
Multi-Calendar Appointment Scheduling:
Calendar Modeling and Constraint Reasoning

Stephanie Spranger and François Bry

Institute for Informatics, University of Munich, Germany
http://www.pms.ifi.lmu.de/

1 Introduction

This article outlines CaTTS, a language for expressing and solving multi-calendar
appointment scheduling problems such as planning a phone conference of persons
in different time zones and using different calendars. This article complements
[1], which is focused on calendar modeling, with a presentation of the approach’s
constraint reasoning.

CaTTS is motivated by the fact that practical scheduling systems should
preferably use everyone’s calendars, i.e. cultural calendars such as the Gregorian
or Hebrew calendars and the plethora of professional calendars, instead of the
more abstract temporal specifications commonly used in research.

The ‘Calendar and Time Type System’ CaTTS consists of a type definition
language CaTTS-DL and a constraint language CaTTS-CL. CaTTS is based on
a time model after the set-theoretic ‘time granularity’ approach [9,10,2,11]. How-
ever, in contrast to most time granularity formalisms, CaTTS has no duration-
less time points. Instead, CaTTS is purely interval-based reflecting a common-
sense notion of time: a time point such as “Tuesday, January 3 2006, 9 a.m.”,
expressed in the time granularity “hour” (“second”, resp.) is internally repre-
sented in CaTTS by a time interval with a duration of 1 hour (“second”, resp.).

2 Multi-Calendar CSPs in CaTTS

In [2] an approach to point-based metric temporal reasoning with time granu-
larities is described. It allows for modeling and reasoning with simple temporal
constraints on points and distances between points in a Disjunctive Linear Re-
lations (DLR) Horn framework.1 In this framework, one can express constraints
like “at time t (in time granularity g), person A is in London”, but neither “an
event e (in time granularity g) happens during a task t (in time granularity h)”
nor “an event e (in time granularity g) happens 5 time units (in granularity h)
before an event e′ (in time granularity k)”. Indeed, expressing temporal con-
straints like the last two mentioned above require not only time points but also
time intervals.
1 DLR [3] represents temporal constraints by disjunctions of linear inequalities and

inequations.

E. K. Burke, H. Rudová (Eds.): PATAT 2006, pp. 496–501. ISBN 80-210-3726-1.

A common approach, followed e.g. by [2], represents a time interval by an
ordered pair of time points. Expressing that two such intervals meet without
overlapping requires to consider both (half or both sides) open and closed inter-
vals. Such intervals, however, are rather counter-intuitive for most users. Fur-
thermore, such a ‘time point-based approach’ makes the modeling of temporal
applications significantly more complicated because both, time points and time
intervals, have to be considered. Consider an event e taking place sometimes
during an interval i which in turn is during an interval i′: e also takes place
during i′. This example shows that relations on intervals and events must be
propagated so as to keep reasoning local. It is much more complicated to main-
tain locality when time intervals are defined by endpoints than when only time
intervals (and no time points) are considered.

The approach reported about in this article avoids the problems mentioned
above by considering only time intervals and no duration-less time points. In
most practical applications, time points, if needed, are conveniently simulated
by small intervals (e.g. in scheduling a meeting, intervals with a duration of 1
second may conveniently simulate time points). This makes it easy to represent

1. finite time intervals using finite domains,
2. quantifications such as “an event e (in time granularity g) happens 5 time

units (in granularity h) before an event e′ (in time granularity k)”, and
3. generalized (i.e. finite and non-convex) as well as (infinite) periodic time

intervals

as needed for many applications.

Example 1. A person plans a meeting lasting 3 working days after 20th April
2005 and before May 2005. A colleague’s visit of 1 week must overlap with the
planned meeting.

month

week

working day

day

4 (April 2005) 5

17 18 19 20

↑
20.4.2005 (Wednesday)

21 22 23 24 25 26 27 28 29 30 31 32

↑
1.5.2005 (Sunday)

13 14 15 16 17 18 19 20 21 22 23

4 5

Fig. 1. The calendric types of Example 1.

The activities “meeting” and “visit” are represented as finite and convex time
intervals that are isomorphic to sets of integers. Activities may refer to different
calendric types such as “day”, “working day”, “week”, or “working week”. In
Example 1, “meeting” refers to “working days”, “visit” to “weeks”, cf. Figure 1.

Multi-Calendar Appointment Scheduling [...] 497

Using the Description Language CaTTS-DL, the calendar of Example 1 can be
expressed as follows:2

calendar CalendarExample : S ig =
cal

type day ;
type week = aggregate 7 day @ day (−3);
type month = aggregate

31 day named January ,
alternate month(i)
| (i div 12) mod 4 == 0 && (i div 12) mod 400 != 100 &&
(i div 12) mod 400 != 200 && (i div 12) mod 400 != 300
−> 29 day

| otherwise −> 28 day
end named February ,
31 day named March ,
. . .
31 day named December

@ day (−90);
type working day = select day (i) where

relative i in week >= 1 && relative i in week <= 5 ;
end

Using the Constraint Language CaTTS-CL, the scheduling problem of Example
1 can be expressed as follows:

program SchedulingExample =
prog

use calendar unqualified CalendarExample ;
use format unqualified CatalogExample ;
Meeting i s 3 working day && V i s i t i s 1 week &&
Meeting after "20.04.2005" && Meeting before "05.2005" &&
Vi s i t overlaps Meeting

end

An answer to such a CaTTS-CL program is defined as a consistent Multi-
Calendar CSP which cannot be further reduced. The answer to the CaTTS-CL
program above is as follows:

Meeting i s 3 working day &&
(begin of Meeting) within ["21.04.2005" . . "22.04.2005"] &&
V i s i t i s 1 week &&
(begin of Vi s i t) within ["Week04.2005" . . "Week04.2005"]

The programmer might ask for one or all solutions to this answer. They are
computed from the answer by exhaustive search. The solutions to the CaTTS-
CL program above are as follows:

(Meeting=["21.04.2005" . . "25.04.2005"] && V i s i t="Week04.2005") | |
(Meeting=["22.04.2005" . . "26.04.2005"] && V i s i t="Week04.2005")

2 ’@ day(-3)’ expresses that week 1 begins with day -3.

498 S. Spranger and F. Bry

3 Solving of Multi-Calendar CSPs expressed in CaTTS

Meeting :: 1..∞ + 3..3, working day

“20.04.2005” :: 20..20 + 1..1, day “05.2005” :: 5..5 + 1..1, month

Visit :: 1..∞ + 1..1, week

6

overlaps

@
@

@
@R

before

�
�

�
�	

after

Fig. 2. The scheduling problem of Example 1 as a constraint network.

Multi-Calendar CSPs are seen as constraint networks, cf. Figure 2. Since
CaTTS makes it possible to use different types expressing temporal granular-
ities such as “days”, “weeks” and “months”, conversions are needed. CaTTS
conversions are formalized by a coercion semantics for subtyping. They are ex-
pressed by calendar conversion constraints. These conversions follow CaTTs’
novel subtyping relations, i.e. aggregation (e.g. a week is an aggregation of days)
and selection (e.g. working days are a selection of days).

In Example 1, the temporal constraint “overlaps” on the variables “Visit” (of
type “week”) and “Meeting” (of type “working day”)”, require type conversions,
e.g. to the closest type in the subtyping hierarchy, i.e. “day”. Indeed, a week is
a set of 7 consecutive days and working days are selected among all days.

Conversion constraint defines equivalences between calendar domains and
make it possible to solve Multi-Calendar CSPs by reducing them to CSPs over
finite domains. For example:

X :: 1..8 + 7..7, day ' Y :: 1..2 + 1..1, week

week

day1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2

The time interval [8, 14] of days represented by X corresponds to the time interval
[2, 2] of weeks represented by Y .

CaTTS’ solver for Multi-Calendar CSPs is complete in the sense that if it
terminates returning a consistent problem, then the original problem is (globally)
consistent. Testing for (global) consistency of a Multi-Calendar CSPs is linear
in both the number of constraints and the number of variables with respect to
the size of the calendar domains. This follows from the facts that

1. testing consistency of classical CSPs over finite domain variables where the
domains are represented by intervals is linear [8,6], and

Multi-Calendar Appointment Scheduling [...] 499

2. the access to a CaTTS-DL conversion function in the conversion constraint
can be done in constant time.

The search for one or all solutions to a bound consistent Multi-Calendar
CSPs is however NP-hard.

4 Conclusion

The language CaTTS describes in this article makes it possible to express tem-
poral constraints referring to different calendars. Temporal constraints referring
to different calendars are needed in practice.

Novel aspects of the approach are as follows:

1. Only time intervals but no (duration-less) time points are considered,
2. two subtype relations, aggregation and selection, and
3. the conversion constraints reducing Multi-Calendar CSPs to CSPs over finite

domains.

The approach provides with a solution to the problem of “time granularity con-
version” mentioned in [12].

Further investigations of the issue would be desirable. Indeed, the approach
described in this article cannot solve complex optimization problems like the
scheduling of working shifts that require

1. constraints over infinite periodic time intervals and
2. soft constraints [15] and/or preferences [16].

While periodic time intervals can be specified in CaTTS, CaTTS’ solver cannot
process them. Soft constraints or preferences cannot yet be expressed in CaTTS.

Acknowledgments

This research has been funded by the German Foundation for Research (DFG)
within the PhD Program ‘Logic in Computer Science’ (GKLI) as well as the
European Commission and the Swiss Federal Office for Education and Science
within project REWERSE (cf. http://rewerse.net). The authors thank the
anonymous reviewers, Frank André Rieß, and Arnaud Lallouet for useful sug-
gestions.

References

1. Bry, F., Rieß, F.A., Spranger, S.: CaTTS: Calendar Types and Constraints for
Web Applications. In: Proc. 14th Int. World Wide Web Conference, Japan. (2005)

2. Bettini, C., Jajodia, S., Wang, S.: Time Granularities in Databases, Data Mining,
and Temporal Reasoning. Springer-Verlag (2000)

3. Jonsson, P., Bäckström, C.: A unifying approach to temporal constraint reasoning.
Artificial Intelligence 102 (1998) 143–155

500 S. Spranger and F. Bry

4. Spranger, S.: Calendars as Types – Data Modeling, Constraint Reasoning, and
Type Checking with Calendars. PhD Thesis. Herbert Utz Verlag, München (2006)

5. Allen, J.: Maintaining Knowledge about Temporal Intervals. Communications of
the ACM 26 (1983) 832–843

6. Frühwirth, T., Abdennadher, S.: Essentials of Constraint Programming. Cognitive
Technologies. Springer-Verlag (2003)

7. van Hentenryck, P., Saraswat, V., Deville, Y.: Constraint Processing in cc(FD).
Technical Report, unpublished Manuscript (1992)

8. Tsang, E.: Foundations of Constraint Satisfaction. Academic Press (1993)
9. Montanari, A.: Metric and Layered Temporal Logics for Time Granularity. ILLC

Dissertation Series 1996-02, University of Amsterdam (1996)
10. Jensen, C., (eds.), C.D.: The consensus glossary of temporal database concepts -

February 1998 version. (1998)
11. Euzenat, J.: Granularity in Relational Formalisms with Applications to Time and

Space Representation. Computational Intelligence 17 (2001) 703–737
12. Franceschet, M., Montanari, A.: A Combined Approach to Temporal Logics for

Time Granularity. In: Workshop on Methods for Modalities. (2001)
13. Vilain, M.: A System for Reasoning about Time. In: Proceedings of the 2nd

National (US) Conference on Artificial Intelligence, AAAI Press (1982) 197–201
14. Meiri, I.: Combining Qualitative and Quantitative Constraints in Temporal Rea-

soning. Artificial Intelligence 87 (1996) 343–385
15. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based Constraint Satisfaction and

Optimization. Journal of the ACM 44 (1997) 201–236
16. Prestwich, S., Rossi, F., K.B.Venable, Walsh, T.: Constrained CP-Nets. In: Italian

Conference on Computational Logic. (2004)

Multi-Calendar Appointment Scheduling [...] 501

