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Abstract. This paper presents an experimental study of constraint propagation algorithms for preemptive 
scheduling. We propose generalizations of non-preemptive constraint propagation techniques (based on 
timetables, on disjunctive constraints, and on edge-finding) to preemptive and  “mixed” problems, i.e., 
problems in which some activities can be interrupted and some cannot. Another approach relies on incremental 
flow-based techniques. We theoretically compare these approaches and present an experimental comparison 
based on a branch and bound procedure for the preemptive variant of the job-shop scheduling problem. We 
show that both edge-finding and flow-based techniques allow the resolution of hard problem instances, 
including the preemptive variant of the famous FT10. 
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1. Preemptive disjunctive scheduling 

Given a set of resources with given capacities, a set of activities with given durations and 
resource requirements, and a set of temporal constraints between activities, a “pure” 
scheduling problem consists of deciding when to execute each activity, so that both 
temporal constraints and resource constraints are satisfied. Most scheduling problems 
can easily be represented as instances of the constraint satisfaction problem 
(Kumar, 1992): given a set of variables, a set of possible values (domain) for each 
variable, and a set of constraints between the variables, assign a value to each variable, 
so that all the constraints are satisfied. 

Several types of scheduling problems can be distinguished: 
• In disjunctive scheduling, each resource can execute at most one activity at a time. In 

cumulative scheduling, a resource can run several activities in parallel, provided that 
the resource capacity is not exceeded. 

• In non-preemptive scheduling, activities cannot be interrupted. Each activity A must 
execute without interruption from its start time to its end time. In preemptive 
scheduling, activities can be interrupted at any time, e.g., to let some other activities 
execute. 

A non-preemptive scheduling problem can be encoded efficiently as a constraint 
satisfaction problem: two variables, start(A) and end(A), are associated with each 
activity A; they represent the start time and the end time of A. The smallest values in the 
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domains of start(A) and end(A) are called the earliest start time and the earliest end time 
of A (ESTA and EETA). Similarly, the greatest values in the domains of start(A) and end(A) 
are called the latest start time and the latest end time of A (LSTA and LETA). The duration 
of the activity is an additional variable, defined as the difference between the end time 
and the start time of the activity. 

A preemptive scheduling problem is more difficult to represent: one can either 
associate a set variable (i.e., a variable the value of which will be a set) set(A) with each 
activity A, or define a 0-1 variable W(A, t) for each activity A and time t; set(A) 
represents the set of times at which A executes, while W(A, t) assumes value 1 if and 
only if A executes at time t. Ignoring implementation details, let us note that: 

• the value of W(A, t) is 1 if and only if t belongs to set(A). 
• assuming time is discretized, start(A) and end(A) can be defined, in both the 

preemptive and the non-preemptive case, by start(A) = mint∈set(A)(t) and 
end(A) = maxt∈set(A)(t + 1); in the preemptive case, these variables are often needed 
to connect activities together by temporal constraints. 

• in the non-preemptive case, set(A) = [start(A) end(A)), with the interval 
[start(A) end(A)) closed on the left and open on the right so that 
|set(A)| = end(A) − start(A) = duration(A). 

A number of researchers have recently designed, implemented, and evaluated 
constraint propagation techniques for non-preemptive disjunctive and cumulative 
scheduling. See, for example, (Smith, 1983), (Rit, 1986), (Le Pape & Smith, 1987), 
(Collinot & Le Pape, 1987), (Burke, 1989), (Prosser, 1990), (Burke & Prosser, 1991), 
(Erschler et al., 1991), (Le Pape, 1991), (Lopez, 1991), (Beck, 1992), (Smith, 1992), 
(Lopez et al., 1992), (Aggoun & Beldiceanu, 1993), (Smith & Cheng, 1993), (Varnier 
et al., 1993), (Caseau & Laburthe, 1994), (Cheng & Smith, 1994), (Laborie, 1994), 
(Le Pape, 1994), (Nuijten & Aarts, 1994), (Nuijten, 1994), (Baptiste & Le Pape, 1995a), 
(Baptiste & Le Pape, 1995b), (Caseau & Laburthe, 1995a), (Caseau & Laburthe, 1995b), 
(Cheng & Smith, 1995a), (Cheng & Smith, 1995b), (Caseau & Laburthe, 1996a), 
(Colombani, 1996), (Lévy, 1996), (Lock, 1996), (Nuijten & Aarts, 1996), (Baptiste & Le 
Pape, 1997). Coupled with branch and bound backtracking algorithms, these techniques 
proved to be successful on both academic and industrial problems. In comparison, 
preemptive scheduling problems (and “mixed” problems where some activities can be 
interrupted and some cannot) have received almost no attention from both the Operations 
Research and the Artificial Intelligence community. In this paper, we propose 
generalizations of non-preemptive constraint propagation techniques to preemptive and 
“mixed” disjunctive scheduling. For each technique (Sections 2 to 5), we first introduce 
the constraint propagation rules and algorithms developed by other researchers for the 
non-preemptive case; then, we present our generalization. Section 6 presents an 
experimental study based on the preemptive variant of the job-shop scheduling problem. 
Section 7 presents conclusions and future work. 
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2. Timetable constraints 

2.1. The non-preemptive case 

A common mechanism to propagate resource constraints in the non-preemptive case 
relies on an explicit data structure called “timetable” to maintain information about 
resource utilization and resource availability over time. Resource constraints are 
propagated in two directions: from resources to activities, to update activity time bounds 
(earliest and latest start and end times) according to the availability of resources; and 
from activities to resources, to update the timetables according to the time bounds of 
activities. Although several variants exist (Le Pape, 1988), (Fox, 1990), (Le Pape, 1994), 
(Smith, 1994), (Caseau & Laburthe, 1996a), (Lock, 1996), the propagation mainly 
consists of maintaining “arc-B-consistency” (Lhomme, 1993)1 on the formula: 

∑A [W(A, t) ∗ capacity(A)] ≤ capacity(t) 

where capacity(A) denotes the capacity required by activity A, capacity(t) denotes the 
capacity available at time t, and W(A, t) is an implicit 0-1 variable representing the 
Boolean value [start(A) ≤ t < end(A)]. 

 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 

Example: Figure 1 displays two activities A and B which require the same resource of 
capacity 1. The latest start time LSTA of A is smaller than its earliest end time EETA. Hence, 
it is guaranteed that A will execute between LSTA = 1 and EETA = 2. Over this period, W(A, 
t) is set to 1 and the corresponding resource amount is no longer available for B. Since B 
cannot be interrupted and cannot be finished before 1, the earliest start time of B is 
updated to 2 (propagation 1). Then, W(B, t) is set to 1 over the interval [2, 4), which 

Activity EST EET LST LET Duration 

A 0 2 1 3 2 

B 0 2 2 4 2 

 

Before propagation 

A 

B 

0 1 2 3 4 5 6 7 

Activity EST EET LST LET Duration 

A 0 2 1 3 2 

B 2 4 2 4 2 

 

Propagation 1 

A 

B 

0 1 2 3 4 5 6 7 

Activity EST EET LST LET Duration 

A 0 2 0 2 2 

B 2 4 2 4 2 

 

Propagation 2 

A 

B 

0 1 2 3 4 5 6 7 
 Figure 1. Propagation of the timetable constraint (non-preemptive case) 
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results in a new propagation step, where the latest end time of A is set to 2 (propagation 
2). 

2.2. The preemptive case 

At the first glance, it seems that the main principle of the timetable mechanism directly 
applies to both the preemptive and the mixed case. However, an important difference 
appears in the relation between the five variables W(A, t), set(A), start(A), end(A), and 
duration(A). The earliest start time ESTA can easily be set to “the first time t at which 
W(A, t) can be 1.” Similarly, the latest end time LETA can easily be set to 1 + “the last 
time t at which W(A, t) can be 1.” However, the earliest end time EETA must be computed 
so that there possibly exist duration(A) time points in set(A) ∩ [ESTA EETA), and the latest 
start time LSTA must be computed so that there possibly exist duration(A) time points in 
set(A) ∩ [LSTA LETA). These additional propagation steps make the overall propagation 
process far more complex. 

In the reverse direction, it is important to notice that W(A, t) cannot be set to 1 as soon 
as LSTA ≤ t < EETA. The only situation in which W(A, t) can be deduced to be 1 is when no 
more than duration(A) time points can possibly belong to set(A). This is unlikely to 
occur before decisions (choices in a search tree) are made to instantiate set(A). 
Therefore, constraint propagation cannot prune much. 

 

 

 

 

 

 

 

Example: Given the data of Figure 1, the timetable mechanism cannot deduce anything 
if both activities can be interrupted. Figure 2 shows what happens when only B can be 
interrupted. As in Figure 1, it is guaranteed that A will execute between LSTA = 1 and EETA 
= 2. Over this period, the corresponding resource amount is no longer available for B. 
The earliest end time of B is then set to 3. Then the propagation process stops since there 
is no time point at which B is guaranteed to execute. 

 
Both costly and in most cases ineffective, the timetable mechanism appears far from 

satisfactorily applicable to preemptive problems. Several researchers incorporated some 

Figure 2. Propagation of the timetable constraint (mixed case) 
 

Activity EST EET LST LET Duration 

A 0 2 1 3 2 

B 0 2 2 4 2 

 

Before propagation 

A 

0 1 2 3 4 5 6 7 

Activity EST EET LST LET Duration 

A 0 2 1 3 2 

B 0 3 2 4 2 

 

Propagation 1 

A 

0 1 2 3 4 5 6 7 

B (interruptible) 

B (interruptible) 
(interruptiblme 
(interruptible) 
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possibilities of preemption in their constraint-based algorithms or applications 
(e.g., interrupt a machining operation in favor of a planned machine maintenance but not 
in favor of another machining operation, interrupt an activity at most once or twice 
(Zweben et al., 1993), (Smith, 1994), (Le Pape, 1996), (Pegman et al., 1997)). Few did 
attack the general problem of preemptive and mixed scheduling. Demeulemeester (1992) 
developed a branch and bound algorithm for a particular preemptive cumulative 
scheduling problem: the preemptive resource-constrained project scheduling problem. 
This algorithm relies on memorizing states rather than on constraint propagation to prune 
the search space. Baptiste (1994) reports on a tentative implementation, in ILOG SOLVER 
(Puget, 1994), (Puget & Leconte, 1995), of preemptive timetable constraints. The 
reported results confirm that even on simple problems the propagation process is rather 
slow. Let us note, however, that the timetable mechanism can easily be generalized to 
other types of resources, such as resources of capacity m > 1, or resources which must be 
in a specific state for an activity to execute (Le Pape, 1994). Such is not the case for the 
techniques described in the following sections. 

3. Disjunctive constraints 

3.1. The non-preemptive case 

In non-preemptive disjunctive scheduling, two activities A and B which require a 
common resource R cannot overlap in time: either A precedes B or B precedes A. If n 
activities A1 … An require R, the resource constraint can be implemented as n∗(n – 1) / 2 
(explicit or implicit) disjunctive constraints. As for timetable constraints, variants exist 
in the literature (Erschler, 1976), (Carlier, 1984), (Esquirol, 1987), (Le Pape, 1988), 
(Smith & Cheng, 1993), (Varnier et al., 1993), (Baptiste & Le Pape, 1995a), but in most 
cases the propagation consists of maintaining arc-B-consistency on the formula: 

[end(A) ≤ start(B)] or [end(B) ≤ start(A)]. 

Disjunctive constraints provide more precise time bounds than the corresponding 
timetable constraints. Indeed, if an activity B is known to execute at some time t between 
the earliest start time ESTA and the earliest end time EETA of A, LSTB ≤ t < EETA. Then, B 
must precede A and the propagation of the disjunctive constraint implies 
start(A) ≥ EETB > t. 

The following example shows that, in some cases, disjunctive constraints propagate 
more than timetable constraints. 

 

 

 

Activity EST EET LST LET Duration 

A 0 2 2 4 2 

B 1 3 3 5 2 

 

Before propagation 

Activity EST EET LST LET Duration 

A 0 2 1 3 2 

B 2 4 3 5 2 

 

Propagation 1 

A 

B 

0 1 2 3 4 5 6 7 

Figure 3. Propagation of the disjunctive constraint (non-preemptive case) 
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Example: Figure 3 displays two activities A and B which require the same resource of 
capacity 1. The earliest end time of each activity does not exceed its latest start time, so 
the timetable constraint cannot deduce anything. On the contrary, the propagation of the 
disjunctive constraint imposes end(A) ≤ start(B) which, in turn, results in updating both 
ESTB and LETA. 

3.2. The preemptive case 

In the preemptive disjunctive case, the fact that activities A and B cannot overlap is most 
naturally represented by two alternative formulas: 

set(A) ∩ set(B) = ∅ 

or 

∀t, [W(A, t) = 0] or [W(B, t) = 0]. 

When one of these formulas is adopted, the preemptive disjunctive constraints and the 
corresponding preemptive timetable constraints deduce the same time bounds. However, 
a simple rewriting of the non-preemptive disjunctive constraint 

 [start(A) + duration(A) ≤ end(B) – duration(B)] 
or [start(B) + duration(B) ≤ end(A) – duration(A)] 

suggests an additional preemptive disjunctive constraint: 
 

[start(A) + duration(A) + duration(B) ≤ end(A)] 
or [start(A) + duration(A) + duration(B) ≤ end(B)] 
or [start(B) + duration(A) + duration(B) ≤ end(A)] 
or [start(B) + duration(A) + duration(B) ≤ end(B)] 

which can serve as a complement to set(A) ∩ set(B) = ∅. Note that in the mixed case, 
the first (fourth) disjunct can be removed from the disjunction if A (respectively, B) 
cannot be interrupted. 
Example: In the example of Figure 4, the propagation of the redundant constraint 
provides start(A) ≤ 1 and end(A) ≥ 5. 
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4. Edge-finding 

4.1. The non-preemptive case 

The term “edge-finding” is often used in non-preemptive disjunctive scheduling 
(Applegate & Cook, 1991), (Baptiste & Le Pape, 1995b), (Caseau & Laburthe, 1995b). 
It denotes both a “branching” and a “bounding” technique. The branching technique 
consists of ordering activities that require the same resource. At each node, a set of 
activities Ω is selected and, for each activity A in Ω, a new branch is created where A is 
constrained to execute first (or last) among the activities in Ω. The bounding technique 
consists of deducing that some activities from a given set Ω must, can, or cannot, 
execute first (or last) in Ω. 

In the following, pA denotes the minimal duration of A, ESTΩ the smallest of the earliest 
start times of the activities in Ω, LETΩ the greatest of the latest end times of the activities 
in Ω, and pΩ the sum of the minimal durations of the activities in Ω. Let A « B (A » B) 
mean that A executes before (after) B and A « Ω (A » Ω) mean that A executes before 
(after) all the activities in Ω. Once again, variants exist (Pinson, 1988), (Carlier & 
Pinson, 1990), (Carlier & Pinson, 1994), (Caseau & Laburthe, 1994), (Nuijten, 1994), 
(Brucker & Thiele, 1996), (Lévy, 1996), (Martin & Shmoys, 1996), but the following 
rules capture most of the edge-finding bounding technique: 

  ∀Ω, ∀A∉Ω, [LETΩ∪{A} – ESTΩ < pΩ + pA] ⇒ A « Ω 
  ∀Ω, ∀A∉Ω, [LETΩ – ESTΩ∪{A} < pΩ + pA] ⇒ A » Ω 
  A « Ω ⇒ [end(A) ≤ minΩ’⊆Ω (LETΩ’ – pΩ’)] 
  A » Ω ⇒ [start(A) ≥ maxΩ’⊆Ω (ESTΩ’ + pΩ’)] 

If n activities require the resource, there are a priori O(n ∗ 2n) pairs (A, Ω) to consider. 
An algorithm that performs all the time-bound adjustments in O(n2) is presented in 
(Carlier & Pinson, 1990). It consists of a “primal” algorithm to update earliest start times 
and a “dual” algorithm to update latest end times. The primal algorithm runs as follows: 

Activity EST EET LST LET Duration 

A 0 4 2 6 4 

B 2 3 3 4 1 

 

Before propagation 

Activity EST EET LST LET Duration 

A 0 5 1 6 4 

B 2 3 3 4 1 

 

Propagation 1 

Figure 4. Propagation of the disjunctive constraint (preemptive case) 
0 1 2 3 4 5 6 7 

B (interruptible) 

A (interruptible) 
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• Compute “Jackson’s preemptive schedule” (JPS) for the resource under 
consideration. JPS is the preemptive schedule obtained by applying the following 
priority rule: whenever the resource is free and one activity is available, schedule the 
activity A for which LETA is the smallest. If an activity B becomes available while A is 
in process, stop A and start B if LETB is strictly smaller than LETA; otherwise 
continue A. 

• For each activity A, compute the set Ψ of the activities which are not finished at 
t = ESTA on JPS. Let pB* be the residual duration on the JPS of the activity B at time t. 
Take the activities of Ψ in decreasing order of latest end times and select the first 
activity C such that: 

ESTA + pA + ∑B∈Ψ−{A} | LETB ≤ LETC (pB*) > LETC 

If such an activity C exists, then post the following constraints: 

   A » {B∈Ψ−{A} | LETB ≤ LETC} 
   start(A) ≥ maxB∈Ψ−{A} | LETB ≤ LETC

 (CB
JPS) 

where CB
JPS is the completion time of activity B in JPS. 
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Example: Figure 5 presents the JPS of a resource of capacity 1 required by 3 activities. 
On this example, the edge-finding propagation algorithm deduces start(A) ≥ 8, when the 
timetable and the disjunctive constraint propagation algorithms deduce nothing.  

 
 
 
 
 
 
 
 
 
 
 
 
Nuijten (1994) and Martin and Shmoys (1996) present variants of this algorithm, 

which also run in O(n2), but do not require the computation of Jackson’s preemptive 
schedule. Carlier and Pinson (1994) present another variant, which runs in O(n∗log(n)) 
but requires much more complex data structures. Baptiste (1995) and Martin and 
Shmoys (1996) establish an interesting property of the edge-finding technique: 
considering only the resource constraint and the current time bounds of activities, the 
algorithm computes the earliest start time at which each activity A could start if all the 
other activities were interruptible. This suggests a logical extension of the technique to 
preemptive and mixed cases: for each activity A requiring the resource, if A is not 
interruptible, the non-preemptive edge-finding bound applies; if A is interruptible then, 
considering only the resource constraint and the current time bounds, it would be nice to 
determine the earliest start and end times between which A could execute if all the 
activities were interruptible. 

4.2. The preemptive case 

Let us define 〉〉 so that A 〉〉 Ω means “A ends after all activities in Ω ” and substitute 〉〉 
for » in the rules of the primal algorithm. 

  ∀Ω, ∀A∉Ω, [LETΩ – ESTΩ∪{A} < pΩ + pA] ⇒ A 〉〉 Ω 
  A 〉〉 Ω ⇒ [start(A) ≥ maxΩ’⊆Ω (ESTΩ’ + pΩ’)] 

When A cannot be interrupted, these two rules remain valid (even if other activities can 
be interrupted) and the adjustment of ESTA is the same than in the non-preemptive case. 
When A can be interrupted, the first rule is still valid but the second is not. However, the 
second rule can be replaced by a weaker one: 

  A 〉〉 Ω ⇒ [end(A) ≥ maxΩ’⊆Ω (ESTΩ’∪{A} + pΩ’∪{A})] 

C 

 EST LET Duration 

A 0 17 6 
B 1 11 4 
C 1 11 3 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 

A B 

Figure 5. The Jackson’s preemptive schedule of 3 activities A, B, C 
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This leads to a more general primal edge-finding algorithm: 
• Compute Jackson’s preemptive schedule JPS. 
• For each activity A, compute the set Ψ of the activities which are not finished at 

t = ESTA on JPS. Let pB* be the residual duration on the JPS of the activity B at time t. 
Take the activities of Ψ in decreasing order of latest end times and select the first 
activity C such that: 

ESTA + pA + ∑B∈Ψ−{A} | LETB ≤ LETC
 (pB*) > LETC 

If such an activity C exists, then post the following constraints: 

A 〉〉 {B∈Ψ−{A} | LETB ≤ LETC}  

start(A) ≥ maxB∈Ψ−{A} | LETB ≤ LETC
 (CB

JPS) if A cannot be interrupted 

end(A) ≥ ESTA + pA + ∑B∈Ψ−{A} | LETB ≤ LETC
 (pB*) if A can be interrupted 

 
Example: In the example of Figure 5, the algorithm above deduces start(A) ≥ 8 if A 
cannot be interrupted. It deduces end(A) ≥ 13 if A can be interrupted. 
 

It is proven in (Baptiste, 1995) that considering only the resource constraint and the 
current time bounds of activities, this algorithm computes: 
• when A is not interruptible: the earliest time at which A could start if all the other 

activities were interruptible. 
• when A is interruptible: the earliest time at which A could end if all the other 

activities were interruptible. 
Nuijten’s edge-finding algorithm can be modified in a similar fashion. The following 

algorithm is equivalent to the algorithm sketched above, assuming ACTS is a list of the 
activities that require the resource, in increasing order of earliest start times, and 
CONCLUDE(A, t1, t2) memorizes that A cannot end before t1 if A is interruptible and that A 
cannot start before t2 otherwise. 
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For each latest end time emax of an activity in ACTS 
P ← 0, g ← -∞, H ← -∞ 
For A in reverse(ACTS) 

If LETA ≤ emax 
Then P ← P + pA 
 g ← max(g, ESTA + P) 
 If (emax < g) raise a contradiction and exit 
GA ← g 

For A in ACTS 
If LETA ≤ emax 
Then H ← max(H, ESTA + P) 

P ← P − pA 
Else If (ESTA + P + pA > emax) 
 Then CONCLUDE(A, ESTA + P + pA, GA) 

If (H + pA > emax) 
Then CONCLUDE(A, H + pA, g) 

The proof that this algorithm is equivalent to the JPS-based algorithm follows the 
proof of Nuijten’s algorithm in (Nuijten, 1994). First, if A cannot be interrupted, the new 
algorithm makes the same conclusions than Nuijten’s algorithm, so the proof in (Nuijten, 
1994) applies to the new algorithm. Let us now assume that A can be interrupted. It is 
proven in (Baptiste, 1995) that the earliest time at which A could end if all the other 
activities could be interrupted is equal to the maximal value of ESTΩ∪{A} + pΩ∪{A} for Ω 
triggering the edge-finding rules. The earliest end times computed by the new algorithm 
are, when they are used, equal to ESTΩ∪{A} + pΩ∪{A} for such Ω. To prove that the best 
possible bound is reached, consider the two cases distinguished in (Nuijten, 1994): if A 
precedes all the activities of Ω in ACTS, either Ω or a superset of Ω is detected by the first 
test (ESTA + P + pA > emax); if some activity of Ω precedes A in ACTS, either Ω or a 
superset of Ω is detected by the second test (H + pA > emax). In both cases, a bound 
greater than or equal to ESTΩ∪{A} + pΩ∪{A} is found. 

This algorithm can be further improved:  
• When A can be interrupted and set(A) is known to contain a series of time intervals 

I1 … In, A can be replaced by (n + 1) activities A1 … An A’, with each Ai forced to 
execute over Ii and A’ with the same earliest start time and latest end time than A and 
a duration equal to (pA – Σ1 ≤ i ≤ n duration(Ii)). 

• When A can be interrupted and either (ESTA + P = emax) or (H = emax) in the course 
of the algorithm, it is certain that A cannot start before emax. Hence, the algorithm 
can also be used to update the earliest start times of interruptible activities. 

 
Remark: When activities have fixed durations, the computation and the use of GA and g 
to compute maxΩ’⊆Ω (ESTΩ’ + pΩ’) serves only to avoid repeated iterations of the 
algorithm. Indeed, suppose a purely preemptive edge-finding algorithm is used and 
suppose A is not interruptible. The purely preemptive edge-finding algorithm uses the 
following rules: 
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  ∀Ω, ∀A∉Ω, [LETΩ – ESTΩ∪{A} < pΩ + pA] ⇒ A 〉〉 Ω 
  A 〉〉 Ω ⇒ [end(A) ≥ maxΩ’⊆Ω (ESTΩ’∪{A} + pΩ’∪{A})] 

When constraint propagation stops, the earliest end time of A is set to a value EETA such 
that if all activities were interruptible, there would be a schedule S of the resource such 
that (1) A does not start before ESTA and (2) A ends at EETA. If the duration of A is fixed, 
the propagation of the duration constraint start(A) + duration(A) = end(A) guarantees 
that when constraint propagation stops ESTA + pA = EETA. Consequently, A is not 
interrupted in S, which implies that the non-preemptive edge-finding algorithm cannot 
find a better bound for ESTA. 

5. Flow constraints 

Régin (1994) describes an algorithm, based on matching theory, to achieve the global 
consistency of the “all-different” constraint. This constraint is defined on a set of 
variables and constrains these variables to assume pairwise distinct values. Régin’s 
algorithm maintains arc-consistency on the n-ary “all-different” constraint, which is 
shown to be more powerful than achieving arc-consistency for the n∗(n – 1) / 2 
corresponding binary “different” constraints. 

Basically, Régin’s algorithm consists of building a bipartite graph G(X, Y, E) where X 
is a set of vertices corresponding to the variables of the “all-different” constraint, Y is a 
set of vertices corresponding to the possible values of these variables, and E is a set of 
edges (x, y), x ∈ X, y ∈ Y, such that (x, y) ∈ E if and only if y is a possible value for x. As 
a result, the “all-different” constraint is satisfiable if and only if there exists a 0-1 
function f on E such that: 

  ∀x∈X, Σ(x, y)∈E f(x, y) = 1 
  ∀y∈Y, Σ(x, y)∈E f(x, y) ≤ 1 

In addition, a given value yj is a possible value for a given variable xi if and only there 
exists a 0-1 function fij such that: 

  ∀x∈X, Σ(x, y)∈E fij(x, y) = 1 
  ∀y∈Y, Σ(x, y)∈E fij(x, y) ≤ 1 
  fij(xi, yj) = 1 

The problem of finding such a function (flow) f or fij can be solved in polynomial time. 
In addition, the current value of f can be used to generate fij at low cost, and to compute 
the new value of f when the domain of a variable changes. See Régin (1994, 1995, 1996) 
for details and extensions. 

Notice that when all activities have duration 1, Régin’s algorithm can be directly 
applied. In the preemptive case, this can be generalized to activities of arbitrary 
durations by seeing each activity A as duration(A) sub-activities of duration 1. Then, 
each sub-activity has to pick a value (the time at which the sub-activity executes) and the 
values of the sub-activities that require a given resource have to be pairwise distinct. 
However, under this naive formulation, both the number of variables and the number of 
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values would be too high (dependent on the sum of the durations of the activities) for 
practical use. This led us to another formulation where the nodes x in X correspond to 
activities, and the nodes y in Y correspond to a partition of the time horizon in n disjoint 
intervals I1 = [s1 e1) ... In = [sn en) such that [s1 en) represents the complete time horizon, 
ei = si+1 (1 ≤ i < n), and {s1 ... sn en} includes all the time points at which the information 
available about W(A, t) changes (Figure 6 illustrates this formulation on a small 
example). In particular, {s1 ... sn en} includes all the earliest start times and latest end 
times of activities, but it can also include bounds of intervals over which W(A, t) is 
constrained to be true or false (in this sense, the flow model is more general than 
preemptive edge-finding, but it does not generalize to the mixed case). E is defined as 
the set of pairs (x, y) such that activity x can execute during interval y. The maximal 
capacity cmax(x, y) of edge (x, y) is set to |y|, and the minimal capacity cmin(x, y) of edge (x, 
y) is set to |y| if x is constrained to execute over y and to 0 otherwise. As a result, the 
preemptive resource constraint is satisfiable if and only if there exists a function f on E 
such that: 
  ∀x∈X, Σ(x, y)∈E f(x, y) = duration(x) 
  ∀y∈Y, Σ(x, y)∈E f(x, y) ≤ |y| 
  ∀e∈E, cmin(e) ≤ f(e) ≤ cmax(e) 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Similar models are commonly used in Operations Research. For example, Federgruen 

& Groenevelt (1986) use a more general model to solve particular polynomial 
scheduling problems with multiple parallel resources operating at different speeds. 
Following Régin (1994), what we propose below is to use network flow techniques, not 
only to find solutions to polynomial sub-problems, but also to update the domains of the 
variables. 

 EST LET Duration 
A 0 10 5 
B 2 4 1 
C 4 6 1 
D 6 8 1 

 

Figure 6. The bipartite graph corresponding to activites A, B, C, D 
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Baptiste (1995) provides two algorithms for the search of a compatible flow f (SCF). 
The first algorithm uses Herz’s algorithm, as described in (Gondran & Minoux, 1995), to 
construct the compatible flow, starting from f(x, y) = 0 for all x and all y. It runs in O(|X| 
∗ |Y| ∗ Σx∈X duration(x)). The second algorithm builds a variant of Jackson’s preemptive 
schedule which respects the intervals during which activities are required to execute. 
This can be done in O(|Y| ∗ log(|Y|)). This schedule is then used as an initial (possibly 
incompatible) flow, repaired by Herz’s algorithm in O(|X| ∗ |Y| ∗ F), where F denotes the 
sum, over the activities, of the sizes of the intervals included in [ESTA LETA] during which 
the activity A is not allowed to execute (for reasons that are not directly related to the use 
of the resource by other activities). 

To reduce variable domains, the most natural generalization of Régin’s algorithm 
consists of varying cmin(e) and cmax(e) for each edge e in turn. The following algorithm 
updates the minimal flow cmin(x, y) that can pass through an edge (x, y). The maximal 
flow cmax(x, y) is obtained in a similar fashion. 
• Set u = cmin(x, y) and v = cmax(x, y). 
• While (u ≠ v) 

• Set w = (u + v) / 2 
• Search for a compatible flow f with f(x, y) ≤ w. 
• If such a flow f exists, set v = w, otherwise set u = w + 1. 

• Set cmin(x, y) = u. 
It is proven in (Baptiste, 1995) that this adjustment of edge capacities (AEC) can be 

done for all edges (x, y) in O(|X|2 ∗ |Y| ∗ H), where H denotes the overall time horizon 
en − s1. This complexity is reached by systematically reusing the previous flow as a start 
point when computing the flow f with the new constraint f(x, y) ≤ w. 

Then the following rules can be applied: 

  cmax(x, y) = 0 ⇒ ∀t∈y, W(x, t) = 0 
  cmin(x, y) = |y| ⇒ ∀t∈y, W(x, t) = 1 
  cmin(x, [si ei)) ≠ 0 ⇒ [start(x) ≤ ei – cmin(x, [si ei))] 
  cmin(x, [si ei)) ≠ 0 ⇒ [end(x) ≥ si + cmin(x, [si ei))] 

However, SCF and AEC are not sufficient to determine the best possible time bounds 
for activities. Let us consider, for example, the four activities A, B, C, D defined on 
Figure 6. In this case, cmin(A, I) remains equal to 0 for all I; yet A cannot start after 3 and 
cannot end before 7. However, the flow model can be used to compute the best possible 
earliest end times. First, given x and the intervals y1 … yn (sorted in reverse chronological 
order) to which x is connected, one can find the maximal integer k such that there exists 
a compatible flow f with f(x, yi) = 0 for 1 ≤ i < k. Then, one can compute the minimal 
flow fmin(x, yk) through (x, yk), under the constraints f(x, yi) = 0 for 1 ≤ i < k. Under these 
conditions, end(x) ≥ sk + fmin(x, [sk ek)) provides the best possible earliest end time for x. It 
is shown in (Baptiste, 1995) that this global update of time bounds (GUTB) can be done 
for all activities x in O(|X|2 ∗ |Y| ∗ H). As for AEC, this complexity is reached by 
systematically reusing the previous flow as a start point for computing the new flow 
when an additional capacity constraint is added. 
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Let us remark that the incrementality of Herz’s algorithm is a key factor for both the 
worst-case and the practical complexity of SCF, AEC and GUTB. Strongly polynomial 
algorithms (with complexity independent of the schedule duration) could be used for the 
search of a compatible flow (Gondran & Minoux, 1995), but in practice the use of such 
non-incremental algorithms would probably make the SCF, AEC and GUTB algorithms 
less efficient. 

6. Experimental study 

6.1. The preemptive job-shop scheduling problem 

To evaluate the constraint propagation algorithms presented in the preceding sections, 
we developed a branch and bound procedure for the preemptive job-shop scheduling 
problem (PJSSP), the variant of the job-shop scheduling problem (JSSP) in which all 
activities are interruptible. More precisely, one is given a set of jobs and a set of 
machines. Each job consists of a set of activities to be processed in a given order. Each 
activity is given an integer processing time and a machine on which it has to be 
processed. A machine can process at most one activity at a time. Activities may be 
interrupted at any time, an unlimited number of times. The problem is to find a schedule, 
i.e., a set of execution times for each activity, that minimizes the makespan, i.e., the time 
at which all activities are finished. The decision variant of the PJSSP is NP-complete in 
the strong sense (Garey & Johnson, 1979). 

6.2. A dominance criterion 

The most successful exact (branch and bound) approaches for the non-preemptive JSSP 
consist of ordering the set of activities ACTS(M) which require the same machine M. At 
each node, a machine M and a set Ω ⊆ ACTS(M) are selected. For each activity A in Ω, a 
new branch is created where A is constrained to execute first (or last) among the 
activities in Ω. This decision is then propagated, through some variant of the 
edge-finding bounding technique (Carlier & Pinson, 1990), (Applegate & Cook, 1991), 
(Carlier & Pinson, 1994), (Baptiste & Le Pape, 1995b), (Caseau & Laburthe, 1995b). 

For the PJSSP, this branching scheme is not valid since activities are interruptible, and 
thus cannot just be ordered. However, the dominance criterion introduced below allows 
the design of branching schemes which in a sense “order” the activities that require the 
same machine. 

DEFINITION 1   For any schedule S and any activity A, we define the “due date of A in S” 
dS(A) as: 

• the makespan of S if A is the last activity of its job; 
• the start time of the successor of A otherwise. 
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DEFINITION 2   For any schedule S, an activity Ak has priority over an activity Al in S 
(Ak <S Al) if and only if either dS(Ak) < dS(Al) or dS(Ak) = dS(Al) and k ≤ l. Note that <S is a 
total order. 

THEOREM 1   For any schedule S, there exists a schedule J(S) such that: 
1. J(S) meets the due dates: ∀A, the end time of A in J(S) is at most dS(A). 
2. J(S) is “active”: ∀M, ∀t, if some activity A ∈ ACTS(M) is available at time t, M is not 

idle at time t (where “available” means that the predecessor of A is finished and A is 
not finished). 

3. J(S) follows the <S priority order: ∀M, ∀t, ∀Ak ∈ ACTS(M), ∀Al ∈ ACTS(M), Al ≠ Ak, if 
Ak executes at time t, either Al is not available at time t or Ak <S Al. 

Proof: We construct J(S) chronologically. At any time t and on any machine M, the 
available activity that is the smallest (according to the <S order) is scheduled. J(S) 
satisfies properties 2 and 3 by construction. Let us suppose J(S) does not satisfy 
property 1. Let A denote the smallest activity (according to <S) such that the end time of 
A in J(S) exceeds dS(A). We claim that: 
• the schedule of A is not influenced by the activities Ak with A <S Ak (by construction); 
• for every activity Ak <S A, the time at which Ak becomes available in J(S) does not 

exceed the time at which Ak starts in S (because the predecessor of Ak is smaller 
than A). 

Let M be the machine on which A executes. In J(S), the activities Ak ∈ ACTS(M) such that 
Ak <S A are scheduled in accordance with Jackson’s rule, applied to the due dates dS(Ak). 
Since dS(A) is not met, and since Jackson’s rule is guaranteed to meet due dates 
whenever it is possible to do so (cf. (Carlier & Pinson, 1990)), we deduce that it is 
impossible to schedule the activities Ak ∈ ACTS(M) such that Ak <S A between their start 
times in S and their due dates in S. This is absurd since in S these activities are 
scheduled between their start times and their due dates. So, the hypothesis that J(S) 
violates property 1 is contradicted. 

Example: Figure 7 displays a schedule S and its “Jackson derivation” J(S) . 
 

 

 

 

 

 

Job 3: executes on M2 (duration= 5), on M1 (duration= 2) and finally on M3 (duration= 1) 

Job 2: executes on M1 (duration= 2), on M3 (duration= 1) and finally on M2 (duration= 2) 

Job 1: executes on M1 (duration= 3), on M2 (duration= 3) and finally on M3 (duration= 5) 

M1 
M2 
M3 

Schedule S 

M1 
M2 
M3 

Schedule J(S) 

Figure 7. A preemptive schedule and its Jackson derivation 
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6.3. Branching scheme 

We call J(S) the “Jackson derivation” of S. Since the makespan of J(S) does not exceed 
the makespan of S, at least one optimal schedule is the Jackson derivation of another 
schedule. Thus, in the search for an optimal schedule, we can impose the characteristics 
of a Jackson derivation to the schedule under construction. In this section, we present 
two branching procedures in which this result is used to solve the PJSSP. 

Each of them is integrated in the following makespan minimization algorithm: 
1. Compute an obvious upper bound UB of the makespan and an initial lower bound LB. 
2. Select a value V in [LB, UB). 
3. Constrain the makespan to be lower than or equal to V and run the branching 

procedure. If a solution is found, set UB to the makespan of the solution; otherwise, 
i.e., if the search procedure fails, set LB to V + 1. 

4. Iterate steps 2 and 3 until UB = LB. 
The first branching scheme consists of ordering the activities according to an 

hypothetical <S order. For each machine M, an ordered list LM of activities, initially 
empty, is developed as follows: 
1. Select a machine M such that the set KM = ACTS(M) − LM is not empty. 
2. Select an activity Ak in KM (e.g., the one with the smallest latest end time). Add Ak to 

the end of the list LM. Use Jackson’s rule to schedule the activities of LM according to 
the LM priority order and impose the resulting earliest end times. Keep the other 
activities of KM as alternatives to be tried upon backtracking. 

3. Iterate until all the activities are ordered or until all alternatives have been tried. 
This branching scheme is attractive since it mimics the edge-finding branching 

technique that is often used in non-preemptive disjunctive scheduling. Yet, our first 
experiments have been disappointing. This led us to develop another branching scheme 
which more heavily exploits the dominance criterion. 
1. Let t be the earliest date such that there is an activity A available (and not scheduled 

yet!) at t. 
2. Compute K, the set of activities available at t on the same machine than A. 
3. Compute NDK, the set of activities which are not “dominated” in K (as explained 

below). 
4. Select an activity Ak in NDK (e.g., the one with the smallest latest end time). 

Schedule Ak to execute at t. Propagate the decision and its consequences according to 
the dominance criterion. Keep the other activities of NDK as alternatives to be tried 
upon backtracking. 

5. Iterate until all the activities are scheduled or until all alternatives have been tried. 
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Needless to say, the power of this branching scheme highly depends on the rules that 
are used to (a) eliminate “dominated” activities in step 3 and (b) propagate 
“consequences” of the choice of Ak in step 4. The dominance criterion is exploited as 
follows: 
• Whenever Ak ∈ ACTS(M) is chosen to execute at time t, it is set to execute either up to 

its earliest end time or up to the earliest start time of another activity Al ∈ ACTS(M) 
which is not available at time t. 

• Whenever Ak ∈ K is chosen to execute at time t, any other activity Al ∈ K can be 
constrained not to execute between t and the end of Ak. At times t’ > t, this reduces 
the set of candidates for execution: Al is dominated by Ak, hence not included in 
NDK. In step 4, redundant constraints can also be added: end(Ak) + rpt(Al) ≤ end(Al), 
where rpt(Al) is the remaining processing time of Al at time t; end(Ak) ≤ start(Al) if Al 
is not started at time t. 

• If Ak ∈ ACTS(M) is the last activity of its job, Ak is not candidate for execution at time t 
if another activity Al ∈ ACTS(M), which is not the last activity of its job, or such that l 
< k, is available at time t (Ak is dominated by Al). 

The proof that these reductions of the search space do not eliminate all optimal 
schedules follows from the fact that J(S) schedules are dominant. Indeed, in a J(S) 
schedule, (1) an activity cannot be interrupted unless a new activity becomes available 
on the same resource, (2) an activity Ak cannot execute when another activity Al is 
available, unless Ak <S Al, and (3) we cannot have Ak <S Al if Ak is the last activity of its 
job and either Al is not the last activity of its job or l < k. 

An open question at this point is whether there exists an optimal solution S such that 
J(S) = S. This would allow us to constrain the search even more. For example, as soon as 
an activity Ak would be given priority over an activity Al, we could constrain the 
successor of Al not to start before the successor of Ak. This could have a dramatic impact 
on the search space. 

6.4. Experimental results 

The second branching scheme was used to evaluate the various constraint propagation 
techniques developed in this paper. The disjunctive constraint set(A) ∩ set(B) = ∅ and 
the flow-based algorithms, SCF, AEC, and GUTB, were implemented in ILOG SOLVER 
(Puget, 1994) on a RS6000 workstation. The mixed edge-finder was implemented in 
CLAIRE (Caseau & Laburthe, 1996b) on a PC Dell 200MHz running Windows NT. 

Table 1 summarizes the results on 20 well-known instances of the job-shop scheduling 
problem. The first two columns indicate the version of the resource constraint that was 
used and the problem instance(s) under consideration. This can be a unique instance like 
“FT06” or, for “easy” instances, a series of instances similar in size and toughness, like 
“LA01 to LA10.” In the latter case, the table provides average results over the whole 
series. All the instances we use are available from the job-shop directory in the OR 
benchmark library (http://www.ms.ic.ac.uk/info.html), except the CAR instances which 
can be found in the flow-shop directory. 
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Column “BT” provides the total number of backtracks needed to solve the problem. 
Column “CPU” provides the total CPU time in seconds, on a PC for the mixed edge-
finder, and on an RS6000 for the other algorithms. Columns “BT(pr)” and “CPU(pr)” 
provide the number of backtracks and CPU time spent in proving that the optimal 
solution is, indeed, optimal. Results appear only when the considered version of the 
resource constraint enabled the branch and bound algorithm to solve the considered 
instance(s) in a reasonable amount of time. (For the smallest problems (FT06 to CAR4), 
at most 5000 backtracks were allowed for each iteration of the makespan minimization 
procedure.) 

Table 1 shows that both the mixed edge-finder and the GUTB algorithm allow the 
resolution of “tough” problems like CAR5 (with optimal makespan 7667) and FT10 
(900). Part of the differences between the edge-finder and the GUTB algorithm are due 
to differences in implementation, e.g., different computers and different sorting 
functions, so further comparison is not possible. Interestingly enough, the instances that 
appear the most difficult in the non-preemptive case, CAR5 and FT10 (Baptiste, 1994), 
are also the most difficult in the preemptive case.  

Table 2 shows the results obtained by GUTB on the ten 10∗10 (i.e., 10 machines ∗ 10 
jobs = 100 activities) instances used by Applegate and Cook (1991) in their 
computational study of the (non-preemptive) job-shop scheduling problem. Five of these 
instances (ABZ6, LA19, LA20, ORB2, and ORB5) were solved to optimality in a few 
hours of CPU time, one (FT10) was allowed more time to terminate, and four 
(ABZ5, ORB1, ORB3, and ORB4) remained open. For these instances, column “OPT”   
provides the best lower and upper bound that have been achieved. Otherwise, column 
“OPT” provides the value of the optimal makespan. 
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Table 1. Results obtained on 20 instances of the preemptive job-shop scheduling problem. 
 

Constraint Instances BT CPU BT(pr) CPU(pr) 

Disjunctive FT06 6353 3.5 4775 2.6 

Edge-finder FT06 3 0.1 2 0.0 

 LA01-10 1 0.2 1 0.0 
 CAR1-4 9 0.2 1 0.0 

 CAR5 97927 582.6 26034 155.3 

 CAR6-8 2870 23.4 937 7.5 
 FT10 140903 2105.6 41255 624.0 

SCF FT06 24 0.3 21 0.1 

 LA01-10 1196 9.2 1 0.0 
AEC FT06 5 0.5 2 0.1 

 LA01-10 112 25.9 1 0.1 

 CAR1-4 461 61.5 11 2.0 

 CAR6-8 6947 1644.9 1403 351.3 
GUTB FT06 6 0.4 2 0.0 

 LA01-10 9 11.0 1 0.0 

 CAR1-4 27 13.0 1 0.1 
 CAR5 73135 10295.8 19265 2673.7 

 CAR6-8 3593 663.6 819 146.5 

 FT10 254801 97585.7 49817 19626.6 
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Table 2. GUTB results on ten 10∗10 instances of the preemptive job-shop scheduling problem. 

 

 OPT BT CPU BT(pr) CPU(pr) 

FT10 900 254801 97585.7 49817 19626.6 

ABZ5 1159 / 1219     
ABZ6 924 17578 3955.5 10879 2268.3 

LA19 812 39286 7150.1 14184 2482.4 

LA20 871 5494 1483.6 1627 463.8 
ORB1 991 / 1054     

ORB2 864 56863 11199.2 20203 3835.3 

ORB3 951 / 1254     

ORB4 977 / 980     
ORB5 849 16457 4721.3 4496 1296.6 

 
Table 3. Edge-finding results on ten 10∗10 instances of the preemptive job-shop scheduling problem. 

 

 OPT BT CPU BT(pr) CPU(pr) 
FT10 900 140903 2105.6 41255 624.0 

ABZ5 1203 1192553 15628.0 338597 4430.9 

ABZ6 924 17699 307.8 8157 134.3 
LA19 812 34637 564.3 10928 176.4 

LA20 871 2779 59.4 998 22.7 

ORB1 1035 347647 5182.4 85085 1278.3 
ORB2 864 53127 709.4 16189 220.9 

ORB3 973 6804127 96917.7 1947325 27884.2 

ORB4 980 97654 1201.8 37122 461.3 

ORB5 849 10380 158.6 4151 61.6 
 
Table 3 provides the results obtained with the edge-finding algorithm on the same ten 

instances. All of these instances have been solved to optimality. Other instances we have 
solved include FT20 (in 0.4 second), LA11 to LA15 (0.4 second), LA16 (145 minutes), 
LA17 (1 second), LA18 (4 minutes), LA21 (65 hours), LA22 (4 seconds), LA23 
(1 second), LA24 (44 hours), LA26 (1 second), LA28 (1 second), LA30 (1 second), 
LA31 to LA35 (4 seconds), LA37 (110 minutes), ORB6 (39 minutes), ORB7 
(10 minutes), ORB8 (1 second), ORB9 (3 minutes), and ORB10 (1 minute). Let us note 
that, in the non-preemptive case, ORB3 also appears to be one of the most difficult 
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10∗10 instances (Applegate & Cook, 1991), (Baptiste & Le Pape, 1995b), (Caseau & 
Laburthe, 1995b), (Colombani, 1996). Such is not the case for LA16 (also a 10∗10) 
which is considered “easy” in the non-preemptive case. 

7. Conclusion and perspectives 

In this paper, we have presented a variety of constraint propagation techniques for 
preemptive disjunctive scheduling, some of which generalize nicely to the “mixed” case 
in which some activities can be interrupted and some cannot. Experimental results have 
shown that two of these techniques, (1) edge-finding and (2) global update of time 
bounds (GUTB), allow the resolution of hard instances such as the preemptive variant of 
the famous FT10. Let us remark that a combination of the two techniques is not likely to 
be useful when all the activities are interruptible and only time-bound constraints are 
imposed. Indeed, the characterization of the preemptive edge-finding algorithm proves 
that the best possible bounds are obtained. A combination might however be useful in 
more complex situations: on the one hand, the mixed edge-finding algorithm explicitly 
deals with non-interruptible activities, and thus can be more efficiently applied to the 
mixed case; on the other hand, if an interruptible activity cannot execute during some 
time intervals, the GUTB algorithm can take these intervals into account. 

These results encourage us (and hopefully will encourage other researchers) to pursue 
work in the application of constraint programming to preemptive and mixed scheduling 
problems: 
• Until now, most of our efforts have been focused on constraint propagation. More 

work is needed to evaluate the interest of different heuristics and branching 
strategies. Based on our results, the PJSSP currently appears to be much harder than 
the non-preemptive JSSP. An important reason for this is that we have not been able 
to reuse the concept of “bottleneck resource” in an efficient way. An open question is 
how the “bottleneck” concept can be used, without throwing away the dominance 
criterion which appears crucial in reducing the size of the search tree. 

• Most of the results presented in this paper concern resources of capacity 1. More 
work is needed to generalize these techniques to resources of arbitrary capacity. 

• Other constraint propagation techniques, such as energetic reasoning (Lopez, 1991) 
or shaving (Carlier & Pinson, 1994), (Martin & Shmoys, 1996), can be worth 
investigating. 

Acknowledgments 

Part of the work presented in this paper was done while the second author was finishing 
a Master’s thesis at ILOG S.A. The authors want to thank Jean-François Puget, Michel 
Leconte, Wim Nuijten, Jean-Charles Régin, Henri Béringer, Jacques Carlier, Yves 
Caseau, François Laburthe, Bruno de Backer, and Ulrich Junker, for many enlightening 
discussions on constraints, flows, and edge-finding. We also thank the referees for their 
numerous comments, which hopefully led to significant improvements of this paper. 



 
 
 
 
 
 
 

RESOURCE CONSTRAINTS FOR PREEMPTIVE JOB-SHOP SCHEDULING 23 
 

 

Note 

1. Given a constraint c over n variables v1 … vn and a domain Di for each variable vi, c is “arc-consistent” if 
and only if for any variable vi and any value vali in the domain of vi, there exist values val1 … vali−1 vali+1 
… valn in D1 … Di−1 Di+1 … Dn such that c(val1 ... valn) holds. Arc-B-consistency, where B stands for 
bounds, guarantees only that val1 … vali−1 vali+1 … valn exist for vali equal to either the smallest or the 
greatest value in Di. 
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