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Given a set of resources with given capacities, a set of activities with given processing 
times and resource requirements, and a set of temporal constraints between activities, a 
“pure” scheduling problem consists of deciding when to execute each activity, so that 
both temporal constraints and resource constraints are satisfied. Most scheduling 
problems can easily be represented as instances of the constraint satisfaction problem 
(Kumar, 1992): given a set of variables, a set of possible values (domain) for each 
variable, and a set of constraints between the variables, assign a value to each variable, so 
that all the constraints are satisfied.  

The diversity of scheduling problems, the existence of many specific constraints or 
preferences in each problem, and the emergence of efficient constraint-based scheduling 
algorithms in the mid-90s (Aggoun & Beldiceanu, 1993) (Nuijten, 1994) (Caseau & 
Laburthe, 1994) (Baptiste & Le Pape, 1995) (Colombani, 1996), have made constraint 
programming a method of choice for the resolution of complex industrial problems. In 
this tutorial, the main principles of constraint programming are discussed in terms of the 
corresponding advantages and drawbacks for the resolution of industrial scheduling 
problems. The modeling of scheduling problems and the use of specific constraint 
propagation techniques are then discussed. The development of practical heuristic search 
procedures is illustrated through an example, the preemptive job-shop scheduling 
problem, and, as a practical extension, a daily construction site scheduling problem. 
In the conclusion, the usefulness of mixing constraint programming with other techniques 
(linear programming, local search) is briefly discussed. 
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Principles and interest of constraint programming applied to scheduling 
problems 

Broadly speaking, constraint programming can be defined as a programming method 
based on three main principles: 
• The problem to be solved is explicitly represented in terms of variables and constraints 

on these variables. In a constraint-based program, this explicit problem definition is 
clearly separated from the algorithm used to solve the problem. 

• Given a constraint-based definition of the problem to be solved and a set of decisions, 
themselves translated into constraints, a purely deductive process referred to as 
“constraint propagation” is used to propagate the consequences of the constraints. This 
process is applied each time a new decision is made, and is clearly separated from the 
decision-making algorithm per se. 

• The overall constraint propagation process results from the combination of several 
local and incremental processes, each of which is associated with a particular 
constraint or a particular constraint class. 

 

Explicit problem definition  

The main advantage of separating problem definition from problem-solving is obvious: it 
guarantees that the problem to be solved is precisely defined. Actually, a significant part 
of the design of a constraint-based scheduling system consists of eliminating any 
ambiguity from the problem statement. This can be very demanding. Indeed, some pieces 
of knowledge about the problem can be easier to integrate in a problem-solving algorithm 
than in a declarative specification of the problem. For example, knowledge of the current 
and usual practice (i.e., knowledge of the form “generally, we do that”) is easy to 
incorporate in the form of heuristics in a decision-making procedure, while its status in 
terms of constraints and preferences can lead to long (and passionate!) debates about the 
qualities and the defects of the current practice. Such debates are often necessary to 
ensure that the projected software will deal with the right problem; yet they may as well 
result in pure cancellation of the software project if the participants cannot agree. 

Another advantage of separating problem definition from problem-solving concerns the 
revision or the extension of the scheduling system when the problem changes. For 
example, the replacement of old machines by new machines in a manufacturing shop can 
lead to the introduction of new constraints and preferences, and to the removal of old 
constraints and preferences. In some cases, the same problem-solving algorithms will 
continue to apply, with a different problem definition as input. This is in huge contrast 
with the case in which the problem definition is “diluted” in lines and lines of problem-
solving code. 



Constraint propagation and search 

The second important principle of constraint programming consists of distinguishing 
constraint propagation and decision-making search. Constraint propagation is a deductive 
activity which consists in deducing new constraints from existing constraints. For 
example, if an activity A must precede an activity B, and if A cannot be finished before 
12:00 noon, constraint propagation will (normally) deduce that B cannot start before 
12:00. Such information can prove very useful for the decision-maker (algorithm or 
human being) since it allows more informed decisions to be made. In addition, it can 
propagate in turn to other variables of the problem: if the minimal duration of B is two 
hours, then B cannot end before 2:00 p.m., etc. In some cases, this leads to determining 
that the problem (maybe augmented by some decisions) is insoluble. In such a case, 
either some constraints or some decisions must be removed. Unfortunately, constraint 
propagation cannot be perfect. A well-known conjecture on combinatorial problems and 
algorithms states that some combinatorial problems cannot be solved in an amount of 
time that grows as a polynomial function of the size of the problem. These problems are 
called “NP-hard” (Garey & Johnson, 1979). The problem of determining whether 
activities submitted to resource constraints can be executed within given deadlines 
(earliest start times and latest end times) is NP-hard, even if only one resource of capacity 
1 is considered. As a result, constraint propagation cannot detect all inconsistencies 
between problem constraints (or it will take too much time to do so), and cannot provide 
perfect information about the earliest and latest start and end times of activities. To 
determine if there exists a schedule that meets the deadlines, one must search the possible 
combinations of scheduling decisions. The information provided by constraint 
propagation is extremely useful to guide this search. Yet one must be prepared to remove 
decisions when conflicts are (eventually) discovered. 

Separating constraint propagation and search has multiple advantages. First, it allows the 
system developer to implement the constraint propagation code and the decision-making 
code independently of one another. The same constraint propagation code can then be 
used to propagate decisions made by a decision-making algorithm as well as decisions 
made by a human user. Distinct decision-making algorithms can also be implemented and 
combined, if they rely on the same constraint propagation process. In an optimization 
context, this may lead to the development of several decision-making algorithms, 
dedicated for example to distinct combinations of optimization criteria. When preferences 
are considered, the same algorithm can also be launched several times, after activating 
different sets of preferences corresponding to different levels of importance. 

Another important advantage of this separation is that precise conditions exist under 
which a constraint propagation + decision-making search algorithm is guaranteed to find 
a solution if one exists (Le Pape, 1992). It is important to note that these conditions do 
not enforce the instantiation of all the variables of the problem. Hence, a decision-making 
algorithm may just generate a set of constraints which (1) are proved compatible one with 
the others and (2) represent not a single schedule but a set of possible schedules. This can 
become useful when the “solution” is put into execution. While unforeseen events 
(e.g., activities that last longer than expected) would normally invalidate the current 



(unique) schedule, the same events may only reduce the set of schedules represented by 
the current constraints (i.e., the constraints derived from predictive scheduling and those 
arising from execution). If at least one schedule remains in this set, execution can 
continue without revising the solution (see, for example, (Collinot & Le Pape, 1991) 
(Lesaint, 1993) and, out of the constraint programming world, (Le Gall, 1989) (Le Gall & 
Roubellat, 1992) (Billaut, 1993). 

Last, but not least, the separation of constraint propagation and decision-making allows 
the developer of a constraint-based application to reuse constraint propagation techniques 
developed for other applications. It is even current practice for application developers to 
use constraint-solving tools marketed by software houses. The main advantage of such 
practice is that the tool providers have invested significant effort in selecting, designing, 
and implementing powerful constraint propagation algorithms. For example, the 
“cumulative constraint” of CHIP (Aggoun & Beldicanu, 1993) and the specific constraint 
propagation algorithms of ILOG SCHEDULER (Le Pape, 1995) have offered a level of 
performance that is difficult to attain “from scratch” at a reasonable cost. In addition, 
some constraint-solving tools (e.g., ILOG SOLVER (Puget & Leconte, 1995)) offer a lot of 
facilities to mix different types of variables (e.g., integer and Boolean variables as in 
BV(p) = true ⇔ end(A) ≤ start(B)), to define new constraints, to create disjunctions of 
constraints, etc. The main drawback is that the user of the tool cannot control all of what 
happens “in the box” and optimize the constraint propagation process with respect to his 
or her specific needs. Similarly, the user of the tool cannot easily maintain a trace of the 
propagation, which would allow the precise identification of those constraints that 
participate in a conflict, as well as intelligent forms of backtracking (e.g., (Stallman & 
Sussman, 1977) (Latombe, 1979) (Collinot & Le Pape, 1991) (Xiong et al., 1992) 
(Ginsberg, 1993) (Prosser, 1993)). This can be penalizing, even though the usefulness of 
intelligent forms of backtracking appears to be reduced when powerful constraint 
propagation methods are used. 

Locality and incrementality of the constraint propagation process 

The third important principle of constraint programming is that the constraint propagation 
process shall be as “local” and as “incremental” as possible. The “locality principle” 
(Steele, 1980) states that each constraint or each class of constraint is propagated 
independently of the existence or non-existence of other constraints. “Incrementality” 
means that new variables and constraints can be added at any time, without re-computing 
all the consequences of the new constraint set. Let us consider again the case of activity 
A which must precede activity B and cannot be finished before 12:00. Constraint 
propagation “deduces” that B cannot start before 12:00. If we now add a constraint 
stating that the minimal duration of B is two hours, constraint propagation immediately 
combines this new constraint with the fact that B cannot start before 12:00, to deduce that 
B cannot end before 2:00 p.m. Previous propagation results (the fact that B cannot start 
before 12:00) are exploited locally by the new constraint, without being recomputed. 
Ideally, one would also like the process of removing variables and constraints to be 
incremental. This, however, is not always feasible at low cost. 



The locality and incrementality principle is fundamental as it enables the efficient 
combination of multiple constraint propagation techniques, associated with different 
classes of constraints. In particular, it allows multiple programmers to share libraries of 
constraints and augment such libraries with whatever new specific constraints are 
required for a given application. This, however, requires a general framework 
(programming language or library) designed to facilitate both (1) the integration of 
multiple classes of constraints in the same application and (2) the integration of 
constraints with the rest of the application. From a software engineering point of view, 
one must add “integrability” to the locality and incrementality principle, i.e., ensure that 
it will be possible to integrate all the components of an application in the same software 
system. 

The locality and incrementality principle is sometimes hard to follow. First, because 
taking a global view often allows more powerful deductions to be made: the integration 
of “global” constraints is often required for efficiency reasons, but it is not an easy task. 
Second, because the principle a priori forbids the use of “dominance” arguments within 
constraint propagation. For example, let us imagine a scheduling problem in which an 
activity A is totally independent of the remainder of the problem, except for the fact that 
A requires a resource R, also required by other activities. Let us suppose that A lasts two 
hours, that A can execute between 12:00 noon and 2:00 p.m., and that no other activity 
can execute on R between 12:00 and 2:00. In that situation, one would like the system to 
automatically schedule A between 12:00 and 2:00, since if the problem is soluble, there 
will always be a solution (or even an optimal solution) such that A executes between 
12:00 and 2:00. However, this cannot be done by propagation (even if there is an 
additional constraint stating that R must be used between 12:00 and 2:00) because a new 
activity B may be added to the problem later and chosen to execute between 12:00 and 
2:00, thereby preventing A from executing between 12:00 and 2:00. In fact, pure 
deduction can often be cast as a local and incremental process, but default reasoning rules 
of the form “as long as X is possible and independent of the remainder of the problem, X 
is true” cannot be efficiently integrated in such a process. From a logical point of view, 
closed-world meta-constraints of the form “there cannot be more variables and 
constraints with such characteristics” (e.g., “there cannot be more activities requiring 
resource R”) provide a solution to that problem. Yet a significant loss of incrementality 
is, in fact, incurred: after the statement of the meta-constraint, one cannot assign a new 
activity to R. 



Representation of scheduling problems with variables and constraints 

Given a set of resources with given capacities, a set of activities with given processing 
times and resource requirements, and a set of temporal constraints between activities, a 
“pure” scheduling problem consists of deciding when to execute each activity, so that 
both temporal constraints and resource constraints are satisfied. Most scheduling 
problems can easily be represented as instances of the constraint satisfaction problem 
(Kumar, 1992): given a set of variables, a set of possible values (domain) for each 
variable, and a set of constraints between the variables, assign a value to each variable, so 
that all the constraints are satisfied. 

Several types of scheduling problems can be distinguished: 
• In disjunctive scheduling, each resource can execute at most one activity at a time. In 

cumulative scheduling, a resource can run several activities in parallel, provided that 
the resource capacity is not exceeded. 

• In non-preemptive scheduling, activities cannot be interrupted. Each activity A must 
execute without interruption from its start time to its end time. In preemptive 
scheduling, activities can be interrupted at any time, e.g., to let some other activities 
execute. 

 

Many real-life scheduling problems are complex combinations of these basic problems. 

First, real scheduling problems often include both disjunctive resources (e.g., a specific 
machine in a manufacturing shop, a crane on a construction site) and cumulative 
resources (e.g., groups of identical machines, teams of people with similar capabilities). 

 
Capacity Capacity

TimeTime

1 

2 

 
A disjunctive resource A cumulative resource  

 
 
Second, some scheduling problems include both interruptible and non-interruptible 
activities. In many cases, technical or organizational rules limit the possibilities to 
interrupt an activity. In particular, it is often the case that an activity can be interrupted 
for a break (lunch, week-end) but not in favor of another activity. 

 

A non-interruptible activity An interruptible activity  
 



Third, there often exists some flexibility in the amount of capacity (e.g., number of 
workers) that can be assigned to some activities. Some activities require a predefined 
amount of resource capacity over their execution (e.g., two workers). For other activities, 
the capacity may be allowed to take several values, between which the scheduler has to 
make a choice. Yet, in such a case, the amount of energy (e.g., the number of man-hours 
necessary to complete the activity) is often given, or allowed to vary in a given range 
(e.g., between 2 and 4). More precisely, given the energy required by an activity, two 
cases can occur: 
• either the scheduler has to assign a value to the required capacity (either 2, or 3, or 4) 

which will apply throughout the execution of the activity; 
 

4  
 

Capacity = 2 
 
 2 Duration = 4 

 
 
 
 

• or, at any execution point, the amount of resource to be used is an unknown value in a 
given interval (i.e., the capacity required by the resource can vary over time). 

All possible configurations corresponding to an activity requiring 
an energy of 8 and a constant amount of resource in [2, 4] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 All possible configurations corresponding to an activity requiring an energy of 

8 which can use at any execution time a capacity in [2, 4]  
 
Finally, a variety of additional constraints (setups, variations of productivity during the 
day) often need to be taken into account as well. Such constraints will not be considered 
in the remainder of this section. 
 



Representation of interruptible and non-interruptible activities 

A non-preemptive scheduling problem can be encoded efficiently as a constraint 
satisfaction problem: two variables, start(A) and end(A), are associated with each activity 
A; they represent the start time and the end time of A. The smallest values in the domains 
of start(A) and end(A) are called the earliest start time and the earliest end time of A 
(ESTA and EETA). Similarly, the greatest values in the domains of start(A) and end(A) are 
called the latest start time and the latest end time of A (LSTA and LETA). The duration of 
the activity is an additional variable, defined as the difference between the end time and 
the start time of the activity. 

A preemptive scheduling problem is more difficult to represent: one can either associate a 
set variable (i.e., a variable the value of which will be a set) set(A) with each activity A, 
or define a 0-1 variable w(A, t) for each activity A and time t; set(A) represents the set of 
times at which A executes, while w(A, t) assumes value 1 if and only if A executes at 
time t. The processing time pt(A), defined as the size of set(A), can be smaller than 
end(A) – start(A). Ignoring implementation details, let us note that: 

• the value of w(A, t) is 1 if and only if t belongs to set(A). 
• assuming time is discretized, start(A) and end(A) can be defined, in both the 

preemptive and the non-preemptive case, by start(A) = mint∈set(A)(t) and 
end(A) = maxt∈set(A)(t + 1); in the preemptive case, these variables are often needed 
to connect activities together by temporal constraints. 

• in the non-preemptive case, set(A) = [start(A) end(A)), with the interval 
[start(A) end(A)) closed on the left and open on the right so that 
|set(A)| = end(A) − start(A) = duration(A) = pt(A). 

These constraints are easily propagated by maintaining a “lower bound” and an “upper 
bound” for the set variable set(A). The lower bound of set(A) is a series of disjoint 
intervals ILBi such that each ILBi is constrained to be included in set(A). The upper 
bound is a series of disjoint intervals IUBj such that set(A) is constrained to be included 
in the union of the IUBj. If the size of the lower bound (i.e., the sum of the sizes of the 
ILBi) becomes larger than pt(A) or if the size of the upper bound (i.e., the sum of the 
sizes of the IUBj) becomes smaller than pt(A), a contradiction is detected and a backtrack 
occurs. If the size of the lower bound (or of the upper bound) becomes equal to pt(A), 
set(A) receives the lower bound (respectively, the upper bound) as its final value. 
Minimal and maximal values of start(A) and end(A), i.e., earliest and latest start and end 
times, are also maintained. Each of the following rules, considered independently from 
one another, can be used to update the bounds of set(A), start(A) and end(A). 
• ∀t, t < start(A) ⇒ t ∉ set(A) 
• ∀t, t ∈ set(A) ⇒ start(A) ≤ t 
• ∀t, end(A) ≤ t ⇒ t ∉ set(A) 
• ∀t, t ∈ set(A) ⇒ t < end(A) 
• ∀t, [∀u < t, u ∉ set(A)] ⇒ t ≤ start(A) 
• ∀t, [∀u ≥ t, u ∉ set(A)] ⇒ end(A) ≤ t 



• start(A) ≤ max{t | ∃S ⊆ set(A) such that |S| = pt(A) and min(S) = t} 
• end(A) ≥ min{t | ∃S ⊆ set(A) such that |S| = pt(A) and max(S) = t − 1} 

Needless to say, whenever any of these rules leads to a situation where the lower bound 
of a variable is not smaller than or equal to its upper bound, a contradiction is detected, 
and a backtrack can immediately occur. 

Representation and propagation of temporal constraints 

Temporal constraints, of the form vari + dij ≤ varj where vari and varj are either start and 
end times of activities, or a special variable representing the end time of the complete 
schedule, or the lateness of an activity subjected to a due date, or even the constant 0, and 
dij is an integer, i.e., the minimal delay between the two time points vari and varj, occur 
frequently in scheduling. These constraints are easily propagated through an incremental 
version of Ford's algorithm (Gondran & Minoux, 1984), (Le Pape, 1988), (Cesta & Oddi, 
1996). This O(nm) algorithm, where n is the number of activities and m the number of 
temporal constraints, guarantees that the earliest and latest start and end times of 
activities are always consistent with respect to the temporal constraints. In other terms, if 
no contradiction is detected, then the earliest start and end times of activities satisfy all 
the temporal constraints, and the latest start and end times of activities satisfy all the 
temporal constraints. 

Representation of resource constraints 

Disjunctive resource constraints are obviously the easiest to represent: if A and B require 
the same disjunctive resource, set(A) and set(B) cannot intersect. In cumulative 
scheduling, it also often occurs that an activity A can execute at different rates, depending 
on the assigned resource capacity. In the most extreme case (referred to as the “fully 
elastic” case (Baptiste et al., 1999)), the amount of resource R assigned to an activity A 
can, at any time t, pick any value w(A, R, t) between 0 and the resource capacity C(R) 
(with w(A, R, t) = 0 ⇔ w(A, t) = 0), provided that the sum over time of the assigned 
capacity w(A, R, t) equals a given amount of energy w(A, R). The fully elastic case is 
interesting because the constraint propagation techniques that are developed for this case 
can be applied to any fully elastic, partially elastic, or non-elastic scheduling problem 
(because it is the less constrained). 
 
Table 1 summarizes different classes of scheduling problems and the relevant constraints 
for each activity A and each (activity, resource) pair (A, R). The resource constraints 
concerning resource R state that at any time t, ΣA w(A, R, t) cannot exceed the resource 
capacity C(R). The following section presents the most significant resource constraint 
propagation techniques applicable to each of these classes. 
 



Table 1: Summary of problem definitions 
 

Constraints common 
to all problems 

(fully elastic case) 

w(A, t) = 1 ⇔ t ∈ set(A) 
start(A) = mint∈set(A)(t) 

end(A) = maxt∈set(A)(t + 1) 
pt(A) = |set(A)| 

w(A, R, t) = 0 ⇔ w(A, t) = 0 
Σt w(A, R, t) = w(A, R) 
ΣA w(A, R, t) ≤ C(R) 

Additional 
constraints 

Cumulative resource 
C(R) ≥ 1 

Disjunctive resource 
C(R) = 1 

Preemptive  w(A, R, t) = c(A, R) ∗ w(A, t) w(A, R, t) = w(A, t) 
Non preemptive  w(A, R, t) = c(A, R) ∗ w(A, t) 

set(A) = [start(A), end(A)) 
w(A, R, t) = w(A, t) 

set(A) = [start(A), end(A)) 
 

Propagation of resource constraints 
 
Each of the resource constraint propagation rules presented in this section is identified 
with a two-part name XX-∗, where the first part XX identifies the most general case in 
which the rule applies (FE for Fully Elastic, CP for Cumulative Preemptive, CNP for 
Cumulative Non-Preemptive, DP for Disjunctive Preemptive, and DNP for 
Disjunctive Non-Preemptive). The following diagram shows the relationships between 
these five cases. In this diagram, an arrow between two cases means that the techniques 
that apply to the first case can be applied to the second case (the corresponding 
deductions remain valid). To simplify the presentation, we assume that, for every activity 
A, the processing time pt(A) and the energy requirement w(A, R) are constrained to be 
strictly positive. 

 

FE  CP  CNP 
 

DP                   DNP 
 
The following notations are used: 
ESTA Earliest Start Time of activity A, i.e., the smallest value in the domain of start(A). 
LSTA Latest Start Time of activity A, i.e., the largest value in the domain of start(A). 
EETA Earliest End Time of activity A, i.e., the smallest value in the domain of end(A). 
LETA Latest End Time of activity A, i.e., the largest value in the domain of end(A). 
pA Processing time of activity A, i.e., the value of pt(A) when pt(A) is bound. When 

pt(A) is not bound, constraint propagation rules can usually be applied with pA 
equal to the minimal value in the domain of pt(A). 

cA Capacity (of the resource R under consideration) required by activity A, i.e., the 
value of c(A, R) when c(A, R) is bound. When c(A, R) is not bound, constraint 
propagation rules can usually be applied with cA equal to the minimal value in the 
domain of c(A, R). 



wA  Energy (of the resource R under consideration) required by activity A, i.e., the 
 value of w(A, R) when w(A, R) is bound. When w(A, R) is not bound, constraint 
propagation rules can usually be applied with wA equal to the minimal value in the 
domain of w(A, R). 

ESTΩ Earliest start time of the set Ω. ESTΩ = minA∈Ω ESTA. 
LETΩ Latest end time of the set Ω. LETΩ = maxA∈Ω LETA. 
pΩ Processing time of set Ω. pΩ = ΣA∈Ω pA. 
wΩ Energy required by set Ω. wΩ = ΣA∈Ω wA. 
 

Constraint propagation based on timetables 
FE-TT, CP-TT, and CNP-TT 
This is the most commonly used resource constraint propagation technique. It consists of 
(a) maintaining arc-B-consistency (Lhomme, 1993)1 on the formula ΣA w(A, R, t) ≤ C(R) 
and (b) using the maximal values wmax(A, R, t) of w(A, R, t) to compute the earliest and 
latest start and end times of activities (Le Pape, 1994) (Le Pape & Baptiste, 1996), 
(Le Pape &  Baptiste, 1997): 
 

start(A) ≥ min{t such that wmax(A, R, t) > 0} 
end(A) ≥ min{t such that Σu<t wmax(A, R, u) ≥ w(A, R)} 
start(A) ≤ max{t such that Σu≥t wmax(A, R, u) ≥ w(A, R)} 
end(A) ≤ max{t such that wmax(A, R, u) > 0} + 1 

 
The FE, CP and CNP cases must be distinguished because the relations between 
w(A, R, t) and the start and end time variables differ.  
• In the non-preemptive case, w(A, R, t) is equal to c(A, R) for every t in [LSTA, EETA).  
• In the preemptive case, either the user or a search procedure must explicitly decide at 

which time points each activity executes. However, when start(A), pt(A), and end(A) 
are bound to values such that start(A) + pt(A) = end(A), w(A, R, t) is equal to c(A, R) 
for every t in [start(A), end(A)).  

• In the fully elastic case, the relation is even weaker because, even when t is known to 
belong to set(A), w(A, R, t) can take any value between 1 and C(R). 

 
In practice, the above rules are applied through the use of specialized algorithms, which 
can be made very efficient in the CNP case by relying on the fact that set(A) = [start(A), 
end(A)). 

                                                 
1 Given a constraint c over n variables v1 … vn and a domain Di for each variable vi, c is “arc-consistent” if 
and only if for any variable vi and any value vali in the domain of vi, there exist values val1 … vali-1 vali+1 
… valn in D1 … Di-1 Di+1 … Dn such that c(val1 ... valn) holds. Arc-B-consistency, where B stands for 
bounds, guarantees only that val1 … vali-1 vali+1 … valn exist for vali equal to either the smallest or the 
greatest value in Di. 



Disjunctive constraints 
Disjunctive constraints deal with cases in which two activities cannot overlap in time. 
Such a situation is of course common in disjunctive scheduling, but also occurs in 
cumulative scheduling, when the sum of the capacities required by two activities exceeds 
the capacity of the resource. Let us note that the following rules can a priori be 
generalized to triples, quadruples, etc., of activities, but with a significant increase in the 
number of constraints and in the number of disjuncts per constraint. In practice, they are 
used only for pairs of activities. 
 
CNP-DISJ: Disjunctive constraints in the non-preemptive case 
Let A and B be two activities with cA + cB > C(R). In the non-preemptive case, the 
disjunctive constraint propagation technique consists of maintaining arc-B-consistency on 
the formula: 
 

[end(A) ≤ start(B)] or [end(B) ≤ start(A)]. 
 
In the DNP case, all the pairs of activities that require the same resource R are related by 
such a disjunction. This is the origin of the term “disjunctive scheduling.” Extensions of 
this rule are described in (Baptiste & Le Pape, 1996a), including the case in which 
c(A, R) and c(B, R) are not bound (and may satisfy c(A, R) + c(B, R) > C(R)) and the 
case in which the domain of pt(A) contains 0. 
 
CP-DISJ: Disjunctive constraints in the preemptive case 
Let A and B be two activities with cA + cB > C(R). In the preemptive case, the disjunctive 
constraint propagation technique consists of maintaining arc-B-consistency on the 
formula: 
 

[start(A) + pt(A) + pt(B) ≤ end(A)] 
or [start(A) +pt(A) + pt(B) ≤ end(B)] 
or [start(B) + pt(A) + pt(B) ≤ end(A)] 
or [start(B) + pt(A) + pt(B) ≤ end(B)]. 
 

We remark that, if only some activities can be interrupted, a “mixed” rule is obtained by 
removing the first (fourth) disjunct when A (respectively B) cannot be interrupted. 



Edge-finding 

“Edge-finding” constraint propagation techniques reason about the order in which 
activities execute on a given resource. In the DNP case, edge-finding consists of 
determining whether a given activity A must execute before (or after) a given set of 
activities Ω. Two types of conclusions can then be drawn: new ordering relations 
(“edges” in the graph representing the possible orderings of activities) and new time-
bounds (earliest and latest start and end times). Cumulative and preemptive cases are 
more complex since several activities can overlap (on a cumulative resource) or preempt 
one another. Then edge-finding consists of determining whether an activity A must start 
or end before (or after) a set of activities Ω (adding edges in the graph representing the 
possible orderings of start and end times of activities). 
 
DNP-EF: Edge-finding in the disjunctive preemptive case 
Let A « B (A » B) mean that A is before (after) B and A « Ω (A » Ω) mean that A is 
before (after) all the activities in Ω. In the disjunctive non-preemptive case, the edge-
finding technique consists in applying the following rules, and their symmetric 
counterparts: 
 

A∉Ω and LETΩ – ESTΩ∪{A} < pΩ∪{A} ⇒ A » Ω 
A » Ω ⇒ start(A) ≥ maxØ≠Ω’⊆Ω(ESTΩ’ + pΩ’) 
 

Carlier and Pinson (1994) have shown that all the corresponding deductions can be done 
in O(n ∗ log(n)), where n is the number of activities requiring the resource.2 
 
DP-EF: Edge-finding in the disjunctive preemptive case 
In the preemptive case, the edge-finding rules no longer order activities but start and end 
times of activities. If A 〉〉 Ω means “A ends after all activities in Ω” then the following 
rules (and their symmetric counterparts) are obtained: 
 

A∉Ω and LETΩ − ESTΩ∪{A} < pΩ∪{A} ⇒ A 〉〉 Ω 
A 〉〉 Ω ⇒ end(A) ≥ maxΩ’⊆Ω(ESTΩ’∪{A} + pΩ’∪{A}) 
A 〉〉 Ω and (LETΩ − ESTΩ = pΩ) and (ESTΩ ≤ ESTA) ⇒ start(A) ≥ LETΩ 
 

In the “mixed” case, the DNP-EF rules can be applied whenever A is not interruptible, 
even if the activities in Ω are interruptible (Le Pape & Baptiste, 1996). On the other hand, 
if A is interruptible, the DNP-EF rules are not valid and the (weaker) DP-EF rules must 

                                                 
2 O(n ∗ log(n)) corresponds to applying the rules once to each pair (A, Ω). In constraint programming, one 
applies these rules (and other rules, used to propagate other constraints) until the domains of all the 
problem variables become stable. In the worst case, this can lead to executing the edge-finding algorithm 
O(Dn) times where D is a bound on the size of the domains of the variables involved in the propagation. In 
most cases, however, this does not occur, i.e., each propagation algorithm is applied only a couple of times. 



be applied. It is shown in (Le Pape & Baptiste, 1996) that the corresponding deductions 
can be done in O(n2). 
 
FE-EF: Edge-finding in the fully elastic case 
The following rules (and their symmetric counterparts) can be used in the fully elastic 
case. 

A∉Ω and C(R) ∗ (LETΩ − ESTΩ∪{A}) < wΩ∪{A} ⇒ A 〉〉 Ω 
A 〉〉 Ω ⇒ end(A) ≥ maxΩ’⊆Ω(C(R) ∗ ESTΩ’∪{A} + wΩ’∪{A}) / C(R) 
A 〉〉 Ω and (C(R) ∗ (LETΩ − ESTΩ) = wΩ) and (ESTΩ ≤ ESTA) ⇒ start(A) ≥ LETΩ 

It is shown in (Baptiste et al., 1999) that the corresponding deductions can be done in 
O(n2). Note that when applied in the CP and in the CNP cases, these rules are sensitive to 
the use of fake activities to represent intervals during which the resource capacity is c 
with 0 < c < C(R) (because the fake activities are considered as fully elastic). 
 
CNP-EF1: Edge-finding in the cumulative non-preemptive case 
Let φ(Ω’) be true when wΩ’ > (C(R) − cA) ∗ (LETΩ’ − ESTΩ’). The following rules (and 
their symmetric counterparts) summarize Section 4.4.1 of (Nuijten, 1994). 
 

A∉Ω and C(R) ∗ (LETΩ − ESTΩ∪{A}) < wΩ∪{A} ⇒ A 〉〉 Ω 
A 〉〉 Ω and Ø ≠ Ω’ ⊆ Ω and φ(Ω’)  

⇒ start(A) ≥ LETΩ’ − (C(R) ∗ (LETΩ’ − ESTΩ’) − wΩ’) / cA. 
 

According to (Nuijten & Aarts, 1996), the corresponding deductions can be done in 
O(n2). 
 
CNP-EF2: Edge-finding in the cumulative non-preemptive case 
Let φ(Ω’) be true when wΩ’ > (C(R) − cA) ∗ (LETΩ’ − ESTΩ’), as above. The following 
rules (and their symmetric counterparts) summarize Section 4.4.5 of (Nuijten, 1994). 
 

A∉Ω and ESTA ≤ ESTΩ < EETA and 
C(R) ∗ (LETΩ − ESTΩ) < wΩ + cA ∗ (EETA − ESTΩ) 
      ⇒ A 〉〉 Ω. 
A 〉〉 Ω and Ø ≠ Ω’ ⊆ Ω and φ(Ω’) 
      ⇒ start(A) ≥ LETΩ’ − (C(R) ∗ (LETΩ’ − ESTΩ’) − wΩ’) / cA. 
 

According to (Nuijten & Aarts, 1996), the corresponding deductions can be made in 
O(n3) for every pair (A, Ω) with ESTA < ESTΩ. 
 



“Not-first” and “not-last” rules 

“Not-first” and “not-last” rules have been developed as a “negative” counterpart to edge-
finding rules. They deduce that an activity A cannot be the first (or the last) to execute in 
Ω∪{A}. 
 

DNP-NFNL: Disjunctive “not-first” and “not-last” 
The following rule (and its symmetric counterpart) can be applied in the disjunctive non-
preemptive case: 
 

A∉Ω and LETΩ – ESTA < pΩ∪{A} ⇒ start(A) ≥ minB∈Ω(EETB) 
 

It is shown in (Baptiste & Le Pape, 1996b) that the corresponding deductions can be 
made in O(n2). 
 

CNP-NFNL: Cumulative “not-first” and “not-last” rules 
The following rule (and its symmetric counterpart) summarizes Section 4.4.3 of (Nuijten, 
1994). 
 

A∉Ω and ESTΩ ≤ ESTA < minB∈Ω(EETB) and 
C(R) ∗ (LETΩ − ESTΩ) < wΩ + cA ∗ (min(LETΩ, EETA) − ESTΩ) 
      ⇒ start(A) ≥ minB∈Ω(EETB) 
 

According to (Nuijten & Aarts, 1996), the corresponding deductions can be made in 
O(n3) for every pair (A, Ω) with ESTΩ < ESTA. 
 

Energetic reasoning 

The edge-finding and the “not-first” and “not-last” rules are such that the activities that 
do not belong to Ω do not contribute to the analysis of the resource usage between 
ESTΩ∪{A} and LETΩ∪{A}. On the contrary, energetic reasoning rules compute the 
minimal contribution W(B, t1, t2) of each activity B to a given interval [t1, t2). In the 
preemptive case, the required energy consumption of B over [t1, t2) can be evaluated as 
follows:  

WPE(B, t1, t2) = cB ∗ max(0, pB − max(0, t1 − ESTB) − max(0, LETB − t2)) 
 

 
 
 
 
Figure 1: The required energy consumption of an activity B (earliest start time 0, latest 
end time 10, processing time 7 and resource requirement 2) over [2, 7).  
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Figure 1 illustrates this evaluation. The Gantt chart displays the fact that at least 2 time 
units of B have to be executed in [2, 7); which corresponds to WPE(B, 2, 7) = 2 ∗ (7 − 
(2 − 0) − (10 − 7)) = 4. The notation WPE introduced in (Baptiste et al., 1999) refers to the 
fact that this value corresponds to a particular relaxation of the cumulative resource 
constraint, identified as the “Partially Elastic” relaxation. 
 
In the non-preemptive case, a stronger value can be used: 

WSh(B, t1, t2) = cB ∗ min(t2 − t1, pB
+(t1), pB

−(t2)) 
with pB

+(t1) = max(0, pB − max(0, t1 − ESTB)) 
and pB

−(t2) = max(0, pB − max(0, LETB − t2)). 
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Figure 2: The required energy consumption of an activity B (earliest start time 0, latest 
end time 10, processing time 7 and resource requirement 2) over [2, 7). At least 4 time 
units of B must execute in [2, 7) which corresponds to WSh(B, 2, 7) = 2 ∗ min(5, 5, 4) = 8. 
 
Figure 2 illustrates this evaluation. This time, the notation WSh refers to the fact that the 
best value is obtained by shifting the activity either to the left (i.e., to its earliest possible 
execution interval) or to the right (to its latest possible execution interval). See (Erschler 
et al., 1991) (Lopez et al. 1992). 
 
Many rules have been developed based on energetic reasoning. Only the most significant 
rules are presented below. We remark that these rules are in practice applied only to some 
intervals [t1, t2), chosen with respect to the earliest and latest start and end times of 
activities (with no full formal justification, except for complexity reasons). 
 
CP-ER: Energetic reasoning in the preemptive case 
Let ∆+(A, t1, t2) = ΣB≠AWPE(B, t1, t2) + cA ∗ pA

+(t1) − C(R) ∗ (t2 − t1) and ∆−(A, t1, t2) = 
ΣB≠AWPE(B, t1, t2) + cA ∗ pA

−(t2) − C(R) ∗ (t2 − t1). The following rules can be applied: 
 

ΣBWPE(B, t1, t2) − C(R) ∗ (t2 − t1) > 0 ⇒ inconsistency 
∆+(A, t1, t2) > 0 ⇒ end(A) ≥ t2 + ∆+(A, t1, t2) / cA. 
t1 ≤ ESTA and ΣB≠AWPE(B, t1, t2) = C(R) ∗ (t2 − t1) ⇒ start(A) ≥ t2. 
∆−(A, t1, t2) > 0 ⇒ start(A) ≤ t1 − ∆−(A, t1, t2) / cA. 
LETA ≤ t2 and ΣB≠AWPE(B, t1, t2) = C(R) ∗ (t2 − t1) ⇒ end(A) ≤ t1. 

 



CNP-ER: Energetic reasoning in the non-preemptive case 
Let ∆+(A, t1, t2) = ΣB≠AWSh(B, t1, t2) + cA ∗ pA

+(t1) − C(R) ∗ (t2 − t1) and ∆−(A, t1, t2) = 
ΣB≠AWSh(B, t1, t2) + cA ∗ pA

−(t2) − C(R) ∗ (t2 − t1). The following rules can be applied: 
 

ΣBWSh(B, t1, t2) − C(R) ∗ (t2 − t1) > 0 ⇒ inconsistency 
∆+(A, t1, t2) > 0 ⇒ end(A) ≥ t2 + ∆+(A, t1, t2) / cA. 
t1 ≤ ESTA and ΣB≠AWSh(B, t1, t2) = C(R) ∗ (t2 − t1) ⇒ start(A) ≥ t2. 
∆−(A, t1, t2) > 0 ⇒ start(A) ≤ t1 − ∆−(A, t1, t2) / cA. 
LETA ≤ t2 and ΣB≠AWSh(B, t1, t2) = C(R) ∗ (t2 − t1) ⇒ end(A) ≤ t1. 

 
CNP-ER-DISJ: Energetic reasoning in the non-preemptive case 
If t1 = ESTA and t2 = LETB and t1 < t2 and cA + cB > C(R) and ΣC≠A & C≠BWSh(C, t1, t2) + cA ∗ 
pA + cB ∗ pB > C(R) ∗ (t2 − t1), then end(B) ≤ start(A). 
 

Comparison 

The rules above differ from many perspectives.  

• Their deductive power, i.e., the sets of values their application removes from the 
domains of variables, are different. For example, in the fully elastic case FE-EF 
strictly dominates FE-TT, but in the non-preemptive disjunctive case CNP-TT is 
not dominated by the edge finding rules. An extensive comparison of these rules 
in terms of deductive power can be found in (Baptiste et al., 2001). 

• The complexity and incrementality of the algorithms that have been developed to 
apply these rules differ a lot. As a result, a rule that performs well on small 
instances might just take too long when the problem size becomes bigger. 

• Some of these rules are not monotonic. FE-TT, CP-TT, CNP-TT, CP-DISJ, 
CNP-DISJ, FE-EF, DP-EF, DNP-EF, CNP-EF1, DNP-NFNL, CP-ER and 
CNP-ER have monotonic conditions, while CNP-EF2, CNP-NFNL and CNP-ER-
DISJ have non-monotonic conditions. This means that better time-bounds for 
some activities may prevent the application of the CNP-EF2, CNP-NFNL or 
CNP-ER-DISJ, and hence the drawing of the corresponding conclusion. The main 
drawback of non-monotonic propagation rules is that they make debugging and 
performance tuning much more difficult. 

A consequence of these differences is that the set of propagation rules to be used in a 
given practical application must be chosen with respect to the characteristics of this 
application. 



An Example of Heuristic Search: Preemptive Job-Shop Scheduling 
Scheduling problems are NP-hard. Even with the best constraint propagation techniques, 
it is in general impossible to aim for the optimal solution of a practical problem. The goal 
then is to obtain solutions as good as possible in a given “allowable” amount of 
computational time. Only very general principles apply in this domain: 

• Avoid searching parts of the search space where no interesting solution lies. As 
already mentioned, constraint propagation can often be complemented with 
dominance rules to further reduce the search space. 

• Intensify search around good solutions, in search of a better solution. 

• Diversify search, i.e., do not leave significant promising regions of the search 
space unexplored. 

In the following, we choose the preemptive job-shop scheduling problem (PJSSP) to 
illustrate these principles. Given are a set of jobs and a set of machines. Each job consists 
of a set of activities to be processed in a given order. Each activity is given an integer 
processing time and a machine on which it has to be processed. A machine can process at 
most one activity at a time. Activities may be interrupted at any time, an unlimited 
number of times. The problem is to find a schedule, i.e., a set of integer execution times 
for each activity, that minimizes the makespan, i.e., the time at which all activities are 
finished. We remark, that since we require integer durations and integer execution times, 
the total number of interruptions of a given activity is bounded by its duration minus 1. 

In constraint programming, minimizing a given objective (here, the makespan) is 
generally done by solving the decision variant of the problem (Garey & Johnson, 1979) 
with different bounds imposed on the objective. At each iteration an additional constraint 
makespan ≤ v (where v is a given integer) is imposed, and the problem consists of 
determining a value for each variable such that all the constraints, including the 
additional constraint makespan ≤ v, are satisfied. If such a solution is found, its makespan 
can be used as a new upper bound for the optimal makespan. On the contrary, if it is 
proven (for example, by exhaustive search) that no such solution exists, v + 1 can be used 
as a new lower bound. The “decision variant” of the PJSSP, i.e., the problem of 
determining whether there exists a solution with makespan ≤ v, is NP-complete in the 
strong sense (Garey & Johnson, 1979). 

The search space for the PJSSP is very large. Indeed, each set(A) variable a priori accepts 
up to (v ∗ (v − 1) ∗ ... ∗ (v − pt(A) + 1)) / (1 ∗ 2 ∗ ... ∗ pt(A)) values. However, the 
dominance criterion introduced below allows the design of branching schemes which in a 
sense “order” the activities that require the same machine, and thus explore a reduced 
search space. The basic idea is that it does not make sense to let an activity A interrupt an 
activity B by which it was previously interrupted. In addition, A shall not interrupt B if 
the successor of A (in its job) starts after the successor of B. The following definitions 
and theorem (proven in (Baptiste & Le Pape, 1999)) provide a formal characterization of 
the dominance property. 



DEFINITION 1    

For any schedule S and any activity A, we define the “due date of A in S” dS(A) as: 

• the makespan of S if A is the last activity of its job; 
• the start time of the successor of A (in its job) otherwise. 

DEFINITION 2    
For any schedule S, an activity Ak has priority over an activity Al in S (Ak <S Al) if and 
only if either dS(Ak) < dS(Al) or dS(Ak) = dS(Al) and k ≤ l. Note that <S is a total order. 

THEOREM 1    

Let acts(M) denote the set of activities to be processed on machine M. For any schedule 
S, there exists a schedule J(S) such that: 
1. J(S) meets the due dates: ∀A, the end time of A in J(S) is at most dS(A). 
2. J(S) is “active”: ∀M, ∀t, if some activity A ∈ acts(M) is available at time t, M is not 

idle at time t (where “available” means that the predecessor of A is finished and A is 
not finished). 

3. J(S) follows the <S priority order: ∀M, ∀t, ∀Ak ∈ acts(M), ∀Al ∈ acts(M), Al ≠ Ak, 
if Ak executes at time t, either Al is not available at time t or Ak <S Al. 

We call J(S) the “Jackson derivation” of S. Since the makespan of J(S) does not exceed 
the makespan of S, at least one optimal schedule is the Jackson derivation of another 
schedule. Thus, in the search for an optimal schedule, we can impose the characteristics 
of a Jackson derivation to the schedule under construction. This results in a significant 
reduction of the size of the search space. 

Example: A schedule S and its “Jackson derivation” J(S). 
 

 

 

 

 

Schedule S 

Schedule J(S) 

M1 
M2 
M3 

M1 
M2 
M3 

 

 

Job 1: executes on M1 (duration= 3), on M2 (duration= 3) and finally on M3 (duration= 5) 

Job 2: executes on M1 (duration= 2), on M3 (duration= 1) and finally on M2 (duration= 2) 

Job 3: executes on M2 (duration= 5), on M1 (duration= 2) and finally on M3 (duration= 1) 

 



A branching scheme for the preemptive job-shop scheduling problem 

The dominance criterion leads to the following branching scheme: 
1. Let t be the earliest date such that there is an activity A available (and not scheduled 

yet!) at t. 
2. Compute K, the set of activities available at t on the same machine than A. 
3. Compute NDK, the set of activities which are not “dominated” in K (as explained 

below). 
4. Select an activity Ak in NDK. Schedule Ak to execute at t. Propagate the decision and 

its consequences according to the dominance criterion (as explained below). Keep the 
other activities of NDK as alternatives to be tried upon backtracking. 

5. Iterate until all the activities are scheduled or until all alternatives have been tried. 

Needless to say, the power of this branching scheme highly depends on the rules that are 
used to (a) eliminate “dominated” activities in step 3 and (b) propagate “consequences” 
of the choice of Ak in step 4. The dominance criterion is exploited as follows: 
• Whenever Ak ∈ acts(M) is chosen to execute at time t, it is set to execute either up to 

its earliest possible end time or up to the earliest possible start time of another activity 
Al ∈ acts(M) which is not available at time t. 

• Whenever Ak ∈ K is chosen to execute at time t, any other activity Al ∈ K can be 
constrained not to execute between t and the end of Ak. At times t’ > t, this reduces the 
set of candidates for execution (Al is “dominated” by Ak). In step 4, “redundant” 
constraints can also be added: end(Ak) + rpt(Al) ≤ end(Al), where rpt(Al) is the 
remaining processing time of Al at time t; end(Ak) ≤ start(Al) if Al is not started at 
time t. 

• Let Ak ∈ acts(M) be the last activity of its job. Let Al ∈ acts(M) be another activity 
such that either l < k or Al is not the last activity of its job. Then, if Al is available at 
time t, Ak is not candidate for execution at time t (Ak is dominated by Al). 

The above branching scheme defines a search tree which is, by default, explored in a 
depth-first fashion. Yet several “points of flexibility” remain in the resulting depth first 
search (DFS) algorithm: the constraint propagation algorithms used to propagate the 
decision to execute Ak at time t (as well as the resulting “redundant” constraints); the 
heuristic used to select activity Ak in NDK; and the course of action to follow when a 
solution with makespan ≤ v has been found. 



Constraint propagation for the preemptive job-shop scheduling problem 

Three constraint propagation techniques can be considered: timetables (CP-TT), 
disjunctive constraints (CP-DISJ) and edge-finding (DP-EF). In fact, we know from 
(Baptiste et al., 2001) that DP-EF dominates all other rules in terms of deductive power 
but it is also more time consuming than CP-TT. CP-DISJ does not deduce much even 
though it is not dominated by CP-TT. In the end, two alternatives, CP-TT and DP-EF are 
worth considering.3  

Heuristic control of the DFS algorithm 

Several points of flexibility remain in the DFS algorithm. Let us first consider the course 
of action to follow when a new solution has been found by the branch and bound 
algorithm. The alternative is either to “continue” the search for a better solution in the 
current search tree (with a new constraint stating that the makespan must be smaller than 
the current one) or to “restart” a brand new branch and bound procedure. The main 
advantage of restarting the search is that the heuristic choices can rely on the result of the 
new propagation (based on the new upper bound), which shall lead to a better exploration 
of the search tree. The drawback is that parts of the new search tree may have been 
explored in a previous iteration, which results in redoing the same unfruitful work. 

As far as the PJSSP is concerned, the restart strategy brings another point of flexibility, 
concerning the selection of an activity Ak in NDK. A basic strategy consists of selecting 
Ak according to a specific heuristic rule. In our case, selecting the activity with the 
smallest latest end time (Earliest Due Date rule) seems reasonable since it corresponds to 
the rule which optimally solves the preemptive one-machine problem (see, for instance, 
(Carlier & Pinson, 1990)). However, we can also use a strategy which relies on the best 
schedule S computed so far. We propose to select the activity Ak with minimal dS(Ak). 
Our hope is that this should help to find a better schedule when there exists one that is 
“close” to the previous one. 

In addition, we can use the Jackson derivation operator J and its symmetric counterpart K 
to improve the current schedule. Whenever a new schedule S is found, derivations J and 
K can be applied to improve the current schedule prior to restarting the search. Several 
strategies can be considered, e.g., apply only J, apply only K, apply a sequence of Js and 
Ks. After further experimentation, we decided to focus on the following scheme, which 
performs much better on average: 

• compute J(S) and K(S); 

• replace S with the best schedule among J(S) and K(S), if this schedule is strictly 
better than S (in our implementation, J(S) is chosen if J(S) and K(S) have the 
same makespan); 

• if S has been replaced by either J(S) or K(S), iterate. 

                                                 
3 Note that we could consider applying CP-TT to some resources and DP-EF to others. 



Globally, this leads to five strategies based on depth first search: DFS-C-E, DFS-R-E, 
DFS-R-E-JK, DFS-R-B and DFS-R-B-JK, where C, R, E, B, JK stand respectively for 
“Continue search in the same tree”, “Restart search in a new tree”, “select activities 
according to the Earliest due date rule”, “select activities according to their position on 
the Best schedule met so far” and “apply JK derivation operators”. We remark that, in 
fact, three other strategies, DFS-C-E-JK, DFS-C-B and DFS-C-B-JK could also be 
considered, but with a more complex implementation (e.g., in DFS-R-E-JK, the same 
data structures are used to perform the depth-first search and apply the J and K operators; 
to implement DFS-C-E-JK, we would need to duplicate the schedule). 

Table 2 provides the results obtained on the preemptive variant of the ten 10∗10 (10 jobs 
10 machines) instances used by Applegate and Cook (1991) in their computational study 
of the non-preemptive job-shop scheduling problem. Each line of the table corresponds to 
a given “constraint propagation + search” combination, and provides the mean relative 
error (MRE, in percentage) obtained after 1, 2, 3, 4, 5, and 10 minutes of CPU time. For 
each instance, the relative error is computed as the difference between the obtained 
makespan and the optimal value, divided by the optimal value. The MRE is the average 
relative error over the ten instances. The optimal values have been obtained by running 
an exact algorithm, described in (Le Pape & Baptiste, 1998), with an average CPU time 
of 3.4 hours, and a maximum of 27 hours (for the ORB3 instance), on a PC Dell at 
200MHz running Windows NT. 

Table 3 provides results obtained on the thirteen instances used by Vaessens, Aarts, and 
Lenstra (1994) to compare local search algorithms for the non-preemptive job-shop 
scheduling problem. As these instances differ in size, we allocated to each instance an 
amount of time proportional to the square of the number of activities in the instance. This 
means that column 1 corresponds to the allocation of 1 minute to a 10∗10 problem, 15 
seconds for a 10∗5 problem, 4 minutes for a 20∗10 problem, etc. 

These tables show that the use of the edge-finding technique enables the generation of 
good solutions in a limited amount of time. In addition, the DFS-R-B-JK variant clearly 
outperforms the other algorithms, especially when the edge-finding technique is used. 

 
Propagation 
algorithm 

Search 
strategy 

1 2 3 4 5 10 

Timetable DFS-C-E 16.74 16.37 16.25 16.25 16.25 16.18 
 DFS-R-E 16.74 16.42 16.40 16.37 16.37 16.18 
 DFS-R-E-JK 8.95 8.95 8.95 8.95 8.95 8.33 
 DFS-R-B 14.67 14.48 14.48 14.48 14.13 13.72 
 DFS-R-B-JK 8.32 8.16 7.74 7.73 7.73 7.34 
Edge-finding DFS-C-E 5.23 4.64 3.80 3.09 2.94 1.55 
 DFS-R-E 5.70 5.26 4.99 4.47 4.09 2.73 
 DFS-R-E-JK 4.29 3.67 3.17 2.55 2.42 1.62 
 DFS-R-B 4.23 3.68 3.41 2.82 2.80 1.41 
 DFS-R-B-JK 1.69 1.32 0.86 0.80 0.79 0.65 

Table 2: DFS results on the ten instances used in (Applegate & Cook, 1991) 



Propagation 
algorithm 

Search 
strategy 

1 2 3 4 5 10 

Timetable DFS-C-E 16.28 16.04 16.03 15.96 15.96 15.96 
 DFS-R-E 16.34 16.08 16.06 16.05 16.04 16.02 
 DFS-R-E-JK 9.22 9.22 9.22 9.22 9.22 9.04 
 DFS-R-B 14.55 14.36 14.28 14.28 14.28 14.25 
 DFS-R-B-JK 8.82 8.70 8.60 8.59 8.59 7.84 
Edge-finding DFS-C-E 4.33 3.98 3.62 3.52 3.47 3.15 
 DFS-R-E 4.99 4.80 4.49 4.25 3.96 3.72 
 DFS-R-E-JK 4.02 3.74 3.32 3.26 3.22 3.03 
 DFS-R-B 3.96 3.64 3.42 3.42 3.42 3.04 
 DFS-R-B-JK 2.26 2.12 1.94 1.77 1.77 1.72 

Table 3: DFS results on the thirteen instances used in (Vaessens et al., 1994) 

Limited discrepancy search 

Limited discrepancy search (LDS) (Harvey and Ginsberg, 1995) is an alternative to the 
classical depth first search algorithm. This technique relies on the intuition that heuristics 
make few mistakes through the search tree. Thus, considering the path from the root node 
of the tree to the first solution found by a DFS algorithm, there should be few “wrong 
turns” (i.e., few nodes which were not immediately selected by the heuristic). The basic 
idea is to restrict the search to paths which do not diverge more than w times from the 
choices recommended by the heuristic. When w = 0, only the leftmost branch of the 
search tree is explored. When w = 1, the number of paths explored is linear in the depth 
of the search tree, since only one alternative turn is allowed for each path. Each time this 
limited search fails, w is incremented and the process is iterated, until either a solution is 
found or it is proven that there is no solution. It is easy to prove that when w gets large 
enough, LDS is complete. At each iteration, the branches where the discrepancies occur 
close to the root of the tree are explored first (which makes sense when the heuristics are 
more likely to make mistakes early in the search). See (Harvey and Ginsberg, 1995) for 
details. 

Several variants of the basic LDS algorithm can be considered: 
• When the search tree is not binary, it can be considered that the ith best choice 

according to the heuristic corresponds either to 1 or to (i − 1) discrepancies. In the 
following, we consider it represents (i − 1) discrepancies because the second best 
choice is often much better than the third, etc. In practice, this makes the search tree 
equivalent to a binary tree where each decision consists of either retaining or 
eliminating the best activity according to the heuristic. 

• The first iteration may correspond either to w = 0 or to w = 1. In the latter case, one 
can also modify the order in which nodes are explored during the first iteration 
(i.e., start with discrepancies far from the root of the tree). The results reported below 
are based on a LDS algorithm which starts with w = 0. 

• (Korf, 1996) proposes an improvement based on an upper bound on the depth of the 
search tree. In our case, the depth of the search tree can vary a lot from a branch to 
another (even though it remains linear in the size of the problem), so we decided not to 



use Korf’s variant. This implies that, to explore a complete tree, our implementation of 
LDS has a very high overhead over DFS. 

• (Walsh, 1997) proposes a variant called “Depth-bounded Discrepancy Search” (DDS), 
in which any number of discrepancies is allowed, provided that all the discrepancies 
occur up to a given depth. This variant is recommended when the heuristic is very 
unlikely to make mistakes in the middle and at the bottom of the search tree (i.e., when 
almost all mistakes occur at low depth). On the PJSSP, LDS appeared to work better 
than DDS.  

 
Table 4 provides the results obtained by the five LDS variants, LDS-C-E, LDS-R-E, 
LDS-R-E-JK, LDS-R-B and LDS-R-B-JK, on the ten instances used by Applegate and 
Cook. Table 5 provides the results for the thirteen instances used by Vaessens, Aarts, and 
Lenstra. These tables clearly show that the LDS algorithms provide better results on 
average than the corresponding DFS algorithms. Figures 3 and 4 present the evolution of 
the mean relative error for the eight “constraint propagation + search” combinations in 
which the J and K operators are used. The combination of the edge-finding constraint 
propagation algorithm with LDS-R-B-JK appears to be the clear winner. 

 
Propagation 
algorithm 

Search 
strategy 

1 2 3 4 5 10 

Timetable LDS-C-E 9.55 9.43 9.16 9.08 8.95 8.52 
 LDS-R-E 10.46 9.87 9.22 8.98 8.98 8.52 
 LDS-R-E-JK 7.68 6.75 6.75 6.75 6.75 5.98 
 LDS-R-B 5.75 4.95 4.42 4.16 4.16 3.61 
 LDS-R-B-JK 6.14 5.67 5.59 5.14 5.07 4.20 
Edge-finding LDS-C-E 3.20 2.70 2.42 2.08 1.77 1.41 
 LDS-R-E 3.52 2.90 2.67 2.39 2.25 1.66 
 LDS-R-E-JK 2.17 2.03 1.86 1.71 1.38 1.24 
 LDS-R-B 1.10 0.95 0.75 0.74 0.60 0.39 
 LDS-R-B-JK 0.64 0.64 0.55 0.36 0.32 0.23 

Table 4: LDS results on the ten instances used in (Applegate & Cook, 1991) 

Propagation 
algorithm 

Search 
strategy 

1 2 3 4 5 10 

Timetable LDS-C-E 11.43 11.12 11.08 10.89 10.53 10.43 
 LDS-R-E 11.53 11.24 11.12 10.95 10.59 10.40 
 LDS-R-E-JK 7.98 7.97 7.95 7.89 7.87 7.40 
 LDS-R-B 6.58 5.92 5.64 5.44 5.26 4.68 
 LDS-R-B-JK 5.93 5.82 5.78 5.66 5.66 4.60 
Edge-finding LDS-C-E 3.57 3.02 2.85 2.77 2.57 2.27 
 LDS-R-E 4.33 3.37 3.14 2.91 2.78 2.39 
 LDS-R-E-JK 2.43 2.20 2.03 1.82 1.73 1.61 
 LDS-R-B 2.25 1.80 1.76 1.74 1.58 1.13 
 LDS-R-B-JK 1.75 1.28 1.03 0.92 0.92 0.79 

Table 5: LDS results on the thirteen instances used in (Vaessens et al., 1994) 
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From the preemptive job-shop scheduling problem to a practical application 

Practical problems are never as pure as the preemptive job-shop scheduling problem. 
Disjunctive and cumulative resources coexist, interruptible and non-interruptible 
activities coexist, specific constraints and preferences must often be added. An example 
of extension of the preemptive job-shop scheduling problem is the daily construction site 
scheduling problem. A typical instance includes 3 to 5 resources, one disjunctive 
(the crane) and the others cumulative (teams of people), 15 interruptible activities, 
15 activities subjected to time-versus-capacity tradeoffs, and 10 activities for which the 
required capacity can vary over time. About 70 additional constraints (temporal 
constraints, synchronization constraints) apply. Half of these constraints are preferences, 
with different levels of importance, which are more or less conflicting depending on the 
problem data. The search algorithm implemented to solve this problem attempts to satisfy 
as many preferences as possible, starting from the most important ones. This is 
implemented as a “shuffle” of the preferences: at each iteration, a set of preferences is 
selected and the system tries to find a solution which satisfies all the constraints of the 
set. Eight search strategies are applied in turn and a limited number of backtracks allowed 
for each strategy. If the search succeeds, the system further biases the shuffle towards 
larger sets of constraints. If the search fails, the system biases the shuffle towards smaller 
sets of constraints. On most instances, the system satisfies all the constraints but two or 
three in 10 to 15 iterations of 15 seconds each, which compares favorably with the 
manual solutions we have seen, which typically violate eight or nine constraints. 



Conclusion 

The principles of constraint programming have been widely applied to scheduling 
problems, enabling the implementation of flexible and extensible scheduling systems. 
With constraint programming all the specific constraints of a given problem can be 
represented and actually used as a guide toward a solution. This “flexibility” can be 
contrasted with the attention that has been paid in operations research to rather “pure” 
scheduling problems, based on relatively simple mathematical models, the combinatorial 
structure of which can be exploited to improve performance. We could say that a 
traditional operations research approach often aims at achieving a high level of 
“efficiency” in its algorithms, at the expense of the “generality of application” of these 
algorithms. 

As the number of applications grew, the need emerged to reconcile the flexibility offered 
by constraint programming with the efficiency of specialized operations research 
algorithms. The first step consisted in adapting well-known operations research 
algorithms to the constraint programming framework, mostly by incorporating these 
algorithms within constraint propagation. As a second step, the success of the resulting 
tools opened a new area of research aimed at the design and implementation of efficient 
algorithms embeddable in constraint programming applications and tools. This includes 
the design of efficient constraint propagation techniques for specific optimization criteria, 
the application of linear programming to well-behaved subproblems, and the combination 
of constraint programming with various forms of local search to generate “good” 
schedules in a limited amount of time. 

Resource constraints and optimization criteria 

Propagating the objective constraint (that defines the optimization criterion) and the 
resource constraints independently is not a problem when the optimization criterion is a 
“maximum” such as the makespan or the maximal tardiness of a given set of jobs. 
Indeed, an upper bound on the optimization criterion is directly propagated on the 
completion time of the jobs under consideration, i.e., the latest end times of these jobs are 
tightened efficiently. 

The situation is much more complex for “sum” functions such as the weighted number of 
late jobs or the sum of setup times between jobs. For such objective functions, efficient 
constraint propagation techniques must take into account the resource constraints and the 
objective constraint simultaneously. 

Excellent results with new approaches combining constraint programming with deductive 
algorithms targeted toward specific objective functions appear in (Baptiste et al., 1998) 
for the weighted number of late jobs and (Focacci et al., 2000} for the sum of setup 
times. However, many other objective functions (e.g., total tardiness, total flow-time) still 
have to be studied. An important research challenge is to design generic lower-bounding 
techniques and constraint propagation algorithms that could work for many criteria. 



 

Linear programming and constraint programming 

Three areas in which the integration of linear programming and constraint programming 
is promising are identified: 

• For cumulative scheduling problems, the complexity of specific constraint 
propagation algorithms tends to raise (e.g., to O(n3)), which suggests that lower-
bounding and constraint propagation algorithms based on linear programming 
might be competitive. For example, several lower bounds based on linear 
programming formulations of a relaxed resource-constrained project scheduling 
problem have shown to be very accurate (Bruckner & Knust, 2000)  (Mingozzi et 
al., 1998). Unfortunatley, the size of the linear models used is large, so even with 
complex column generation techniques hours of CPU time are sometimes 
required to get a lower bound. Recently, Carlier and Néron (2001) have shown 
that, for each resource, an efficient lower bound based on linear programming can 
be tabulated, for each fixed value of the resource capacity. Then the computation 
of the lower bounds requires much less CPU at run time. This is probably one of 
the most promising areas of research for the next few years. 

• Linear programming can also be a strong “ingredient” when the objective 
function is a sum or a weighted sum of scheduling variables like the end times of 
activities. A key research issue here is the design of techniques combining the 
power of efficient constraint propagation algorithms for the resource constraints 
and the power of linear programming for bounding the objective function. 
In some simple cases, mixed integer programming can also be used to improve 
solutions found by constraint programming (cf., for example (Danna, 2004)). 

• In real-life applications, scheduling issues are often mixed with resource 
allocation, capacity planning, or inventory management issues for which mixed 
integer programming is a method of choice. Several examples have been reported 
where a hybrid combination of constraint programming and mixed integer 
programming was shown to be more efficient than pure constraint programming 
or mixed integer programming models (cf., for example, (El Sakkout & Wallace, 
2000)). The generalization of these examples into a principled approach is another 
important research issue for the forthcoming years. 

 



Local search and constraint programming 

Various forms of local search, such as simulated annealing, tabu search, genetic 
algorithms, etc., provide excellent results when one can define a compact representation 
of the solution space that is consistent with the objective function. In real life, problems 
often incorporate side constraints that tend to disable the local search approach. This led 
several researchers to integrate constraint programming and local search techniques. For 
example, Caseau and Laburthe (1995) describe an algorithm for the job-shop scheduling 
problem which combines constraint programming and local search. The overall algorithm 
finds an approximate solution to start with, makes local changes and repairs on it to 
quickly decrease the makespan and, finally, performs an exhaustive search for decreasing 
makespans. Experiments in combining branch and bound search with genetic algorithms 
(see, for example, (Portmann et al., 1998)) suggest that constraint programming 
algorithms could also be combined with algorithms optimizing populations of solutions, 
in particular when these algorithms can be adapted to respect constraints imposed at a 
given node of a branch and bound tree or deduced through constraint propagation. 

Globally, the integration of local search and constraint programming is promising 
whenever local search operators provide a good basis for the exploration of the search 
space and either side constraints or effective constraint propagation algorithms can be 
used to prune the search space. The examples presented in the literature represent a 
significant step toward the understanding of the possible combinations of local search and 
constraint programming. Yet the definition of a general approach and methodology for 
integrating local search and constraint programming remains an important area of 
research. 
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