
Constraint-Based Scheduling: A Tutorial

Claude Le Pape

ILOG S. A.
9, rue de Verdun

F-94253 Gentilly Cedex
Tel: +33 1 49 08 29 67
Fax: +33 1 49 08 35 10
Email: clepape@ilog.fr

Given a set of resources with given capacities, a set of activities with given processing
times and resource requirements, and a set of temporal constraints between activities, a
“pure” scheduling problem consists of deciding when to execute each activity, so that
both temporal constraints and resource constraints are satisfied. Most scheduling
problems can easily be represented as instances of the constraint satisfaction problem
(Kumar, 1992): given a set of variables, a set of possible values (domain) for each
variable, and a set of constraints between the variables, assign a value to each variable, so
that all the constraints are satisfied.

The diversity of scheduling problems, the existence of many specific constraints or
preferences in each problem, and the emergence of efficient constraint-based scheduling
algorithms in the mid-90s (Aggoun & Beldiceanu, 1993) (Nuijten, 1994) (Caseau &
Laburthe, 1994) (Baptiste & Le Pape, 1995) (Colombani, 1996), have made constraint
programming a method of choice for the resolution of complex industrial problems. In
this tutorial, the main principles of constraint programming are discussed in terms of the
corresponding advantages and drawbacks for the resolution of industrial scheduling
problems. The modeling of scheduling problems and the use of specific constraint
propagation techniques are then discussed. The development of practical heuristic search
procedures is illustrated through an example, the preemptive job-shop scheduling
problem, and, as a practical extension, a daily construction site scheduling problem.
In the conclusion, the usefulness of mixing constraint programming with other techniques
(linear programming, local search) is briefly discussed.

mailto:clepape@ilog.fr

Principles and interest of constraint programming applied to scheduling
problems

Broadly speaking, constraint programming can be defined as a programming method
based on three main principles:
• The problem to be solved is explicitly represented in terms of variables and constraints

on these variables. In a constraint-based program, this explicit problem definition is
clearly separated from the algorithm used to solve the problem.

• Given a constraint-based definition of the problem to be solved and a set of decisions,
themselves translated into constraints, a purely deductive process referred to as
“constraint propagation” is used to propagate the consequences of the constraints. This
process is applied each time a new decision is made, and is clearly separated from the
decision-making algorithm per se.

• The overall constraint propagation process results from the combination of several
local and incremental processes, each of which is associated with a particular
constraint or a particular constraint class.

Explicit problem definition

The main advantage of separating problem definition from problem-solving is obvious: it
guarantees that the problem to be solved is precisely defined. Actually, a significant part
of the design of a constraint-based scheduling system consists of eliminating any
ambiguity from the problem statement. This can be very demanding. Indeed, some pieces
of knowledge about the problem can be easier to integrate in a problem-solving algorithm
than in a declarative specification of the problem. For example, knowledge of the current
and usual practice (i.e., knowledge of the form “generally, we do that”) is easy to
incorporate in the form of heuristics in a decision-making procedure, while its status in
terms of constraints and preferences can lead to long (and passionate!) debates about the
qualities and the defects of the current practice. Such debates are often necessary to
ensure that the projected software will deal with the right problem; yet they may as well
result in pure cancellation of the software project if the participants cannot agree.

Another advantage of separating problem definition from problem-solving concerns the
revision or the extension of the scheduling system when the problem changes. For
example, the replacement of old machines by new machines in a manufacturing shop can
lead to the introduction of new constraints and preferences, and to the removal of old
constraints and preferences. In some cases, the same problem-solving algorithms will
continue to apply, with a different problem definition as input. This is in huge contrast
with the case in which the problem definition is “diluted” in lines and lines of problem-
solving code.

Constraint propagation and search

The second important principle of constraint programming consists of distinguishing
constraint propagation and decision-making search. Constraint propagation is a deductive
activity which consists in deducing new constraints from existing constraints. For
example, if an activity A must precede an activity B, and if A cannot be finished before
12:00 noon, constraint propagation will (normally) deduce that B cannot start before
12:00. Such information can prove very useful for the decision-maker (algorithm or
human being) since it allows more informed decisions to be made. In addition, it can
propagate in turn to other variables of the problem: if the minimal duration of B is two
hours, then B cannot end before 2:00 p.m., etc. In some cases, this leads to determining
that the problem (maybe augmented by some decisions) is insoluble. In such a case,
either some constraints or some decisions must be removed. Unfortunately, constraint
propagation cannot be perfect. A well-known conjecture on combinatorial problems and
algorithms states that some combinatorial problems cannot be solved in an amount of
time that grows as a polynomial function of the size of the problem. These problems are
called “NP-hard” (Garey & Johnson, 1979). The problem of determining whether
activities submitted to resource constraints can be executed within given deadlines
(earliest start times and latest end times) is NP-hard, even if only one resource of capacity
1 is considered. As a result, constraint propagation cannot detect all inconsistencies
between problem constraints (or it will take too much time to do so), and cannot provide
perfect information about the earliest and latest start and end times of activities. To
determine if there exists a schedule that meets the deadlines, one must search the possible
combinations of scheduling decisions. The information provided by constraint
propagation is extremely useful to guide this search. Yet one must be prepared to remove
decisions when conflicts are (eventually) discovered.

Separating constraint propagation and search has multiple advantages. First, it allows the
system developer to implement the constraint propagation code and the decision-making
code independently of one another. The same constraint propagation code can then be
used to propagate decisions made by a decision-making algorithm as well as decisions
made by a human user. Distinct decision-making algorithms can also be implemented and
combined, if they rely on the same constraint propagation process. In an optimization
context, this may lead to the development of several decision-making algorithms,
dedicated for example to distinct combinations of optimization criteria. When preferences
are considered, the same algorithm can also be launched several times, after activating
different sets of preferences corresponding to different levels of importance.

Another important advantage of this separation is that precise conditions exist under
which a constraint propagation + decision-making search algorithm is guaranteed to find
a solution if one exists (Le Pape, 1992). It is important to note that these conditions do
not enforce the instantiation of all the variables of the problem. Hence, a decision-making
algorithm may just generate a set of constraints which (1) are proved compatible one with
the others and (2) represent not a single schedule but a set of possible schedules. This can
become useful when the “solution” is put into execution. While unforeseen events
(e.g., activities that last longer than expected) would normally invalidate the current

(unique) schedule, the same events may only reduce the set of schedules represented by
the current constraints (i.e., the constraints derived from predictive scheduling and those
arising from execution). If at least one schedule remains in this set, execution can
continue without revising the solution (see, for example, (Collinot & Le Pape, 1991)
(Lesaint, 1993) and, out of the constraint programming world, (Le Gall, 1989) (Le Gall &
Roubellat, 1992) (Billaut, 1993).

Last, but not least, the separation of constraint propagation and decision-making allows
the developer of a constraint-based application to reuse constraint propagation techniques
developed for other applications. It is even current practice for application developers to
use constraint-solving tools marketed by software houses. The main advantage of such
practice is that the tool providers have invested significant effort in selecting, designing,
and implementing powerful constraint propagation algorithms. For example, the
“cumulative constraint” of CHIP (Aggoun & Beldicanu, 1993) and the specific constraint
propagation algorithms of ILOG SCHEDULER (Le Pape, 1995) have offered a level of
performance that is difficult to attain “from scratch” at a reasonable cost. In addition,
some constraint-solving tools (e.g., ILOG SOLVER (Puget & Leconte, 1995)) offer a lot of
facilities to mix different types of variables (e.g., integer and Boolean variables as in
BV(p) = true ⇔ end(A) ≤ start(B)), to define new constraints, to create disjunctions of
constraints, etc. The main drawback is that the user of the tool cannot control all of what
happens “in the box” and optimize the constraint propagation process with respect to his
or her specific needs. Similarly, the user of the tool cannot easily maintain a trace of the
propagation, which would allow the precise identification of those constraints that
participate in a conflict, as well as intelligent forms of backtracking (e.g., (Stallman &
Sussman, 1977) (Latombe, 1979) (Collinot & Le Pape, 1991) (Xiong et al., 1992)
(Ginsberg, 1993) (Prosser, 1993)). This can be penalizing, even though the usefulness of
intelligent forms of backtracking appears to be reduced when powerful constraint
propagation methods are used.

Locality and incrementality of the constraint propagation process

The third important principle of constraint programming is that the constraint propagation
process shall be as “local” and as “incremental” as possible. The “locality principle”
(Steele, 1980) states that each constraint or each class of constraint is propagated
independently of the existence or non-existence of other constraints. “Incrementality”
means that new variables and constraints can be added at any time, without re-computing
all the consequences of the new constraint set. Let us consider again the case of activity
A which must precede activity B and cannot be finished before 12:00. Constraint
propagation “deduces” that B cannot start before 12:00. If we now add a constraint
stating that the minimal duration of B is two hours, constraint propagation immediately
combines this new constraint with the fact that B cannot start before 12:00, to deduce that
B cannot end before 2:00 p.m. Previous propagation results (the fact that B cannot start
before 12:00) are exploited locally by the new constraint, without being recomputed.
Ideally, one would also like the process of removing variables and constraints to be
incremental. This, however, is not always feasible at low cost.

The locality and incrementality principle is fundamental as it enables the efficient
combination of multiple constraint propagation techniques, associated with different
classes of constraints. In particular, it allows multiple programmers to share libraries of
constraints and augment such libraries with whatever new specific constraints are
required for a given application. This, however, requires a general framework
(programming language or library) designed to facilitate both (1) the integration of
multiple classes of constraints in the same application and (2) the integration of
constraints with the rest of the application. From a software engineering point of view,
one must add “integrability” to the locality and incrementality principle, i.e., ensure that
it will be possible to integrate all the components of an application in the same software
system.

The locality and incrementality principle is sometimes hard to follow. First, because
taking a global view often allows more powerful deductions to be made: the integration
of “global” constraints is often required for efficiency reasons, but it is not an easy task.
Second, because the principle a priori forbids the use of “dominance” arguments within
constraint propagation. For example, let us imagine a scheduling problem in which an
activity A is totally independent of the remainder of the problem, except for the fact that
A requires a resource R, also required by other activities. Let us suppose that A lasts two
hours, that A can execute between 12:00 noon and 2:00 p.m., and that no other activity
can execute on R between 12:00 and 2:00. In that situation, one would like the system to
automatically schedule A between 12:00 and 2:00, since if the problem is soluble, there
will always be a solution (or even an optimal solution) such that A executes between
12:00 and 2:00. However, this cannot be done by propagation (even if there is an
additional constraint stating that R must be used between 12:00 and 2:00) because a new
activity B may be added to the problem later and chosen to execute between 12:00 and
2:00, thereby preventing A from executing between 12:00 and 2:00. In fact, pure
deduction can often be cast as a local and incremental process, but default reasoning rules
of the form “as long as X is possible and independent of the remainder of the problem, X
is true” cannot be efficiently integrated in such a process. From a logical point of view,
closed-world meta-constraints of the form “there cannot be more variables and
constraints with such characteristics” (e.g., “there cannot be more activities requiring
resource R”) provide a solution to that problem. Yet a significant loss of incrementality
is, in fact, incurred: after the statement of the meta-constraint, one cannot assign a new
activity to R.

Representation of scheduling problems with variables and constraints

Given a set of resources with given capacities, a set of activities with given processing
times and resource requirements, and a set of temporal constraints between activities, a
“pure” scheduling problem consists of deciding when to execute each activity, so that
both temporal constraints and resource constraints are satisfied. Most scheduling
problems can easily be represented as instances of the constraint satisfaction problem
(Kumar, 1992): given a set of variables, a set of possible values (domain) for each
variable, and a set of constraints between the variables, assign a value to each variable, so
that all the constraints are satisfied.

Several types of scheduling problems can be distinguished:
• In disjunctive scheduling, each resource can execute at most one activity at a time. In

cumulative scheduling, a resource can run several activities in parallel, provided that
the resource capacity is not exceeded.

• In non-preemptive scheduling, activities cannot be interrupted. Each activity A must
execute without interruption from its start time to its end time. In preemptive
scheduling, activities can be interrupted at any time, e.g., to let some other activities
execute.

Many real-life scheduling problems are complex combinations of these basic problems.

First, real scheduling problems often include both disjunctive resources (e.g., a specific
machine in a manufacturing shop, a crane on a construction site) and cumulative
resources (e.g., groups of identical machines, teams of people with similar capabilities).

Capacity Capacity

TimeTime

1

2

A disjunctive resource A cumulative resource

Second, some scheduling problems include both interruptible and non-interruptible
activities. In many cases, technical or organizational rules limit the possibilities to
interrupt an activity. In particular, it is often the case that an activity can be interrupted
for a break (lunch, week-end) but not in favor of another activity.

A non-interruptible activity An interruptible activity

Third, there often exists some flexibility in the amount of capacity (e.g., number of
workers) that can be assigned to some activities. Some activities require a predefined
amount of resource capacity over their execution (e.g., two workers). For other activities,
the capacity may be allowed to take several values, between which the scheduler has to
make a choice. Yet, in such a case, the amount of energy (e.g., the number of man-hours
necessary to complete the activity) is often given, or allowed to vary in a given range
(e.g., between 2 and 4). More precisely, given the energy required by an activity, two
cases can occur:
• either the scheduler has to assign a value to the required capacity (either 2, or 3, or 4)

which will apply throughout the execution of the activity;

4

Capacity = 2

 2 Duration = 4

• or, at any execution point, the amount of resource to be used is an unknown value in a
given interval (i.e., the capacity required by the resource can vary over time).

All possible configurations corresponding to an activity requiring
an energy of 8 and a constant amount of resource in [2, 4]

 All possible configurations corresponding to an activity requiring an energy of

8 which can use at any execution time a capacity in [2, 4]

Finally, a variety of additional constraints (setups, variations of productivity during the
day) often need to be taken into account as well. Such constraints will not be considered
in the remainder of this section.

Representation of interruptible and non-interruptible activities

A non-preemptive scheduling problem can be encoded efficiently as a constraint
satisfaction problem: two variables, start(A) and end(A), are associated with each activity
A; they represent the start time and the end time of A. The smallest values in the domains
of start(A) and end(A) are called the earliest start time and the earliest end time of A
(ESTA and EETA). Similarly, the greatest values in the domains of start(A) and end(A) are
called the latest start time and the latest end time of A (LSTA and LETA). The duration of
the activity is an additional variable, defined as the difference between the end time and
the start time of the activity.

A preemptive scheduling problem is more difficult to represent: one can either associate a
set variable (i.e., a variable the value of which will be a set) set(A) with each activity A,
or define a 0-1 variable w(A, t) for each activity A and time t; set(A) represents the set of
times at which A executes, while w(A, t) assumes value 1 if and only if A executes at
time t. The processing time pt(A), defined as the size of set(A), can be smaller than
end(A) – start(A). Ignoring implementation details, let us note that:

• the value of w(A, t) is 1 if and only if t belongs to set(A).
• assuming time is discretized, start(A) and end(A) can be defined, in both the

preemptive and the non-preemptive case, by start(A) = mint∈set(A)(t) and
end(A) = maxt∈set(A)(t + 1); in the preemptive case, these variables are often needed
to connect activities together by temporal constraints.

• in the non-preemptive case, set(A) = [start(A) end(A)), with the interval
[start(A) end(A)) closed on the left and open on the right so that
|set(A)| = end(A) − start(A) = duration(A) = pt(A).

These constraints are easily propagated by maintaining a “lower bound” and an “upper
bound” for the set variable set(A). The lower bound of set(A) is a series of disjoint
intervals ILBi such that each ILBi is constrained to be included in set(A). The upper
bound is a series of disjoint intervals IUBj such that set(A) is constrained to be included
in the union of the IUBj. If the size of the lower bound (i.e., the sum of the sizes of the
ILBi) becomes larger than pt(A) or if the size of the upper bound (i.e., the sum of the
sizes of the IUBj) becomes smaller than pt(A), a contradiction is detected and a backtrack
occurs. If the size of the lower bound (or of the upper bound) becomes equal to pt(A),
set(A) receives the lower bound (respectively, the upper bound) as its final value.
Minimal and maximal values of start(A) and end(A), i.e., earliest and latest start and end
times, are also maintained. Each of the following rules, considered independently from
one another, can be used to update the bounds of set(A), start(A) and end(A).
• ∀t, t < start(A) ⇒ t ∉ set(A)
• ∀t, t ∈ set(A) ⇒ start(A) ≤ t
• ∀t, end(A) ≤ t ⇒ t ∉ set(A)
• ∀t, t ∈ set(A) ⇒ t < end(A)
• ∀t, [∀u < t, u ∉ set(A)] ⇒ t ≤ start(A)
• ∀t, [∀u ≥ t, u ∉ set(A)] ⇒ end(A) ≤ t

• start(A) ≤ max{t | ∃S ⊆ set(A) such that |S| = pt(A) and min(S) = t}
• end(A) ≥ min{t | ∃S ⊆ set(A) such that |S| = pt(A) and max(S) = t − 1}

Needless to say, whenever any of these rules leads to a situation where the lower bound
of a variable is not smaller than or equal to its upper bound, a contradiction is detected,
and a backtrack can immediately occur.

Representation and propagation of temporal constraints

Temporal constraints, of the form vari + dij ≤ varj where vari and varj are either start and
end times of activities, or a special variable representing the end time of the complete
schedule, or the lateness of an activity subjected to a due date, or even the constant 0, and
dij is an integer, i.e., the minimal delay between the two time points vari and varj, occur
frequently in scheduling. These constraints are easily propagated through an incremental
version of Ford's algorithm (Gondran & Minoux, 1984), (Le Pape, 1988), (Cesta & Oddi,
1996). This O(nm) algorithm, where n is the number of activities and m the number of
temporal constraints, guarantees that the earliest and latest start and end times of
activities are always consistent with respect to the temporal constraints. In other terms, if
no contradiction is detected, then the earliest start and end times of activities satisfy all
the temporal constraints, and the latest start and end times of activities satisfy all the
temporal constraints.

Representation of resource constraints

Disjunctive resource constraints are obviously the easiest to represent: if A and B require
the same disjunctive resource, set(A) and set(B) cannot intersect. In cumulative
scheduling, it also often occurs that an activity A can execute at different rates, depending
on the assigned resource capacity. In the most extreme case (referred to as the “fully
elastic” case (Baptiste et al., 1999)), the amount of resource R assigned to an activity A
can, at any time t, pick any value w(A, R, t) between 0 and the resource capacity C(R)
(with w(A, R, t) = 0 ⇔ w(A, t) = 0), provided that the sum over time of the assigned
capacity w(A, R, t) equals a given amount of energy w(A, R). The fully elastic case is
interesting because the constraint propagation techniques that are developed for this case
can be applied to any fully elastic, partially elastic, or non-elastic scheduling problem
(because it is the less constrained).

Table 1 summarizes different classes of scheduling problems and the relevant constraints
for each activity A and each (activity, resource) pair (A, R). The resource constraints
concerning resource R state that at any time t, ΣA w(A, R, t) cannot exceed the resource
capacity C(R). The following section presents the most significant resource constraint
propagation techniques applicable to each of these classes.

Table 1: Summary of problem definitions

Constraints common
to all problems

(fully elastic case)

w(A, t) = 1 ⇔ t ∈ set(A)
start(A) = mint∈set(A)(t)

end(A) = maxt∈set(A)(t + 1)
pt(A) = |set(A)|

w(A, R, t) = 0 ⇔ w(A, t) = 0
Σt w(A, R, t) = w(A, R)
ΣA w(A, R, t) ≤ C(R)

Additional
constraints

Cumulative resource
C(R) ≥ 1

Disjunctive resource
C(R) = 1

Preemptive w(A, R, t) = c(A, R) ∗ w(A, t) w(A, R, t) = w(A, t)
Non preemptive w(A, R, t) = c(A, R) ∗ w(A, t)

set(A) = [start(A), end(A))
w(A, R, t) = w(A, t)

set(A) = [start(A), end(A))

Propagation of resource constraints

Each of the resource constraint propagation rules presented in this section is identified
with a two-part name XX-∗, where the first part XX identifies the most general case in
which the rule applies (FE for Fully Elastic, CP for Cumulative Preemptive, CNP for
Cumulative Non-Preemptive, DP for Disjunctive Preemptive, and DNP for
Disjunctive Non-Preemptive). The following diagram shows the relationships between
these five cases. In this diagram, an arrow between two cases means that the techniques
that apply to the first case can be applied to the second case (the corresponding
deductions remain valid). To simplify the presentation, we assume that, for every activity
A, the processing time pt(A) and the energy requirement w(A, R) are constrained to be
strictly positive.

FE CP CNP

DP DNP

The following notations are used:
ESTA Earliest Start Time of activity A, i.e., the smallest value in the domain of start(A).
LSTA Latest Start Time of activity A, i.e., the largest value in the domain of start(A).
EETA Earliest End Time of activity A, i.e., the smallest value in the domain of end(A).
LETA Latest End Time of activity A, i.e., the largest value in the domain of end(A).
pA Processing time of activity A, i.e., the value of pt(A) when pt(A) is bound. When

pt(A) is not bound, constraint propagation rules can usually be applied with pA
equal to the minimal value in the domain of pt(A).

cA Capacity (of the resource R under consideration) required by activity A, i.e., the
value of c(A, R) when c(A, R) is bound. When c(A, R) is not bound, constraint
propagation rules can usually be applied with cA equal to the minimal value in the
domain of c(A, R).

wA Energy (of the resource R under consideration) required by activity A, i.e., the
 value of w(A, R) when w(A, R) is bound. When w(A, R) is not bound, constraint
propagation rules can usually be applied with wA equal to the minimal value in the
domain of w(A, R).

ESTΩ Earliest start time of the set Ω. ESTΩ = minA∈Ω ESTA.
LETΩ Latest end time of the set Ω. LETΩ = maxA∈Ω LETA.
pΩ Processing time of set Ω. pΩ = ΣA∈Ω pA.
wΩ Energy required by set Ω. wΩ = ΣA∈Ω wA.

Constraint propagation based on timetables
FE-TT, CP-TT, and CNP-TT
This is the most commonly used resource constraint propagation technique. It consists of
(a) maintaining arc-B-consistency (Lhomme, 1993)1 on the formula ΣA w(A, R, t) ≤ C(R)
and (b) using the maximal values wmax(A, R, t) of w(A, R, t) to compute the earliest and
latest start and end times of activities (Le Pape, 1994) (Le Pape & Baptiste, 1996),
(Le Pape & Baptiste, 1997):

start(A) ≥ min{t such that wmax(A, R, t) > 0}
end(A) ≥ min{t such that Σu<t wmax(A, R, u) ≥ w(A, R)}
start(A) ≤ max{t such that Σu≥t wmax(A, R, u) ≥ w(A, R)}
end(A) ≤ max{t such that wmax(A, R, u) > 0} + 1

The FE, CP and CNP cases must be distinguished because the relations between
w(A, R, t) and the start and end time variables differ.
• In the non-preemptive case, w(A, R, t) is equal to c(A, R) for every t in [LSTA, EETA).
• In the preemptive case, either the user or a search procedure must explicitly decide at

which time points each activity executes. However, when start(A), pt(A), and end(A)
are bound to values such that start(A) + pt(A) = end(A), w(A, R, t) is equal to c(A, R)
for every t in [start(A), end(A)).

• In the fully elastic case, the relation is even weaker because, even when t is known to
belong to set(A), w(A, R, t) can take any value between 1 and C(R).

In practice, the above rules are applied through the use of specialized algorithms, which
can be made very efficient in the CNP case by relying on the fact that set(A) = [start(A),
end(A)).

1 Given a constraint c over n variables v1 … vn and a domain Di for each variable vi, c is “arc-consistent” if
and only if for any variable vi and any value vali in the domain of vi, there exist values val1 … vali-1 vali+1
… valn in D1 … Di-1 Di+1 … Dn such that c(val1 ... valn) holds. Arc-B-consistency, where B stands for
bounds, guarantees only that val1 … vali-1 vali+1 … valn exist for vali equal to either the smallest or the
greatest value in Di.

Disjunctive constraints
Disjunctive constraints deal with cases in which two activities cannot overlap in time.
Such a situation is of course common in disjunctive scheduling, but also occurs in
cumulative scheduling, when the sum of the capacities required by two activities exceeds
the capacity of the resource. Let us note that the following rules can a priori be
generalized to triples, quadruples, etc., of activities, but with a significant increase in the
number of constraints and in the number of disjuncts per constraint. In practice, they are
used only for pairs of activities.

CNP-DISJ: Disjunctive constraints in the non-preemptive case
Let A and B be two activities with cA + cB > C(R). In the non-preemptive case, the
disjunctive constraint propagation technique consists of maintaining arc-B-consistency on
the formula:

[end(A) ≤ start(B)] or [end(B) ≤ start(A)].

In the DNP case, all the pairs of activities that require the same resource R are related by
such a disjunction. This is the origin of the term “disjunctive scheduling.” Extensions of
this rule are described in (Baptiste & Le Pape, 1996a), including the case in which
c(A, R) and c(B, R) are not bound (and may satisfy c(A, R) + c(B, R) > C(R)) and the
case in which the domain of pt(A) contains 0.

CP-DISJ: Disjunctive constraints in the preemptive case
Let A and B be two activities with cA + cB > C(R). In the preemptive case, the disjunctive
constraint propagation technique consists of maintaining arc-B-consistency on the
formula:

[start(A) + pt(A) + pt(B) ≤ end(A)]
or [start(A) +pt(A) + pt(B) ≤ end(B)]
or [start(B) + pt(A) + pt(B) ≤ end(A)]
or [start(B) + pt(A) + pt(B) ≤ end(B)].

We remark that, if only some activities can be interrupted, a “mixed” rule is obtained by
removing the first (fourth) disjunct when A (respectively B) cannot be interrupted.

Edge-finding

“Edge-finding” constraint propagation techniques reason about the order in which
activities execute on a given resource. In the DNP case, edge-finding consists of
determining whether a given activity A must execute before (or after) a given set of
activities Ω. Two types of conclusions can then be drawn: new ordering relations
(“edges” in the graph representing the possible orderings of activities) and new time-
bounds (earliest and latest start and end times). Cumulative and preemptive cases are
more complex since several activities can overlap (on a cumulative resource) or preempt
one another. Then edge-finding consists of determining whether an activity A must start
or end before (or after) a set of activities Ω (adding edges in the graph representing the
possible orderings of start and end times of activities).

DNP-EF: Edge-finding in the disjunctive preemptive case
Let A « B (A » B) mean that A is before (after) B and A « Ω (A » Ω) mean that A is
before (after) all the activities in Ω. In the disjunctive non-preemptive case, the edge-
finding technique consists in applying the following rules, and their symmetric
counterparts:

A∉Ω and LETΩ – ESTΩ∪{A} < pΩ∪{A} ⇒ A » Ω
A » Ω ⇒ start(A) ≥ maxØ≠Ω’⊆Ω(ESTΩ’ + pΩ’)

Carlier and Pinson (1994) have shown that all the corresponding deductions can be done
in O(n ∗ log(n)), where n is the number of activities requiring the resource.2

DP-EF: Edge-finding in the disjunctive preemptive case
In the preemptive case, the edge-finding rules no longer order activities but start and end
times of activities. If A 〉〉 Ω means “A ends after all activities in Ω” then the following
rules (and their symmetric counterparts) are obtained:

A∉Ω and LETΩ − ESTΩ∪{A} < pΩ∪{A} ⇒ A 〉〉 Ω
A 〉〉 Ω ⇒ end(A) ≥ maxΩ’⊆Ω(ESTΩ’∪{A} + pΩ’∪{A})
A 〉〉 Ω and (LETΩ − ESTΩ = pΩ) and (ESTΩ ≤ ESTA) ⇒ start(A) ≥ LETΩ

In the “mixed” case, the DNP-EF rules can be applied whenever A is not interruptible,
even if the activities in Ω are interruptible (Le Pape & Baptiste, 1996). On the other hand,
if A is interruptible, the DNP-EF rules are not valid and the (weaker) DP-EF rules must

2 O(n ∗ log(n)) corresponds to applying the rules once to each pair (A, Ω). In constraint programming, one
applies these rules (and other rules, used to propagate other constraints) until the domains of all the
problem variables become stable. In the worst case, this can lead to executing the edge-finding algorithm
O(Dn) times where D is a bound on the size of the domains of the variables involved in the propagation. In
most cases, however, this does not occur, i.e., each propagation algorithm is applied only a couple of times.

be applied. It is shown in (Le Pape & Baptiste, 1996) that the corresponding deductions
can be done in O(n2).

FE-EF: Edge-finding in the fully elastic case
The following rules (and their symmetric counterparts) can be used in the fully elastic
case.

A∉Ω and C(R) ∗ (LETΩ − ESTΩ∪{A}) < wΩ∪{A} ⇒ A 〉〉 Ω
A 〉〉 Ω ⇒ end(A) ≥ maxΩ’⊆Ω(C(R) ∗ ESTΩ’∪{A} + wΩ’∪{A}) / C(R)
A 〉〉 Ω and (C(R) ∗ (LETΩ − ESTΩ) = wΩ) and (ESTΩ ≤ ESTA) ⇒ start(A) ≥ LETΩ

It is shown in (Baptiste et al., 1999) that the corresponding deductions can be done in
O(n2). Note that when applied in the CP and in the CNP cases, these rules are sensitive to
the use of fake activities to represent intervals during which the resource capacity is c
with 0 < c < C(R) (because the fake activities are considered as fully elastic).

CNP-EF1: Edge-finding in the cumulative non-preemptive case
Let φ(Ω’) be true when wΩ’ > (C(R) − cA) ∗ (LETΩ’ − ESTΩ’). The following rules (and
their symmetric counterparts) summarize Section 4.4.1 of (Nuijten, 1994).

A∉Ω and C(R) ∗ (LETΩ − ESTΩ∪{A}) < wΩ∪{A} ⇒ A 〉〉 Ω
A 〉〉 Ω and Ø ≠ Ω’ ⊆ Ω and φ(Ω’)

⇒ start(A) ≥ LETΩ’ − (C(R) ∗ (LETΩ’ − ESTΩ’) − wΩ’) / cA.

According to (Nuijten & Aarts, 1996), the corresponding deductions can be done in
O(n2).

CNP-EF2: Edge-finding in the cumulative non-preemptive case
Let φ(Ω’) be true when wΩ’ > (C(R) − cA) ∗ (LETΩ’ − ESTΩ’), as above. The following
rules (and their symmetric counterparts) summarize Section 4.4.5 of (Nuijten, 1994).

A∉Ω and ESTA ≤ ESTΩ < EETA and
C(R) ∗ (LETΩ − ESTΩ) < wΩ + cA ∗ (EETA − ESTΩ)
 ⇒ A 〉〉 Ω.
A 〉〉 Ω and Ø ≠ Ω’ ⊆ Ω and φ(Ω’)
 ⇒ start(A) ≥ LETΩ’ − (C(R) ∗ (LETΩ’ − ESTΩ’) − wΩ’) / cA.

According to (Nuijten & Aarts, 1996), the corresponding deductions can be made in
O(n3) for every pair (A, Ω) with ESTA < ESTΩ.

“Not-first” and “not-last” rules

“Not-first” and “not-last” rules have been developed as a “negative” counterpart to edge-
finding rules. They deduce that an activity A cannot be the first (or the last) to execute in
Ω∪{A}.

DNP-NFNL: Disjunctive “not-first” and “not-last”
The following rule (and its symmetric counterpart) can be applied in the disjunctive non-
preemptive case:

A∉Ω and LETΩ – ESTA < pΩ∪{A} ⇒ start(A) ≥ minB∈Ω(EETB)

It is shown in (Baptiste & Le Pape, 1996b) that the corresponding deductions can be
made in O(n2).

CNP-NFNL: Cumulative “not-first” and “not-last” rules
The following rule (and its symmetric counterpart) summarizes Section 4.4.3 of (Nuijten,
1994).

A∉Ω and ESTΩ ≤ ESTA < minB∈Ω(EETB) and
C(R) ∗ (LETΩ − ESTΩ) < wΩ + cA ∗ (min(LETΩ, EETA) − ESTΩ)
 ⇒ start(A) ≥ minB∈Ω(EETB)

According to (Nuijten & Aarts, 1996), the corresponding deductions can be made in
O(n3) for every pair (A, Ω) with ESTΩ < ESTA.

Energetic reasoning

The edge-finding and the “not-first” and “not-last” rules are such that the activities that
do not belong to Ω do not contribute to the analysis of the resource usage between
ESTΩ∪{A} and LETΩ∪{A}. On the contrary, energetic reasoning rules compute the
minimal contribution W(B, t1, t2) of each activity B to a given interval [t1, t2). In the
preemptive case, the required energy consumption of B over [t1, t2) can be evaluated as
follows:

WPE(B, t1, t2) = cB ∗ max(0, pB − max(0, t1 − ESTB) − max(0, LETB − t2))

Figure 1: The required energy consumption of an activity B (earliest start time 0, latest
end time 10, processing time 7 and resource requirement 2) over [2, 7).

012345678910

Figure 1 illustrates this evaluation. The Gantt chart displays the fact that at least 2 time
units of B have to be executed in [2, 7); which corresponds to WPE(B, 2, 7) = 2 ∗ (7 −
(2 − 0) − (10 − 7)) = 4. The notation WPE introduced in (Baptiste et al., 1999) refers to the
fact that this value corresponds to a particular relaxation of the cumulative resource
constraint, identified as the “Partially Elastic” relaxation.

In the non-preemptive case, a stronger value can be used:

WSh(B, t1, t2) = cB ∗ min(t2 − t1, pB
+(t1), pB

−(t2))
with pB

+(t1) = max(0, pB − max(0, t1 − ESTB))
and pB

−(t2) = max(0, pB − max(0, LETB − t2)).

Right Shift: pB (7) = 4
−
9

Left Shift: pB
+(2) = 5

012345678 10012345678910

Figure 2: The required energy consumption of an activity B (earliest start time 0, latest
end time 10, processing time 7 and resource requirement 2) over [2, 7). At least 4 time
units of B must execute in [2, 7) which corresponds to WSh(B, 2, 7) = 2 ∗ min(5, 5, 4) = 8.

Figure 2 illustrates this evaluation. This time, the notation WSh refers to the fact that the
best value is obtained by shifting the activity either to the left (i.e., to its earliest possible
execution interval) or to the right (to its latest possible execution interval). See (Erschler
et al., 1991) (Lopez et al. 1992).

Many rules have been developed based on energetic reasoning. Only the most significant
rules are presented below. We remark that these rules are in practice applied only to some
intervals [t1, t2), chosen with respect to the earliest and latest start and end times of
activities (with no full formal justification, except for complexity reasons).

CP-ER: Energetic reasoning in the preemptive case
Let ∆+(A, t1, t2) = ΣB≠AWPE(B, t1, t2) + cA ∗ pA

+(t1) − C(R) ∗ (t2 − t1) and ∆−(A, t1, t2) =
ΣB≠AWPE(B, t1, t2) + cA ∗ pA

−(t2) − C(R) ∗ (t2 − t1). The following rules can be applied:

ΣBWPE(B, t1, t2) − C(R) ∗ (t2 − t1) > 0 ⇒ inconsistency
∆+(A, t1, t2) > 0 ⇒ end(A) ≥ t2 + ∆+(A, t1, t2) / cA.
t1 ≤ ESTA and ΣB≠AWPE(B, t1, t2) = C(R) ∗ (t2 − t1) ⇒ start(A) ≥ t2.
∆−(A, t1, t2) > 0 ⇒ start(A) ≤ t1 − ∆−(A, t1, t2) / cA.
LETA ≤ t2 and ΣB≠AWPE(B, t1, t2) = C(R) ∗ (t2 − t1) ⇒ end(A) ≤ t1.

CNP-ER: Energetic reasoning in the non-preemptive case
Let ∆+(A, t1, t2) = ΣB≠AWSh(B, t1, t2) + cA ∗ pA

+(t1) − C(R) ∗ (t2 − t1) and ∆−(A, t1, t2) =
ΣB≠AWSh(B, t1, t2) + cA ∗ pA

−(t2) − C(R) ∗ (t2 − t1). The following rules can be applied:

ΣBWSh(B, t1, t2) − C(R) ∗ (t2 − t1) > 0 ⇒ inconsistency
∆+(A, t1, t2) > 0 ⇒ end(A) ≥ t2 + ∆+(A, t1, t2) / cA.
t1 ≤ ESTA and ΣB≠AWSh(B, t1, t2) = C(R) ∗ (t2 − t1) ⇒ start(A) ≥ t2.
∆−(A, t1, t2) > 0 ⇒ start(A) ≤ t1 − ∆−(A, t1, t2) / cA.
LETA ≤ t2 and ΣB≠AWSh(B, t1, t2) = C(R) ∗ (t2 − t1) ⇒ end(A) ≤ t1.

CNP-ER-DISJ: Energetic reasoning in the non-preemptive case
If t1 = ESTA and t2 = LETB and t1 < t2 and cA + cB > C(R) and ΣC≠A & C≠BWSh(C, t1, t2) + cA ∗
pA + cB ∗ pB > C(R) ∗ (t2 − t1), then end(B) ≤ start(A).

Comparison

The rules above differ from many perspectives.

• Their deductive power, i.e., the sets of values their application removes from the
domains of variables, are different. For example, in the fully elastic case FE-EF
strictly dominates FE-TT, but in the non-preemptive disjunctive case CNP-TT is
not dominated by the edge finding rules. An extensive comparison of these rules
in terms of deductive power can be found in (Baptiste et al., 2001).

• The complexity and incrementality of the algorithms that have been developed to
apply these rules differ a lot. As a result, a rule that performs well on small
instances might just take too long when the problem size becomes bigger.

• Some of these rules are not monotonic. FE-TT, CP-TT, CNP-TT, CP-DISJ,
CNP-DISJ, FE-EF, DP-EF, DNP-EF, CNP-EF1, DNP-NFNL, CP-ER and
CNP-ER have monotonic conditions, while CNP-EF2, CNP-NFNL and CNP-ER-
DISJ have non-monotonic conditions. This means that better time-bounds for
some activities may prevent the application of the CNP-EF2, CNP-NFNL or
CNP-ER-DISJ, and hence the drawing of the corresponding conclusion. The main
drawback of non-monotonic propagation rules is that they make debugging and
performance tuning much more difficult.

A consequence of these differences is that the set of propagation rules to be used in a
given practical application must be chosen with respect to the characteristics of this
application.

An Example of Heuristic Search: Preemptive Job-Shop Scheduling
Scheduling problems are NP-hard. Even with the best constraint propagation techniques,
it is in general impossible to aim for the optimal solution of a practical problem. The goal
then is to obtain solutions as good as possible in a given “allowable” amount of
computational time. Only very general principles apply in this domain:

• Avoid searching parts of the search space where no interesting solution lies. As
already mentioned, constraint propagation can often be complemented with
dominance rules to further reduce the search space.

• Intensify search around good solutions, in search of a better solution.

• Diversify search, i.e., do not leave significant promising regions of the search
space unexplored.

In the following, we choose the preemptive job-shop scheduling problem (PJSSP) to
illustrate these principles. Given are a set of jobs and a set of machines. Each job consists
of a set of activities to be processed in a given order. Each activity is given an integer
processing time and a machine on which it has to be processed. A machine can process at
most one activity at a time. Activities may be interrupted at any time, an unlimited
number of times. The problem is to find a schedule, i.e., a set of integer execution times
for each activity, that minimizes the makespan, i.e., the time at which all activities are
finished. We remark, that since we require integer durations and integer execution times,
the total number of interruptions of a given activity is bounded by its duration minus 1.

In constraint programming, minimizing a given objective (here, the makespan) is
generally done by solving the decision variant of the problem (Garey & Johnson, 1979)
with different bounds imposed on the objective. At each iteration an additional constraint
makespan ≤ v (where v is a given integer) is imposed, and the problem consists of
determining a value for each variable such that all the constraints, including the
additional constraint makespan ≤ v, are satisfied. If such a solution is found, its makespan
can be used as a new upper bound for the optimal makespan. On the contrary, if it is
proven (for example, by exhaustive search) that no such solution exists, v + 1 can be used
as a new lower bound. The “decision variant” of the PJSSP, i.e., the problem of
determining whether there exists a solution with makespan ≤ v, is NP-complete in the
strong sense (Garey & Johnson, 1979).

The search space for the PJSSP is very large. Indeed, each set(A) variable a priori accepts
up to (v ∗ (v − 1) ∗ ... ∗ (v − pt(A) + 1)) / (1 ∗ 2 ∗ ... ∗ pt(A)) values. However, the
dominance criterion introduced below allows the design of branching schemes which in a
sense “order” the activities that require the same machine, and thus explore a reduced
search space. The basic idea is that it does not make sense to let an activity A interrupt an
activity B by which it was previously interrupted. In addition, A shall not interrupt B if
the successor of A (in its job) starts after the successor of B. The following definitions
and theorem (proven in (Baptiste & Le Pape, 1999)) provide a formal characterization of
the dominance property.

DEFINITION 1

For any schedule S and any activity A, we define the “due date of A in S” dS(A) as:

• the makespan of S if A is the last activity of its job;
• the start time of the successor of A (in its job) otherwise.

DEFINITION 2
For any schedule S, an activity Ak has priority over an activity Al in S (Ak <S Al) if and
only if either dS(Ak) < dS(Al) or dS(Ak) = dS(Al) and k ≤ l. Note that <S is a total order.

THEOREM 1

Let acts(M) denote the set of activities to be processed on machine M. For any schedule
S, there exists a schedule J(S) such that:
1. J(S) meets the due dates: ∀A, the end time of A in J(S) is at most dS(A).
2. J(S) is “active”: ∀M, ∀t, if some activity A ∈ acts(M) is available at time t, M is not

idle at time t (where “available” means that the predecessor of A is finished and A is
not finished).

3. J(S) follows the <S priority order: ∀M, ∀t, ∀Ak ∈ acts(M), ∀Al ∈ acts(M), Al ≠ Ak,
if Ak executes at time t, either Al is not available at time t or Ak <S Al.

We call J(S) the “Jackson derivation” of S. Since the makespan of J(S) does not exceed
the makespan of S, at least one optimal schedule is the Jackson derivation of another
schedule. Thus, in the search for an optimal schedule, we can impose the characteristics
of a Jackson derivation to the schedule under construction. This results in a significant
reduction of the size of the search space.

Example: A schedule S and its “Jackson derivation” J(S).

Schedule S

Schedule J(S)

M1
M2
M3

M1
M2
M3

Job 1: executes on M1 (duration= 3), on M2 (duration= 3) and finally on M3 (duration= 5)

Job 2: executes on M1 (duration= 2), on M3 (duration= 1) and finally on M2 (duration= 2)

Job 3: executes on M2 (duration= 5), on M1 (duration= 2) and finally on M3 (duration= 1)

A branching scheme for the preemptive job-shop scheduling problem

The dominance criterion leads to the following branching scheme:
1. Let t be the earliest date such that there is an activity A available (and not scheduled

yet!) at t.
2. Compute K, the set of activities available at t on the same machine than A.
3. Compute NDK, the set of activities which are not “dominated” in K (as explained

below).
4. Select an activity Ak in NDK. Schedule Ak to execute at t. Propagate the decision and

its consequences according to the dominance criterion (as explained below). Keep the
other activities of NDK as alternatives to be tried upon backtracking.

5. Iterate until all the activities are scheduled or until all alternatives have been tried.

Needless to say, the power of this branching scheme highly depends on the rules that are
used to (a) eliminate “dominated” activities in step 3 and (b) propagate “consequences”
of the choice of Ak in step 4. The dominance criterion is exploited as follows:
• Whenever Ak ∈ acts(M) is chosen to execute at time t, it is set to execute either up to

its earliest possible end time or up to the earliest possible start time of another activity
Al ∈ acts(M) which is not available at time t.

• Whenever Ak ∈ K is chosen to execute at time t, any other activity Al ∈ K can be
constrained not to execute between t and the end of Ak. At times t’ > t, this reduces the
set of candidates for execution (Al is “dominated” by Ak). In step 4, “redundant”
constraints can also be added: end(Ak) + rpt(Al) ≤ end(Al), where rpt(Al) is the
remaining processing time of Al at time t; end(Ak) ≤ start(Al) if Al is not started at
time t.

• Let Ak ∈ acts(M) be the last activity of its job. Let Al ∈ acts(M) be another activity
such that either l < k or Al is not the last activity of its job. Then, if Al is available at
time t, Ak is not candidate for execution at time t (Ak is dominated by Al).

The above branching scheme defines a search tree which is, by default, explored in a
depth-first fashion. Yet several “points of flexibility” remain in the resulting depth first
search (DFS) algorithm: the constraint propagation algorithms used to propagate the
decision to execute Ak at time t (as well as the resulting “redundant” constraints); the
heuristic used to select activity Ak in NDK; and the course of action to follow when a
solution with makespan ≤ v has been found.

Constraint propagation for the preemptive job-shop scheduling problem

Three constraint propagation techniques can be considered: timetables (CP-TT),
disjunctive constraints (CP-DISJ) and edge-finding (DP-EF). In fact, we know from
(Baptiste et al., 2001) that DP-EF dominates all other rules in terms of deductive power
but it is also more time consuming than CP-TT. CP-DISJ does not deduce much even
though it is not dominated by CP-TT. In the end, two alternatives, CP-TT and DP-EF are
worth considering.3

Heuristic control of the DFS algorithm

Several points of flexibility remain in the DFS algorithm. Let us first consider the course
of action to follow when a new solution has been found by the branch and bound
algorithm. The alternative is either to “continue” the search for a better solution in the
current search tree (with a new constraint stating that the makespan must be smaller than
the current one) or to “restart” a brand new branch and bound procedure. The main
advantage of restarting the search is that the heuristic choices can rely on the result of the
new propagation (based on the new upper bound), which shall lead to a better exploration
of the search tree. The drawback is that parts of the new search tree may have been
explored in a previous iteration, which results in redoing the same unfruitful work.

As far as the PJSSP is concerned, the restart strategy brings another point of flexibility,
concerning the selection of an activity Ak in NDK. A basic strategy consists of selecting
Ak according to a specific heuristic rule. In our case, selecting the activity with the
smallest latest end time (Earliest Due Date rule) seems reasonable since it corresponds to
the rule which optimally solves the preemptive one-machine problem (see, for instance,
(Carlier & Pinson, 1990)). However, we can also use a strategy which relies on the best
schedule S computed so far. We propose to select the activity Ak with minimal dS(Ak).
Our hope is that this should help to find a better schedule when there exists one that is
“close” to the previous one.

In addition, we can use the Jackson derivation operator J and its symmetric counterpart K
to improve the current schedule. Whenever a new schedule S is found, derivations J and
K can be applied to improve the current schedule prior to restarting the search. Several
strategies can be considered, e.g., apply only J, apply only K, apply a sequence of Js and
Ks. After further experimentation, we decided to focus on the following scheme, which
performs much better on average:

• compute J(S) and K(S);

• replace S with the best schedule among J(S) and K(S), if this schedule is strictly
better than S (in our implementation, J(S) is chosen if J(S) and K(S) have the
same makespan);

• if S has been replaced by either J(S) or K(S), iterate.

3 Note that we could consider applying CP-TT to some resources and DP-EF to others.

Globally, this leads to five strategies based on depth first search: DFS-C-E, DFS-R-E,
DFS-R-E-JK, DFS-R-B and DFS-R-B-JK, where C, R, E, B, JK stand respectively for
“Continue search in the same tree”, “Restart search in a new tree”, “select activities
according to the Earliest due date rule”, “select activities according to their position on
the Best schedule met so far” and “apply JK derivation operators”. We remark that, in
fact, three other strategies, DFS-C-E-JK, DFS-C-B and DFS-C-B-JK could also be
considered, but with a more complex implementation (e.g., in DFS-R-E-JK, the same
data structures are used to perform the depth-first search and apply the J and K operators;
to implement DFS-C-E-JK, we would need to duplicate the schedule).

Table 2 provides the results obtained on the preemptive variant of the ten 10∗10 (10 jobs
10 machines) instances used by Applegate and Cook (1991) in their computational study
of the non-preemptive job-shop scheduling problem. Each line of the table corresponds to
a given “constraint propagation + search” combination, and provides the mean relative
error (MRE, in percentage) obtained after 1, 2, 3, 4, 5, and 10 minutes of CPU time. For
each instance, the relative error is computed as the difference between the obtained
makespan and the optimal value, divided by the optimal value. The MRE is the average
relative error over the ten instances. The optimal values have been obtained by running
an exact algorithm, described in (Le Pape & Baptiste, 1998), with an average CPU time
of 3.4 hours, and a maximum of 27 hours (for the ORB3 instance), on a PC Dell at
200MHz running Windows NT.

Table 3 provides results obtained on the thirteen instances used by Vaessens, Aarts, and
Lenstra (1994) to compare local search algorithms for the non-preemptive job-shop
scheduling problem. As these instances differ in size, we allocated to each instance an
amount of time proportional to the square of the number of activities in the instance. This
means that column 1 corresponds to the allocation of 1 minute to a 10∗10 problem, 15
seconds for a 10∗5 problem, 4 minutes for a 20∗10 problem, etc.

These tables show that the use of the edge-finding technique enables the generation of
good solutions in a limited amount of time. In addition, the DFS-R-B-JK variant clearly
outperforms the other algorithms, especially when the edge-finding technique is used.

Propagation
algorithm

Search
strategy

1 2 3 4 5 10

Timetable DFS-C-E 16.74 16.37 16.25 16.25 16.25 16.18
 DFS-R-E 16.74 16.42 16.40 16.37 16.37 16.18
 DFS-R-E-JK 8.95 8.95 8.95 8.95 8.95 8.33
 DFS-R-B 14.67 14.48 14.48 14.48 14.13 13.72
 DFS-R-B-JK 8.32 8.16 7.74 7.73 7.73 7.34
Edge-finding DFS-C-E 5.23 4.64 3.80 3.09 2.94 1.55
 DFS-R-E 5.70 5.26 4.99 4.47 4.09 2.73
 DFS-R-E-JK 4.29 3.67 3.17 2.55 2.42 1.62
 DFS-R-B 4.23 3.68 3.41 2.82 2.80 1.41
 DFS-R-B-JK 1.69 1.32 0.86 0.80 0.79 0.65

Table 2: DFS results on the ten instances used in (Applegate & Cook, 1991)

Propagation
algorithm

Search
strategy

1 2 3 4 5 10

Timetable DFS-C-E 16.28 16.04 16.03 15.96 15.96 15.96
 DFS-R-E 16.34 16.08 16.06 16.05 16.04 16.02
 DFS-R-E-JK 9.22 9.22 9.22 9.22 9.22 9.04
 DFS-R-B 14.55 14.36 14.28 14.28 14.28 14.25
 DFS-R-B-JK 8.82 8.70 8.60 8.59 8.59 7.84
Edge-finding DFS-C-E 4.33 3.98 3.62 3.52 3.47 3.15
 DFS-R-E 4.99 4.80 4.49 4.25 3.96 3.72
 DFS-R-E-JK 4.02 3.74 3.32 3.26 3.22 3.03
 DFS-R-B 3.96 3.64 3.42 3.42 3.42 3.04
 DFS-R-B-JK 2.26 2.12 1.94 1.77 1.77 1.72

Table 3: DFS results on the thirteen instances used in (Vaessens et al., 1994)

Limited discrepancy search

Limited discrepancy search (LDS) (Harvey and Ginsberg, 1995) is an alternative to the
classical depth first search algorithm. This technique relies on the intuition that heuristics
make few mistakes through the search tree. Thus, considering the path from the root node
of the tree to the first solution found by a DFS algorithm, there should be few “wrong
turns” (i.e., few nodes which were not immediately selected by the heuristic). The basic
idea is to restrict the search to paths which do not diverge more than w times from the
choices recommended by the heuristic. When w = 0, only the leftmost branch of the
search tree is explored. When w = 1, the number of paths explored is linear in the depth
of the search tree, since only one alternative turn is allowed for each path. Each time this
limited search fails, w is incremented and the process is iterated, until either a solution is
found or it is proven that there is no solution. It is easy to prove that when w gets large
enough, LDS is complete. At each iteration, the branches where the discrepancies occur
close to the root of the tree are explored first (which makes sense when the heuristics are
more likely to make mistakes early in the search). See (Harvey and Ginsberg, 1995) for
details.

Several variants of the basic LDS algorithm can be considered:
• When the search tree is not binary, it can be considered that the ith best choice

according to the heuristic corresponds either to 1 or to (i − 1) discrepancies. In the
following, we consider it represents (i − 1) discrepancies because the second best
choice is often much better than the third, etc. In practice, this makes the search tree
equivalent to a binary tree where each decision consists of either retaining or
eliminating the best activity according to the heuristic.

• The first iteration may correspond either to w = 0 or to w = 1. In the latter case, one
can also modify the order in which nodes are explored during the first iteration
(i.e., start with discrepancies far from the root of the tree). The results reported below
are based on a LDS algorithm which starts with w = 0.

• (Korf, 1996) proposes an improvement based on an upper bound on the depth of the
search tree. In our case, the depth of the search tree can vary a lot from a branch to
another (even though it remains linear in the size of the problem), so we decided not to

use Korf’s variant. This implies that, to explore a complete tree, our implementation of
LDS has a very high overhead over DFS.

• (Walsh, 1997) proposes a variant called “Depth-bounded Discrepancy Search” (DDS),
in which any number of discrepancies is allowed, provided that all the discrepancies
occur up to a given depth. This variant is recommended when the heuristic is very
unlikely to make mistakes in the middle and at the bottom of the search tree (i.e., when
almost all mistakes occur at low depth). On the PJSSP, LDS appeared to work better
than DDS.

Table 4 provides the results obtained by the five LDS variants, LDS-C-E, LDS-R-E,
LDS-R-E-JK, LDS-R-B and LDS-R-B-JK, on the ten instances used by Applegate and
Cook. Table 5 provides the results for the thirteen instances used by Vaessens, Aarts, and
Lenstra. These tables clearly show that the LDS algorithms provide better results on
average than the corresponding DFS algorithms. Figures 3 and 4 present the evolution of
the mean relative error for the eight “constraint propagation + search” combinations in
which the J and K operators are used. The combination of the edge-finding constraint
propagation algorithm with LDS-R-B-JK appears to be the clear winner.

Propagation
algorithm

Search
strategy

1 2 3 4 5 10

Timetable LDS-C-E 9.55 9.43 9.16 9.08 8.95 8.52
 LDS-R-E 10.46 9.87 9.22 8.98 8.98 8.52
 LDS-R-E-JK 7.68 6.75 6.75 6.75 6.75 5.98
 LDS-R-B 5.75 4.95 4.42 4.16 4.16 3.61
 LDS-R-B-JK 6.14 5.67 5.59 5.14 5.07 4.20
Edge-finding LDS-C-E 3.20 2.70 2.42 2.08 1.77 1.41
 LDS-R-E 3.52 2.90 2.67 2.39 2.25 1.66
 LDS-R-E-JK 2.17 2.03 1.86 1.71 1.38 1.24
 LDS-R-B 1.10 0.95 0.75 0.74 0.60 0.39
 LDS-R-B-JK 0.64 0.64 0.55 0.36 0.32 0.23

Table 4: LDS results on the ten instances used in (Applegate & Cook, 1991)

Propagation
algorithm

Search
strategy

1 2 3 4 5 10

Timetable LDS-C-E 11.43 11.12 11.08 10.89 10.53 10.43
 LDS-R-E 11.53 11.24 11.12 10.95 10.59 10.40
 LDS-R-E-JK 7.98 7.97 7.95 7.89 7.87 7.40
 LDS-R-B 6.58 5.92 5.64 5.44 5.26 4.68
 LDS-R-B-JK 5.93 5.82 5.78 5.66 5.66 4.60
Edge-finding LDS-C-E 3.57 3.02 2.85 2.77 2.57 2.27
 LDS-R-E 4.33 3.37 3.14 2.91 2.78 2.39
 LDS-R-E-JK 2.43 2.20 2.03 1.82 1.73 1.61
 LDS-R-B 2.25 1.80 1.76 1.74 1.58 1.13
 LDS-R-B-JK 1.75 1.28 1.03 0.92 0.92 0.79

Table 5: LDS results on the thirteen instances used in (Vaessens et al., 1994)

0,00%

1,00%

2,00%

3,00%

4,00%

5,00%

6,00%

7,00%

8,00%

9,00%

10,00%

1 2 3 4 5 6 7 8 9 10

TT + DFS-R-E-JK
TT + DFS-R-B-JK
TT + LDS-R-E-JK
TT + LDS-R-B-JK
EF + DFS-R-E-JK
EF + DFS-R-B-JK
EF + LDS-R-E-JK
EF + LDS-R-B-JK

MRE

Time factor

Figure 3: Results on the ten instances used in (Applegate & Cook, 1991)

0,00%

1,00%

2,00%

3,00%

4,00%

5,00%

6,00%

7,00%

8,00%

9,00%

10,00%

1 2 3 4 5 6 7 8 9 10

TT + DFS-R-E-JK
TT + DFS-R-B-JK
TT + LDS-R-E-JK
TT + LDS-R-B-JK
EF + DFS-R-E-JK
EF + DFS-R-B-JK
EF + LDS-R-E-JK
EF + LDS-R-B-JK

MRE

Time factor

Figure 4: Results on the thirteen instances used in (Vaessens et al., 1994)

From the preemptive job-shop scheduling problem to a practical application

Practical problems are never as pure as the preemptive job-shop scheduling problem.
Disjunctive and cumulative resources coexist, interruptible and non-interruptible
activities coexist, specific constraints and preferences must often be added. An example
of extension of the preemptive job-shop scheduling problem is the daily construction site
scheduling problem. A typical instance includes 3 to 5 resources, one disjunctive
(the crane) and the others cumulative (teams of people), 15 interruptible activities,
15 activities subjected to time-versus-capacity tradeoffs, and 10 activities for which the
required capacity can vary over time. About 70 additional constraints (temporal
constraints, synchronization constraints) apply. Half of these constraints are preferences,
with different levels of importance, which are more or less conflicting depending on the
problem data. The search algorithm implemented to solve this problem attempts to satisfy
as many preferences as possible, starting from the most important ones. This is
implemented as a “shuffle” of the preferences: at each iteration, a set of preferences is
selected and the system tries to find a solution which satisfies all the constraints of the
set. Eight search strategies are applied in turn and a limited number of backtracks allowed
for each strategy. If the search succeeds, the system further biases the shuffle towards
larger sets of constraints. If the search fails, the system biases the shuffle towards smaller
sets of constraints. On most instances, the system satisfies all the constraints but two or
three in 10 to 15 iterations of 15 seconds each, which compares favorably with the
manual solutions we have seen, which typically violate eight or nine constraints.

Conclusion

The principles of constraint programming have been widely applied to scheduling
problems, enabling the implementation of flexible and extensible scheduling systems.
With constraint programming all the specific constraints of a given problem can be
represented and actually used as a guide toward a solution. This “flexibility” can be
contrasted with the attention that has been paid in operations research to rather “pure”
scheduling problems, based on relatively simple mathematical models, the combinatorial
structure of which can be exploited to improve performance. We could say that a
traditional operations research approach often aims at achieving a high level of
“efficiency” in its algorithms, at the expense of the “generality of application” of these
algorithms.

As the number of applications grew, the need emerged to reconcile the flexibility offered
by constraint programming with the efficiency of specialized operations research
algorithms. The first step consisted in adapting well-known operations research
algorithms to the constraint programming framework, mostly by incorporating these
algorithms within constraint propagation. As a second step, the success of the resulting
tools opened a new area of research aimed at the design and implementation of efficient
algorithms embeddable in constraint programming applications and tools. This includes
the design of efficient constraint propagation techniques for specific optimization criteria,
the application of linear programming to well-behaved subproblems, and the combination
of constraint programming with various forms of local search to generate “good”
schedules in a limited amount of time.

Resource constraints and optimization criteria

Propagating the objective constraint (that defines the optimization criterion) and the
resource constraints independently is not a problem when the optimization criterion is a
“maximum” such as the makespan or the maximal tardiness of a given set of jobs.
Indeed, an upper bound on the optimization criterion is directly propagated on the
completion time of the jobs under consideration, i.e., the latest end times of these jobs are
tightened efficiently.

The situation is much more complex for “sum” functions such as the weighted number of
late jobs or the sum of setup times between jobs. For such objective functions, efficient
constraint propagation techniques must take into account the resource constraints and the
objective constraint simultaneously.

Excellent results with new approaches combining constraint programming with deductive
algorithms targeted toward specific objective functions appear in (Baptiste et al., 1998)
for the weighted number of late jobs and (Focacci et al., 2000} for the sum of setup
times. However, many other objective functions (e.g., total tardiness, total flow-time) still
have to be studied. An important research challenge is to design generic lower-bounding
techniques and constraint propagation algorithms that could work for many criteria.

Linear programming and constraint programming

Three areas in which the integration of linear programming and constraint programming
is promising are identified:

• For cumulative scheduling problems, the complexity of specific constraint
propagation algorithms tends to raise (e.g., to O(n3)), which suggests that lower-
bounding and constraint propagation algorithms based on linear programming
might be competitive. For example, several lower bounds based on linear
programming formulations of a relaxed resource-constrained project scheduling
problem have shown to be very accurate (Bruckner & Knust, 2000) (Mingozzi et
al., 1998). Unfortunatley, the size of the linear models used is large, so even with
complex column generation techniques hours of CPU time are sometimes
required to get a lower bound. Recently, Carlier and Néron (2001) have shown
that, for each resource, an efficient lower bound based on linear programming can
be tabulated, for each fixed value of the resource capacity. Then the computation
of the lower bounds requires much less CPU at run time. This is probably one of
the most promising areas of research for the next few years.

• Linear programming can also be a strong “ingredient” when the objective
function is a sum or a weighted sum of scheduling variables like the end times of
activities. A key research issue here is the design of techniques combining the
power of efficient constraint propagation algorithms for the resource constraints
and the power of linear programming for bounding the objective function.
In some simple cases, mixed integer programming can also be used to improve
solutions found by constraint programming (cf., for example (Danna, 2004)).

• In real-life applications, scheduling issues are often mixed with resource
allocation, capacity planning, or inventory management issues for which mixed
integer programming is a method of choice. Several examples have been reported
where a hybrid combination of constraint programming and mixed integer
programming was shown to be more efficient than pure constraint programming
or mixed integer programming models (cf., for example, (El Sakkout & Wallace,
2000)). The generalization of these examples into a principled approach is another
important research issue for the forthcoming years.

Local search and constraint programming

Various forms of local search, such as simulated annealing, tabu search, genetic
algorithms, etc., provide excellent results when one can define a compact representation
of the solution space that is consistent with the objective function. In real life, problems
often incorporate side constraints that tend to disable the local search approach. This led
several researchers to integrate constraint programming and local search techniques. For
example, Caseau and Laburthe (1995) describe an algorithm for the job-shop scheduling
problem which combines constraint programming and local search. The overall algorithm
finds an approximate solution to start with, makes local changes and repairs on it to
quickly decrease the makespan and, finally, performs an exhaustive search for decreasing
makespans. Experiments in combining branch and bound search with genetic algorithms
(see, for example, (Portmann et al., 1998)) suggest that constraint programming
algorithms could also be combined with algorithms optimizing populations of solutions,
in particular when these algorithms can be adapted to respect constraints imposed at a
given node of a branch and bound tree or deduced through constraint propagation.

Globally, the integration of local search and constraint programming is promising
whenever local search operators provide a good basis for the exploration of the search
space and either side constraints or effective constraint propagation algorithms can be
used to prune the search space. The examples presented in the literature represent a
significant step toward the understanding of the possible combinations of local search and
constraint programming. Yet the definition of a general approach and methodology for
integrating local search and constraint programming remains an important area of
research.

References

Aggoun, A. & Beldiceanu, N. (1993). “Extending CHIP in Order to Solve Complex
Scheduling and Placement Problems,” Mathematical and Computer Modelling 17, 57-73.

Applegate, D. & Cook, W. (1991). “A Computational Study of the Job-Shop Scheduling
Problem,” ORSA Journal on Computing 3, 149-156.

Baptiste, Ph. & Le Pape, C. (1995). “A Theoretical and Experimental Comparison of
Constraint Propagation Techniques for Disjunctive Scheduling,” Proceedings 14th
International Joint Conference on Artificial Intelligence, 600-606, Morgan Kaufmann.

Baptiste, Ph. & Le Pape, C. (1996a). “Disjunctive Constraints for Manufacturing
Scheduling: Principles and Extensions,” International Journal of Computer Integrated
Manufacturing, 9, 306-310.

Baptiste, Ph. & Le Pape, C. (1996b). “Edge-Finding Constraint Propagation Algorithms
for Disjunctive and Cumulative Scheduling,” Proceedings 15th Workshop of the U.K.
Planning Special Interest Group.

Baptiste, Ph., Le Pape, C., & Péridy, L. (1998). “Global Constraints for Partial CSPs: A
Case Study of Resource and Due-Date Constraints,” Proceedings 4th International
Conference on Principles and Practice of Constraint Programming.

Baptiste, Ph., Le Pape, C., & Nuijten, W. (1999). “Satisfiability Tests and Time-Bound
Adjustments for Cumulative Scheduling Problems,” Annals of Operations Research 92,
305-333.

Baptiste, Ph., Le Pape, C., & Nuijten, W. (2001). “Constraint-Based Scheduling,” Kluwer
Academic Publishers, 2001.

Billaut, J.-C. (1993). “Prise en compte des ressources multiples et des temps de
préparation dans les problèmes d’ordonnancement en temps réel,” PhD Thesis,
University Paul Sabatier (in French).

Brucker, P. & Knust, S. (2000). “A Linear Programming and Constraint Propagation-
Based Lower Bound for the RCPSP,” European Journal of Operational Research 127,
355-362.

Carlier, J. & Pinson, E. (1990). “A Practical Use of Jackson's Preemptive Schedule for
Solving the Job-Shop Problem,” Annals of Operations Research 26, 269-287.

Carlier J. & Pinson, E. (1994). “Adjustment of Heads and Tails for the Job-Shop
Problem,” European Journal of Operational Research 78, 146-161.

Carlier, J. & Néron, E. (2001). “A New LP Based Lower Bound for the Cumulative
Scheduling Problem,” Research Report, University of Technology of Compiègne.

Caseau, Y. & Laburthe, F. (1994). “Improved CLP Scheduling with Task Intervals,”
Proceedings 11th International Conference on Logic Programming, MIT Press.

Caseau, Y. & Laburthe, F. (1995). “Disjunctive Scheduling with Task Intervals,”
Technical Report, Ecole Normale Supérieure.

Cesta, A. & Oddi, A. (1996). “Gaining Efficiency and Flexibility in the Simple Temporal
Problem,” Proc. 3rd International Workshop on Temporal Representation and Reasoning,
45-50.

Collinot, A. & Le Pape, C. (1991). “Adapting the Behavior of a Job-Shop Scheduling
System,” Decision Support Systems 7.

Colombani, Y. (1996). “Constraint Programming: An Efficient and Practical Approach to
Solving the Job-Shop Problem,” Proceedings 2nd International Conference on Principles
and Practice of Constraint Programming, 149-163, Springer-Verlag.

Danna, E. (2004). “Intégration des techniques de recherche locale à la programmation
linéaire en nombre entiers,” PhD Thesis, Université d’Avignon (in French).

El Sakkout, H., & Wallace, M. (2000). “Probe Backtrack Search for Minimal
Perturbation in Dynamic Scheduling,” Constraints 5, 359-388.

Erschler, J., Lopez, P., & Thuriot, C. (1991). “Raisonnement temporel sous contraintes de
ressource et problèmes d’ordonnancement,” Revue d’Intelligence Artificielle 5, 7-32
(in French).

Focacci, F., Laborie, Ph., & Nuijten, W. (2000). “Solving Scheduling Problems with
Setup Times and Alternative Resources,” Proc. 5th International Conference on Artificial
Intelligence Planning and Scheduling.

Garey, M. R. & Johnson, D. S. (1979). “Computers and Intractability. A Guide to the
Theory of NP-Completeness,” W. H. Freeman and Company.

Ginsberg, M. L. (1993). “Dynamic Backtracking,” Journal of Artificial Intelligence
Research 1.

Gondran, M. & Minoux, M. (1984). “Graphs and Algorithms,” John Wiley and Sons.

Harvey, W. D. & Ginsberg, M. L. (1995). “Limited Discrepancy Search,” Proc. 14th
International Joint Conference on Artificial Intelligence.

Korf, R. E. (1996). “Improved Limited Discrepancy Search,” Proc. 13th National
Conference on Artificial Intelligence.

Kumar, V. (1992). “Algorithms for Constraint Satisfaction Problems: A Survey,” AI
Magazine 13, 32-44.

Latombe, J.-C. (1979). “Failure Processing in a System for Designing Complex
Assemblies,” Proceedings 6th International Joint Conference on Artificial Intelligence.

Le Gall, A. (1989). “Un système interactif d’aide à la décision pour l’ordonnancement et
le pilotage en temps réel d’atelier,” PhD Thesis, University Paul Sabatier (in French).

Le Gall, A. & and Roubellat, F. (1992). “Caractérisation d’un ensemble
d’ordonnancements avec contraintes de ressources de type cumulatif,” RAIRO
Automatique, Productique et Informatique Industrielle 26 (in French).

Le Pape, C. (1988). “Des systèmes d'ordonnancement flexibles et opportunistes,” PhD
Thesis, University Paris XI, Orsay, France (in French).

Le Pape, C. (1992). “Using Constraint Propagation in Blackboard Systems: A Flexible
Software Architecture for Reactive and Distributed Systems,” IEEE Computer 25.

Le Pape, C. (1994). “Implementation of Resource Constraints in ILOG SCHEDULE: A
Library for the Development of Constraint-Based Scheduling Systems,” Intelligent
Systems Engineering 3, 55-66.

Le Pape, C. (1995). “Three Mechanisms for Managing Resource Constraints in a Library
for Constraint-Based Scheduling,” Proceedings INRIA/IEEE Conference on Emerging
Technologies and Factory Automation.

Le Pape, C. & Baptiste, Ph. (1996). “Constraint Propagation Techniques for Disjunctive
Scheduling: The Preemptive Case,” Proceedings 12th European Conference on Artificial
Intelligence.

Le Pape, C. & Baptiste, Ph. (1997). “A Constraint Programming Library for Preemptive
and Non-Preemptive Scheduling,” Proceedings 3rd International Conference and
Exhibition on the Practical Application of Constraint Technology.

Le Pape, C. & Baptiste, Ph. (1998). “Resource constraints for preemptive job-shop
scheduling,” Constraints 3, 263-287.

Le Pape, C. & Baptiste, Ph. (1999). “Heuristic Control of a Constraint-Based Algorithm
for the Preemptive Job-Shop Scheduling Problem,” Journal of Heuristics 5, 305-325.

Lesaint, D. (1993). “Specific Sets of Solutions for Constraint Satisfaction Problems,”
Proceedings 13th International Workshop on Expert Systems and Applications.

Lhomme, O. (1993). “Consistency Techniques for Numeric CSPs,” Proceedings 13th
International Joint Conference on Artificial Intelligence.

Lopez, P., Erschler, J., & Esquirol, P. (1992). “Ordonnancement de tâches sous
contraintes : une approche énergétique,” RAIRO APII 26, 453-481 (in French).

Mingozzi, A., Maniezzo, V., Ricciardelli, S., & Bianco, L. (1998). “An exact algorithm
for project scheduling with resource constraints based on a new mathematical
formulation,” Management Science 44, 714-729.

Nuijten, W. P. M. (1994). “Time and Resource Constrained Scheduling: A Constraint
Satisfaction Approach,” PhD Thesis, Eindhoven University of Technology, Eindhoven,
The Netherlands.

Nuijten, W. P. M. & Aarts, E. H. L. (1996). “A Computational Study of Constraint
Satisfaction for Multiple-Capacitated Job-Shop Scheduling,” European Journal of
Operational Research 90, 269-284.

Portmann, M.-C., Vignier, A., Dardilhac, D., & Dezalay, D. (1998). “Branch and Bound
crossed with GA to solve Hybrid Flowshops,” European Journal of Operational Research
107, 389-400.

Prosser, P. (1993). “Hybrid Algorithms for the Constraint Satisfaction Problem,”
Computational Intelligence 9.

Puget, J.-F. & Leconte, M. (1995). “Beyond the Glass Box: Constraints as Objects,”
Proceedings International Symposium on Logic Programming.

Stallman, R. M. & Sussman, G. J. (1977). “Forward Reasoning and Dependency-Directed
Backtracking in a System for Computer-Aided Circuit Analysis,” Artificial Intelligence
9.

Steele, G. L. Jr. (1980). “The Definition and Implementation of a Computer
Programming Language Based on Constraints,” PhD Thesis, Massachusetts Institute of
Technology.

Vaessens, R.J.M., Aarts, E.H.L, & Lenstra, J.K. (1994). “Job-Shop Scheduling by Local
Search,” COSOR Memorandum 94-05, Eindhoven University of Technology, Eindhoven,
The Netherlands.

Walsh, T. (1997). “Depth-bounded Discrepancy Search,” Proc. 15th International Joint
Conference on Artificial Intelligence, Morgan Kaufmann.

Xiong, Y., Sadeh, N., & Sycara, K. (1992). “Intelligent Backtracking Techniques for
Job-Shop Scheduling,” Proceedings 3rd International Conference on Principles of
Knowledge Representation and Reasoning.

