Is Scheduling Still AI? Part 1: Scheduling Basics

J. Christopher Beck Dept. of Mechanical & Industrial Engineering University of Toronto Canada

ACAI Summer School Freiburg, Germany June 7 – 10, 2011

Outline

- Part 1: Core Scheduling Technologies
 - CP, MIP, & Metaheuristics
 - 90 minutes
- Part 2: State of the Art
 - CP + Metaheuristics, CP + MIP
 - 60 minutes
- Part 3: Polemics & Perspectives
 - The Past and the Future?
 - 30 minutes

Outline: Part 1

- What is Scheduling?
 - The fundamental bits
 - "The" classical problem
- Constraint Programming (CP) Complete search and inference
- Mixed Integer Programming (MIP)
 - Complete search and relaxation
- Metaheuristics
 - Incomplete search

Scheduling is ...

• The allocation of resources to activities over time

- Mixing machines in food manufacturing
- Classrooms at a university
- Trucks & planes for FedEx
- Mathematically hard
- Industrially, economically, & environmentally important

Project Scheduling

- There are a series

 of operations
 required to complete
 a project
 - (e.g., build a bridge)
- Each operation requires resources

• Example: schedule the operations on the resources to meet all due dates

Manufacturing Scheduling

- Specialization of project scheduling
 - Series of operations
 - Resources required
 - Need to assign operations to resources over time in order to find shortest schedule, meet due dates, etc.

Airport Facility Scheduling

 Allocate resources required to "service" a plane

- Runway, gate, baggage carousel, security personnel, re-fueling, re-stock food, ...
- Planes close to connecting flights?
- Turn-around the plane quickly
- A new plane lands every minute

Workforce Scheduling

 You need a particular number of people with specific skills on each shift

- You need to schedule breaks, days-off, etc. taking into account regulations about #days/#hours worked without a break
- Nurse scheduling, call-centre staffing, ...

The Key Difference with Planning

- In classical scheduling we know all the operations (e.g., flights, production jobs) at the beginning of the solving process
- In some formulations, we may choose not to schedule all operations but typically (and for this lecture) assume that we never add to the set of operations during search

And now for some details ...

Jobs

 $\begin{array}{l} p_{ij} - \text{processing time of job j} \\ \text{on machine i} \\ r_j - \text{release date of job j} \\ d_j - \text{due date of job j} \\ w_j - \text{weight of job j} \end{array}$

University of Toronto Mechanical & Industrial Engineering

Jobs & Operations

- Often jobs are made up of a set of operations
 - usually once you start an operation, you can't interrupt it → "no pre-emption"

Scheduling is ...

- Assigning a start time and set of resources to each activity so that the temporal and resource constraints are satisfied
 - Temporal constraints: precedence, min/max
 - Resource constraints: capacity, type
- Often also have an objective function to optimize

Classical Objective Functions

 Minimize maximum completion time (aka "makespan")

 $-\operatorname{Min} \mathbf{C}_{\max} \quad [\mathbf{C}_{\max} = \max(\mathbf{C}_1, \dots, \mathbf{C}_n)]$

Minimize maximum lateness

- Min L_{max} $[L_{max} = max(C_1 - d_1, \dots C_n - d_n)]$

Minimize total weighted tardiness

 $-\operatorname{Min} \Sigma w_{j}T_{j} \quad [T_{j} = \max(C_{j} - d_{j}, 0)]$

Hard vs. Easy

 Most interesting scheduling problems are at least NP-hard

- some easy special cases
 - one-machine or two-machine (with restrictions)
- some approaches use the special case algorithms as heuristics

Job Shop Scheduling

Job Shop Scheduling

Complications

- Resources can be continuously produced and consumed: tanks
- Batch resources: ovens
- Setups & sequence dependent changeovers

- Multi-criteria optimization
- Different processing times on different machines

University of Toronto Mechanical & Industrial Engineering

Outline: Part 1

What is Scheduling?

 The fundamental bits
 "The" classical problem

- Constraint Programming (CP)
 - Complete search and inference
- Mixed Integer Programming (MIP)
 - Complete search and relaxation
- Metaheuristics
 - Incomplete search

What is Constraint Programming (CP)?

- An approach to combinatorial optimization arising from Artificial Intelligence and Computer Science
 - in contrast to Operations Research
- Core technology
 - tree search + inference
- Successes: scheduling, planning, network provisioning, graph theory, ...

Constraint Satisfaction Problem (CSP)

- Given:
 - V, a set of variables { v_0 , v_1 , ..., v_n }
 - D, a set of domains {D₀, D₁, ..., D_n}
 - C, a set of constraints { $c_0, c_1, ..., c_m$ }
- Each constraint, c_i, has a scope c_i(v₀, v₂, v₄, v₁₁₇, ...), the variables that it constrains

Constraint Satisfaction Problem (CSP)

- A constraint, c_i, is a mapping from the elements of the Cartesian product of the domains of the variables in its scope to {T,F}
 - $\begin{array}{l} \, c_i(v_0, \, v_2, \, v_4, \, v_{117}, \, \ldots) \, maps: \\ (D_0 \, X \, D_2 \, X \, D_4 \, X \, D_{117} \, X \, \ldots \,) \rightarrow \{T, F\} \end{array}$
- A constraint is satisfied iff the assignment of the variables in its scope map to T

Constraint Satisfaction Problem (CSP)

- In a solution to a CSP:
 - each variable is assigned a value from its domain: v_i = d_i, d_i ∈ D_i
 - each constraint is satisfied

Constraint Optimization Problem (COP)

- A CSP plus a cost function f(V)
 - f is a mapping from the Cartesian product of a subset of the domains to integers or reals
- A solution is a solution to the CSP where f is (wolog) minimized

Generic CP Algorithm

Arc Consistency

- Fundamental notion in CP!
- Given: $c_1(v_1, v_2)$
 - a binary constraint
 - $-e.g., v_1 < v_2$
- Given: $D_1 = D_2 = \{0, 1, ..., 5\}$

Arc Consistency

- c₁ is arc consistent iff
 - for all values $d_1 \in D_1$ there exists a value $d_2 \in D_2$ such that $c_1(v_1=d_1,v_2=d_2) \rightarrow T$
 - And similarly for all values $d_2 \in D_2$
 - We say d_1 "supports" d_2 (and vice versa)

What Now?

Generalized Arc Consistency (GAC)

- Given: c₁(v₁,..., v_m)
- C₁ is GAC iff
 - for all variables d_i, for all values d_i ∈ D_i there exists a tuple of values [d_j ∈ D_j], j≠i such that C₁ (v_i=d_i,[v_j=d_j]) → T

All-Diff vs. Clique of ≠

- all-diff($v_1, v_2, ..., v_n$) =_{def} $v_i \neq v_j$ for $1 \le i < j \le n$
- $D_1 = D_2 = D_3 = \{1,3\}$
- Establish AC (or GAC) for

$$-v_1 \neq v_2, v_1 \neq v_3, v_2 \neq v_3$$

- all-diff(v_1, v_2, v_3)

Job Shop Scheduling

A CP Model for JSP

Where:

- \mathcal{J} is the set of all activities
- \mathcal{K} is the set of all resources
- \mathcal{E} is set of all precedence constraints
- S_j is the start-time variable of job j
- p_j is the processing time of job j

disjunctive is a global constraint enforcing the resource capacity

The disjunctive Global Constraint

• Called disjunctive because it enforces:

$$S_j + p_j \le S_i \lor S_i + p_i \le S_j$$

for all activities *i*,*j* on the same resource.

 There are a number of inference algorithms that have been invented – we'll look at only one.

Notation

- p_i processing time of activity j (aka duration)
- est_i earliest start time of activity j
- lst_i latest start time of activity j
- ect_i earliest completion time of activity j
- Ict_i latest completion time of activity j

University of Toronto Mechanical & Industrial Engineering

Notation

Domain of start times (represented by an interval)

Edge-Finding Exclusion

Edge-Finding Exclusion

University of Toronto Mechanical & Industrial Engineering

University of Toronto Mechanical & Industrial Engineering

Global Constraints

- A lot of interesting global constraints for scheduling
 - Balance constraint [Laborie, 2003]
 - Setups (TSP and AP) [Focacci et al, 2000]
 - Inter-distance [Artiouchine & Baptiste, 2005]
 - Timetable Edge-finding [Vilim, 2011]

Other Critical Solver Components

Search

(branching heuristics)

- Min-slack [Cheng & Smith, 1993]
- Texture measurements [B., 1999]
- Solution-guided search (stay tuned ...)
- Backtracking
 - Usual standard CP approaches
 - Chronological, LDS, restart, ...

What Makes CP Different?

- Rich, expressive language
 - you can define anything you want as a constraint (not always a good thing)
- Focus on inference as the key technique to reduce search tree

University of Toronto Mechanical & Industrial Engineering

Outline: Part 1

- What is Scheduling?
 - The fundamental bits
 - "The" classical problem

- Constraint Programming (CP)
 Complete search and inference
- Mixed Integer Programming (MIP)
 - Complete search and relaxation
- Metaheuristics
 - Incomplete search

Mixed Integer Programming (MIP)

- Very successful complete optimization approach
- From the Operations Research/Applied Math community
- (Much) longer history than CP
 - 1940s and 1950s

MIP Basics

- Variables: integer or continuous
- Constraints: linear
- Objective function: linear
- (more accurately called Mixed Integer Linear Programming (MILP))

Comment: Much more restricted language than CP

MIP Basics $c_i x_i$ min **Objective function** $i \in V$ Could be \leq , =, or \geq s.t. Constraints $i \in V j \in C$ $V = V_I \cup V_R$ $\mathbb{Z}, \forall i \in V_I$ Integer variables $x_i \in \mathbb{R}, \forall i \in V_R$ Continuous variables Continuous (linear) relaxation: University of Toronto Mechanical & Industrial Engineering poly-time soluble!

MIP Solving

- Combination of
 - tree search
 - relaxation
 - cutting planes

Linear Relaxation

- Finds a "corner" that maximizes the cost function
 - Algorithms: simplex, dual simplex, interior point, ...

So are we done?

0

Branching

- Add a constraint
- Focus on one sub-problem
- Return (backtrack) later

Branching

Bounds Strengthening

 A form of inference

Solve LP Again ...

- Integer solution!
 - recall that the
 LP solution is
 guaranteed to
 be a corner

Bounding

 Found an "incumbent" solution so add a constraint to require a better solution

Backtrack

Bounds Strengthen

University of Toronto Mechanical & Industrial Engineering

Solve LP

• New solution!

And we're done

Other Critical Solver Components

- Branching heuristics
- Cutting planes
- Primal heuristics
- Backtracking
 - Best-First Search or
 Depth-First Search

University of Toronto Mechanical & Industrial Engineering

Job Shop Scheduling

MIP for Job Shop Scheduling

min	C_{max}
s.t.	$\sum_{k \in \mathcal{K}} \sum_{t \in H} x_{jkt} = 1$
	$\sum_{j \in \mathcal{J}} \sum_{t' \in T_{jkt}} x_{jkt'} \le 1$
	$\sum_{k \in \mathcal{K}} \sum_{t \in \mathcal{H}} (t + p_j) x_{jkt} \le C_{max}$
	$\sum_{k \in \mathcal{K}} \sum_{t \in \mathcal{H}} (t + p_j) x_{jkt} \le \sum_{k \in \mathcal{K}} \sum_{t \in \mathcal{H}} t x_{ikt}$
	$x_{jkt} \in \{0,1\}$

Where:

 $\overline{}$

H is the set of all time-points *x_{jkt}* = 1 iff job *j* starts at time *t* on resource *k T_{jkt}* = {*t* − *p_j*,...,*t*}.

All activities start only once

Resource constraints

 C_{max} is the largest end-time

Precedence constraints

$$\forall k \in \mathcal{K}, \ \forall j \in \mathcal{J}, \ \forall t \in \mathcal{H}$$

What Makes MIP Different?

- Restricted language
 cf. SAT
- Focus on the linear relaxation as the key technique to reduce search tree

Outline: Part 1

- What is Scheduling?
 - The fundamental bits
 - "The" classical problem

- Constraint Programming (CP)
 Complete search and inference
- Mixed Integer Programming (MIP)
 - Complete search and relaxation
- Metaheuristics
 - Incomplete search

Now For Something Completely Different

Metaheuristics (aka Local Search)

- Quickly & heuristically find a "good" solution
- Perturb the solution slightly, generating neighboring solutions
- Evaluate neighbors and move to the best one
- Repeat

Notation

- V is a set of variables $\{v_1, ..., v_n\}$
- s is an assignment of each variable to a value
- Let S be the set of all assignments
- A neighborhood N is a function from s to T where $T \subseteq S$

Notation

- So $N(s) \subseteq S$
- The assignments in N(s) are the "neighbors" of s

Crystal Maze

- Place the numbers 1 through 8 in the nodes such that:
 - Each number appears exactly once

Local Search Idea

Randomly assign values (even if the constraints are "broken")

- Initial state will probably be infeasible

Make "moves" to try to move toward a solution

Random Initial Solution

Random Initial Solution

What Should We Do Now?

- Move:
 - Swap two numbers
- Which two numbers?
 - Randomly pick a pair
 - The pair that will lead to the biggest decrease in cost
 - Cost: number of broken constraints

What Should We Do Now?

- Move:
 - Swap two numbers
- Which two numbers?
 - Randomly pick a pair
 - The pair that will lead to the biggest decrease in cost
 - Cost: number of broken constraints

Random Initial Solution

Cost Difference Table

	1	2	3	4	5	6	7	8
1	0	0	0	-1	0	-2	-3	-2
2		0	-1	1	-1	-2	-1	-3
3			0	0	0	0	-1	0
4				0	0	0	-1	0
5					0	0	1	-1
6						0	-1	0
7							0	0
8					WCCI			oront

Cost Difference Table

	1	2	3	4	5	6	7	8
1	0	0	0	-1	0	-2	-3	-2
2		0	-1	1	-1	-2	-1	-3
3			0	0	0	0	-1	0
4				0	0	0	-1	0
5					0	0	1	-1
6						0	-1	0
7							0	0
8					Ween			oront

Current State

Swap 1 & 7: Cost 3

New Cost Difference Table

Incremental updates are important

	1	2	3	4	5	6	7	8
1	0	0	0	0	2	0	3	0
2		0	0	2	0	1	1	1
3			0	0	0	1	1	-1
4				0	0	1	1	1
5					0	1	2	0
6						0	0	0
7							0	1
8								

Current State

Swap 3 & 8: Cost 2

Swap 6 & 7: Cost 1

Moves

- Initial State: Cost 6
- Swap 1 & 7: Cost 3
- Swap 3 & 8: Cost 2
- Swap 6 & 7: Cost 1

Cost Difference Table

	1	2	3	4	5	6	7	8
1	0	1	1	1	2	2	1	1
2		0	1	2	2	1	3	1
3			0	1	1	4	1	2
4				0	2	1	3	1
5					0	2	1	2
6						0	1	1
7							0	1
8					Ween	anical of find		oront

Now what?

Now what?

- This is when you need a metaheuristic
 - Simulated Annealing
 - Tabu Search
- [Blum & Roli 2003]

University of Toronto Mechanical & Industrial Engineering

Local Search (or Iterative Improvement or Hill-Climbing)

 $s \leftarrow \text{GenerateInitialSolution()}$ repeat $s \leftarrow \text{Improve}(\mathcal{N}(s)) \bigcirc \mathsf{OR}$ until no improvement is possible (aka first improvement) best improvement(aka best accept)

Fig. 1. Algorithm: Iterative Improvement.

> There is a lot that has been left unsaid!

Simulated Annealing

 $s \leftarrow \text{GenerateInitialSolution}()$ -"temperature" $T \leftarrow T_0 \leftarrow$ while termination conditions not met do $s' \leftarrow \mathsf{PickAtRandom}(\mathcal{N}(s))$ if (f(s') < f(s)) then f(s) is the cost of solution s $s \leftarrow s'$ % s' replaces s else Accept s' as new solution with probability p(T, s', s)endif Update(T)"cooling schedule" endwhile

Fig. 2. Algorithm: Simulated Annealing (SA). :y of Toronto Mechanical & Industrial Engineering

Probability of Acceptance

• Typically:

$$p(T,s',s) = \exp(-\frac{f(s') - f(s)}{T})$$

- at a fixed T, the higher the difference in cost the lower the prob. of acceptance
- at a fixed cost difference, the higher the temperature, the higher the prob. of acceptance

Cooling Schedule

- Typically the temperature starts out high and gradually decreases
- A lot of theoretical work here
- Often, in practice

$$T_{k+1} = \alpha T_k$$
$$\alpha \in (0,1)$$

Tabu Search

 $s \leftarrow \text{GenerateInitialSolution}()$ $TabuList \leftarrow \emptyset$ while termination conditions not met do $s \leftarrow \text{ChooseBestOf}(\mathcal{N}(s) \setminus TabuList)$ Update(TabuList) endwhile

Fig. 3. Algorithm: Simple Tabu Search (TS).

Tabu List

- What is the format of an element?
- What is the tabu tenure?

– Variations?

• What are aspiration criteria?

Job Shop Scheduling

Critical Path

A critical "block" is a contiguous set of critical activities on the same resource

nufacturing Scheduling

int Computation Centre | Scheduling | Links

Finished Problem Category: 10x10 - Filename: jsp0 - Time Limit : 10) Prev Best Next nitial Cost = 974 Makespan = 903 Improvement = 7% Scaling to fit (80%)
Problem Category: 10x10 - Filename: jsp0 - Time Limit : 10) Prev Best Next hitial Cost = 974 Makespan = 903 Improvement = 7% Scaling to fit (80%)
nitial Cost = 974 Makespan = 903 Improvement = 7% Scaling to fit (80%)
R0 J6A7 J3A5 J6A7 R1 J9A0 J6A2 J4A2 J3A1 J1A3 J5A8 R2 J7A3 J6A3 J8A5 J5A5 J2A6 J R3 J4A1 J3A0 J0A2 J1A8 J2A7 J R4 J5A0 J9A4 J0A7 J4A8 J R5 J2A2 J4A3 J8A3 J9A6
F F F F F F

Program Output

5 Time: 9.2216 Makespan: 898 Failures: 0 ChPts: 100 Random: 45 Activities: 45 Models: 306

6 Time: 9.2246 Makespan: 897 Failures: 29 ChPts: 124 Random: 45 Activities: 45 Models: 306

7 Time: 9.91249 Makespan: 896 Failures: 0 ChPts: 85 Random: 45 Activities: 45 Models: 328

improvement summary

O LINC resources O CEO baset 1/ 1) where 1 1 testel 1 evenes

N1 & N5 Neighborhoods

 N1: Swap all pairs of adjacent activities in a critical block

int Computation Centre | Scheduling | Links

Program Output

5 Time: 9.2216 Makespan: 898 Failures: 0 ChPts: 100 Random: 45 Activities: 45 Models: 306

6 Time: 9.2246 Makespan: 897 Failures: 29 ChPts: 124 Random: 45 Activities: 45 Models: 306

7 Time: 9.91249 Makespan: 896 Failures: 0 ChPts: 85 Random: 45 Activities: 45 Models: 328

improvement summary

O LINC measures O CEO head 1/ 1) muse 1 1 total 1 evenes

N1 & N5 Neighborhoods

- N1: Swap all pairs of adjacent activities in a critical block
- N5: Swap first and last adjacent pair in each critical block
 - but only last pair in first block and first pair in last block

int Computation Centre | Scheduling | Links

Program Output

5 Time: 9.2216 Makespan: 898 Failures: 0 ChPts: 100 Random: 45 Activities: 45 Models: 306

6 Time: 9.2246 Makespan: 897 Failures: 29 ChPts: 124 Random: 45 Activities: 45 Models: 306

7 Time: 9.91249 Makespan: 896 Failures: 0 ChPts: 85 Random: 45 Activities: 45 Models: 328

improvement summary

O LINC measures O CEO head 1/ 1) when 1 1 total 1 evenes

Simple Tabu Search (STS)

- Tabu tenure
 - randomly drawn from an interval [6,10] every
 15 moves
- Elite solutions
 - maintain e elite solutions
 - if best solution hasn't improved in a while, jump back to one of the elite solutions and start over
- Other sophisticated components

105

Metaheuristics

- Start with random or heuristic solution
- Make moves following the cost gradient
 - Might need some short term memory (e.g., tabu list) to avoid cycling
- Go until you find a solution or reach a bound on the number of moves

Summary

- CP
 - search + inference, rich language, domain specific inference and heuristics
- MIP
 - search + relaxation, restricted language, generic relaxation
- Metaheuristics
 - local search
 - hill-climbing + local minima escape

Which is Best?

- CP
 - scheduling is a (commercial) success story for CP
 - easy to add side-constraints (and there are always side constraints)
- However:
 - if propagation is weak, falls apart
 - more complicated cost functions or multiple decisions need to be made before inference can work
 - scaling?

Mechanical & Industrial Engineering

Which is Best?

- MIP
 - good with complex costs
 - flexible modeling of side-constraints
 - if they are linear
- However:
 - scaling issues with time-indexed formulation
 - if resource feasibility is the main challenge, falls apart
 - especially with non-unary resources

Which is Best?

- Metaheuristics
 - can be highly customized for a given problem
 - scales well
 - state-of-the-art for JSP since mid-90s
- However:
 - hard to incorporate side-constraints
 - need new neighborhood
 - can't prove optimality or even give a bound on solution quality

Outline: Part 2

- Remembering Yesterday
- Combining CP and Tabu Search for Job Shop Scheduling

 Combining MIP and CP for Resource Allocation/Scheduling Problems

Outline: Part 3

- The Origin of the Species
 - Ancient History (the 70s & 80s)
 - What's a constraint anyway?
- The 90s
- Scheduling & AI

Please come back tomorrow

Is Scheduling Still AI? Part 2: State of the Art

J. Christopher Beck Dept. of Mechanical & Industrial Engineering University of Toronto Canada

ACAI Summer School Freiburg, Germany June 7 – 10, 2011

Outline

Part 1: Core Scheduling Technologies

 – CP, MIP, & Metaheuristics
 – 90 minutes

- Part 2: State of the Art
 - CP + Metaheuristics, CP + MIP
 - 60 minutes
- Part 3: Polemics & Perspectives
 - The Past and the Future?
 - 30 minutes

Outline: Part 2

- Remembering Yesterday
 90 minutes in 3 slides
- Combining CP and Tabu Search for Job Shop Scheduling

 Combining MIP and CP for Resource Allocation/Scheduling Problems

Scheduling is ...

• The allocation of resources to activities over time

- Mixing machines in food manufacturing
- Classrooms at a university
- Trucks & planes for FedEx
- Mathematically hard
- Industrially, economically, & environmentally important

The Key Difference with Planning

- In classical scheduling we know all the operations (e.g., flights, production jobs) at the beginning of the solving process
- Typically (and for this lecture) assume that we never add to the set of operations during search

Summary

- CP
 - search + inference, rich language, domain specific inference and heuristics
- MIP
 - search + relaxation, restricted language, generic relaxation
- Metaheuristics
 - local search
 - hill-climbing + local minima escape

University of Toronto Mechanical & Industrial Engineering

Outline: Part 2

- Remembering Yesterday
 90 minutes in 3 slides
- Combining CP and Tabu Search for Job Shop Scheduling

 Combining MIP and CP for Resource Allocation/Scheduling Problems

Outline

- State of the Art in Job Shop Scheduling
- Iterated Simple Tabu Search (i-STS) & Solution-Guided Search (SGS)
- Hybrid i-STS/SGS

[B., Feng, & Watson, 2011]
Combining Constraint Programming and
Local Search for Job-Shop Scheduling. *INFORMS Journal on Computing*, **23(1)**, 1-14, 2011.

University of Toronto Mechanical & Industrial Engineering

Job Shop Scheduling

A CP Model for JSP

min C_{max} Minimize the makespan s.t. $S_i \geq 0$ $\forall j \in \mathcal{J}$ All activities end $\forall j \in \mathcal{J}$ $S_j + p_j \leq C_{max}$ before the makespan Precedence $\forall (j,i) \in \mathcal{E}$ $S_i + p_i \leq S_i$ constraints disjunctive $(S_{.}, p_{.})$ $\forall k \in \mathcal{K}$ $S_i \in \mathbb{Z}$ $\forall j \in \mathcal{J}.$

Where:

- \mathcal{J} is the set of all activities
- \mathcal{K} is the set of all resources
- \mathcal{E} is set of all precedence constraints
- S_j is the start-time variable of job j
- p_j is the processing time of job j

State of the Art for JSP

- TSAB (Nowicki and Smutnicki 1993, 1996)
 - Elite pool of k best solutions found
 - Repeated tabu search from elite solutions
- i-TSAB (Nowicki and Smutnicki 2001, 2002, 2003, 2005)
 - Elite pool of k best solutions
 - Path relinking to diversify, TSAB to intensify
- Tabu search / simulated annealing hybrid (Zhang et al. 2006)
 University of Toronto Mechanical & Industrial Engineering

State of the Art for JSP

- Constraint Programming
 - Sophisticated propagation techniques
 - Scheduling specific heuristics
 - Commercially successful in scheduling → easily model side-constraints

Taillard's 20x20 JSPs - Makespan

Instance	UB	CP -	CP - restart
		chron	mean (best)
TA21	1644	1809	1694 (1686)
TA22	1600	1689	1654 (1649)
TA23	1557	1657	1614 (1602)
TA24	1646	1810	1698 (1694)
TA25	1595	1685	1673 (1664)
TA26	1645	1827	1707 (1701)
TA27	1680	1827	1755 (1750)
TA28	1603	1778	1664 (1656)
TA29	1625	1718	1666 (1660)
TA20	1584	1666	1647 (1641)

University of Toronto Mechanical & Industrial Engineering

Outline

State-of-the Art in Job Shop Scheduling

- Iterated Simple Tabu Search (i-STS) & Solution-Guided Search (SGS)
- Hybrid i-STS/SGS

Tabu Search

 $s \leftarrow \text{GenerateInitialSolution()}$

 $TabuList \leftarrow \emptyset$

while termination conditions not met do

 $s \leftarrow \mathsf{ChooseBestOf}(\mathcal{N}(s) \setminus TabuList)$

Update(TabuList)

endwhile

Fig. 3. Algorithm: Simple Tabu Search (TS).

[Blum & Roli, 2006] Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys, 35(3):268-308, 2003.

i-STS: Initial Phase

- Repeat *k* times
 - Generate random local optima, A
 - Run STS on A until no more progress is being made
 - Insert the best solution found in the STS run into the elite set

[Watson, Howe, & Whitley 2006] Deconstructing Nowicki and Smutnicki's *i*-TSAB tabu search algorithm for the job-shop scheduling problem. *Computers and Operations Research*, **33**, 2623–2644, 2006.

i-STS: Proper Work Phase

- With 0.5 probability
 - Pick random elite solution, R, and run STS
 - If best solution is better than R, replace R
- Else
 - Pick two random elite solutions, R, S
 - Walk half way between R & S to W
 - Run STS from W
 - If best solution is better than R, replace R

Another View

Starting Solution Guiding Solution

10010011111010

10111010101011

Another View		
		10110011111010
		1001101111010
Starting Solution	10010011111010	10010010111010
	10010011111011	10010011101010
		10010011111011

10111010101011

© J. Christopher Beck 2010 Mechanical & Industrial Engineering

Another View

Starting	10010011111010	1001101111011
Condition	1001001111101 <mark>1</mark>	1001001 <mark>0</mark> 111011
	1001001 <mark>0</mark> 111011	10010011101011

Guiding Solution

10111010101011

© J. Christopher Beck 2010 Mechanical & Industrial Engineering

i-STS Results

- Significantly cleaner and simpler than i-TSAB
 - Test-bed for investigations about why i-TSAB really works
- Near state of the art
 - Equivalent performance to i-TSAB per iteration
 - But about 5 times slower

Solution-Guided Search

- Metaheuristics use "elite" solutions – why not tree search?
 - Keep around a small set of the "elite" solutions
 - Guide tree search
 with one of the elite solutions

[B. 2007] Solution-guided multi-point constructive search for job shop scheduling. Journal of Artificial Intelligence Research, **29**, 49–77, 2007.

Guiding Search with a Solution

• Given a solution:

$$s = \{(v_1 = x_1), (v_2 = x_2), ..., (v_m = x_m)\}, m \le n$$

V := varHeuristic.getVariable()
if (V = x) € s AND if x € dom(V)
branch ((V = x) OR (V ≠ x))
else
w := valHeuristic.getValue(V)
branch ((V = w) OR (V ≠ w))

Taillard's 20x20 JSPs - Makespan

Instance	UB	CP -	CP - restart	SGS
		chron	mean (best)	mean (best)
TA21	1644	1809	1694 (1686)	1666 (1649)
TA22	1600	1689	1654 (1649)	1632 (1621)
TA23	1557	1657	1614 (1602)	1571 (1561)
TA24	1646	1810	1698 (1694)	1664 (1652)
TA25	1595	1685	1673 (1664)	1620 (1608)
TA26	1645	1827	1707 (1701)	1669 (1656)
TA27	1680	1827	1755 (1750)	1716 (1706)
TA28	1603	1778	1664 (1656)	1628 (1619)
TA29	1625	1718	1666 (1660)	1642 (1626)
TA20	1584	1666	1647 (1641)	1607 (1598)

Taillard's 20x20 JSPs - Makespan

Instance	UB	CP - chron	CP - restart mean (best)	SGS mean (best)	i-STS mean (best)
TA21	1644	1809	1694 (1686)	1666 (1649)	1648 (1647)
TA22	1600	1689	1654 (1649)	1632 (1621)	1614 (1600)
TA23	1557	1657	1614 (1602)	1571 (1561)	1560 (1557)
TA24	1646	1810	1698 (1694)	1664 (1652)	1653 (1647)
TA25	1595	1685	1673 (1664)	1620 (1608)	1599 (1595)
TA26	1645	1827	1707 (1701)	1669 (1656)	1653 (1651)
TA27	1680	1827	1755 (1750)	1716 (1706)	1690 (1687)
TA28	1603	1778	1664 (1656)	1628 (1619)	1617 (1614)
TA29	1625	1718	1666 (1660)	1642 (<mark>1626</mark>)	1628 (1627)
TA20	1584	1666	1647 (1641)	1607 (1598)	1587 (1584)

Conclusion

SGS significantly improves standard CP approaches

But is not competitive with i-STS

University of Toronto Mechanical & Industrial Engineering
Outline

- State-of-the Art in Job Shop Scheduling
- Iterated Simple Tabu Search (i-STS) & Solution-Guided Search (SGS)
- Hybrid i-STS/SGS

Why Hybridize?

- Propagation algorithms work better in a more constrained state
 - CP can't find good solutions, but given a good solution can it find a better one?
- We hypothesize that SGS strongly intensifies around a solution
 - better than tabu search at intensification?
 - does this bring us anything?

The Simplest Hybrid We Could Think Of

- Given T seconds
- Run i-STS for T/2
- Use final elite set from i-STS as initial elite set for SGS
- Run SGS for T/2

Results – Taillard's 20x20

Instance	UB	SGS	i-STS
		mean (best)	mean (best)
TA21	1644	1666 (1649)	1648 (1647)
TA22	1600	1632 (1621)	1614 (1600)
TA23	1557	1571 (1561)	1560 (1557)
TA24	1646	1664 (1652)	1653 (1647)
TA25	1595	1620 (1608)	1599 (1595)
TA26	1645	1669 (1656)	1653 (1651)
TA27	1680	1716 (1706)	1690 (1687)
TA28	1603	1628 (1619)	1617 (1614)
TA29	1625	1642 (<mark>1626</mark>)	1628 (1627)
TA20	1584	1607 (1598)	1587 (1584)

584) University of Toronto Mechanical & Industrial Engineering

Results – Taillard's 20x20

Instance	UB	SGS mean (best)	i-STS mean (best)	Hybrid mean (best)
TA21	1644	1666 (1649)	1648 (1647)	1644 (1642)
TA22	1600	1632 (1621)	1614 (<mark>1600</mark>)	<mark>1613 (</mark> 1610)
TA23	1557	1571 (1561)	1560 (<mark>1557</mark>)	1559 (1557)
TA24	1646	1664 (1652)	1653 (1647)	1648 (1645)
TA25	1595	1620 (1608)	1599 (1595)	1601 <mark>(1595)</mark>
TA26	1645	1669 (1656)	1653 (1651)	1649 (1647)
TA27	1680	1716 (1706)	1690 (1687)	1684 (1680)
TA28	1603	1628 (1619)	1617 (1614)	1616 (1613)
TA29	1625	1642 (1626)	1628 (1627)	1626 (1625)
TA30	1584	1607 (1598)	1587 (<mark>1584</mark>)	1589 <mark>(1584)</mark>

Instance Set	UB	i-TSAB	Zhang		Hybrid		
			best	mean	best	mean	worst
TA11-20	2.29	2.81	2.37	2.92	2.26	2.42	2.69
TA21-30	5.38	5.68	5.44	5.97	5.50	5.70	5.89
TA31-40	0.46	0.78	0.55	0.93	0.49	0.72	0.98
TA41-50	4.02	4.70	4.07	4.84	4.17	4.70	5.28
Overall	3.04	3.49	3.11	3.67	3.11	3.38	3.71

Statistic

Mean relative error to best-known lower bound

Instance Set	UB	i-TSAB	Zhang			Hybrid	
			best	mean	best	mean	worst
TA11-20	2.29	2.81	2.37	2.92	2.26	2.42	2.69
TA21-30	5.38	5.68	5.44	5.97	5.50	5.70	5.89
TA31-40	0.46	0.78	0.55	0.93	0.49	0.72	0.98
TA41-50	4.02	4.70	4.07	4.84	4.17	4.70	5.28
Overall	3.04	3.49	3.11	3.67	3.11	3.38	3.71

Statistic

Mean relative error to best-known lower bound

Instance Set	UB	i-TSAB	Zhang			Hybrid	
			best	mean	best	mean	worst
TA11-20	2.29	2.81	2.37	2.92	2.26	2.42	2.69
TA21-30	5.38	5.68	5.44	5.97	5.50	5.70	5.89
TA31-40	0.46	0.78	0.55	0.93	0.49	0.72	0.98
TA41-50	4.02	4.70	4.07	4.84	4.17	4.70	5.28
Overall	3.04	3.49	3.11	3.67	3.11	3.38	3.71

Statistic

Mean relative error to best-known lower bound

Overall Results

- Able to find and prove optimality for 6 instances
- 10 new best solutions found out of 40 problem instances
 - across different parameterizations

What About More Sophistication?

- Switch back-and-forth, communicating the elite set
- Longer intervals later in the run
- Reinforcement learning to give more time to the better performer

Nothing significantly improved over simple hybrid

[Carchrae & B. 2005] Applying Machine Learning to low-knowledge control of optimization algorithms. *Computational Intelligence*, **21**(4) 372-387, 2005.

What is Going On?

- Not completely sure
- Both i-STS and SGS are doing a form of large-neighborhood search around good solutions
 - i-STS much more biased by cost gradient but gets further away from seed solution faster

Experiment (ta41-ta50)

 Gather all (feasible) solutions from all runs and bucket them by quality
 5.15.9/ tile, 25.25.9/ tile, etc.

– 5-15 %tile, 25-35 %tile, etc.

- Randomly draw an elite pool from each bucket
- Run pure i-STS and pure SGS

Improving Elite Pools

Questions

- Why does this simple hybrid work?
 - Is SGS just doing independent intensification around each elite solution?
 - Grabbing the low-hanging fruit that i-STS misses?
 - How specific is this to JSP search space topology?
- Example of a larger hybrid pattern?
 - Heuristic search then optimize [F. Soumis]

Conclusion

- i-STS/SGS is a state-of-the-art hybrid of tabu search and constraint programming for job-shop scheduling
- Consistently yields very high quality solutions

University of Toronto Mechanical & Industrial Engineering

Outline: Part 2

- Remembering Yesterday
 90 minutes in 3 slides
- Combining CP and Tabu Search for Job Shop Scheduling

 Combining MIP and CP for Resource Allocation/Scheduling Problems

Planning & Scheduling

A Hybrid Method for Planning and Scheduling. Constraints, 10, 385-401, 2005.

CP Model

s.t. $\sum x_{jk} = 1$

 $k \in \mathcal{K}$

 \min

Minimize resource assignment cost

Each activity is assigned to one resource

optcumulative $(\boldsymbol{S}_{\boldsymbol{\cdot k}}, \boldsymbol{x}_{\boldsymbol{\cdot k}}, \boldsymbol{p}_{\boldsymbol{\cdot k}}, \boldsymbol{r}_{\boldsymbol{\cdot k}}, C_k)$

Resource capacity constraint

 $\mathcal{R}_{j} \leq S_{j} \leq \mathcal{D}_{j} - p_{jk}$ $x_{jk} \in \{0, 1\}$ $S_{ik} \in \mathbb{Z}$

Time-window constraints

$$\forall j \in \mathcal{J}, \forall k \in \mathcal{K} \\ \forall j \in \mathcal{J}, \forall k \in \mathcal{K}.$$

The optcumulative Global Constraint

- Generalizes disjunctive to enforce resource capacity including:
 - non-unary capacity (unary = one)
 - non-unary requirements
 - optional activities
- A number of the disjunctive inference algorithms have been extended

$$\begin{split} \textbf{MIP Model} \\ \min \quad & \sum_{k \in \mathcal{K}} \sum_{j \in \mathcal{J}} \sum_{t=\mathcal{R}_j}^{\mathcal{D}_j - p_{jk}} c_{jk} x_{jkt} \quad \text{Minimize resource assignment} \\ \text{s. t.} \quad & \sum_{k \in \mathcal{K}} \sum_{t=\mathcal{R}_j}^{\mathcal{D}_j - p_{jk}} x_{kjt} = 1 \quad \text{Each activity starts once on one} \\ & \sum_{j \in \mathcal{J}} \sum_{t' \in T_{jkt}} r_{jk} x_{jkt'} \leq C_k \quad \text{Resource capacity constraint} \\ & x_{jkt} \in \{0, 1\} \quad \forall k \in \mathcal{K}, \forall j \in \mathcal{J}, \forall t, \\ \text{with } T_{jkt} = \{t - p_{jk}, \dots, t\}. \end{split}$$

University of Toronto Mechanical & Industrial Engineering

Logic-Based Benders Decomposition (LBBD)

[Hooker 2005]

[Hooker 2005]

Logic-Based Benders

- Partition problem into
 - Master problem with decision variables, y
 - Sub-problem(s) with decision variables, x
- When the y's are fixed (to say, ŷ), subproblems are formed
- Each sub-problem is an inference dual

 What is the max. LB that can be inferred
 assuming y = ŷ?

LBBD Master (MIP) min $\sum \sum c_{jk} x_{jk}$ Minimize resource assignment cost $k \in \mathcal{K} \ i \in \mathcal{J}$ s.t. $\sum x_{jk} = 1$ Each activity is assigned to one resource $k \in \mathcal{K}$ $\sum x_{jk} p_{jk} r_{jk} \le \hat{C}_k \quad \forall k$ Sub-problem relaxation $i \in \mathcal{J}$ $\sum (1 - x_{jk}) \ge 1 \quad \forall k \in \mathcal{K}, \ h \in [H - 1]$ $j \in \mathcal{J}_{hk}$ **Benders** cut $x_{kj} \in \{0, 1\}$ $\forall k \in \mathcal{K}, \ \forall j \in \mathcal{J},$

with $\hat{C}_k = C_k \cdot (\max_{j \in \mathcal{J}} \{\mathcal{D}_j\} - \min_{j \in \mathcal{J}} \{\mathcal{R}_j\}).$

Sub-problem Relaxation

Benders Cut

$$\sum_{j \in \mathcal{J}_{hk}} (1 - x_{jk}) \ge 1 \quad \forall k \in \mathcal{K}, \ h \in [H - 1]$$

 Do not allow same assignment of activities (or a superset)

Benders Subproblem (CP)

 $\begin{aligned} \texttt{cumulative}(\boldsymbol{S}, \boldsymbol{p}_{\cdot \boldsymbol{k}}, \boldsymbol{r}_{\cdot \boldsymbol{k}}, C_{k}) \\ \mathcal{R}_{j} \leq S_{j} \leq \mathcal{D}_{j} - p_{jk} & \forall j \in \mathcal{J}_{k} \\ S_{j} \in \mathbb{Z} & \forall j \in \mathcal{J}_{k} \end{aligned}$

Single-machine, feasibility problem

University of Toronto Mechanical & Industrial Engineering

Hooker's Instances

Model	# Optimal	# Feasible	Run-time (secs)
			geo-mean
CP	62	69	1311.4
MIP	98	195	778.8
LBBD	119	119	227.3

- 195 instances
 - 2 4 resources, 10 38 jobs

[Heinz & B. 2011] Solving Resource Allocation/Scheduling Problems with Constraint Integer Programming. ICAPS 2011 Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems, 2011.

MIP vs LBBD

CP vs LBBD

Hooker's Instances

Model	# Optimal	# Feasible	Run-time (secs)
			geo-mean
CP	62	69	1311.4
MIP	98	195	778.8
LBBD	119	119	227.3

- 195 instances
 - 2 4 resources, 10 38 jobs

University of Toronto Mechanical & Industrial Engineering

Summary

- Tabu + CP results in state-of-the-art job shop scheduling
 - good solutions guide both Tabu and CP
 - need a deeper understanding of neighborhood search
- MIP + CP in LBBD for state-of-the-art resource allocation/scheduling
 - feasible solutions still a challenge (vs. MIP)
 - generic (but manual) decomposition technique

Mechanical & Industrial Engineering

Themes

- Cost-driven vs. feasibility-driven

 Cost: Tabu and MIP; Feasibility: CP
- Decomposition vs. whole problem
- Using good solutions for guidance
 - SGS as a form of large-neighborhood search
 - Tabu
- Relaxation (MIP) vs. inference (CP)

References

[Hooker 2005] A Hybrid Method for Planning and Scheduling. *Constraints*, **10**, 385-401, 2005.

[Hooker 2007] Integrated Methods for Optimization, Springer, 2007.

[B. 2010] Checking-up on Branch-and-Check. *Proceedings of the Sixteenth International Conference of Principles and Practice of Constraint Programming*, 84-98, 2010.

[Heinz & B. 2011]

Solving Resource Allocation/Scheduling Problems with Constraint Integer Programming.

ICAPS 2011 Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems, 2011.

University of Toronto Mechanical & Industrial Engineering

Is Scheduling Still AI? Part 3: Polemics & Perspectives

J. Christopher Beck Dept. of Mechanical & Industrial Engineering University of Toronto Canada

ACAI Summer School Freiburg, Germany June 7 – 10, 2011

Outline

- Part 1: Core Scheduling Technologies
 - CP, MIP, & Metaheuristics
 - 90 minutes
- Part 2: State of the Art

 CP + Metaheuristics, CP + MIP
 60 minutes
- Part 3: Polemics & Perspectives
 - The Past and the Future?
 - 30 minutes

Outline: Part 3

- The Origin of the Species
 - Ancient History (the 70s & 80s)
 - What's a constraint anyway?
- The 90s
- Scheduling & AI

- Computer science is a discipline that ignores its history
 - Alan Kay

History: ICAPS 2010 references

What's a Constraint?

"purple constraint"

CSP

- A constraint, c_i, is a mapping from the elements of the Cartesian product of the domains of the variables in its scope to {T,F}
 - $\begin{array}{l} \, c_i(v_0, \, v_2, \, v_4, \, v_{117}, \, \ldots) \, maps: \\ (D_0 \, X \, D_2 \, X \, D_4 \, X \, D_{117} \, X \, \ldots \,) \rightarrow \{T, F\} \end{array}$
- A constraint is satisfied if the assignment of the variables in its scope map to T

What's a "Green Constraint"?

- A rich, generative object that represents all sorts of knowledge about a problem
 - preferences
 - relevance
 - relaxations
 - descriptions of complex interactions
 - organizational responsibility & authority

Mechanical & Industrial Engineering

In the Beginning was the Word

- ... and the word was "constraint"
- H. Simon, "The Structure of III-Structured Problems", *Artificial Intelligence*, 4, 181-201, 1973
 - W.R. Reitman, *Cognition and Thought*, Wiley, New York, 1965

Herbert Simon

[Simon 73]: Constraints

- "Reitman uses the term 'constraints' quite broadly to refer to any or all of the elements that enter into a definition of a problem."
- [Reitman 65] "... even though [problem instances] would be considered complex, they include very few constraints as given. Composing a fugue is a good example. Here the main initial constraint ... is that the end product be a fugue." University of Toronto Mechanical & Industrial Engineering

[Simon 73]: Designing a House

 Taking the initial goals and constraints, the architect begins to derive some global specifications from them – perhaps the square footage … of the house … But the task itself, "designing a bauge" evelope from big low

"designing a house", evokes from his long-term memory a list of other attributes that will have to be specified at an early stage of the design: characteristics of the lot on which the house is to be built, its general style,

Simon Says

 Constraints & goals evoke (or contain) ways to satisfy them (solution components)

- Solution components in turn create subgoals and constraints
- Implications
 - Constraints are rich objects within a KR system
 - (Green) constraints don't look a lot like University of Toronto (purple) constraints Mechanical & Industrial Engineering

The Real Scheduling Problem?

- Fox, M., Constraint-Directed Search: A Case Study of Job-Shop Scheduling, PhD Thesis, 1983.
- "... the [human] scheduler was spending 10%-20% of his time scheduling, and 80%-90% of his time communicating with other employees to determine what additional "constraints" could affect an order's schedule."

The Real Scheduling Problem?

Scheduling is ...

- ... a dynamic, multi-agent process that seeks to satisfy a diverse set of constraints from within (and beyond) an organization
- The real problem must be aware of:
 - organizational structure & authority
 - history & commitments
 - preferences
 - uncertainty & risk

Scheduling is ...

• The allocation of resources to activities over time

- Mixing machines in food manufacturing
- Classrooms at a university
- Trucks & planes for FedEx
- Mathematically hard
- Industrially, economically, & environmentally important

Constraints are...

- ... key representations of all this knowledge to be exploited to heuristically guide the search for a solution
- Compare:
 - $\begin{array}{l} c_{i}(v_{0}, v_{2}, v_{4}, v_{117}, \ldots) \text{ maps:} \\ (D_{0} X D_{2} X D_{4} X D_{117} X \ldots) \rightarrow \{T,F\} \end{array}$

Constraint-Directed Scheduling

- System-wide reasoning
 - "anti-reductionist"
 - difficult to do controlled empirical analysis
 - difficult to generalize from success
 - difficult to publish traditional algorithmic papers
- Series of systems
 - ISIS, OPIS, Ozone,

Outline: Part 3

- The Origin of the Species

 Ancient History (the 70s & 80s)
 What's a constraint anyway?
- The 90s
- Scheduling & Al

"AI Winter"

- The "visions" of the 80s became hard to support as they were not being achieved
 - purple visions: declarative problem solving
 - green visions: system-wide reasoning
- Narrowing of ambitions to the easily testable and commercially rewarding
 - purple: CP becomes an organizational paradigm for OR algorithms
 - green: system building and the lure of the purple

A bit of an exaggeration

Commercial Success

- Resource allocation system based on constraint propagation used in Desert Storm more than paid for all the DARPA AI research funding ever
 - Patrick Winston, 9th IEEE Conference on Artificial Intelligence for Applications, 1993
- ILOG Scheduler (started ~1994)
 - embedded in SAP and Oracle supply chain Optimization products
 Mechanical & Industrial Engineering

The Darkside

- Have we solved the problem by ignoring those aspects that were interesting from an AI perspective to begin with?
- Competing with OR exactly where OR is strongest: well-defined "narrow" problems
 - "The darkside grows strong"

Outline: Part 2

- The Origin of the Species

 Ancient History (the 70s & 80s)
 What's a constraint anyway?
- The 90s
- Scheduling & Al

For the GOFAI Believers ...

- Reasoning about time and resources is surely necessary for true AI
 - unclear that Al scheduling has developed anything cognitively meaningful
 - how do people reason about time and resources?

How much credit card debt do you have?

AI Scheduling Opportunities

- Richer Problem Models
 - robustness & uncertainty
 - alternative/optional activities ... Al planning
- Meta-level Reasoning
 Back to the Future?
- Information Engineering

Richer Problem Models: Uncertainty

- Don't know the activity duration, machines breakdown, new orders arrive, ...
- Notion of a solution changes to the ongoing control of the schedule execution
- A bunch of work here both in Al and OR

Richer Activity Models

- Activity alternatives
- Cost/benefit or quality depends on exection time and resource choice

- AI planning & scheduling
 - a lot of work in planning with time & resources
 - scheduling with goals

Meta-level Reasoning

- Knowing when to use what algorithms
- Use machine learning to select the best algorithm or to form a control policy to switch among algorithms

- much work here recently

Information Engineering

What Does a Human Scheduler Do?

- Negotiates
 - Can I deliver half now and half later?
- Prioritizes
 - Job X is more important because the customer is very big
- Spends money to relax constraints ଔଧ୍
 - Can we go below safety stock to meet this order?

Changing the Problem

- Traditional optimization techniques try to solve the problem → a human changes the problem so it can be solvable!
- What the human scheduler does is based on knowledge not represented in the scheduling problem!
 - Think of the experience and *information* that the human needs

Another View of Scheduling

- We should be building information systems
 - that give humans the information required to make better decisions
 - that automate what the human scheduler really does

And Me?

Research Directions

AI		OR	
Planning with time and resources Partial-order planning Modeling in Planning Design Systems for Planning		Queueing theory and optimization Constraint integer programming	
Both Uncertainty & robu		th	
		bustness	
	Multi-agent, linked scheduling problems Problem decomposition		
	Hybrid algorithms		University of Toronto
	Solution-guided	search	Industrial Engineering

University of Toronto Mechanical & Industrial Engineering