

Calcolatori (1)

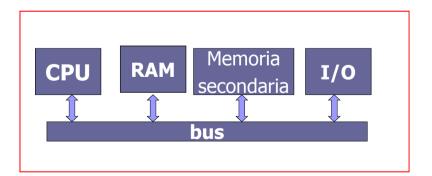
- Introdotti all'inizio degli anni 1940
- Costruiti assemblano componenti elettronici elementari per memorizzare informazioni ed eseguire programmi
- informazioni manipolate per ottenere i risultati desiderati
- informazioni inserite tramite sequenze di cifre0,1

O: assenza di tensione elettrica

1: presenza di tensione elettrica

■ Si parla di informazione digitale

2



Calcolatori (2)

- Programmi e dati dei programmi come sequenze di cifre binarie → lavoro arduo per l'utente
- Linguaggi di programmazione per sollevare l'utente dalla scrittura dei programmi in binario
- L'architettura di base del calcolatore e` rimasta fondamentalmente la stessa: si tratta della cosiddetta architettura di Von Neumann

L'architettura di Von Neumann

.

RAM = Random Access Memory (memoria ad accesso casuale)

Nella RAM, come in ogni altra componente di un computer, le informazioni sono sempre rappresentate digitalmente tramite sequenze di 0 e di 1.

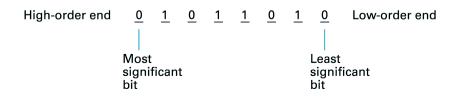
La RAM quindi memorizza numeri binari:

un bit (=binary digit) può contenere o 0 o 1

un byte è una sequenza di 8 bit (es. 11001010)

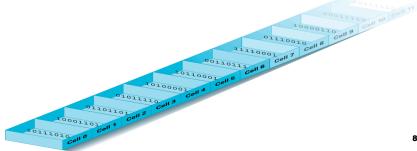
una parola è una sequenza di 4 byte = 32 bit

Rappresentare gli interi in cifre binarie


- Intero → binario = in base 2
- **Esempio 25** = $16+8+1=2^4+2^3+2^0$

- Binario → Intero
- Esempio: $1101 = 2^3 \times 1 + 2^2 \times 1 + 2^1 \times 0 + 2^0 \times 1 =$ = 8+4+1= 13

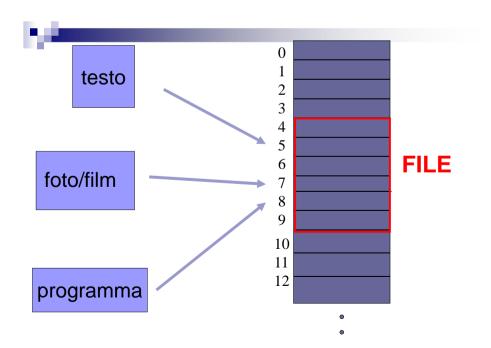
Memoria principale

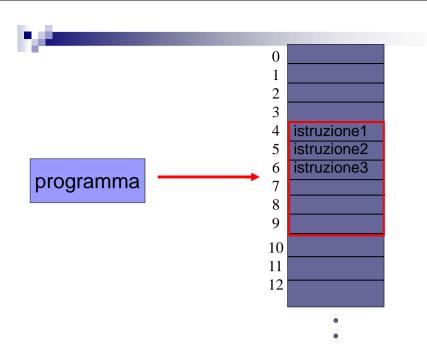

■ Celle di memoria: di solito 8 bit (1 byte)

Indirizzi di memoria

- Per identificare ogni cella
- Parte da 0
- Segue secondo la numerazione binaria


Numerazione binaria degli indirizzi


Indirizzo byte


manizzo byte			
Indirizzo parola	Indirizzo dec	imale Indirizzo bir	nario
0	0	00 00000	
	1	000000 01	
	2	000000 10	
	3	000000 11	
1	4	000001 00	
	5	000001 01	
	6	000001 10	
	7	000001 11	
2	8	000010 00	
	9	000010 01	
	10	000010 10	
	11	000010 11	

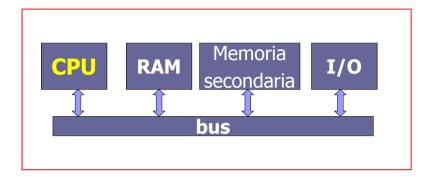
Accesso alla memoria

- Accesso diretto ad ogni cella, senza dover iniziare dalla cella 0
- Accesso a piccole unita': 8 bit (a differenza delle memorie secondarie)
- Tipi di accesso: lettura e scrittura

Unità di misura della RAM (e della memoria in generale)

14

Proprietà della RAM


- •RAM => accedere ad ogni byte ha la stessa durata (10⁻⁷ sec): non dipende da quale byte è stato acceduto prima
- •è **volatile**: se tolgo la spina l'informazione è persa (c'è anche la **ROM**)
- ogni byte ha un indirizzo 0,1,2.....
- •il byte e' la minima quantita' accessibile (attraverso il suo indirizzo)

P.

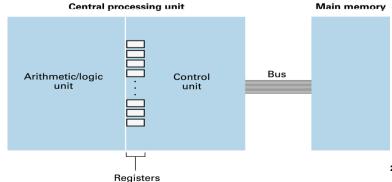
Vari tipi di memoria ...

- CACHE (magazzino temporaneo) e' una sottoparte della RAM disponibile al processore per un accesso piu' veloce, ha dimensione minori della RAM
- ROM (Read Only Memory): una parte di memoria su cui si possono fare solo accessi e non scritture. Contiene le istruzioni dei programmi di bootstrap dei sistemi operativi che permettono di avviarli ad ogni accensione. Viene mantenuta da una piccola batteria interna.

17

- La CPU (Central Processing Unit) e` in grado di eseguire dei programmi, cioe` sequenze di istruzioni elementari
- Idea fondamentale dell'architettura di Von Neumann: programmi e dati risiedono entrambi in memoria RAM
- Per poter essere eseguiti i programmi devono risiedere nella RAM, e quindi sono codificati digitalmente

18


Elementi della CPU

- Central Processing Unit, processore
 - □Unita' aritmetico-logica: elaborazione dati
 - □Unita' di controllo: coordina le attivita'
 - Registri: memoria temporanea, simili a celle di memoria principale
 - *Generici*: per gli operandi di un'operazione logica/aritmetica, e il risultato
 - Speciali: per operazioni particolari

CPU e memoria principale

 Trasferimento dati in entrambe le direzioni (lettura e scrittura): bus

ALU e Registri della CPU

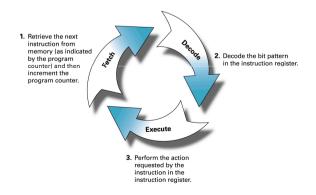
- L'ALU e' l'unità aritmetico-logica (ALU e' un acronimo dall'inglese) che esegue le istruzioni e gestisce i registri della CPU
- I registri servono per memorizzare gli operandi per le istruzioni di calcolo dell'ALU
- Registri particolari
 - □ PC (program counter): contiene l'indirizzo RAM della prossima istruzione da eseguire
 - □ IR (instruction register): contiene l'istruzione da eseguire

21

Esempio di architettura

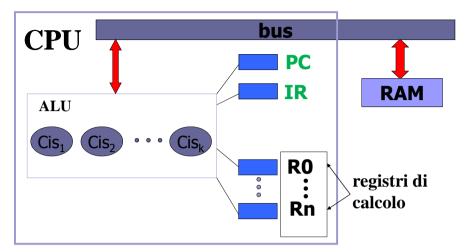
- 16 registri, 256 celle di memoria
- Program counter: indirizzo della prossima istruzione da eseguire
- Instruction register: istruzione da eseguire

22



Ciclo FDE della CPU (10-9 sec)

- Reperimento dell'istruzione (fetch):
 - □ lettura della cella di RAM il cui indirizzo e' contenuto nel contatore di programma
 - □ caricamento del registro istruzione con l'istruzione
 - □ Incremento del contatore programma
- Decodifica dell'istruzione (decode):
 - □ Trova gli operandi a seconda del codice operativo
 - Modifica contatore programma se istruzione di salto
- Esecuzione dell'istruzione (execute):
 - □ Attiva i circuiti necessari

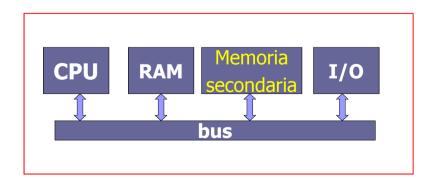


Ciclo della CPU

Modello concettuale della CPU

__

27


Esecuzione delle seguenti istruzioni

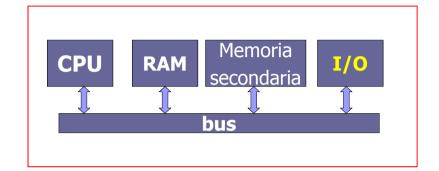
- 1. Carica nel registro R3 il contenuto della cella di memoria 10
- 2. Carica nel registro R4 il contenuto della cella di memoria 11
- 3. Somma di interi sul contenuto dei registri R3 e R4, risultato nel registro R0
- 4. Trasferisci il contenuto del registro RO nella cella 12
- 5. STOP

26

L'architettura di Von Neumann

Memoria principale e secondaria

- Volatilita' della memoria principale (senza tensione perde il suo contenuto) e dimensione limitata
- → memoria secondaria (dischi magnetici e CD)
 - □ permanente
 - contiene tutto quello che si vuole salvare anche dopo lo spegnimento
 - □ memoria sequenziale (il tempo varia a seconda dell'accesso precedente)
 - □ adatta per leggere/scrivere grandi quantita' di dati (in posizioni contigue)



Dati e tipi di memoria

- Registri e cache ← dati in elaborazione
- RAM ← dati elaborati in un futuro immediato
- ROM (Read Only Memory) ← dati permanenti
- CD e DVD ← dati di utilizzo non immediato

L'architettura di Von Neumann

29

70

Dispositivi di I/O (Input/Output)

Sono i dispositivi di comunicazione ed **interazione** tra **utente** e **computer**.

In un moderno PC:

- **input:** tastiera, mouse, touchpad, microfono, videocamera, scanner, connessione di rete, etc
- output: video, stampanti, audio, etc
- velocità diverse e molto maggiori delle altre componenti di un computer
 - □ sec per l'input
 - □ decimi di sec per l'output

