

Resource constraints for preemptive job-shop
scheduling

CLAUDE LE PAPE1 AND PHILIPPE BAPTISTE1,2 clp@challenger.bouygues.fr, baptiste@utc.fr
1Bouygues, Direction Scientifique, 1, avenue Eugène Freyssinet, 78061 Saint-Quentin-en-Yvelines, France
2UMR CNRS 6599 HEUDIASYC, Université de Technologie de Compiègne, France

Abstract. This paper presents an experimental study of constraint propagation algorithms for preemptive
scheduling. We propose generalizations of non-preemptive constraint propagation techniques (based on
timetables, on disjunctive constraints, and on edge-finding) to preemptive and “mixed” problems, i.e.,
problems in which some activities can be interrupted and some cannot. Another approach relies on incremental
flow-based techniques. We theoretically compare these approaches and present an experimental comparison
based on a branch and bound procedure for the preemptive variant of the job-shop scheduling problem. We
show that both edge-finding and flow-based techniques allow the resolution of hard problem instances,
including the preemptive variant of the famous FT10.

Keywords: Constraint propagation, preemptive scheduling, resource constraints, timetables, disjunctive
constraints, edge-finding, network flows, job-shop scheduling

1. Preemptive disjunctive scheduling

Given a set of resources with given capacities, a set of activities with given durations and
resource requirements, and a set of temporal constraints between activities, a “pure”
scheduling problem consists of deciding when to execute each activity, so that both
temporal constraints and resource constraints are satisfied. Most scheduling problems
can easily be represented as instances of the constraint satisfaction problem
(Kumar, 1992): given a set of variables, a set of possible values (domain) for each
variable, and a set of constraints between the variables, assign a value to each variable,
so that all the constraints are satisfied.

Several types of scheduling problems can be distinguished:
• In disjunctive scheduling, each resource can execute at most one activity at a time. In

cumulative scheduling, a resource can run several activities in parallel, provided that
the resource capacity is not exceeded.

• In non-preemptive scheduling, activities cannot be interrupted. Each activity A must
execute without interruption from its start time to its end time. In preemptive
scheduling, activities can be interrupted at any time, e.g., to let some other activities
execute.

A non-preemptive scheduling problem can be encoded efficiently as a constraint
satisfaction problem: two variables, start(A) and end(A), are associated with each
activity A; they represent the start time and the end time of A. The smallest values in the

2 C. LE PAPE AND PH. BAPTISTE

domains of start(A) and end(A) are called the earliest start time and the earliest end time
of A (ESTA and EETA). Similarly, the greatest values in the domains of start(A) and end(A)
are called the latest start time and the latest end time of A (LSTA and LETA). The duration
of the activity is an additional variable, defined as the difference between the end time
and the start time of the activity.

A preemptive scheduling problem is more difficult to represent: one can either
associate a set variable (i.e., a variable the value of which will be a set) set(A) with each
activity A, or define a 0-1 variable W(A, t) for each activity A and time t; set(A)
represents the set of times at which A executes, while W(A, t) assumes value 1 if and
only if A executes at time t. Ignoring implementation details, let us note that:

• the value of W(A, t) is 1 if and only if t belongs to set(A).
• assuming time is discretized, start(A) and end(A) can be defined, in both the

preemptive and the non-preemptive case, by start(A) = mint∈set(A)(t) and
end(A) = maxt∈set(A)(t + 1); in the preemptive case, these variables are often needed
to connect activities together by temporal constraints.

• in the non-preemptive case, set(A) = [start(A) end(A)), with the interval
[start(A) end(A)) closed on the left and open on the right so that
|set(A)| = end(A) − start(A) = duration(A).

A number of researchers have recently designed, implemented, and evaluated
constraint propagation techniques for non-preemptive disjunctive and cumulative
scheduling. See, for example, (Smith, 1983), (Rit, 1986), (Le Pape & Smith, 1987),
(Collinot & Le Pape, 1987), (Burke, 1989), (Prosser, 1990), (Burke & Prosser, 1991),
(Erschler et al., 1991), (Le Pape, 1991), (Lopez, 1991), (Beck, 1992), (Smith, 1992),
(Lopez et al., 1992), (Aggoun & Beldiceanu, 1993), (Smith & Cheng, 1993), (Varnier
et al., 1993), (Caseau & Laburthe, 1994), (Cheng & Smith, 1994), (Laborie, 1994),
(Le Pape, 1994), (Nuijten & Aarts, 1994), (Nuijten, 1994), (Baptiste & Le Pape, 1995a),
(Baptiste & Le Pape, 1995b), (Caseau & Laburthe, 1995a), (Caseau & Laburthe, 1995b),
(Cheng & Smith, 1995a), (Cheng & Smith, 1995b), (Caseau & Laburthe, 1996a),
(Colombani, 1996), (Lévy, 1996), (Lock, 1996), (Nuijten & Aarts, 1996), (Baptiste & Le
Pape, 1997). Coupled with branch and bound backtracking algorithms, these techniques
proved to be successful on both academic and industrial problems. In comparison,
preemptive scheduling problems (and “mixed” problems where some activities can be
interrupted and some cannot) have received almost no attention from both the Operations
Research and the Artificial Intelligence community. In this paper, we propose
generalizations of non-preemptive constraint propagation techniques to preemptive and
“mixed” disjunctive scheduling. For each technique (Sections 2 to 5), we first introduce
the constraint propagation rules and algorithms developed by other researchers for the
non-preemptive case; then, we present our generalization. Section 6 presents an
experimental study based on the preemptive variant of the job-shop scheduling problem.
Section 7 presents conclusions and future work.

RESOURCE CONSTRAINTS FOR PREEMPTIVE JOB-SHOP SCHEDULING 3

2. Timetable constraints

2.1. The non-preemptive case

A common mechanism to propagate resource constraints in the non-preemptive case
relies on an explicit data structure called “timetable” to maintain information about
resource utilization and resource availability over time. Resource constraints are
propagated in two directions: from resources to activities, to update activity time bounds
(earliest and latest start and end times) according to the availability of resources; and
from activities to resources, to update the timetables according to the time bounds of
activities. Although several variants exist (Le Pape, 1988), (Fox, 1990), (Le Pape, 1994),
(Smith, 1994), (Caseau & Laburthe, 1996a), (Lock, 1996), the propagation mainly
consists of maintaining “arc-B-consistency” (Lhomme, 1993)1 on the formula:

∑A [W(A, t) ∗ capacity(A)] ≤ capacity(t)

where capacity(A) denotes the capacity required by activity A, capacity(t) denotes the
capacity available at time t, and W(A, t) is an implicit 0-1 variable representing the
Boolean value [start(A) ≤ t < end(A)].

Example: Figure 1 displays two activities A and B which require the same resource of
capacity 1. The latest start time LSTA of A is smaller than its earliest end time EETA. Hence,
it is guaranteed that A will execute between LSTA = 1 and EETA = 2. Over this period, W(A,
t) is set to 1 and the corresponding resource amount is no longer available for B. Since B
cannot be interrupted and cannot be finished before 1, the earliest start time of B is
updated to 2 (propagation 1). Then, W(B, t) is set to 1 over the interval [2, 4), which

Activity EST EET LST LET Duration

A 0 2 1 3 2

B 0 2 2 4 2

Before propagation

A

B

0 1 2 3 4 5 6 7

Activity EST EET LST LET Duration

A 0 2 1 3 2

B 2 4 2 4 2

Propagation 1

A

B

0 1 2 3 4 5 6 7

Activity EST EET LST LET Duration

A 0 2 0 2 2

B 2 4 2 4 2

Propagation 2

A

B

0 1 2 3 4 5 6 7
 Figure 1. Propagation of the timetable constraint (non-preemptive case)

4 C. LE PAPE AND PH. BAPTISTE

results in a new propagation step, where the latest end time of A is set to 2 (propagation
2).

2.2. The preemptive case

At the first glance, it seems that the main principle of the timetable mechanism directly
applies to both the preemptive and the mixed case. However, an important difference
appears in the relation between the five variables W(A, t), set(A), start(A), end(A), and
duration(A). The earliest start time ESTA can easily be set to “the first time t at which
W(A, t) can be 1.” Similarly, the latest end time LETA can easily be set to 1 + “the last
time t at which W(A, t) can be 1.” However, the earliest end time EETA must be computed
so that there possibly exist duration(A) time points in set(A) ∩ [ESTA EETA), and the latest
start time LSTA must be computed so that there possibly exist duration(A) time points in
set(A) ∩ [LSTA LETA). These additional propagation steps make the overall propagation
process far more complex.

In the reverse direction, it is important to notice that W(A, t) cannot be set to 1 as soon
as LSTA ≤ t < EETA. The only situation in which W(A, t) can be deduced to be 1 is when no
more than duration(A) time points can possibly belong to set(A). This is unlikely to
occur before decisions (choices in a search tree) are made to instantiate set(A).
Therefore, constraint propagation cannot prune much.

Example: Given the data of Figure 1, the timetable mechanism cannot deduce anything
if both activities can be interrupted. Figure 2 shows what happens when only B can be
interrupted. As in Figure 1, it is guaranteed that A will execute between LSTA = 1 and EETA
= 2. Over this period, the corresponding resource amount is no longer available for B.
The earliest end time of B is then set to 3. Then the propagation process stops since there
is no time point at which B is guaranteed to execute.

Both costly and in most cases ineffective, the timetable mechanism appears far from

satisfactorily applicable to preemptive problems. Several researchers incorporated some

Figure 2. Propagation of the timetable constraint (mixed case)

Activity EST EET LST LET Duration

A 0 2 1 3 2

B 0 2 2 4 2

Before propagation

A

0 1 2 3 4 5 6 7

Activity EST EET LST LET Duration

A 0 2 1 3 2

B 0 3 2 4 2

Propagation 1

A

0 1 2 3 4 5 6 7

B (interruptible)

B (interruptible)
(interruptiblme
(interruptible)

RESOURCE CONSTRAINTS FOR PREEMPTIVE JOB-SHOP SCHEDULING 5

possibilities of preemption in their constraint-based algorithms or applications
(e.g., interrupt a machining operation in favor of a planned machine maintenance but not
in favor of another machining operation, interrupt an activity at most once or twice
(Zweben et al., 1993), (Smith, 1994), (Le Pape, 1996), (Pegman et al., 1997)). Few did
attack the general problem of preemptive and mixed scheduling. Demeulemeester (1992)
developed a branch and bound algorithm for a particular preemptive cumulative
scheduling problem: the preemptive resource-constrained project scheduling problem.
This algorithm relies on memorizing states rather than on constraint propagation to prune
the search space. Baptiste (1994) reports on a tentative implementation, in ILOG SOLVER
(Puget, 1994), (Puget & Leconte, 1995), of preemptive timetable constraints. The
reported results confirm that even on simple problems the propagation process is rather
slow. Let us note, however, that the timetable mechanism can easily be generalized to
other types of resources, such as resources of capacity m > 1, or resources which must be
in a specific state for an activity to execute (Le Pape, 1994). Such is not the case for the
techniques described in the following sections.

3. Disjunctive constraints

3.1. The non-preemptive case

In non-preemptive disjunctive scheduling, two activities A and B which require a
common resource R cannot overlap in time: either A precedes B or B precedes A. If n
activities A1 … An require R, the resource constraint can be implemented as n∗(n – 1) / 2
(explicit or implicit) disjunctive constraints. As for timetable constraints, variants exist
in the literature (Erschler, 1976), (Carlier, 1984), (Esquirol, 1987), (Le Pape, 1988),
(Smith & Cheng, 1993), (Varnier et al., 1993), (Baptiste & Le Pape, 1995a), but in most
cases the propagation consists of maintaining arc-B-consistency on the formula:

[end(A) ≤ start(B)] or [end(B) ≤ start(A)].

Disjunctive constraints provide more precise time bounds than the corresponding
timetable constraints. Indeed, if an activity B is known to execute at some time t between
the earliest start time ESTA and the earliest end time EETA of A, LSTB ≤ t < EETA. Then, B
must precede A and the propagation of the disjunctive constraint implies
start(A) ≥ EETB > t.

The following example shows that, in some cases, disjunctive constraints propagate
more than timetable constraints.

Activity EST EET LST LET Duration

A 0 2 2 4 2

B 1 3 3 5 2

Before propagation

Activity EST EET LST LET Duration

A 0 2 1 3 2

B 2 4 3 5 2

Propagation 1

A

B

0 1 2 3 4 5 6 7

Figure 3. Propagation of the disjunctive constraint (non-preemptive case)

A

B

0 1 2 3 4 5 6 7

6 C. LE PAPE AND PH. BAPTISTE

Example: Figure 3 displays two activities A and B which require the same resource of
capacity 1. The earliest end time of each activity does not exceed its latest start time, so
the timetable constraint cannot deduce anything. On the contrary, the propagation of the
disjunctive constraint imposes end(A) ≤ start(B) which, in turn, results in updating both
ESTB and LETA.

3.2. The preemptive case

In the preemptive disjunctive case, the fact that activities A and B cannot overlap is most
naturally represented by two alternative formulas:

set(A) ∩ set(B) = ∅

or

∀t, [W(A, t) = 0] or [W(B, t) = 0].

When one of these formulas is adopted, the preemptive disjunctive constraints and the
corresponding preemptive timetable constraints deduce the same time bounds. However,
a simple rewriting of the non-preemptive disjunctive constraint

 [start(A) + duration(A) ≤ end(B) – duration(B)]
or [start(B) + duration(B) ≤ end(A) – duration(A)]

suggests an additional preemptive disjunctive constraint:

[start(A) + duration(A) + duration(B) ≤ end(A)]
or [start(A) + duration(A) + duration(B) ≤ end(B)]
or [start(B) + duration(A) + duration(B) ≤ end(A)]
or [start(B) + duration(A) + duration(B) ≤ end(B)]

which can serve as a complement to set(A) ∩ set(B) = ∅. Note that in the mixed case,
the first (fourth) disjunct can be removed from the disjunction if A (respectively, B)
cannot be interrupted.
Example: In the example of Figure 4, the propagation of the redundant constraint
provides start(A) ≤ 1 and end(A) ≥ 5.

RESOURCE CONSTRAINTS FOR PREEMPTIVE JOB-SHOP SCHEDULING 7

4. Edge-finding

4.1. The non-preemptive case

The term “edge-finding” is often used in non-preemptive disjunctive scheduling
(Applegate & Cook, 1991), (Baptiste & Le Pape, 1995b), (Caseau & Laburthe, 1995b).
It denotes both a “branching” and a “bounding” technique. The branching technique
consists of ordering activities that require the same resource. At each node, a set of
activities Ω is selected and, for each activity A in Ω, a new branch is created where A is
constrained to execute first (or last) among the activities in Ω. The bounding technique
consists of deducing that some activities from a given set Ω must, can, or cannot,
execute first (or last) in Ω.

In the following, pA denotes the minimal duration of A, ESTΩ the smallest of the earliest
start times of the activities in Ω, LETΩ the greatest of the latest end times of the activities
in Ω, and pΩ the sum of the minimal durations of the activities in Ω. Let A « B (A » B)
mean that A executes before (after) B and A « Ω (A » Ω) mean that A executes before
(after) all the activities in Ω. Once again, variants exist (Pinson, 1988), (Carlier &
Pinson, 1990), (Carlier & Pinson, 1994), (Caseau & Laburthe, 1994), (Nuijten, 1994),
(Brucker & Thiele, 1996), (Lévy, 1996), (Martin & Shmoys, 1996), but the following
rules capture most of the edge-finding bounding technique:

 ∀Ω, ∀A∉Ω, [LETΩ∪{A} – ESTΩ < pΩ + pA] ⇒ A « Ω
 ∀Ω, ∀A∉Ω, [LETΩ – ESTΩ∪{A} < pΩ + pA] ⇒ A » Ω
 A « Ω ⇒ [end(A) ≤ minΩ’⊆Ω (LETΩ’ – pΩ’)]
 A » Ω ⇒ [start(A) ≥ maxΩ’⊆Ω (ESTΩ’ + pΩ’)]

If n activities require the resource, there are a priori O(n ∗ 2n) pairs (A, Ω) to consider.
An algorithm that performs all the time-bound adjustments in O(n2) is presented in
(Carlier & Pinson, 1990). It consists of a “primal” algorithm to update earliest start times
and a “dual” algorithm to update latest end times. The primal algorithm runs as follows:

Activity EST EET LST LET Duration

A 0 4 2 6 4

B 2 3 3 4 1

Before propagation

Activity EST EET LST LET Duration

A 0 5 1 6 4

B 2 3 3 4 1

Propagation 1

Figure 4. Propagation of the disjunctive constraint (preemptive case)
0 1 2 3 4 5 6 7

B (interruptible)

A (interruptible)

8 C. LE PAPE AND PH. BAPTISTE

• Compute “Jackson’s preemptive schedule” (JPS) for the resource under
consideration. JPS is the preemptive schedule obtained by applying the following
priority rule: whenever the resource is free and one activity is available, schedule the
activity A for which LETA is the smallest. If an activity B becomes available while A is
in process, stop A and start B if LETB is strictly smaller than LETA; otherwise
continue A.

• For each activity A, compute the set Ψ of the activities which are not finished at
t = ESTA on JPS. Let pB* be the residual duration on the JPS of the activity B at time t.
Take the activities of Ψ in decreasing order of latest end times and select the first
activity C such that:

ESTA + pA + ∑B∈Ψ−{A} | LETB ≤ LETC (pB*) > LETC

If such an activity C exists, then post the following constraints:

 A » {B∈Ψ−{A} | LETB ≤ LETC}
 start(A) ≥ maxB∈Ψ−{A} | LETB ≤ LETC

 (CB
JPS)

where CB
JPS is the completion time of activity B in JPS.

RESOURCE CONSTRAINTS FOR PREEMPTIVE JOB-SHOP SCHEDULING 9

Example: Figure 5 presents the JPS of a resource of capacity 1 required by 3 activities.
On this example, the edge-finding propagation algorithm deduces start(A) ≥ 8, when the
timetable and the disjunctive constraint propagation algorithms deduce nothing.

Nuijten (1994) and Martin and Shmoys (1996) present variants of this algorithm,

which also run in O(n2), but do not require the computation of Jackson’s preemptive
schedule. Carlier and Pinson (1994) present another variant, which runs in O(n∗log(n))
but requires much more complex data structures. Baptiste (1995) and Martin and
Shmoys (1996) establish an interesting property of the edge-finding technique:
considering only the resource constraint and the current time bounds of activities, the
algorithm computes the earliest start time at which each activity A could start if all the
other activities were interruptible. This suggests a logical extension of the technique to
preemptive and mixed cases: for each activity A requiring the resource, if A is not
interruptible, the non-preemptive edge-finding bound applies; if A is interruptible then,
considering only the resource constraint and the current time bounds, it would be nice to
determine the earliest start and end times between which A could execute if all the
activities were interruptible.

4.2. The preemptive case

Let us define 〉〉 so that A 〉〉 Ω means “A ends after all activities in Ω ” and substitute 〉〉
for » in the rules of the primal algorithm.

 ∀Ω, ∀A∉Ω, [LETΩ – ESTΩ∪{A} < pΩ + pA] ⇒ A 〉〉 Ω
 A 〉〉 Ω ⇒ [start(A) ≥ maxΩ’⊆Ω (ESTΩ’ + pΩ’)]

When A cannot be interrupted, these two rules remain valid (even if other activities can
be interrupted) and the adjustment of ESTA is the same than in the non-preemptive case.
When A can be interrupted, the first rule is still valid but the second is not. However, the
second rule can be replaced by a weaker one:

 A 〉〉 Ω ⇒ [end(A) ≥ maxΩ’⊆Ω (ESTΩ’∪{A} + pΩ’∪{A})]

C

 EST LET Duration

A 0 17 6
B 1 11 4
C 1 11 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13

A B

Figure 5. The Jackson’s preemptive schedule of 3 activities A, B, C

10 C. LE PAPE AND PH. BAPTISTE

This leads to a more general primal edge-finding algorithm:
• Compute Jackson’s preemptive schedule JPS.
• For each activity A, compute the set Ψ of the activities which are not finished at

t = ESTA on JPS. Let pB* be the residual duration on the JPS of the activity B at time t.
Take the activities of Ψ in decreasing order of latest end times and select the first
activity C such that:

ESTA + pA + ∑B∈Ψ−{A} | LETB ≤ LETC
 (pB*) > LETC

If such an activity C exists, then post the following constraints:

A 〉〉 {B∈Ψ−{A} | LETB ≤ LETC}

start(A) ≥ maxB∈Ψ−{A} | LETB ≤ LETC
 (CB

JPS) if A cannot be interrupted

end(A) ≥ ESTA + pA + ∑B∈Ψ−{A} | LETB ≤ LETC
 (pB*) if A can be interrupted

Example: In the example of Figure 5, the algorithm above deduces start(A) ≥ 8 if A
cannot be interrupted. It deduces end(A) ≥ 13 if A can be interrupted.

It is proven in (Baptiste, 1995) that considering only the resource constraint and the
current time bounds of activities, this algorithm computes:
• when A is not interruptible: the earliest time at which A could start if all the other

activities were interruptible.
• when A is interruptible: the earliest time at which A could end if all the other

activities were interruptible.
Nuijten’s edge-finding algorithm can be modified in a similar fashion. The following

algorithm is equivalent to the algorithm sketched above, assuming ACTS is a list of the
activities that require the resource, in increasing order of earliest start times, and
CONCLUDE(A, t1, t2) memorizes that A cannot end before t1 if A is interruptible and that A
cannot start before t2 otherwise.

RESOURCE CONSTRAINTS FOR PREEMPTIVE JOB-SHOP SCHEDULING 11

For each latest end time emax of an activity in ACTS
P ← 0, g ← -∞, H ← -∞
For A in reverse(ACTS)

If LETA ≤ emax
Then P ← P + pA
 g ← max(g, ESTA + P)
 If (emax < g) raise a contradiction and exit
GA ← g

For A in ACTS
If LETA ≤ emax
Then H ← max(H, ESTA + P)

P ← P − pA
Else If (ESTA + P + pA > emax)
 Then CONCLUDE(A, ESTA + P + pA, GA)

If (H + pA > emax)
Then CONCLUDE(A, H + pA, g) 

The proof that this algorithm is equivalent to the JPS-based algorithm follows the
proof of Nuijten’s algorithm in (Nuijten, 1994). First, if A cannot be interrupted, the new
algorithm makes the same conclusions than Nuijten’s algorithm, so the proof in (Nuijten,
1994) applies to the new algorithm. Let us now assume that A can be interrupted. It is
proven in (Baptiste, 1995) that the earliest time at which A could end if all the other
activities could be interrupted is equal to the maximal value of ESTΩ∪{A} + pΩ∪{A} for Ω
triggering the edge-finding rules. The earliest end times computed by the new algorithm
are, when they are used, equal to ESTΩ∪{A} + pΩ∪{A} for such Ω. To prove that the best
possible bound is reached, consider the two cases distinguished in (Nuijten, 1994): if A
precedes all the activities of Ω in ACTS, either Ω or a superset of Ω is detected by the first
test (ESTA + P + pA > emax); if some activity of Ω precedes A in ACTS, either Ω or a
superset of Ω is detected by the second test (H + pA > emax). In both cases, a bound
greater than or equal to ESTΩ∪{A} + pΩ∪{A} is found.

This algorithm can be further improved:
• When A can be interrupted and set(A) is known to contain a series of time intervals

I1 … In, A can be replaced by (n + 1) activities A1 … An A’, with each Ai forced to
execute over Ii and A’ with the same earliest start time and latest end time than A and
a duration equal to (pA – Σ1 ≤ i ≤ n duration(Ii)).

• When A can be interrupted and either (ESTA + P = emax) or (H = emax) in the course
of the algorithm, it is certain that A cannot start before emax. Hence, the algorithm
can also be used to update the earliest start times of interruptible activities.

Remark: When activities have fixed durations, the computation and the use of GA and g
to compute maxΩ’⊆Ω (ESTΩ’ + pΩ’) serves only to avoid repeated iterations of the
algorithm. Indeed, suppose a purely preemptive edge-finding algorithm is used and
suppose A is not interruptible. The purely preemptive edge-finding algorithm uses the
following rules:

12 C. LE PAPE AND PH. BAPTISTE

 ∀Ω, ∀A∉Ω, [LETΩ – ESTΩ∪{A} < pΩ + pA] ⇒ A 〉〉 Ω
 A 〉〉 Ω ⇒ [end(A) ≥ maxΩ’⊆Ω (ESTΩ’∪{A} + pΩ’∪{A})]

When constraint propagation stops, the earliest end time of A is set to a value EETA such
that if all activities were interruptible, there would be a schedule S of the resource such
that (1) A does not start before ESTA and (2) A ends at EETA. If the duration of A is fixed,
the propagation of the duration constraint start(A) + duration(A) = end(A) guarantees
that when constraint propagation stops ESTA + pA = EETA. Consequently, A is not
interrupted in S, which implies that the non-preemptive edge-finding algorithm cannot
find a better bound for ESTA.

5. Flow constraints

Régin (1994) describes an algorithm, based on matching theory, to achieve the global
consistency of the “all-different” constraint. This constraint is defined on a set of
variables and constrains these variables to assume pairwise distinct values. Régin’s
algorithm maintains arc-consistency on the n-ary “all-different” constraint, which is
shown to be more powerful than achieving arc-consistency for the n∗(n – 1) / 2
corresponding binary “different” constraints.

Basically, Régin’s algorithm consists of building a bipartite graph G(X, Y, E) where X
is a set of vertices corresponding to the variables of the “all-different” constraint, Y is a
set of vertices corresponding to the possible values of these variables, and E is a set of
edges (x, y), x ∈ X, y ∈ Y, such that (x, y) ∈ E if and only if y is a possible value for x. As
a result, the “all-different” constraint is satisfiable if and only if there exists a 0-1
function f on E such that:

 ∀x∈X, Σ(x, y)∈E f(x, y) = 1
 ∀y∈Y, Σ(x, y)∈E f(x, y) ≤ 1

In addition, a given value yj is a possible value for a given variable xi if and only there
exists a 0-1 function fij such that:

 ∀x∈X, Σ(x, y)∈E fij(x, y) = 1
 ∀y∈Y, Σ(x, y)∈E fij(x, y) ≤ 1
 fij(xi, yj) = 1

The problem of finding such a function (flow) f or fij can be solved in polynomial time.
In addition, the current value of f can be used to generate fij at low cost, and to compute
the new value of f when the domain of a variable changes. See Régin (1994, 1995, 1996)
for details and extensions.

Notice that when all activities have duration 1, Régin’s algorithm can be directly
applied. In the preemptive case, this can be generalized to activities of arbitrary
durations by seeing each activity A as duration(A) sub-activities of duration 1. Then,
each sub-activity has to pick a value (the time at which the sub-activity executes) and the
values of the sub-activities that require a given resource have to be pairwise distinct.
However, under this naive formulation, both the number of variables and the number of

RESOURCE CONSTRAINTS FOR PREEMPTIVE JOB-SHOP SCHEDULING 13

values would be too high (dependent on the sum of the durations of the activities) for
practical use. This led us to another formulation where the nodes x in X correspond to
activities, and the nodes y in Y correspond to a partition of the time horizon in n disjoint
intervals I1 = [s1 e1) ... In = [sn en) such that [s1 en) represents the complete time horizon,
ei = si+1 (1 ≤ i < n), and {s1 ... sn en} includes all the time points at which the information
available about W(A, t) changes (Figure 6 illustrates this formulation on a small
example). In particular, {s1 ... sn en} includes all the earliest start times and latest end
times of activities, but it can also include bounds of intervals over which W(A, t) is
constrained to be true or false (in this sense, the flow model is more general than
preemptive edge-finding, but it does not generalize to the mixed case). E is defined as
the set of pairs (x, y) such that activity x can execute during interval y. The maximal
capacity cmax(x, y) of edge (x, y) is set to |y|, and the minimal capacity cmin(x, y) of edge (x,
y) is set to |y| if x is constrained to execute over y and to 0 otherwise. As a result, the
preemptive resource constraint is satisfiable if and only if there exists a function f on E
such that:
 ∀x∈X, Σ(x, y)∈E f(x, y) = duration(x)
 ∀y∈Y, Σ(x, y)∈E f(x, y) ≤ |y|
 ∀e∈E, cmin(e) ≤ f(e) ≤ cmax(e)

Similar models are commonly used in Operations Research. For example, Federgruen

& Groenevelt (1986) use a more general model to solve particular polynomial
scheduling problems with multiple parallel resources operating at different speeds.
Following Régin (1994), what we propose below is to use network flow techniques, not
only to find solutions to polynomial sub-problems, but also to update the domains of the
variables.

 EST LET Duration
A 0 10 5
B 2 4 1
C 4 6 1
D 6 8 1

Figure 6. The bipartite graph corresponding to activites A, B, C, D

[0 2)

[4 6)

[8 10)

[6 8)

[2 4)
A

C

D

B

≤ 2
≤ 2

= 5

= 1
= 1

= 1

≤ 2

≤ 2

≤ 2

Y

X

14 C. LE PAPE AND PH. BAPTISTE

Baptiste (1995) provides two algorithms for the search of a compatible flow f (SCF).
The first algorithm uses Herz’s algorithm, as described in (Gondran & Minoux, 1995), to
construct the compatible flow, starting from f(x, y) = 0 for all x and all y. It runs in O(|X|
∗ |Y| ∗ Σx∈X duration(x)). The second algorithm builds a variant of Jackson’s preemptive
schedule which respects the intervals during which activities are required to execute.
This can be done in O(|Y| ∗ log(|Y|)). This schedule is then used as an initial (possibly
incompatible) flow, repaired by Herz’s algorithm in O(|X| ∗ |Y| ∗ F), where F denotes the
sum, over the activities, of the sizes of the intervals included in [ESTA LETA] during which
the activity A is not allowed to execute (for reasons that are not directly related to the use
of the resource by other activities).

To reduce variable domains, the most natural generalization of Régin’s algorithm
consists of varying cmin(e) and cmax(e) for each edge e in turn. The following algorithm
updates the minimal flow cmin(x, y) that can pass through an edge (x, y). The maximal
flow cmax(x, y) is obtained in a similar fashion.
• Set u = cmin(x, y) and v = cmax(x, y).
• While (u ≠ v)

• Set w = (u + v) / 2
• Search for a compatible flow f with f(x, y) ≤ w.
• If such a flow f exists, set v = w, otherwise set u = w + 1.

• Set cmin(x, y) = u.
It is proven in (Baptiste, 1995) that this adjustment of edge capacities (AEC) can be

done for all edges (x, y) in O(|X|2 ∗ |Y| ∗ H), where H denotes the overall time horizon
en − s1. This complexity is reached by systematically reusing the previous flow as a start
point when computing the flow f with the new constraint f(x, y) ≤ w.

Then the following rules can be applied:

 cmax(x, y) = 0 ⇒ ∀t∈y, W(x, t) = 0
 cmin(x, y) = |y| ⇒ ∀t∈y, W(x, t) = 1
 cmin(x, [si ei)) ≠ 0 ⇒ [start(x) ≤ ei – cmin(x, [si ei))]
 cmin(x, [si ei)) ≠ 0 ⇒ [end(x) ≥ si + cmin(x, [si ei))]

However, SCF and AEC are not sufficient to determine the best possible time bounds
for activities. Let us consider, for example, the four activities A, B, C, D defined on
Figure 6. In this case, cmin(A, I) remains equal to 0 for all I; yet A cannot start after 3 and
cannot end before 7. However, the flow model can be used to compute the best possible
earliest end times. First, given x and the intervals y1 … yn (sorted in reverse chronological
order) to which x is connected, one can find the maximal integer k such that there exists
a compatible flow f with f(x, yi) = 0 for 1 ≤ i < k. Then, one can compute the minimal
flow fmin(x, yk) through (x, yk), under the constraints f(x, yi) = 0 for 1 ≤ i < k. Under these
conditions, end(x) ≥ sk + fmin(x, [sk ek)) provides the best possible earliest end time for x. It
is shown in (Baptiste, 1995) that this global update of time bounds (GUTB) can be done
for all activities x in O(|X|2 ∗ |Y| ∗ H). As for AEC, this complexity is reached by
systematically reusing the previous flow as a start point for computing the new flow
when an additional capacity constraint is added.

RESOURCE CONSTRAINTS FOR PREEMPTIVE JOB-SHOP SCHEDULING 15

Let us remark that the incrementality of Herz’s algorithm is a key factor for both the
worst-case and the practical complexity of SCF, AEC and GUTB. Strongly polynomial
algorithms (with complexity independent of the schedule duration) could be used for the
search of a compatible flow (Gondran & Minoux, 1995), but in practice the use of such
non-incremental algorithms would probably make the SCF, AEC and GUTB algorithms
less efficient.

6. Experimental study

6.1. The preemptive job-shop scheduling problem

To evaluate the constraint propagation algorithms presented in the preceding sections,
we developed a branch and bound procedure for the preemptive job-shop scheduling
problem (PJSSP), the variant of the job-shop scheduling problem (JSSP) in which all
activities are interruptible. More precisely, one is given a set of jobs and a set of
machines. Each job consists of a set of activities to be processed in a given order. Each
activity is given an integer processing time and a machine on which it has to be
processed. A machine can process at most one activity at a time. Activities may be
interrupted at any time, an unlimited number of times. The problem is to find a schedule,
i.e., a set of execution times for each activity, that minimizes the makespan, i.e., the time
at which all activities are finished. The decision variant of the PJSSP is NP-complete in
the strong sense (Garey & Johnson, 1979).

6.2. A dominance criterion

The most successful exact (branch and bound) approaches for the non-preemptive JSSP
consist of ordering the set of activities ACTS(M) which require the same machine M. At
each node, a machine M and a set Ω ⊆ ACTS(M) are selected. For each activity A in Ω, a
new branch is created where A is constrained to execute first (or last) among the
activities in Ω. This decision is then propagated, through some variant of the
edge-finding bounding technique (Carlier & Pinson, 1990), (Applegate & Cook, 1991),
(Carlier & Pinson, 1994), (Baptiste & Le Pape, 1995b), (Caseau & Laburthe, 1995b).

For the PJSSP, this branching scheme is not valid since activities are interruptible, and
thus cannot just be ordered. However, the dominance criterion introduced below allows
the design of branching schemes which in a sense “order” the activities that require the
same machine.

DEFINITION 1 For any schedule S and any activity A, we define the “due date of A in S”
dS(A) as:

• the makespan of S if A is the last activity of its job;
• the start time of the successor of A otherwise.

16 C. LE PAPE AND PH. BAPTISTE

DEFINITION 2 For any schedule S, an activity Ak has priority over an activity Al in S
(Ak <S Al) if and only if either dS(Ak) < dS(Al) or dS(Ak) = dS(Al) and k ≤ l. Note that <S is a
total order.

THEOREM 1 For any schedule S, there exists a schedule J(S) such that:
1. J(S) meets the due dates: ∀A, the end time of A in J(S) is at most dS(A).
2. J(S) is “active”: ∀M, ∀t, if some activity A ∈ ACTS(M) is available at time t, M is not

idle at time t (where “available” means that the predecessor of A is finished and A is
not finished).

3. J(S) follows the <S priority order: ∀M, ∀t, ∀Ak ∈ ACTS(M), ∀Al ∈ ACTS(M), Al ≠ Ak, if
Ak executes at time t, either Al is not available at time t or Ak <S Al.

Proof: We construct J(S) chronologically. At any time t and on any machine M, the
available activity that is the smallest (according to the <S order) is scheduled. J(S)
satisfies properties 2 and 3 by construction. Let us suppose J(S) does not satisfy
property 1. Let A denote the smallest activity (according to <S) such that the end time of
A in J(S) exceeds dS(A). We claim that:
• the schedule of A is not influenced by the activities Ak with A <S Ak (by construction);
• for every activity Ak <S A, the time at which Ak becomes available in J(S) does not

exceed the time at which Ak starts in S (because the predecessor of Ak is smaller
than A).

Let M be the machine on which A executes. In J(S), the activities Ak ∈ ACTS(M) such that
Ak <S A are scheduled in accordance with Jackson’s rule, applied to the due dates dS(Ak).
Since dS(A) is not met, and since Jackson’s rule is guaranteed to meet due dates
whenever it is possible to do so (cf. (Carlier & Pinson, 1990)), we deduce that it is
impossible to schedule the activities Ak ∈ ACTS(M) such that Ak <S A between their start
times in S and their due dates in S. This is absurd since in S these activities are
scheduled between their start times and their due dates. So, the hypothesis that J(S)
violates property 1 is contradicted.

Example: Figure 7 displays a schedule S and its “Jackson derivation” J(S) .

Job 3: executes on M2 (duration= 5), on M1 (duration= 2) and finally on M3 (duration= 1)

Job 2: executes on M1 (duration= 2), on M3 (duration= 1) and finally on M2 (duration= 2)

Job 1: executes on M1 (duration= 3), on M2 (duration= 3) and finally on M3 (duration= 5)

M1
M2
M3

Schedule S

M1
M2
M3

Schedule J(S)

Figure 7. A preemptive schedule and its Jackson derivation

RESOURCE CONSTRAINTS FOR PREEMPTIVE JOB-SHOP SCHEDULING 17

6.3. Branching scheme

We call J(S) the “Jackson derivation” of S. Since the makespan of J(S) does not exceed
the makespan of S, at least one optimal schedule is the Jackson derivation of another
schedule. Thus, in the search for an optimal schedule, we can impose the characteristics
of a Jackson derivation to the schedule under construction. In this section, we present
two branching procedures in which this result is used to solve the PJSSP.

Each of them is integrated in the following makespan minimization algorithm:
1. Compute an obvious upper bound UB of the makespan and an initial lower bound LB.
2. Select a value V in [LB, UB).
3. Constrain the makespan to be lower than or equal to V and run the branching

procedure. If a solution is found, set UB to the makespan of the solution; otherwise,
i.e., if the search procedure fails, set LB to V + 1.

4. Iterate steps 2 and 3 until UB = LB.
The first branching scheme consists of ordering the activities according to an

hypothetical <S order. For each machine M, an ordered list LM of activities, initially
empty, is developed as follows:
1. Select a machine M such that the set KM = ACTS(M) − LM is not empty.
2. Select an activity Ak in KM (e.g., the one with the smallest latest end time). Add Ak to

the end of the list LM. Use Jackson’s rule to schedule the activities of LM according to
the LM priority order and impose the resulting earliest end times. Keep the other
activities of KM as alternatives to be tried upon backtracking.

3. Iterate until all the activities are ordered or until all alternatives have been tried.
This branching scheme is attractive since it mimics the edge-finding branching

technique that is often used in non-preemptive disjunctive scheduling. Yet, our first
experiments have been disappointing. This led us to develop another branching scheme
which more heavily exploits the dominance criterion.
1. Let t be the earliest date such that there is an activity A available (and not scheduled

yet!) at t.
2. Compute K, the set of activities available at t on the same machine than A.
3. Compute NDK, the set of activities which are not “dominated” in K (as explained

below).
4. Select an activity Ak in NDK (e.g., the one with the smallest latest end time).

Schedule Ak to execute at t. Propagate the decision and its consequences according to
the dominance criterion. Keep the other activities of NDK as alternatives to be tried
upon backtracking.

5. Iterate until all the activities are scheduled or until all alternatives have been tried.

18 C. LE PAPE AND PH. BAPTISTE

Needless to say, the power of this branching scheme highly depends on the rules that
are used to (a) eliminate “dominated” activities in step 3 and (b) propagate
“consequences” of the choice of Ak in step 4. The dominance criterion is exploited as
follows:
• Whenever Ak ∈ ACTS(M) is chosen to execute at time t, it is set to execute either up to

its earliest end time or up to the earliest start time of another activity Al ∈ ACTS(M)
which is not available at time t.

• Whenever Ak ∈ K is chosen to execute at time t, any other activity Al ∈ K can be
constrained not to execute between t and the end of Ak. At times t’ > t, this reduces
the set of candidates for execution: Al is dominated by Ak, hence not included in
NDK. In step 4, redundant constraints can also be added: end(Ak) + rpt(Al) ≤ end(Al),
where rpt(Al) is the remaining processing time of Al at time t; end(Ak) ≤ start(Al) if Al
is not started at time t.

• If Ak ∈ ACTS(M) is the last activity of its job, Ak is not candidate for execution at time t
if another activity Al ∈ ACTS(M), which is not the last activity of its job, or such that l
< k, is available at time t (Ak is dominated by Al).

The proof that these reductions of the search space do not eliminate all optimal
schedules follows from the fact that J(S) schedules are dominant. Indeed, in a J(S)
schedule, (1) an activity cannot be interrupted unless a new activity becomes available
on the same resource, (2) an activity Ak cannot execute when another activity Al is
available, unless Ak <S Al, and (3) we cannot have Ak <S Al if Ak is the last activity of its
job and either Al is not the last activity of its job or l < k.

An open question at this point is whether there exists an optimal solution S such that
J(S) = S. This would allow us to constrain the search even more. For example, as soon as
an activity Ak would be given priority over an activity Al, we could constrain the
successor of Al not to start before the successor of Ak. This could have a dramatic impact
on the search space.

6.4. Experimental results

The second branching scheme was used to evaluate the various constraint propagation
techniques developed in this paper. The disjunctive constraint set(A) ∩ set(B) = ∅ and
the flow-based algorithms, SCF, AEC, and GUTB, were implemented in ILOG SOLVER
(Puget, 1994) on a RS6000 workstation. The mixed edge-finder was implemented in
CLAIRE (Caseau & Laburthe, 1996b) on a PC Dell 200MHz running Windows NT.

Table 1 summarizes the results on 20 well-known instances of the job-shop scheduling
problem. The first two columns indicate the version of the resource constraint that was
used and the problem instance(s) under consideration. This can be a unique instance like
“FT06” or, for “easy” instances, a series of instances similar in size and toughness, like
“LA01 to LA10.” In the latter case, the table provides average results over the whole
series. All the instances we use are available from the job-shop directory in the OR
benchmark library (http://www.ms.ic.ac.uk/info.html), except the CAR instances which
can be found in the flow-shop directory.

RESOURCE CONSTRAINTS FOR PREEMPTIVE JOB-SHOP SCHEDULING 19

Column “BT” provides the total number of backtracks needed to solve the problem.
Column “CPU” provides the total CPU time in seconds, on a PC for the mixed edge-
finder, and on an RS6000 for the other algorithms. Columns “BT(pr)” and “CPU(pr)”
provide the number of backtracks and CPU time spent in proving that the optimal
solution is, indeed, optimal. Results appear only when the considered version of the
resource constraint enabled the branch and bound algorithm to solve the considered
instance(s) in a reasonable amount of time. (For the smallest problems (FT06 to CAR4),
at most 5000 backtracks were allowed for each iteration of the makespan minimization
procedure.)

Table 1 shows that both the mixed edge-finder and the GUTB algorithm allow the
resolution of “tough” problems like CAR5 (with optimal makespan 7667) and FT10
(900). Part of the differences between the edge-finder and the GUTB algorithm are due
to differences in implementation, e.g., different computers and different sorting
functions, so further comparison is not possible. Interestingly enough, the instances that
appear the most difficult in the non-preemptive case, CAR5 and FT10 (Baptiste, 1994),
are also the most difficult in the preemptive case.

Table 2 shows the results obtained by GUTB on the ten 10∗10 (i.e., 10 machines ∗ 10
jobs = 100 activities) instances used by Applegate and Cook (1991) in their
computational study of the (non-preemptive) job-shop scheduling problem. Five of these
instances (ABZ6, LA19, LA20, ORB2, and ORB5) were solved to optimality in a few
hours of CPU time, one (FT10) was allowed more time to terminate, and four
(ABZ5, ORB1, ORB3, and ORB4) remained open. For these instances, column “OPT”
provides the best lower and upper bound that have been achieved. Otherwise, column
“OPT” provides the value of the optimal makespan.

20 C. LE PAPE AND PH. BAPTISTE

Table 1. Results obtained on 20 instances of the preemptive job-shop scheduling problem.

Constraint Instances BT CPU BT(pr) CPU(pr)

Disjunctive FT06 6353 3.5 4775 2.6

Edge-finder FT06 3 0.1 2 0.0

 LA01-10 1 0.2 1 0.0
 CAR1-4 9 0.2 1 0.0

 CAR5 97927 582.6 26034 155.3

 CAR6-8 2870 23.4 937 7.5
 FT10 140903 2105.6 41255 624.0

SCF FT06 24 0.3 21 0.1

 LA01-10 1196 9.2 1 0.0
AEC FT06 5 0.5 2 0.1

 LA01-10 112 25.9 1 0.1

 CAR1-4 461 61.5 11 2.0

 CAR6-8 6947 1644.9 1403 351.3
GUTB FT06 6 0.4 2 0.0

 LA01-10 9 11.0 1 0.0

 CAR1-4 27 13.0 1 0.1
 CAR5 73135 10295.8 19265 2673.7

 CAR6-8 3593 663.6 819 146.5

 FT10 254801 97585.7 49817 19626.6

RESOURCE CONSTRAINTS FOR PREEMPTIVE JOB-SHOP SCHEDULING 21

Table 2. GUTB results on ten 10∗10 instances of the preemptive job-shop scheduling problem.

 OPT BT CPU BT(pr) CPU(pr)

FT10 900 254801 97585.7 49817 19626.6

ABZ5 1159 / 1219
ABZ6 924 17578 3955.5 10879 2268.3

LA19 812 39286 7150.1 14184 2482.4

LA20 871 5494 1483.6 1627 463.8
ORB1 991 / 1054

ORB2 864 56863 11199.2 20203 3835.3

ORB3 951 / 1254

ORB4 977 / 980
ORB5 849 16457 4721.3 4496 1296.6

Table 3. Edge-finding results on ten 10∗10 instances of the preemptive job-shop scheduling problem.

 OPT BT CPU BT(pr) CPU(pr)
FT10 900 140903 2105.6 41255 624.0

ABZ5 1203 1192553 15628.0 338597 4430.9

ABZ6 924 17699 307.8 8157 134.3
LA19 812 34637 564.3 10928 176.4

LA20 871 2779 59.4 998 22.7

ORB1 1035 347647 5182.4 85085 1278.3
ORB2 864 53127 709.4 16189 220.9

ORB3 973 6804127 96917.7 1947325 27884.2

ORB4 980 97654 1201.8 37122 461.3

ORB5 849 10380 158.6 4151 61.6

Table 3 provides the results obtained with the edge-finding algorithm on the same ten

instances. All of these instances have been solved to optimality. Other instances we have
solved include FT20 (in 0.4 second), LA11 to LA15 (0.4 second), LA16 (145 minutes),
LA17 (1 second), LA18 (4 minutes), LA21 (65 hours), LA22 (4 seconds), LA23
(1 second), LA24 (44 hours), LA26 (1 second), LA28 (1 second), LA30 (1 second),
LA31 to LA35 (4 seconds), LA37 (110 minutes), ORB6 (39 minutes), ORB7
(10 minutes), ORB8 (1 second), ORB9 (3 minutes), and ORB10 (1 minute). Let us note
that, in the non-preemptive case, ORB3 also appears to be one of the most difficult

22 C. LE PAPE AND PH. BAPTISTE

10∗10 instances (Applegate & Cook, 1991), (Baptiste & Le Pape, 1995b), (Caseau &
Laburthe, 1995b), (Colombani, 1996). Such is not the case for LA16 (also a 10∗10)
which is considered “easy” in the non-preemptive case.

7. Conclusion and perspectives

In this paper, we have presented a variety of constraint propagation techniques for
preemptive disjunctive scheduling, some of which generalize nicely to the “mixed” case
in which some activities can be interrupted and some cannot. Experimental results have
shown that two of these techniques, (1) edge-finding and (2) global update of time
bounds (GUTB), allow the resolution of hard instances such as the preemptive variant of
the famous FT10. Let us remark that a combination of the two techniques is not likely to
be useful when all the activities are interruptible and only time-bound constraints are
imposed. Indeed, the characterization of the preemptive edge-finding algorithm proves
that the best possible bounds are obtained. A combination might however be useful in
more complex situations: on the one hand, the mixed edge-finding algorithm explicitly
deals with non-interruptible activities, and thus can be more efficiently applied to the
mixed case; on the other hand, if an interruptible activity cannot execute during some
time intervals, the GUTB algorithm can take these intervals into account.

These results encourage us (and hopefully will encourage other researchers) to pursue
work in the application of constraint programming to preemptive and mixed scheduling
problems:
• Until now, most of our efforts have been focused on constraint propagation. More

work is needed to evaluate the interest of different heuristics and branching
strategies. Based on our results, the PJSSP currently appears to be much harder than
the non-preemptive JSSP. An important reason for this is that we have not been able
to reuse the concept of “bottleneck resource” in an efficient way. An open question is
how the “bottleneck” concept can be used, without throwing away the dominance
criterion which appears crucial in reducing the size of the search tree.

• Most of the results presented in this paper concern resources of capacity 1. More
work is needed to generalize these techniques to resources of arbitrary capacity.

• Other constraint propagation techniques, such as energetic reasoning (Lopez, 1991)
or shaving (Carlier & Pinson, 1994), (Martin & Shmoys, 1996), can be worth
investigating.

Acknowledgments

Part of the work presented in this paper was done while the second author was finishing
a Master’s thesis at ILOG S.A. The authors want to thank Jean-François Puget, Michel
Leconte, Wim Nuijten, Jean-Charles Régin, Henri Béringer, Jacques Carlier, Yves
Caseau, François Laburthe, Bruno de Backer, and Ulrich Junker, for many enlightening
discussions on constraints, flows, and edge-finding. We also thank the referees for their
numerous comments, which hopefully led to significant improvements of this paper.

RESOURCE CONSTRAINTS FOR PREEMPTIVE JOB-SHOP SCHEDULING 23

Note

1. Given a constraint c over n variables v1 … vn and a domain Di for each variable vi, c is “arc-consistent” if
and only if for any variable vi and any value vali in the domain of vi, there exist values val1 … vali−1 vali+1
… valn in D1 … Di−1 Di+1 … Dn such that c(val1 ... valn) holds. Arc-B-consistency, where B stands for
bounds, guarantees only that val1 … vali−1 vali+1 … valn exist for vali equal to either the smallest or the
greatest value in Di.

References

Aggoun, A. & Beldiceanu, N. (1993). “Extending CHIP in Order to Solve Complex Scheduling and Placement
Problems,” Mathematical and Computer Modelling 17, 57-73.
Applegate, D. & Cook, W. (1991). “A Computational Study of the Job-Shop Scheduling Problem,” ORSA
Journal on Computing 3, 149-156.
Baptiste, Ph. (1994). “Constraint-Based Scheduling: Two Extensions,” MSc Thesis, University of Strathclyde,
Glasgow, United Kingdom.
Baptiste, Ph. & Le Pape, C. (1995a). “Disjunctive Constraints for Manufacturing Scheduling: Principles and
Extensions,” Proc. 3rd International Conference on Computer Integrated Manufacturing, 711-718, World
Scientific.
Baptiste, Ph. & Le Pape, C. (1995b). “A Theoretical and Experimental Comparison of Constraint Propagation
Techniques for Disjunctive Scheduling,” Proc. 14th International Joint Conference on Artificial Intelligence,
600-606, Morgan Kaufmann.
Baptiste, Ph. (1995). “Resource Constraints for Preemptive and Non-Preemptive Scheduling,” MSc Thesis,
University Paris VI, Paris, France.
Baptiste, Ph. & Le Pape, C. (1997). “Constraint Propagation and Decomposition Techniques for Highly
Disjunctive and Highly Cumulative Project Scheduling Problems,” Proc. 3rd International Conference on
Principles and Practice of Constraint Programming, to appear.
Beck, H. (1992). “Constraint Monitoring in TOSCA,” Proc. AAAI Spring Symposium on Practical
Approaches to Planning and Scheduling.
Brucker, P. & Thiele, O. (1996). “A Branch and Bound Method for the General-Shop Problem with Sequence-
Dependent Setup Times,” OR Spektrum 18, 145-161.
Burke, P. (1989). “Scheduling in Dynamic Environments,” PhD Thesis, University of Strathclyde, Glasgow,
United Kingdom.
Burke, P. & Prosser, P. (1991). “A Distributed Asynchronous System for Predictive and Reactive Scheduling,”
International Journal for Artificial Intelligence in Engineering 6, 106-124.
Carlier, J. (1984). “Problèmes d'ordonnancement à contraintes de ressources : algorithmes et complexité,”
Thèse de Doctorat d'Etat, University Paris VI, Paris, France (in French).
Carlier, J. & Pinson, E. (1990). “A Practical Use of Jackson's Preemptive Schedule for Solving the Job-Shop
Problem,” Annals of Operations Research 26, 269-287.
Carlier, J. & Pinson, E. (1994). “Adjustment of Heads and Tails for the Job-Shop Problem,” European Journal
of Operational Research 78, 146-161.
Caseau, Y. & Laburthe, F. (1994). “Improved CLP Scheduling with Task Intervals,” Proc. 11th International
Conference on Logic Programming, MIT Press.
Caseau, Y. & Laburthe, F. (1995a). “Improving Branch and Bound for Job-Shop Scheduling with Constraint
Propagation,” Proc. 8th Franco-Japanese Conference on Combinatorics and Computer Science, Springer-
Verlag.
Caseau, Y. & Laburthe, F. (1995b). “Disjunctive Scheduling with Task Intervals,” Technical Report, Ecole
Normale Supérieure, Paris, France.
Caseau, Y. & Laburthe, F. (1996a). “Cumulative Scheduling with Task Intervals,” Proc. Joint International
Conference and Symposium on Logic Programming, MIT Press.

24 C. LE PAPE AND PH. BAPTISTE

Caseau, Y. & Laburthe, F. (1996b). “CLAIRE: A Parametric Tool to Generate C++ Code for Problem
Solving,” Working Paper, Bouygues, Direction Scientifique, Saint-Quentin-en-Yvelines, France.
Cheng, C.-C. & Smith, S.F. (1994). “Generating Feasible Schedules under Complex Metric Constraints,”
Proc. 12th National Conference on Artificial Intelligence, 1086-1091, MIT Press.
Cheng, C.-C. & Smith, S.F. (1995a). “Applying Constraint Satisfaction Techniques to Job-Shop Scheduling,”
Technical Report, Carnegie Mellon University, Pittsburgh, Pennsylvania.
Cheng, C.-C. & Smith, S.F. (1995b). “A Constraint-Posting Framework for Scheduling under Complex
Constraints,” Proc. AAAI-SIGMAN Workshop on Intelligent Manufacturing Systems, 64-75.
Collinot, A. & Le Pape, C. (1987). “Controlling Constraint Propagation,” Proc. 10th International Joint
Conference on Artificial Intelligence, 1032-1034, Morgan Kaufmann.
Colombani, Y. (1996). “Constraint Programming: An Efficient and Practical Approach to Solving the
Job-Shop Problem,” Proc. 2nd International Conference on Principles and Practice of Constraint Programming,
149-163, Springer-Verlag.
Demeulemeester, E. (1992). “Optimal Algorithms for Various Classes of Multiple Resource-Constrained
Project Scheduling Problems,” PhD Thesis, Katholieke Universiteit Leuven, Leuven, Belgium.
Erschler, J. (1976). “Analyse sous contraintes et aide à la décision pour certains problèmes d'ordonnancement,”
Thèse de Doctorat d'Etat, Université Paul Sabatier, Toulouse, France (in French).
Erschler, J., Lopez, P., & Thuriot, C. (1991). “Raisonnement temporel sous contraintes de ressource et
problèmes d'ordonnancement,” Revue d'Intelligence Artificielle 5, 7-32 (in French).
Esquirol, P. (1987). “Règles et processus d'inférence pour l'aide à l'ordonnancement de tâches en présence de
contraintes,” PhD Thesis, Université Paul Sabatier, Toulouse, France (in French).
Federgruen, A. & Groenevelt, H. (1986). “Preemptive Scheduling of Uniform Machines by Ordinary Network
Flow Techniques,” Management Science 32, 341-349.
Fox, B.R. (1990). “Chronological and Non-Chronological Scheduling,” Proc. 1st IEEE Annual Conference on
Artificial Intelligence, Simulation and Planning in High Autonomy Systems.
Garey, M.R. & Johnson, D.S. (1979). “Computers and Intractability. A Guide to the Theory of
NP-Completeness,” W. H. Freeman and Company.
Gondran, M. & Minoux, M. (1995). “Graphes et Algorithmes,” Eyrolles (in French).
Kumar, V. (1992). “Algorithms for Constraint Satisfaction Problems: A Survey,” AI Magazine 13, 32-44.
Laborie, P. (1994). “Planifier avec des contraintes de ressources,” Proc. 2èmes rencontres des jeunes
chercheurs en intelligence artificielle (in French).
Le Pape, C. & Smith, S.F. (1987). “Management of Temporal Constraints for Factory Scheduling,” Proc. IFIP
TC 8/WG 8.1 Working Conference on Temporal Aspects in Information Systems, 159-170, North-Holland.
Le Pape, C. (1988). “Des systèmes d'ordonnancement flexibles et opportunistes,” PhD Thesis, University
Paris XI, Orsay, France (in French).
Le Pape, C. (1991). “Constraint Propagation in Planning and Scheduling,” Technical Report, Stanford
University, Palo Alto, California.
Le Pape, C. (1994). “Implementation of Resource Constraints in ILOG SCHEDULE: A Library for the
Development of Constraint-Based Scheduling Systems,” Intelligent Systems Engineering 3, 55-66.
Le Pape, C. (1996). “An Application of Constraint Programming to a Specific Production Scheduling
Problem,” Belgian Journal of Operations Research, Statistics and Computer Science (to appear).
Lévy, M.-L. (1996). “Méthodes par décomposition temporelle et problèmes d’ordonnancement,” PhD Thesis,
Institut National Polytechnique de Toulouse, Toulouse, France (in French).
Lhomme, O. (1993). “Consistency Techniques for Numeric CSPs,” Proc. 13th International Joint Conference
on Artificial Intelligence, 232-238, Morgan Kaufmann.
Lock, H.C.R. (1996). “An Implementation of the Cumulative Constraint,” Working Paper, University of
Karlsruhe, Karlsruhe, Germany.
Lopez, P. (1991). “Approche énergétique pour l'ordonnancement de tâches sous contraintes de temps et de
ressources,” PhD Thesis, Université Paul Sabatier, Toulouse, France (in French).
Lopez, P., Erschler, J., & Esquirol, P. (1992). “Ordonnancement de tâches sous contraintes : une approche
énergétique,” RAIRO APII 26, 453-481 (in French).

RESOURCE CONSTRAINTS FOR PREEMPTIVE JOB-SHOP SCHEDULING 25

Martin, P. & Shmoys, D.B. (1996). “A New Approach to Computing Optimal Schedules for the Job-Shop
Scheduling Problem,” Proc. 5th International Conference on Integer Programming and Combinatorial
Optimization.
Nuijten, W.P.M. & Aarts, E.H.L. (1994). “Constraint Satisfaction for Multiple Capacitated Job-Shop
Scheduling,” Proc. 11th European Conference on Artificial Intelligence, 635-639, John Wiley and Sons.
Nuijten, W.P.M. (1994). “Time and Resource Constrained Scheduling: A Constraint Satisfaction Approach,”
PhD Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands.
Nuijten, W.P.M. & Aarts, E.H.L. (1996). “A Computational Study of Constraint Satisfaction for Multiple
Capacitated Job-Shop Scheduling,” European Journal of Operational Research 90, 269-284.
Pegman, M., Forward, N., King, B., & Teal, D. (1997). “Mine Planning and Scheduling at RTZ Technical
Services,” Proc. 3rd International Conference and Exhibition on the Practical Application of Constraint
Technology, 273-285, The Practical Application Company.
Pinson, E. (1988). “Le problème de job-shop,” PhD Thesis, University Paris VI, Paris, France (in French).
Prosser, P. (1990). “Distributed Asynchronous Scheduling,” PhD Thesis, University of Strathclyde, Glasgow,
United Kingdom.
Puget, J.-F. (1994). “A C++ Implementation of CLP,” Technical Report, ILOG S.A., Gentilly, France.
Puget, J.-F. & Leconte, M. (1995), “Beyond the Glass Box: Constraints as Objects,” Proc. International
Symposium on Logic Programming, MIT Press.
Régin, J.-C. (1994). “A Filtering Algorithm for Constraints of Difference in CSPs,” Proc. 12th National
Conference on Artificial Intelligence, 362-367, MIT Press.
Régin, J.-C. (1995). “Développement d’outils algorithmiques pour l’Intelligence Artificielle. Application à la
chimie organique,” PhD Thesis, University Montpellier II, Montpellier, France (in French).
Régin, J.-C. (1996). “Generalized Arc-Consistency for Global Cardinality Constraint” Proc. 13th National
Conference on Artificial Intelligence, 209-215, MIT Press.
Rit, J.-F. (1986). “Propagating Temporal Constraints for Scheduling,” Proc. 5th National Conference on
Artificial Intelligence, 383-388, MIT Press.
Smith, S.F. (1983). “Exploiting Temporal Knowledge to Organize Constraints,” Technical Report, Carnegie
Mellon University, Pittsburgh, Pennsylvania.
Smith, S.F. (1992). “Knowledge-Based Production Management: Approaches, Results and Prospects,”
Production Planning and Control 3, 350-380.
Smith, S.F. & Cheng, C.-C. (1993). “Slack-Based Heuristics for Constraint Satisfaction Scheduling,” Proc.
11th National Conference on Artificial Intelligence, 139-144, MIT Press.
Smith, S.F. (1994). “OPIS: A Methodology and Architecture for Reactive Scheduling,” In: Zweben, M. & Fox,
M. (editors), “Intelligent Scheduling,” Morgan Kaufmann.
Varnier, C., Baptiste, P., & Legeard, B. (1993). “Le traitement des contraintes disjonctives dans un problème
d'ordonnancement : exemple du Hoist Scheduling Problem,” Proc. 2èmes journées francophones de
programmation logique, 343-363 (in French).
Zweben, M., Davis, E., Daun, B., & Deale, M.J. (1993). “Scheduling and Rescheduling with Iterative Repair,”
IEEE Transactions on Systems, Man, and Cybernetics 23, 1588-1596.

