in' E £ Tnstitute for Operafions Research
and the Mandpemeni Sciences

Multiproject Scheduling with Limited Resources: A Zero-One Programming Approach
Author(s): A. Alan B. Pritsker, Lawrence J. Watters, Philip M. Wolfe

Reviewed work(s):

Source: Management Science, Vol. 16, No. 1, Theory Series (Sep., 1969), pp. 93-108
Published by: INFORMS

Stable URL: http://www jstor.org/stable/2628369

Accessed: 26/01/2012 08:27

Y our use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is anot-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in atrusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

INFORMS:is collaborating with JSTOR to digitize, preserve and extend access to Management Science.

http://www.jstor.org


http://www.jstor.org/action/showPublisher?publisherCode=informs
http://www.jstor.org/stable/2628369?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp

MANAGEMENT SCIENCE
Vol. 18, No. 1, September, 1989
Printed in U.S. A.

MULTIPROJECT SCHEDULING WITH LIMITED RESOURCES:
A ZERO-ONE PROGRAMMING APPROACH®***

A. ALAN B. PRITSKER!, LAWRENCE J. WATTERS?, ano PHILIP M. WOLFE?

A zero-one (0-1) linear programming formulation of multiproject and job-shop
scheduling problems is presented that is more general and computationally tractable
than other known formulations. It can accommodate a wide range of real-world situ-
ations including multiple resource constraints, due dates, job splitting, resource
substitutability, and concurrency and nonconcurrency of job performance require-
ments. Three possible objective functions are discussed : minimizing total throughput
time for all projects: minimizing the time by which all projects are completed (z.e.,
minimizing makespan); and minimizing total lateness or lateness penalty for all
projects.

Introduction

Several years have passed since the pioneering work of Bowman [3], Wagner [24],
and Manne [13] with their mathematical programming formulations of scheduling
problems. These and other mathematical scheduling models are discussed by Sisson
[22], by Conway, Maxwell, and Miller [4], and by Muth and Thompson [17]. Recent
research efforts have concentrated on simulation approaches to scheduling [4, 6, 8, 15,
26, 27]; however, another look at the problem from a mathematical programming
point of view seems in order, especially in light of recent developments in 0-1 program-
ming [7, 9, 18, 25].

The scheduling problems considered here deal with determining when a job should
be processed, given limited availabilities of resources, e.g., men, equipment, and
facilities. The words job and project will be used throughout to denote the two levels
of work aggregation being considered. A project consists of a set of jobs. In other
literature describing scheduling research, the following equivalent descriptors may
be found:

Job Project
task product
operation job
project program

The model considers only the job level and the project level. Consideration of three or
more levels, e.g., operation, job, and project, only complicates the notational problem.

The Manne [13] formulation uses integer variables to indicate in which time period
the job is started, and the Wagner [24] formulation uses 0-1 variables to indicate
whether or not a job is assigned to a specific order-position on a specific machine.
Neither formulation, however, accomm¢ tes multiple resource constraints. The
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94 A. A. B. PRITSKER, L. J. WATTERS, AND P. M. WOLFE

Bowman [3] formulation uses 0-1 variables to indicate for each period over a scheduling
horizon whether or not a job is being processed. His formulation does not expressly
provide for multiple resource constraints, although such an extension could be made.
The resulting formulation would be larger (in terms of the number of variables and
constraints involved) than the one presented here. The following formulation uses
0-1 variables to indicate for select periods (depending upon job arrival time, due
dates, sequencing relationships, etc.) whether or not a job is completed #n those
periods. A similar formulation [19] uses 0-1 variables to indicate for select periods
whether or not a job has been completed prior fo those periods. For a given type of
scheduling environment, alternative formulations often may be devised. An efficient
formulation, however, will depend upon a judicious choice of definition for the vari-
ables. Indeed, the selection of a definition for the variables and the synthesis of ob-
jective functions and constraints constitute a challenging problem in design. The de-
sign aspects of mathematical formulation are discussed in [20].
Determining when the jobs should be processed depends upon the desired objective.

Three are considered here:

1. Minimize total throughput time (time in the shop) for all projects;

2. Minimize the time by which all projects are completed (i.e., minimize make-

span); and '

3. Minimize total lateness or lateness penalty for all projects.
Equations are developed to ensure that a schedule meets the following constraints
when they are imposed:

1. Limited resources;
2. Precedence relations between jobs;
3. Job splitting possibilities;
4. Project and job due dates;
5. Substitution of resources to perform the jobs;
6. Concurrent and nonconcurrent job performance requirements.
Definitions
? = project number, ¢ = 1,2, ---, I; I = number of projects.
j = jobnumber,j = 1,2, .-+, N;; N; = number of jobs in project <.

L)
I

time period, ¢ = 1, 2, - -+ max G;; G; = absolute due date. Project ¢ must be

completed in or before period G;. If an absolute due date is not specified, G

becomes the last period in the scheduling horizon.

gi = desired due date. Project 7 is not late if it is completed in or before period g¢;.

e; = earliest possible period by which project 7 could be completed.

a;; = arrival period of job j, project 7. Arrivals occur at the beginning of periods.

d;; = number of periods required to perform job j of project <. It is assumed to be
known with certainty.

l;; = the earliest possible period in which job j could be completed.

u;; = the latest possible period in which job j could be completed; viz., an absolute
job due date.

k = resource or facility number, k = 1, 2, - - - , K; K = number of different resource

_ types.

r:% = amount of type k resource required on job j of project <.

R;; = amount of type k resource available in period ¢.

Zi: = a variable which is 1 if job j of project 7 is completed in period ¢; 0 otherwise.

z;j: need not be treated as a variable in all periods, since it equals 0 for ¢ < I;;

and for ¢ > w;.
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Z;; = a variable which is 1 in period ¢ if all jobs of project 7 have been completed by
period ¢ (z.e., completed in or before period ¢ — 1); 0 otherwise. z;; need not be
treated as a variable in all periods, since it equals 0 for ¢ < e; and 1 for ¢ > G;.

To illustrate the nature of the definitions, the scheduling of five jobs belonging to two
projects requiring two resources is shown in Fig. 1. The figure depicts arrival periods,
job durations, due dates, precedence requirements, and values of z;;, and z;; variables.

ARRIVAL PERIOD ABSOLUTE DUE DATE GI
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NOTE:  ASSUME JOB.(1,1) MUST PRECEDE JOB (1,3)

KEY: ‘@ e  ARRIVAL PERIOD OF JOB §, PROJECT ¢ (ARRIVALS OCCUR AT THE BEGINNING OF PERIODS)
( |mesmm{ JOB DURATION

EARLIEST POSSIBLE PERIOD IN WHICH JOB § COULD BE COMPLETED

LATEST POSSIBLE PERIOD IN WHICH JOB 5 COULD BE COMPLETED

EARLIEST POSSIBLE PERIOD BY WHICH PROJECT £ COULD BE COMPLETED

N7

G “Hl” LATEST POSSIBLE PERIOD BY WHICH PROJECT £ COULD BE COMPLETED
g DESIRED DUE DATE

G ABSOLUTE DUE DATE

1 INDICATES JOB IS COMPLETED IN PERIOD ¢

0 INDICATES JOB IS NOT COMPLETED IN PERIOD ¢

INDICATES THE VARIABLE IS PREDETERMINED TO EQUAL ZERO
Fia. 1. Hypothetical scheduling situation for two projects.
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There is one unit of resource available for each of the two types of resources; i.e.,
Ry = 1for k£ = 1, 2 and for all ¢. The resource requirements, r;;, for each job are
assumed to be:

Resource Requirements, rsp

)

11 12 13 2 22
1 1 1 0 0 1
2 1 0 1 1 0

As an example of the calculations of I;; and u.; for sequenced jobs,
Uy =G — diy =11
and
s =max{au + du + dis — 1, a3+ dig — 1} = 9.

The information depicted in Fig. 1 represents known inputs at the time of scheduling.
(In a job-shop environment where additional projects arrive, rescheduling could
take place when such inputs become known.)

Objective Functions

Jobs are to be scheduled in a manner that optimizes some measure of performance,
or objective function, subjeet to certain environmental requirements and limitations.
The choice of an appropriate objective function may differ for various scheduling
environments. Several common ones are selected for explicit formulation.

Minimizing Total Project Throughput Time

Individual project throughput time is defined as the elapsed time between project
arrival and project completion, where project completion oceurs when all jobs of the
project are completed. If a; is the arrival period of the i project, throughput time for
that project is

Gi— DWza+ 1 — a.

(For example, throughput times for Projects 1 and 2 in Fig. 1 are 13 and 10, respec-
tively.) Minimizing throughput time for a single project is equivalent to maximizing
the number of periods remaining after the project is completed, where this number of
periods is ¢, i . Therefore, the objective function for minimizing the sum of the
throughput times for all projects can be written as

1) Maximize z = Ef.,l E?ﬁ,‘. Lie .

Ordinarily, jobs are started as soon as possible if doing so does not increase throughput
time. This can be accomplished by maximizing

@) 2= Dt Dt ma — (/M) i 2 20, twi,

where M is a positive number sufficiently large to ensure that the contribution of the
additional term is less than that of any ;.. A suitable choice for M would be

M > Zi_l Zl,véq WUsj .
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Minimazing M akespan

An alternative objective function is to minimize the time by which all projects are
completed; 7.e., minimize makespan. Define a variable x,; as follows:
z, = 1 if all projects are completed by period ¢,
= 0 otherwise.
Minimizing makespan then corresponds to maximizing

®3) - 2= D itmate; T

This objective function could also be augmented to start jobs as soon as possible,
thus making the desired objective function

(4) g = ltn-:;g:.:e. Ty — (I/M) Eo=1 1=1 Zt=i,, txut
Minimizing Total Lateness or Laieness Penalty

A project is late if it is completed after the desired due-date period, g; . Equivalently,
the project is late if z;; = 0 in those periods ¢ were g; < t < G;. If total project lateness
is to be minimized, this lateness can be written as

I=1 Z?';nﬁl 1 — za).

If a penalty of pi: is assessed when the project is not completed by period £, the total
lateness penalty can be written as

i D (l — 24).

This expression for total lateness penalty reduces to total project lateness if all p:
are 1. Thus for both cases an equivalent form of the objective function is the maximiza-
tion of

) 2= D 2t pii.

The formulation can accommodate a rather wide range of environmental require-
ments and limitations. Some of these are now discussed.

Job Completion
Each job has exactly one completion period.
(6) E‘t"“{.‘jmiﬂ=1 ¢=12---,1I;j=1,2, ---, Ny).

Notice that in each constraint, the value of any one z;;; can be determined by the values
of the others in that constramt To use this relationship to full advantage, replace
Constraint (6) by

(7) El"ii’ xut =
and define
x’}("l’) = 1 - E‘i’l‘ljl x‘ﬂ

Replacing 2,y by its definitional equivalence can be used to reduce the total number
of variables in the formulation.
Project Completion

Formulations involving z;; variables (e.g., objective functions (1), (2), and (5))
require that the z.; variables for each project be zero until all of its jobs have been com-
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pleted. That is, project ¢ cannot be completed by period ¢ until Y_¢=};; 2, = 1 for all
N jobs of project <. This requirement can be written as

@) za = (1/N:) 2oV 300k % C=12 -, I;t=e,e;+1,---,G).

In formulations involving x, variables (e.g., objective functions (3) and (4)), the above
constraints are replaced by

©9) z. £ /200N D>y, ;;%.'J-xijq (t = max e;, ---, max@G,).
Sequencing

A sequencing constraint is required when a job cannot be started until one or more
other jobs have been completed. For example, on project ¢, assume job m must precede
job n. If ¢ and ¢, denote the completion periods of jobs m and n respectively, then

tim + din —é tin .

Note that tim = D15, tTim: and f;m = 2123, &im:. Therefore, the appropriate
sequencing constraint becomes

(10) Z;“;’l’:m tximt + din é E:":l‘m txt'nt .

Sequencing relationships reduce the number of z;, variables for which it is necessary
to obtain values from the formulation, since
(1) Zine =0 fort < max {aim + din — 1; maxjep,, (ai; + di; + din — 1)} where
Py, is the set containing other jobs of project < that must precede
job n, and
(2) ZTime = 0 fort > miny,p,,{G: — di;j} where F;, is the set containing other jobs
of project ¢ that must follow job m.
The number of z;, variables might also be reduced, since ¢; might be increased as a
result of sequencing relationships.

Resource Constraints

The value r:; specifies the number of resource units of type k required for the per-
formance of job j, project 7. Thus, if ;4 = 3 and r;;» = 2, then 3 units of type 1 are
used in conjunction with 2 units of type 2 during those periods when the job is being
performed. Resources required on a job are assumed in use until the job ends. If this
assumption is not appropriate, slight reformulation is required. For example, if a certain
resource is in use only during the first p periods of the job where p < d;, then treat
the job as two sequenced ‘“‘subjobs” with differing resource requirements and with
durations of p and d;; — p, respectively. If the subjobs are to be performed contiguously,
replace the £ by = in Constraint (10). The approach can apply to any division of a
job into two or more subjobs.

In any given period, the amount of resource k used on all jobs cannot exceed the
amount of resource k available. A job is being processed in period ¢ if the job is com-
pleted in period ¢ where ¢ < ¢ < ¢ 4 di; — 1. Therefore the resource constraint can be
written as

(11) -1 D ;:zi'."—l Tilijq = R
(t = mina;,-, ~~,ma.xG.-;Ic = 1, 2, ,K).

Implementation of this constraint necessitates recognizing predetermined values of
Zij: . (Namely, zi; = 0 for ¢ < l;; and x5, = 0 for ¢ > wuyj).
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If the availability of a resource is constant over the scheduling horizon, then some
periods may involve redundant resource constraints. Using the scheduling situation
described by Fig. 1 as an example, the resource constraints associated with periods 1, 2,
and 3 (viz., ¢ < min {a;; + di;} — 1) would be redundant with those of period 4, and
therefore removable. A more general observation is that if the resource availability,
Ry, is constant for the first ¢’ periods where min; ,,, >0 {a,, + dij} £t < max G;,

then Constraint (11) need not be imposed for penods t < min; j,r, #>0 {ay; + di} — 1.
On the other hand if Ry, is constant for the first ¢’ periods where min; ,,, a0 fai} =
{ =< mm, Jsrip>0 (@i + dij}, then Constraint (11) need not be imposed for periods
t<t —1.

Substitutability of Resources

It may be possible to use alternative resources to accomplish some jobs. For example
a man with a higher skill can be substituted for a man with a lower skill on particular
jobs.

If resource substitution is permitted on job j, project 7, then Constraint (11) must
be modified to account for the resource substitution and potential differences in job
durations when the job is performed by different resources. To handle this condition,
define a set of mutually exclusive jobs, only one of which must be performed. For ex-
ample, if two alternative methods (or resource combinations) exist for performing job
4, define the two alternatives as jobs ji and j, with durations d.;, and d;, , and with
Uij, = Uij, = Uijr . Require completion of either j; or j2, but not both, anytime before
the end of period us;- . To do this, replace Constraint (7) by

(12) 2P iy @ing + Ting) = 1,

and retain Z;jwsj) in the formulation (i.e., do not replace z:jw:jy by its definitional
equivalent). The modified project completion constraint corresponding to Constraint
(8) would be

(13)  za S (/N[ X Fr s Doemts; Tiig + Lemminttigy hijg) Fing + Tiiga) |-
A similar modification could be made to Constraint (9).

Concurrency and Nonconcurrency of Jobs

A concurrency constraint on jobs m and n ensures that they must be performed simul-
taneously. It can be obtained by requiring Zim: = Zin:, Or by combining resource re-
quirements and treating m and n as a single job.

A nonconcurrency constraint on jobs m and n ensures that they must not be per-
formed simultaneously, but permits them to be performed in any order. Job m is being
performed in period ¢ if and only if

DT By = 1,
and similarly for job 7. Thus the desired constraint is
(14) Z;i‘f""‘_l Timg + -“;i‘f“"l Ting S 1 (= max {lim, lin}, + -+, MmN {Uim, Uin} ).
Job Splitting

Theoretically, total job-splitting capability could be accomplished by treating each
job as d.; subjobs (each subjob having one period duration) and by imposing appropri-
ate sequencing constraints on these subjobs. Pragmatically, however, job-splitting
capability would seldom be fully exercised because of setup costs, the desirability of
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maintaining job continuity, etc. Hence, defining substantially fewer than d,; subjobs
for a particular job may provide sufficient splitting flexibility without requiring an
inordinate number of subjobs.

Suppose job j can be split, and its subjobs are sequenced in accordance with Con-
straint (10). When two of its sequenced subjobs, say m and n, are not performed con-
tiguously (7.e., when the larger job of which they are a part is allowed to split), then

Uin ug
(15) Tmn = Zt=‘?5" Zine — t="'ln.~,,,, 1Time — dt’n

represents the duration of the split. 7,., is the slack variable of Constraint (10).

Penalty Costs. If a penalty cost, ¢, , is incurred per time period of split, then ¢,7mn is
the job-splitting penalty cost. If a penalty cost, C,, is incurred for the split regardless
of split duration, then C,7, is the job-splitting penalty cost where 7, is a 0 — 1 variable
such that

. = 1 if a split occurs; z.e., Tma > 0
= 0 otherwise.
The appropriate value of 7, is obtained by requiring
(16) Tn = Tma/Gi and

(17) Ta S 14+ (tma — 1)/G.

Both types of job-splitting penalty costs can be used with a cost objective function.

Duration Extension. If net job duration increases as the result of a split, the 7, vari-
able can be used to modify the resource constraints. Specifically, if w;, is the duration
penalty when subjob 7 does not immediately follow subjob m, then the terms in the
appropriate resource constraints for subjob n become

(18) [(1 - Tn) Z;I‘f‘”—l Ting + Tn ;itzinw‘.”—l winq]riuk .

This modification requires that only the first sum of (18) will be represented in the
appropriate resource constraint when a split does not occur (z.e., when 7, = 0) and
only the second sum of (18) will be represented when a split does occur (z.e., when
T = 1).

TABLE 1
Sequencing, Arrival T'imes, Job Durations, Due Dates, and Resource Requirements
Absolut. Resource R'e uirements
Project ) | Job () | phisfsdence,) | Anfyal fime | Dumtion | e Date i

* E=1| k=2 | k=3

1 1 None 1 4 8 5 3 2

1 2 1,1) 1 3 8 0 1 1

1 3 None 1 3 8 2 0 2

2 1 None 2 3 9 1 1 1

2 2 None 2 2 9 2 0 0

2 3 @,1) 2 2 9 2 2 0

3 1 None 3 5 9 2 1 1

3 2 None 3 1 9 1 3 0

Amount of resource k available in each time period (R::) 8 5 4
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The above expression can be put into a linear form by defining
Ying = 1 if Taling = 1,
= 0 otherwise.

Using a technique Watters [25] developed, the following constraints are obtained to
insure that the conditions imposed on y.,, are satisfied:

19) Ying = Tn + Ting — 1, and

(20) Ying S (T + Ting)/2.

Expression (18), in terms of yia, , becomes

@1) [e2™ @ing + Dt ™™ Ying Jrime

Example Scheduling Problem
A three-project, eight-job, three-resource-type problem will be formulated using

RESOURCE REQUIREMENTS RESOURCERAVAILAB)LITY
kt
k=117 110113 |8 |4 14 2 0|0 8
k=213 41815 4 (4|2 00 5
k=3 |4 | 5| 6422|200 4
G,=8
|
(1,1) .
|.
(1,2) 1
M \
(1,3 \
! |
G,=9
(2,1) !
1
(2,2) I '
. 1
(2,3) !
M ]
G5=9
1
N (3,1) , |
I | 1
2 :
1
D G NN AN N N B N -

/1}2/13456789

a]j 025 st

Fi1a. 2. Earliest start and completion times, unlimited resources.
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the job completion, project completion, sequencing, and resource constraints. Jobs
are to be scheduled so as to minimize total project throughput time. In addition,
jobs are to be started as soon as possible if doing so does not increase total project
throughput time. Table 1 contains sequencing relationships, job arrival and duration
times, due dates, resource requirements, and resource availabilities. For comparative
purposes, solutions provided by several standard dispatching rules are presented.

Dispatching Rules

Resource requirements for jobs and limited resource availability preclude jobs
from being started immediately. Immediate dispatch, as depicted by the schedule in
Fig. 2, would cause resource requirements to exceed resource availability. As seen from
Fig. 2, minimum throughput times for Projects 1, 2, and 3 are seven time units, five
time units, and five time units, respectively. Thus, any feasible solution to the sched-
uling problem could not yield a total throughput time of less than 17 time units. The
following dispatch examples observe arrival and sequencing constraints as resource
conflicts are resolved. In some cases, the due dates are not met.

RESOURCE REQUIREMENTS RESOURCE AVAILABILITY
Ry
k=11 7 1 8141|314 41212 8
k=213 |33 |4(5([3]4]3 1 1 5
k=34 |4 |4}312|3]2 1 1 1 4
G,=8
a1 }
1
(1,2) . 1
M |
(1,3) !
1
G,=9
2,1) {
— 1
(2,2) !
e 1
(2,3) |
[———] '
G3=9
|
@1y !
[————
(3,2) !
ey !
. 1
G Y T T T
) T
G5 %25 %3

F1a. 3. FCFS, Breaking ties with shortest job first.
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First-Come-First-Served. Figure 3 indicates a schedule obtained when the jobs are
processed on a first-come-first-served basis; arrival ties are broken by processing the
shortest job first. This rule produces a schedule for completing Projects 1 and 2 on
time, but Project 3 is late by one time unit. Total throughput time is 22 time units.
If ties are broken by processing the longest job first instead of the shortest job, the
schedule in Fig. 4 results. No lateness occurs, and total throughput time is 21 time
units.

Minimum-Project-Slack-First. Priority is determined by project slack (the time
between the earliest and the latest permissible project completion time). From Fig. 2,

Project 1 slack = one time unit;
Project 2 slack = three time units;
Project 3 slack = two time units.

Therefore, under the minimum-project-slack-first dispatch rule, jobs of Project 1 are

RESOURCE REQUIREMENTS RESOURCE AVAILABILITY
B¢
k=1v| 7|77 |8}|5]|54|4]1 8
k=233 (1315133 |4]3]3 5
k=344 443131210 4
G1=8
(1,1 X
e ———————
1
(1,2) 1
[——— '
)y X
I
G2=9
{
(2,1) 1
j—— '
(2,2) '
— !
(2,3) |
_- - 1 1
i
(3,1) 1
L -
(3,2)!
e
i 4 | | | | | 1 | -

/123456789 -
a;  Gy5 Gy

F1a. 4. FCFS, Breaking ties with longest job first.



104

A. A. B. PRITSKER, L. J. WATTERS, AND P. M. WOLFE

RESOURCE
RESOURCE REQUIREMENTS AVAILABILITY
B
k=vi 7|7V 7)17Vy5 ({5133 }|111412¢|2 8
k=233 13|45 |4]|5]|2(1]1]|2]2 5
k=3|4 | 4|43 |2(2(2|2]1]1]0]0 4
G =8
(1,1) !
|
[}
(1,2) 1
————— |
1
‘ (1,3) l h
I
Gz=9
1
]
(2,1)1
|—
1
1
| (2,3)
' | mas—
G3|=9
. (3,1) , 1
1 I
(3,2) '
o !
L 1 1 | | | ] | ] | | -1
1 2 ) 3 4 5 6 7 8 9 10 n 12

ay; @y ay;

F1a. 5. Minimum project slack first.

scheduled first, then those of Project 3, and finally those of Project 2. Figure 5 depicts
the resulting schedule. projects 1 and 3 are completed on time, but Project 2 is late by

three time units. Total throughput time is 24 time units.
Formulation of Example

Variables required in the formulation are numbered as follows:

Variable No. 1 2 3 4 5 6

Variable Ti14 Tiar | Tiss T134 T135 T136

Variable No. 11 12 13 14 15 16
Variable 923 Ta24 Ta25 Taze Za21 Ta28

Variable No. 21 22 23 24 25 26
Variable Za1s T32s Taza Z325 T326 Taz1

Variable No. 31 32 33
Variable T390 Zas T30

L1317

17

T336

27

T3a8

8 9
250 Zas
18 19
Tasv Ta3s
28 29
T1s Tao1

10
Zaie

T317

30
21
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All 2;jcu; variables (viz., Tus, Tis, Tiss, Tu7, Tae, Taze, Tawe, Taze) are expressed in
terms of their definitional equivalents.

Maximizing objective function (2) provides minimum total throughput time and
starts jobs as soon as possible without otherwise affecting throughput time, provided

M > D0 DN uy = 64.
The value M = 65 will be used.

Table 2 contains the coefficients of the objective function (multiplied by M so that
they are all integer) and the constraints. The constraints are arranged as follows:

1-8 are job completion constraints;
9-14 are project completion constraints;
15-16 are sequencing constraints; and
17-37 are resource constraints for periods
t = min {a; + dii} — 1 = 3.

Note that some constraints in Table 2 are nonbinding (viz., 1, 2, 34, 35, and 37) and
may be deleted from the formulation.

Solution Using a 0-1 Code

The problem was solved with a 0-1 integer linear programming code developed by
Geoffrion [7] and programmed for RAND’s IBM 7044. Execution time is 2.3 seconds.
The optimal solution is presented in Table 3. The optimum schedule thus determined
is presented in Fig. 6. Projects 1, 2 and 3 are completed one, three, and two time
periods ahead of their respective due dates. Total throughput time is 17 time units.

For this example the mathematical programming solution represents a substantial
improvement over the solutions obtained from the first-come-first-served and mini-
mum-project-slack-first dispatch rules. One dispatch rule that did yield the optimal
solution was a minimum-job-slack-first rule that determines priority as the time
between the earliest and the latest permissible job completion time. However, no at-
tempt was made to test or evaluate dispatch rules exhaustively.

TABLE 3
Solution to Example
i
Variable
1 2 3 4 5 6 7 8 9
Tt - - - 1 0 - _— —_
T12¢ — — — — — — 1|1 0
T1s¢ — — 0 0 0 0 1 0
1t — — — — — - —11
Tae — — — 1 0 0 0 — | —
L2 —_ — 0 0 0 1 0 0 0
T23¢ — — — — — 1 0 0 0
T2t — — — — — -1 1 1
T3t -_ _ _ —_ —_ _ 1 0 0
T332t — —_ 0 0 0 0 1 0 0
T3¢ — — — — — —! —1 1 1

(—) indicates the variable is predetermined to equal zero.
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RESOURCE REQUIREMENTS RESOURCE AVAILABILITY
t
k=156 818 |8 (8}5[01]0
k=213 |4 |5|5|4[4|5(0]0
k=32 |3 |4|4|4]|4]4]|0]0
1
(1,1) )
I
(1,2) 1
M 1
I TR X
|
G2=9
I
(2,1) |
| —— \
(2,2) \
!
(2,3) 1
frar— '
G=9
I
, (3,1) 1
- | |
X} :
!
S W N N TN N N B -
1 2} 3 4 5 6 7 8 9
alj azj aaj

F1a. 6. Optimal solution.

This problem, when formulated in terms of the variables Bowman [3] uses and
extended to accommodate multiple resources, would involve 72 variables and 125
constraints. If predetermined variables are eliminated, the Bowman formulation
could be reduced to 50 variables and 94 constraints, still larger than the 33-variable,
37-constraint formulation presented here.

Conclusion

A zero-one linear programming formulation of scheduling problems has been de-
veloped which can accommodate a wide range of conditions. The formulation is more
efficient than previously reported models in terms of the number of variables and the
number of constraints required to model a scheduling situation. One general comment
on the size of the formulation is that it is favorably affected by an increased amount
of sequencing, by relatively long jobs, and by close proximity of the scheduling hori-
zon (or absolute due date) to the optimal project completion date. This research
coupled with the immense research on zero-one programming codes should yield
practical procedures for obtaining optimal solutions to certain types of scheduling
problems.
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