer capacity to 16.67%
resulted in an increase of mean
throughput time to 21.87 and a stan-
dard deviation of 11.15 (51.0% of the
mean). Further reduction to 8.33%
buffer size resulted in a mean through-
put time of 32.65 and standard devia-
tion of 18.92 (57.9% of the mean).

We compared the performance of
the different control methodologies to
CC. For each throughput rate, we per-
formed a modified t-test confidence
interval test, at the 0.95 confidence
level (using Welch’s approach for com-

paring performance measures without
assuming equal variances; see Law &
Kelton, 1991, pp. 588-594).

When the system operated with
No Control, the mean and standard
deviation were significantly higher
than in CC, for all throughput rates.

Performance of the MinSLK prior-
ity rule was not significantly different
from CC at throughput rates of 0.29,
0.22 and 0.18, and slightly better for
throughput rate 0.31. The throughput
time distribution for throughput rate
0.22 (see Figure 3b) was similar to that
of CC, with P(T>17.5)=0.341.

Queue Size Control gave rise to
lower values of both mean throughput
time and standard deviation. The
improvement is most noticeable at
high utilization levels and, hence, high
throughput rates (0.31, 0.29 and 0.22).
However, there is some decrease in the
effective throughput rate, as described

June 2004 PROJECT MANAGEMENT JOURNAL * 45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

below in Table 2. For example, in
arrival rate of 0.31 project per time
unit, reducing the mean traffic intensi-
ty from about 90% (in CC) to 85% (in
QSC(6)) resulted in a 38% decrease in
mean throughput time, while the effec-
tive throughput rate reduction was
6.4%.Figure 3c presents the through-
put time distribution for an effective
throughput rate of 0.21 (max queue
size of 3 projects). In this case, the
throughput time for 30% of the proj-
ects is over 17.5 time units:
P(T>17.5)=0.300.

In Figures 4a-4d we display the
throughput time distribution for dif-
ferent controls under a relatively heavy
load (high throughput rate of 0.31).
CC and MinSLK exhibit a very similar
distribution, with over 70% of projects
expected to exceed the throughput
time of 17.5 time units, and the medi-
ans equal to 32.44 and 30.40, respec-

tively. The performance of the uncon-
trolled system is no less than cata-
strophic: for about 90% of the projects;
the throughput time is expected to be
more than 17.5 and, indeed, the medi-
an increases to 51.42. In contrast, the
closed control QSC(3) exhibits fairly
good performance, with only 40% of
the projects expected to be late for
their planned due date, and a median
of 17.33. Note that this is at the cost of
an effective throughput rate of 0.26,
which amounts to giving up about
16% of the projects.

ConPIP control has not shown a
significant difference in mean through-
put time relative to CC. The standard
deviation and confidence interval for
the mean throughput time (0.31 and
0.29, respectively) were lower for high
throughput rates.

The experience of projects, as they
progress through the system, is sum-

marized in Table 3. We are using, what
we call, time-profiles: these are the
fractions of time that projects spend
either waiting for a resource, waiting
for activity synchronization, or actual-
ly being worked on. Specifically, Table
3 displays time-fractions for the fol-
lowing performance measures: Waiting
time in resource queues;
Synchronization time (where activities
wait until their precedence constraints
are fulfilled); and Processing time of
activities by the resources.

From Table 3, we learn that a sig-
nificant fraction of projects’ through-
put time is spent waiting, either in
synchronization or resource queues.
For example, the time profile for CC
with throughput rate 0.22 is as follows:
processing time 52%, waiting for
resources 13%, and waiting in syn-
chronization queues 35%. As the
throughput rate gets higher, the differ-

0.5 4 og—a—a———a—a 0.5 - a—a—n—u 1
0.45 L 09 045 4 L 09
0.4 - L 08 04 - L 0.8
0.35 07 035 | L 0.7
0.3 - L 0.6 0.3 L 0.6
0.25 L 05 0.25 4 0.5
0.2 L 0.4 0.2 - 0.4
0.15 4 L 03 0.15 4 L 0.3
0.1 L 02 0.1 4 L 0.2
0.05 - | i : L 0.1 0.05 - L 0.1
0 P .[- 0 0 e P 0
R I S S ST S S SN, I S R A
C | d |
0.5 4 — s a8 88 @« &8 1 0.5 4 1
0.45 L 0.9 0.45) _{,__4/ L 0.9
0.4 - L 08 L 0.8
0.35 L 0.7 L o7
0.3 - L 06 L 06
0.25 L 0.5 L 05
0.2 - L 0.4 L 0.4
0.15 L 03 L 0.3
0.1 - L 0.2 _ foe
0.05 k - o ifoa
0 . . v 0 B,
P S

S &P PSSP

Figure 4. Throughput time distribution for throughput rate, A=0.31, for the following controls: (a) CC. A =0.31, X=32.44,5D=18.92,

(b) MinSLK, X

eff

46 * PROJECT MANAGEMENT JOURNAL June 2004

=0.31, X=30.40,5D=17.67, () QSC (3). A ,=0.26,X=17.33,5D=8.64 (d) No control A ,=0.31,X=51.42, SD=33.46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A Time Profile No Control (HH MinSLK QSC(6) 0SC(3) ConPIP

% waiting time 43 36 38 24 18 38

0.31 | % synchronization time 40 38 35 34 34 36
% processing time 17 26 27 42 48 26

% waiting time 36 27 26 21 16 29

0.29 | % synchronization time 37 35 35 34 34 34
% processing time 27 38 39 45 50 37

% waiting time 22 13 12 1 9 12

0.22 | % synchronization time 34 35 35 35 36 35
% processing time 44 52 53 54 55 53

% waiting time 15 7 7 7 6 9

0.18 | % synchronization time 35 36 36 36 37 36
% processing time 50 57 57 57 57 55

% waiting time 20 5 5 5 4 8

0.15 | % synchronization time 32 37 37 37 37 36
% processing time 48 58 58 58 59 56

Table 3. Time profile analysis. Waiting time in resource queues, synchronization time and processing time

ence between the time profiles in an
open system and in a closed system
gets larger. For example, CC with a
throughput rate 0.31 exhibits a time
profile consisting of processing time:
26%, waiting for resources: 36%, and
waiting in synchronization queues:
38%. Under QSC(3) with the same
throughput rate, this profile changes to
processing time: 48%, waiting for
resources: 18%, and waiting in syn-
chronization queues: 34%.

Discussion

The most important trade-off that an
organization’s management should
consider is that between resource uti-
lization and project throughput time:
typically, the higher the former, the
longer the latter, and vice versa. The
first-order question is, thus, whether
to work at high traffic intensity levels
and have long throughput times or,
alternatively, lower traffic intensity to
gain lower throughput times and
lower standard deviation, hence, also
more predictability.

Research on multi-project plan-
ning based on CC (Leach, 1999)
claims that resource competitions are
resolved via buffer management,
which protects against schedule varia-
tions. The claim is based on a small-
scale example of a system that

processes few projects; hence, it is in a
transient phase of operation. We, on
the other hand, are analyzing steady-
state phenomena: buffers and queues
have filled up to their steady-state lev-
els and, consequently, they are prone
to being incapable of absorbing all
stochastic variations. _

Figure 5 demonstrates variation
in throughput time during the tran-
sient period until the system reaches
its steady state. It is clear that analyz-
ing only the transient period would
bias the estimate of throughput time
to be greatly overoptimistic. Indeed,
the buffers are “unchallenged” dur-
ing this transient period. In contrast,
some steady-state scenarios are such
that the buffers fail to protect the
planned due date for a significant
fraction of the projects.

A comparison of alternative con-
trol methodologies to the CC
methodology shows that, for a given
throughput rate, we can get the same
or better performance using the prior-
ity rule MinSLK. This is done through
dynamic control of the project, deter-
mination of its current critical path,
and prioritizing the activities with
minimum slack. This MinSLK priority
rule and buffer management are
almost identical—both give priority
to the critical activity (critical in the

sense that it is the latest activity, or the
activity with least slack). We believe
that MinSLK outperforms CC in high-
er loads because of its adaptive deter-
mination of the critical path—it helps
determine the current “most critical”
activities to allocate resources. Buffer
management, in contrast, always gives
priority to activities belonging to a
pre-determined critical chain, which,
as throughput rates increase, is likely
to have changed.

When turning the system into a
closed system, as done in Queue Size
Control, one can achieve a dramatic
reduction of the mean throughput
time—in high throughput rates—by
reducing the mean traffic intensity of
the bottleneck resource. For example,
in an arrival rate of 0.31 projects per
time unit, reducing the mean traffic
intensity from about 90% (in CC) to
85% (in QSC(6)) resulted in a 38%
decrease in mean throughput time,
while the effective throughput rate
reduction was 6.4%. This conclusion,
which is also supported by Queueing
Theory, suggests that a modest reduc-
tion in the traffic intensity of a highly
loaded bottleneck is likely to result in
a meaningful reduction of throughput
time: its mean and in fact the per-
centiles (see Figure 6). This reduction
can be implemented in many differ-

June 2004 PROJECT MANAGEMENT JOURNAL * 47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ent ways: for example, increasing
resource allocation of the bottleneck
or turning the system into a closed
system by not bidding on a small frac-
tion of the potential projects.

As we stated in the introduction,
our model applies to maintenance
lines in the aircraft industry (both
civilian and military). Here, ConPIP
control is natural, since such organi-
zations typically have some flexibility
in altering the preplanned project
start time. This is achieved without
incurring costs to the customer, who
continues to utilize the aircraft. It is
especially true, and can, in fact,
become a necessity, when the organi-
zation is doing fleet maintenance for
a customer. In that situation, the cus-
tomer normally cannot release an air-
craft to maintenance until another
aircraft returns to service.

ConPIP-based control gives rise
to a performance that is similar to the
other open control policies. For a
high throughput rate, ConPIP has had
a stabilizing effect that resulted in a
lower standard deviation and tighter
confidence intervals of mean

]
1
48 ===+ No Control]
s=sem ,l'
43 4 Qsc (6)]
!
I
1
384 J
/
/
1] 334 7/
/
5 7 Py
4 7/ .1
. 28 // !
-~
- F
-~ #
5 234 # o
// ’¢/
F s
—“" .
18 B _ammmale
———— et
SRR R
________ R T
13 T T T T T T T T T
0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 3 0.32
Throughput Rate

Figure 6. Throughput time as a function of throughput rate, for three controls:

No control, CC and QSC (6)

rates and possibly excessive through-
put times; reducing NPIP will
improve the latter but at a cost to the
former.

It is worth noting that Anavi-
[sakow and Golany (2003) improve
ConPIP performance further by

Throughput Time

Poject Number

Figure 5. An example of projects’ throughput time as it changes over a transient warming period

(A) toward equilibrium

throughput time. Applying ConPIP
control to an organization of the kind
we are discussing involves a very
small effort compared to CC or
MinSLK. The key is in identifying the
desired NPIP, namely a limit to the
number of projects that are allowed to
exist concurrently within the system:
large NPIP vyields high throughput

48 o PROJECT MANAGEMENT JOURNAL June 2004

applying more sophisticated priority
rules for queue management, rather
than the standard FCFS that we have
used.

Conclusions

Critical Chain (CC) methodology is a
popular project management tech-
nique in many multi-project organi-

zations. It offers an intuitive method
for planning, scheduling, and control
of multi-project systems. CC acknowl-
edges correctly the interaction
between activities’ precedence rela-
tions and resource constraints. Time
buffers (feeding, project and capacity
buffers) are introduced as a systemat-
ic method for dealing with stochastic
(unpredictable) variability. The
methodology offers some loose
guidelines for choosing the buffer
sizes. Buffer management is applied
to control projects’ progress, spot
schedule deviations, and act correc-
tively when a buffer is consumed
beyond a certain predefined thresh-
old.

Our study examines control
mechanisms in a multi-project envi-
ronment, which is typical of organiza-
tions in the aircraft industry. We
demonstrate that buffer management
may not be enough to meet the
planned schedule. Some control
methodologies such as QSC, ConPIP,
and MinSLK can give similar and
sometimes better performance. In
particular, turning the system into a
closed system (for example, QSC)
enables one to work in higher
throughput rates than those recom-
mended by CC, while still maintain-
ing desired delays. (lere, the
comparison is against CC with capac-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ity buffer size set at 50% of the dura-
tion of the bottleneck activity—our
base-case size)

We also demonstrate that ConPIP
(Adler et al., 1995, Anavi-Isakow and
Golany, 2003), which is a simple con-
trol policy that requires a minimal
organizational investment, provides
an effective alternative when there is
flexibility in project start times. As
already indicated, such is the case
with maintenance or retrofit projects,
which one of us has had experience
with in the aircraft industries

We conclude with four observa-
tions that provide insight into the per-
formance of multi-project systems:

1) Mean project throughput time
is monotone increasing in throughput
rate, and the better the control, the
milder the increase. (Refer to Figure 6:
a control is superior to another one if
it gives rise to a shorter mean
throughput time and lower stochastic
variability for the same throughput
rate; for example, QSC (6) controls
the system better than CC.)

2) Some empirical evidence has
suggested that the exponential distri-
bution provides a reasonable fit to
project duration times. But in case it
does not, our framework can easily
accommodate any other distribution,
including actual empirical distribu-
tions. Moreover, our insights and con-
clusions remain intact.

3) An accurate inference of statis-
tical characteristics is highly advis-
able. Indeed, changing the
distribution of processing times or
project arrivals could change, some-
times dramatically, system perform-
ance. Roughly speaking, performance
deteriorates as stochastic variability
increases in either processing times or
arrivals (see Hopp & Spearman, 1996,
pp. 282-310). Consequently and
practically speaking, standardization
in either activity processing or project
starts would reduce, under equal
throughput rates, the throughput
times; or alternatively, a higher
throughput rate will be achievable at
equal throughput times.

4) As an overall observation, we
feel safe to conclude that most rea-
sonable controls would improve the

performance of an uncontrolled sys-
tem, typically significantly in heavy
traffic. But, to achieve further
improvement would require more, for
example additional resources and/or
less projects admitted.

Further research is recommended
for developing more robust schedul-
ing and control mechanisms for
multi-project stochastic environ-
ments. This research could examine
different multi-project environments
by starting with “mini-systems,” as
done here, and then implementing
the findings in realistic environments.
The hope is also that such simulation
analysis will provide sufficient insight
and stimulus for further theoretical
research on planning, scheduling, and
control.

References

Adler, P.S., Mandelbaum, A.,
Nguyen, V., & Schwerer, E. (1995).
From project to process manage-
ment: An empirically-based frame-
work for analyzing product
development time. Management
Science, 41(3), 458-484.

Anavi-Isakow, S., & Golany, B.
(2003). Managing multi-project
environments through constant
work-in-process. International Journal
of Project Management, 21(1), 9-18.

Barron, Y., & Mandelbaum, A.
(2003). Performance Analysis of

Dynamic Stochastic PERT/CPM
Networks, Technical Report,
Industrial and Engineering and
Management, Technion,

Israel.(http://iew3.technion.ac.il/ser
veng2003/Lectures/DSPERT.pdf).
Bock, D.B., & Patterson, J.H.
(1990). A comparison of due date
setting, resource assignment, and
job preemption heuristics for the
multi-project scheduling problem.
Decision Sciences, 21, 387-402.
Gemmill, D.D., & Edwards, M.L.
(1999). Improving resource-con-
strained project schedules with look-
ahead techniques. Project
Management Journal, 30(3), 44-55.
Goldratt, E.M. (1984). The goal.
Great Barrington, MA: The North
River Press.
Goldratt, EM. (1997). Critical

chain. Great Barrington, MA: The
North River Press.

Griffin, A. (2002). Product
development cycle time for busi-
ness-to-business products.
Industrial Marketing Management,
31, 291-304.

Herroelen, W., & Leus, R.
(2001). On the merits and pitfalls
of critical chain scheduling. Journal

of Operations Management, 19(5),
559-577.
Herroelen, W., Leus, R., &

Demeulemeester, E. (2002). Critical
chain project scheduling: Do not
oversimplify. Project Management
Journal, 33(4), 48-60.

Hopp, WJ., & Spearman, M.L.
(1996). Factory physics: Foundations
of manufacturing management.
Chicago: Irwin McGraw-Hill.

Law, A.M., & Kelton, W.D.
(1991). Simulation modeling
and analysis. Chicago: McGraw-
Hill.

Leach, P.L. (1999). Critical

chain project management
improves project performance.
Project Management Journal,
30(2), 39-51.

Leung, H.K.N. (2002).
Estimating maintenance effort by
analogy. Empirical Software

Engineering, 7, 157-175.

Nelson, R., & Tantawi, A.N.
(1988). Approximate analysis of
fork/join synchronization in par-
allel queues. IEEE Transactions on
Computers, 37, 739-743.

Parkinson, C.N. (1957).
Parkinson’s Law. Cambridge: The
Riverside Press.

Product Development Institute.
(1999). Tutorial: Goldratt’s critical
chain method, a one-project solution.
http://www.pdinstitute.com.

Shou, Y., & Yeo, K.T. (2000).
Estimation of project buffers in
critical chain project manage-
ment. IEEE ICIMT 2000,
162-167.

Steyn, H. (2000). An investi-
gation into the fundamentals of
critical chain project scheduling.
International Journal of Project
Management, 19(1), 363-369.

June 2004 PROJECT MANAGEMENT JOURNAL * 49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

IZACK COHEN is serving in the Israeli Air Force. He holds a BSc in Chemical Engineering and his MSc is
in Materials Engineering from the Technion Institute of Technology in Haifa, Israel. He is currently a PhD
candidate at the Faculty of Industrial Engineering and Management at Technion. Mr. Cohen has over 10
years of experience in managing engineering projects in different technological areas. His current
research activities are focused on developing new methodologies for managing multi-project systems.

AVISHAI MANDELBAUM is the Benjamin and Florence Free professor in Operations Research and Service
Engineering, at the Faculty of Industrial Engineering and Management at the Technion Institute of
Technology in Haifa, Israel. He has a BSc in Mathematics and Computer Science, an MA in Statistics
and a PhD in Operations Research from Cornell University. His first academic position was at the
Graduate School of Business at Stanford University, where he became interested in Project
Management. At Technion, Professor Mandelbaum has been teaching courses in probability, stochastic
processes and Service Engineering. His recent research activities have concentrated on queueing
networks and their applications to Service Operations, with a focus on teleservices, such as telephone
call/contact centers. Professor Mandelbaum was an associate editor of Mathematics of Operations
Research (MOR) from 1991-1999. He is currently an associate editor of the journals Management
Science, Queueing Systems Theory and Applications (QUESTA) and Manufacturing and Services
Operations Management (MSOM).

AVRAHAM SHTUB is the Sharon and Stephen Seiden professor of Project Management in the Industrial
Engineering and Management faculty at the Technion Institute of Technology in Haifa, Israel. Professor
Shtub has a BSc in Electrical Engineéring from Technion (1974), an MBA from Tel Aviv University (1978),
and a PhD in Management Science and Industrial Engineering from the University of Washington (1982).
He is a senior member of the Institute of Industrial Engineering (USA) and a certified Project
Management Professional (PMP) by the Project Management Institute (PMI). He is the recipient of the
Institute of Industrial Engineering’s 1995 “Book of the Year Award” for his book Project Management:

Engineering, Technology and Implementation (co-authored with John Bard and Shlomo Globerson).
Professor Shtub is also on the Editorial Boards of //E Transactions and the International Journal of
Production Research, and is a past board member of the israeli chapter of PMI. Professor Shtub was a
faculty member of the Department of Industrial Engineering at Tel Aviv University from 1984 to 1998,
where he also served as a chairman of the department (1993-1996), before joining the Technion in
1998. He has been a consultant to industry in the areas of project management, risk management, and
the design of production-operation systems, and has served as a visiting Professor at the Sasin
Graduate School of Management at Chulalongkorn University in Thailand (the Kellogg MBA program),
Cyprus International Institute of Management, and at the Owen Graduate School of Management of
Vanderbilt University.

50 & PROJECT MANAGEMENT JOURNAL June 2004

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

