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MANAGEMENT SCIENCE 
Vol. 16, No. 1, September, 1969 

Printed in U.S.A. 

MULTIPROJECT SCHEDULING WITH LIMITED RESOURCES: 
A ZERO-ONE PROGRAMMING APPROACH*** 

A. ALAN B. PRITSKER1, LAWRENCE J. WATTERS2, AND PHILIP M. WOLFE$ 

A zero-one (0-1) linear programming formulation of multiproject and job-shop 
scheduling problems is presented that is more general and computationally tractable 
than other known formulations. It can accommodate a wide range of real-world situ- 
ations including multiple resource constraints, due dates, job splitting, resource 
substitutability, and concurrency and nonconcurrency of job performance require- 
ments. Three possible objective functions are discussed: minimizing total throughput 
time for all projects: minimizing the time by which all projects are completed (i.e., 
minimizing makespan); and minimizing total lateness or lateness penalty for all 
projects. 

Introduction 

Several years have passed since the pioneering work of Bowman [3], Wagner [24], 
and Manne [13] with their mathematical programming formulations of scheduling 
problems. These and other mathematical scheduling models are discussed by Sisson 
[22], by Conway, Maxwell, and Miller [4], and by Muth and Thompson [17]. Recent 
research efforts have concentrated on simulation approaches to scheduling [4, 6, 8, 15, 
26, 27]; however, another look at the problem from a mathematical programming 
point of view seems in order, especially in light of recent developments in 0-1 program- 
ming 17, 9, 18, 251. 

The scheduling problems considered here deal with determining when a job should 
be processed, given limited availabilities of resources, e.g., men, equipment, and 
facilities. The words job and project will be used throughout to denote the two levels 
of work aggregation being considered. A project consists of a set of jobs. In other 
literature describing scheduling research, the following equivalent descriptors may 
be found: 

Job Project 

task product 
operation job 
project program 

The model considers only the job level and the project level. Consideration of three or 
more levels, e.g., operation, job, and project, only complicates the notational problem. 

The Manne [13] formulation uses integer variables to indicate in which time period 
the job is started, and the Wagner [24] formulation uses 0-1 variables to indicate 
whether or not a job is assigned to a specific order-position on a specific machine. 
Neither formulation, however, accomm( tes multiple resource constraints. The 
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Bowman [3] formulation uses 0-1 variables to indicate for each period over a scheduling 
horizon whether or not a job is being processed. His formulation does not expressly 
provide for multiple resource constraints, although such an extension could be made. 
The resulting formulation would be larger (in terms of the number of variables and 
constraints involved) than the one presented here. The following formulation uses 
0-1 variables to indicate for select periods (depending upon job arrival time, due 
dates, sequencing relationships, etc.) whether or not a job is completed in those 
periods. A similar formulation [19] uses 0-1 variables to indicate for select periods 
whether or not a job has been completed prior to those periods. For a given type of 
scheduling environment, alternative formulations often may be devised. An efficient 
formulation, however, will depend upon a judicious choice of definition for the vari- 
ables. Indeed, the selection of a definition for the variables and the synthesis of ob- 
jective functions and constraints constitute a challenging problem in design. The de- 
sign aspects of mathematical formulation are discussed in [20]. 

Determining when the jobs should be processed depends upon the desired objective. 
Three are considered here: 

1. Minimize total throughput time (time in the shop) for all projects; 
2. Minimize the time by which all projects are completed (i.e., minimize make- 

span); and 
3. Minimize total lateness or lateness penalty for all projects. 

Equations are developed to ensure that a schedule meets the following constraints 
when they are imposed: 

1. Limited resources; 
2. Precedence relations between jobs; 
3. Job splitting possibilities; 
4. Project and job due dates; 
5. Substitution of resources to perform the jobs; 
6. Concurrent and nonconcurrent job performance requirements. 

Definitions 

i = project number, i = 1, 2, * , I;I = number of projects. 
j = job number, j = 1, 2, * * , N,; Nt = number of jobs in project i. 
t = time period, t = 1, 2, * * * max Gi; Gi = absolute due date. Project i must be 

completed in or before period G,. If an absolute due date is not specified, G, 
becomes the last period in the scheduling horizon. 

gi = desired due date. Project i is not late if it is completed in or before period g5. 
ei = earliest possible period by which project i could be completed. 
a5, = arrival period of job j, project i. Arrivals occur at the beginning of periods. 
dii = number of periods required to perform job j of project i. It is assumed to be 

known with certainty. 
ij, = the earliest possible period in which job j could be completed. 
uij = the latest possible period in which job j could be completed; viz., an absolute 

job due date. 
k = resource or facility number, k = 1, 2, * , K; K = number of different resource 

types. 
r.k= amount of type k resource required on job j of project i. 
Rkt = amount of type k resource available in period t. 
xit= a variable which is 1 if job j of project i is completed in period t; 0 otherwise. 

x,st need not be treated as a variable in all periods, since it equals 0 for t < li, 
and for t > u;,. 
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xit= a variable which is 1 in period t if all jobs of project i have been completed by 
period t (i.e., completed in or before period t - 1); 0 otherwise. xit need not be 
treated as a variable in all periods, since it equals 0 for t < ei and 1 for t > G6. 

To illustrate the nature of the definitions, the scheduling of five jobs belonging to two 
projects requiring two resources is shown in Fig. 1. The figure depicts arrival periods, 
job durations, due dates, precedence requirements, and values of xi., and xi, variables. 

ARRIVAL PERIODa a21 ABSOLUTE DUE DATE GI a,2 a222 

a13 1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 TIME 

liit 0l 0 00 0i~ 
xllt - - -'o 1 O o o 

PROJECT _ _ _ _ k ooo1o o o o 

X13t 0 1?1 0 0 IAl 

l . a21~~~~~~~~~~~~~~~~~~~~~~~~Ifl 7U1 

t 1t EEO 0 0 i 1 |||1||| 

2 0~~~~~01 

ix2t 
0 

-\- - o o o o o o , 

PROJECT |_ _ _ 0 , 4, 

2~ ~ ~~~~~~~~~~~f 

X2t -?o ? ? ? 

TIME 
I 2 t tII I 

1 2 3 4 5 6 7 8. 9 10 11 12 13 14 15 16 

NOTE: ASSUME JOB.(l,l) MUST PRECEDE JOB (1,3) 

kEY: a * ARRIVAL PERIOD OF JOB j, PROJECT i (ARRIVALS OCCUR AT THE BEGINNING OF PERIODS) 

d l_ JOB DURATION 

| X EARLIEST POSSIBLE PERIOD IN WHICH JOB j COULD BE COMPLETED 

U LATEST POSSIBLE PERIOD IN WHICH JOB j COULD BE COMPLETED 

e - EARLIEST POSSIBLE PERIOD BY WHICH PROJECT i COULD BE COMPLETED 

G LATEST POSSIBLE PERIOD BY WHICH PROJECT i COULD BE COMPLETED 

g DESIRED DUE DATE 
G ABSOLUTE DUE DATE 

1 INDICATES JOB IS COMPLETED IN PERIOD t 

O INDICATES JOB IS NOT COMPLETED IN PERIOD t 
- INDICATES THE VARIABLE IS PREDETERMINED TO EQUAL ZERO 

FIG. 1. Hypothetical scheduling situation for two projects. 
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There is one unit of resource available for each of the two types of resources; i.e., 
Rkt = 1 for k = 1, 2 and for all t. The resource requirements, rijk, for each job are 
assumed to be: 

Resource Requiroments, risk 

ij 

11 12 13 21 22 

1 1 1 0 0 1 
2 1 0 1 1 0 

As an example of the calculations of lij and uij for sequenced jobs, 

Uii= l- dG 3 = 11 

and 

113 = max f{an + di, + d13 - 1, a13 + d13 - 1} = 9. 

The information depicted in Fig. 1 represents known inputs at the time of scheduling. 
(In a job-shop environment where additional projects arrive, rescheduling could 
take place when such inputs become known.) 

Objective Functions 

Jobs are to be scheduled in a manner that optimizes some measure of performance, 
or objective function, subject to certain environmental requirements and limitations. 
The choice of an appropriate objective function may differ for various scheduling 
environments. Several common ones are selected for explicit formulation. 

Minimizing Total Project Throughput Time 
Individual project throughput time is defined as the elapsed time between project 

arrival and project completion, where project completion occurs when all jobs of the 
project are completed. If ai is the arrival period of the ith project, throughput time for 
that project is 

Gi- t +1i-xit+ a,. 

(For example, throughput times for Projects 1 and 2 in Fig. 1 are 13 and 10, respec- 
tively.) Minimizing throughput time for a single project is equivalent to maximizing 
the number of periods remaining after the project is completed, where this number of 
periods is E t-i xi,. Therefore, the objective function for minimizing the sum of the 
throughput times for all projects can be written as 

(1) Maximize z = 11 i's xit 
Ordinarily, jobs are started as soon as possible if doing so does not increase throughput 
time. This can be accomplished by maximizing 

(2) Z - - t/ ?ti tXit 

where M is a positive number sufficiently large to ensure that the contribution of the 
additional term is less than that of any xit. A suitable choice for M would be 
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Minimizing Makespan 

An alternative objective function is to minimize the time by which all projects are 
completed; i.e., minimize makespan. Define a variable xt as follows: 

xt = 1 if all projects are completed by period t, 
= 0 otherwise. 

Minimizing makespan then corresponds to maximizing 

(3) z -= E ax6 , . 

This objective function could also be augmented to start jobs as soon as possible, 
thus making the desired objective function 

(4) - z 3 tma= XG - (1/M) i Eui;ij tXit. 

Minimizing Total Lateness or Lateness Penalty 

A project is late if it is completed after the desired due-date period, gi. Equivalently, 
the project is late if xit = 0 in those periods t were gi < t < Gi. If total project lateness 
is to be minimized, this lateness can be written as 

DIi= E't9si9i+ ( - xit). 
If a penalty of pit is assessed when the project is not completed by period t, the total 
lateness penalty can be written as 

E1 E't g;+lpit( (- xit ). 
This expression for total lateness penalty reduces to total project lateness if all pit 
are 1. Thus for both cases an equivalent form of the objective function is the maximiza- 
tion of 

z( = EGt i+1 PitXit. 

The formulation can accommodate a rather wide range of environmental require- 
ments and limitations. Some of these are now discussed. 

Job Completion 

Each job has exactly one completion period. 

(6) S8;xs-1(i = 1, 2, ...,I; j 2 1, 2, @N). 

Notice that in each constraint, the value of any one xijt can be determined by the values 
of the others in that constraint. To use this relationship to full advantage, replace 
Constraint (6) by 

(7) ut-ii t < 1, 

and define 

Xj()- 1 t, Xit 

Replacing xij(uij) by its definitional equivalence can be used to reduce the total number 
of variables in the formulation. 

Project Completion 

Formulations involving xit variables (e.g., objective functions (1), (2), and (5)) 
require that the xit variables for each project be zero until all of its jobs have been com- 
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pleted. That is, project i cannot be completed by period t until E I,j xi> = 1 for all 
Ni jobs of project i. This requirement can be written as 

(8) xit x (1/Ni) X2j=?l E` (i = 1, 2, * *, I; t = e,, e. + 1, * *,). 

In formulations involving xt variables (e.g., objective functions (3) and (4)), the above 
constraints are replaced by 

(9) xt ? (1/IlNi) EL, E'JYt Et-1 (t = max ei, ***, max G,). 

Sequencing 
A sequencing constraint is required when a job cannot be started until one or more 

other jobs have been completed. For example, on project i, assume job m must precede 
job n. If tim and tin denote the completion periods of jobs m and n respectively, then 

tim + din < tin. 

Note that tim = Et'=z,,mtximt and tin = Et=lintxint. Therefore, the appropriate 
sequencing constraint becomes 

(10) Et=i'.m tximt + din < Et-tnn tXint . 

Sequencing relationships reduce the number of xijt variables for which it is necessary 
to obtain values from the formulation, since 

(1) Xint = 0 fort < max {ain + din - 1; max1ePin (ai1 + dij + din - 1)J where 
Pin is the set containing other jobs of project i that must precede 
job n, and 

(2) ximt = 0 for t > mrinj Fim{G,-dij- where Fim is the set containing other jobs 
of project i that must follow job m. 

The number of xit variables might also be reduced, since ei might be increased as a 
result of sequencing relationships. 

Resource Constraints 
The value r,j; specifies the number of resource units of type k required for the per- 

formance of job j, project i. Thus, if r;ji = 3 and ri2 = 2, then 3 units of type 1 are 
used in conjunction with 2 units of type 2 during those periods when the job is being 
performed. Resources required on a job are assumed in use until the job ends. If this 
assumption is not appropriate, slight reformulation is required. For example, if a certain 
resource is in use only during the first p periods of the job where p < dij, then treat 
the job as two sequenced "subjobs" with differing resource requirements and with 
durations of p and dij - p, respectively. If the subjobs are to be performed contiguously, 
replace the < by = in Constraint (10). The approach can apply to any division of a 
job into two or more subjobs. 

In any given period, the amount of resource k used on all jobs cannot exceed the 
amount of resource k available. A job is being processed in period t if the job is com- 
pleted in period q where t < q ? t + dij - 1. Therefore the resource constraint can be 
written as 

(ll)~ ~~~~~~~~- S.j-1 E= rijkxij, Ri Rt 

(t = min aj, maxGi; k 1, 2, * , K). 

Implementation of this constraint necessitates recognizing predetermined values of 
xijt. (Namely, xijt 0 for t < lij and xijt 0 for t > u;j). 
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If the availability of a resource is constant over the scheduling horizon, then some 
periods may involve redundant resource constraints. Using the scheduling situation 
described by Fig. 1 as an example, the resource constraints associated with periods 1, 2, 
and 3 (viz., t < min {aij + dij} - 1) would be redundant with those of period 4, and 
therefore removable. A more general observation is that if the resource availability, 
Rkt, is constant for the first t' periods where mini,j;rijk>0 {ai1 + dij} ? t' < max Gi, 
then Constraint (11) need not be imposed for periods t < mini,JrTijk>o {aij + dij} - 1. 
On the other hand if Rkt is constant for the first t' periods where mini jrijk>o { aij}_ 
t' < min;j 9rijk>o { aij + dij}, then Constraint (11 ) need not be imposed for periods 
t < t,-1. 

Substitutability of Resources 

It may be possible to use alternative resources to accomplish some jobs. For example 
a man with a higher skill can be substituted for a man with a lower skill on particular 
jobs. 

If resource substitution is permitted on job j, project i, then Constraint (11 ) must 
be modified to account for the resource substitution and potential differences in job 
durations when the job is performed by different resources. To handle this condition, 
define a set of mutually exclusive jobs, only one of which must be performed. For ex- 
ample, if two alternative methods (or resource combinations) exist for performing job 
j define the two alternatives as jobs jl and j2 with durations dij and dij2, and with 
u;j, = uij, = uij'. Require completion of either jl or j2 , but not both, anytime before 
the end of period u,j, . To do this, replace Constraint (7) by 

(12) Eq-ninu11ij11,ij2) (X1jlq + Xij2q) 1, 

and retain xij(uifj) in the formulation (i.e., do not replace xij(uij') by its definitional 
equivalent). The modified project completion constraint corresponding to Constraint 
(8) would be 

(13) xig ? (1/1N)[A jij,11 q-Zij Xijq + ?.-jmin1liq1Zi j2) (Xijlq + Xij2Q)]. 

A similar modification could be made to Constraint (9). 

Concurrency and Nonconcurrency of Jobs 

A concurrency constraint on jobs m and n ensures that they must be performed simul- 
taneously. It can be obtained by requiring ximt = xint, or by combining resource re- 
quirements and treating m and n as a single job. 

A nonconcurrency constraint on jobs m and n ensures that they must not be per- 
formed simultaneously, but permits them to be performed in any order. Job m is being 
performed in period t if and only if 

di im-Ximq 1, 

and similarly for job n. Thus the desired constraint is 

(14) =td Ximg + Qtin71 xi, _ 1 (t = max {lm , lin}, ... , min {uim, ui} ). 

Job Splitting 

Theoretically, total job-splitting capability could be accomplished by treating each 
job as dii subjobs (each subjob having one period duration) and by imposing appropri- 
ate sequencing constraints on these subjobs. Pragmatically, however, job-splitting 
capability would seldom be fully exercised because of setup costs, the desirability of 
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maintaining job continuity, etc. Hence, defining substantially fewer than dij subjobs 
for a particular job may provide sufficient splitting flexibility without requiring an 
inordinate number of subjobs. 

Suppose job j can be split, and its subjobs are sequenced in accordance with Con- 
straint (10). When two of its sequenced subjobs, say m and n, are not performed con- 
tiguously (i.e., when the larger job of which they are a part is allowed to split), then 

(15) Tmn =E ~it=in tXint t=limt tXint-din 

represents the duration of the split. Tmn is the slack variable of Constraint (10). 
Penalty Costs. If a penalty cost, cn, is incurred per time period of split, then CnTmn is 

the job-splitting penalty cost. If a penalty cost, Cn, is incurred for the split regardless 
of split duration, then CnTn is the job-splitting penalty cost where Tn is a 0 - 1 variable 
such that 

Tn = 1 if a split occurs; i.e., Tmn > 0 

= 0 otherwise. 

The appropriate value of Tn is obtained by requiring 

(16) Tn > Tmn/Gi and 

(17) Tn ? 1 + (rmn - 1)/Ga. 

Both types of job-splitting penalty costs can be used with a cost objective function. 
Duration Extension. If net job duration increases as the result of a split, the Tn vari- 

able can be used to modify the resource constraints. Specifically, if Win is the duration 
penalty when subjob n does not immediately follow subjob m, then the terms in the 
appropriate resource constraints for subjob n become 

(18) [(1 ) +-t Xinq + Tn EQ+t Xinqjrink . 

This modification requires that only the first sum of (18) will be represented in the 
appropriate resource constraint when a split does not occur (i.e., when rn = 0) and 
only the second sum of (18) -will be represented when a split does occur (i.e., when 

n 1). 

TABLE 1 
Sequencing, Arrival Times, Job Durations, Due Dates, and Resource Requirements 

Resource Requirements 
Project (i) | Job (j) Precedence Arrival Time Duration Due Date |_ __ __ Projet M Jb U) Relations (s, j) (ajj) (dG,)Du Date___- ___ 

k= Ik=2 k-3 

1 1 None 1 4 8 5 3 2 
1 2 (1, 1) 1 3 8 0 1 1 
1 3 None 1 3 8 2 0 2 
2 1 None 2 3 9 1 1 1 
2 2 None 2 2 9 2 0 0 
2 3 (2,1) 2 2 9 2 2 0 
3 1 None 3 5 9 2 1 1 
3 2 None 3 1 9 1 3 0 

Amount of resource k available in each time period (Rks) 8 5 4 
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The above expression can be put into a linear form by defining 

yinq = 1 if TnXinq = 1, 

= 0 otherwise. 

Using a technique Watters [25] developed, the following constraints are obtained to 
insure that the conditions imposed on yinq are satisfied: 

(19) Yinq _ rn + x,nq - 1, and 

(20) Yinq < (n + Xinq)/2. 

Expression (18), in terms of y,., becomes 

(21) X[nqd_n-lt + +di yinq]rinic. 

Example Scheduling Problem 

A three-project, eight-job, three-resource-type problem will be formulated usilng 

RESOURCE REQUIREMENTS RESOURCE AVAILABILITY 
Rkt 

k= 1 7 10 13 8 4 4 2 0 0 8 

k 2 3 4 8 5 4 4 *2 0 O 5 

k =3 4 5 6 4 2 2 2 0 0 4 

G1T8 

(1,2) 

(1,3) 

G2= 9 

(2,1) I !~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
(2,2) 
I I~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

(2,3) I 
-I 

G3-9 

(3,1) , 

(3,2) 

1) 2)3 4 5 6 7 8 9 

a1j a2j a3j 

FIG. 2. Earliest start and completion times, unlimited resources. 
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the job completion, project completion, sequencing, and resource constraints. Jobs 
are to be scheduled so as to minimize total project throughput time. In addition, 
jobs are to be started as soon as possible if doing so does not increase total project 
throughput time. Table 1 contains sequencing relationships, job arrival and duration 
times, due dates, resource requirements, and resource availabilities. For comparative 
purposes, solutions provided by several standard dispatching rules are presented. 

Dispatching Rules 
Resource requirements for jobs and limited resource availability preclude jobs 

from being started immediately. Immediate dispatch, as depicted by the schedule in 
Fig. 2, would cause resource requirements to exceed resource availability. As seen from 
Fig. 2, minimum throughput times for Projects 1, 2, and 3 are seven time units, five 
time units, and five time units, respectively. Thus, any feasible solution to the sched- 
uling problem could not yield a total throughput time of less than 17 time units. The 
following dispatch examples observe arrival and sequencing constraints as resource 
conflicts are resolved. In some cases, the due dates are not met. 

RESOURCE REQUIREMENTS RESOURCE AVAILABILITY 

Rkt 

k =3 4 4 4 3 2 3 11 

G1=8 
(1,1) ,I 

(1,2) , 
III 

(1,3) 

G2 9 

(2,1) 

(2,2) 

(2,3) , 

G3=9 

(3,1) 

4 ~ ~~ I (3,2) 

> ; z I I I I I I I _ - 
Ij 2/ 3 4 5 6 7 8 9 10 

a1j a2j a3j 

FIG. 3. FCFS, Breaking ties with shortest job first. 
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First-Come-First-Served. Figure 3 indicates a schedule obtained when the jobs are 
processed on a first-come-first-served basis; arrival ties are broken by processing the 
.shortest job first. This rule produces a schedule for completing Projects 1 and 2 on 
time, but Project 3 is late by one time unit. Total throughput time is 22 time units. 
If ties are broken by processing the longest job first instead of the shortest job, the 
schedule in Fig. 4 results. No lateness occurs, and total throughput time is 21 time 
units. 

Minimum-Project-Slack-First. Priority is determined by project slack (the time 
between the earliest and the latest permissible project completion time). From Fig. 2, 

Project 1 slack = one time unit; 

Project 2 slack = three time units; 

Project 3 slack = two time units. 

Therefore, under the minimum-project-slack-first dispatch rule, jobs of Project 1 are 

RESOURCE REQUIREMENTS RESOURCE AVAILABILITY 
Rkt 

k 7 7 78 5 54 4 1 

k=2 3 3 3 5 3 3 4 .3 3 

k =3 4 4 4 4 3 3 2 1 0 4 

G1=8 
(1,1) , 

(1,2) I 

(1,3) 

G2=9 
I 

(2,1) I 

(2,2) 

(2,3) I 

G -9 

(3,1) 

(3,2)' 

i 1 20 3 4 5 6 7 8 9 

a,j a2j a3 . 

FIG. 4. FCFS, Breaking ties with longest job first. 
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RESOURCE 
RESOURCE REQUIREMENTS AVAILABILITY 

Rkt 

k =I 7 7 7 7 5 S 3 3 - -1 2 2 8 

k =2 3 3 3 4 5 4 5 2 1 1 2 2 5 

k = 3 4 4 4 3 2 2 2 2 1 _ ? O 4 k =i~~~~~~~~~~~~i= 

(1,1 ) 

(1,2) I 

(1,3) 

G2=9 

(2,1 )I 

(2,2) 

(2,3) 

I -q 

G3=9 
(3,1) l 

(3,2) 

tXl 1,~~~~~~~~~~~~~~~~ 
t ; z I I I I ~I I I I I I / 1 2, 3 4 5 6 7 8 9 10 11 12 

a11 a2j a3i 

FIG. 5. Minimum project slack first. 

scheduled first, then those of Project 3, and finally those of Project 2. Figure 5 depicts 
the resulting schedule. projects 1 and 3 are completed on time, but Project 2 is late by 
three time units. Total throughput time is 24 time units. 

Formulation of Example 

Variables required in the formulation are numbered as follows: 

Variable No. 1 2 3 4 5 6 7 8 9 10 
Variable X114 X127 X13s X134 X185 X136 X137 X214 X215 X210 

Variable No. 11 12 13 14 15 16 17 18 19 20 
Variable X223 X224 X225 X226 X227 X22a X236 X287 X238 X317 

Variable No. 21 22 23 24 25 26 27 28 29 30 
Variable X318 X323 X324 X325 X326 X327 X828 Xis X27 Xa8 

Variable No. 31 32 33 
Variable Xs2 X38 X3g 



s 4 _ _ _ _ 4 _o _ _ o 0 0 0 cc eq e c q eq o o 0 cc eq _c eq 
--'-0 C4 - -e 

0 VliViVl V lIV } Vill l Vil V tl V ll V V ' l V tl V llVI V ll Vi V tl Vtl V tl \A l Vi Vil Vil V ll V ll V tI\l Vll Vll I Vil Vil I Vll Vll Vll Vtl I Vil 
.,Vii Vii Vi. 

_ I e q '- --- w--- 
\ c 

co 
C*I I _ 

\0 

. iT -- m -v I 

ccci~~~~~~~~~~~ - -c . . 
\ |0 14 -4 v1 

ccl 1 - -c1- -- cc eq 
1 I -4 - C1- 

>-l~~~~~~~~~~~~~~~~~- 1- 7- C* -4 C* " 

eq -~~~~~~~~~~~~~~~ -~~~~~~~~~ cc ~ ~ ~ ~ ~ ~ - -cc 

eq II i I I_,, G o I I, 

cc ~~~~~-4- e eq -cc -4 eq 1- -4 

eq I.c Io I> I q I I N 

eq 1111 1 > | 

- 4 4 I I , __ eq - .q e e -q 

- - co 

eqeq eqq eqeq e qe 

,> I I I I I , ' ,_ __ ,,, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I II. 

_ I I O_ 0 v I _____ _ _ __ _ _ __ _ _ __ _ _ __ _ _ __ _ _ 

e q- - _ __ - _ccccc cc eqeq . _,q - os I I , , , 

- Y CY i 
eq eq_ 

_l _ _ _4 _ _ _ _l _ _ _ 

- II I - I ""11 

Th eq eq 

~~eqeq 
eq 

_ _ if - - - , I 

o . rp~c eq_ e 

'eq I S W_ _l .. 
-- --- 

- - e q e q 4 

ccl cc cccc eq eq4cq ci 0 eq 

- II II I c I? qw wqc 

No C cc cc cccccc , cc c % % 

- I ' - I ' ' -I, I I 

_ _ tP I _ 1 ~ ~~~~ ~ ~~~ 1_1 11111 

cc 4 eqC c l eq % e4C C q eq 

105 



106 A. A. B. PRITSKER, L. J. WATTERS, AND P. M. WOLFE 

All xij(uij) variables (viz., x115, X128, X138, x217, x229, x239, X319, x329) are expressed in 
terms of their definitional equivalents. 

Maximizing objective function (2) provides minimum total throughput time and 
starts jobs as soon as possible without otherwise affecting throughput time, provided 

M > I: >2i 1 ui = 64. 

The value M = 65 will be used. 
Table 2 contains the coefficients of the objective function (multiplied by M so that 

they are all integer) and the constraints. The constraints are arranged as follows: 

1-8 are job completion constraints; 

9-14 are project completion constraints; 

15-16 are sequencing constraints; and 

17-37 are resource constraints for periods 

t 2 min (ai; + dij} - 1 = 3. 

Note that some constraints in Table 2 are nonbinding (viz., 1, 2, 34, 35, and 37) and 
may be deleted from the formulation. 

Solution Using a 0-1 Code 

The problem was solved with a 0-1 integer linear programming code developed by 
Geoffrion [7] and programmed for RAND's IBM 7044. Execution time is 2.3 seconds. 
The optimal solution is presented in Table 3. The optimum schedule thus determined 
is presented in Fig. 6. Projects 1, 2 and 3 are completed one, three, and two time 
periods ahead of their respective due dates. Total throughput time is 17 time units. 

For this example the mathematical programming solution represents a substantial 
improvement over the solutions obtained from the first-come-first-served and mini- 
mum-project-slack-first dispatch rules. One dispatch rule that did yield the optimal 
solution was a minimum-job-slack-first rule that determines priority as the time 
between the earliest and the latest permissible job completion time. However, no at- 
tempt was made to test or evaluate dispatch rules exhaustively. 

TABLE 3 
Solution to Example 

Variable t 
1 2 3 4 5 6 7 .8 9 

Xi. 1 0 - 

XZ12 - 1- 1?1 0 
Xist 0 0 0 0 1 0 

X21t 1 0 0 0 - I 
X22t 0 0 0 1 0 0 0 
X23t? ? ? ? ? 0 0 0 
X2t( )? ? ? ? 1 1 1 

X31t? ??? 1 0 0 
X32g 0 0 0 1 0 0 

()indicates the variable is predetermined to equal zero. 
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RESOURCE REQUIREMENTS RESOURCE AVAILABILITY 

Rkt 
k=i 5 6 8 8 8 8 5 0 O 8 

k=2 3 4 5 5 4 4 5 0 O 5 

k-3 2 3 4 4 4 4 4 0 O 4 

GI= 8 

(1,2) I 
II 

(1,3) I 

G2=9 

(2,2) 

(2,3) 

G3=9 

(3,1) 

(3,2) 

4 ,__ X l~~~~~~~~ I I I111t 

1/ 2/ 3 4 5 6 7 8 9 

al a2j a3j 

FIG. 6. Optimal solution. 

This problem, when formulated in terms of the variables Bowman [3] uses and 
extended to accommodate multiple resources, would involve 72 variables and 125 
constraints. If predetermined variables are eliminated, the Bowman formulation 
could be reduced to 50 variables and 94 constraints, still larger than the 33-variable, 
37-constraint formulation presented here. 

Conclusion 

A zero-one linear programming formulation of scheduling problems has been de- 
veloped which can accommodate a wide range of conditions. The formulation is more 
efficient than previously reported models in terms of the number of variables and the 
number of constraints required to model a scheduling situation. One general comment 
on the size of the formulation is that it is favorably affected by an increased amount 
of sequencing, by relatively long jobs, and by close proximity of the scheduling hori- 
zon (or absolute due date) to the optimal project completion date. This research 
coupled with the immense research on zero-one programming codes should yield 
practical procedures for obtaining optimal solutions to certain types of scheduling 
problems. 
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