Correzioni (1)

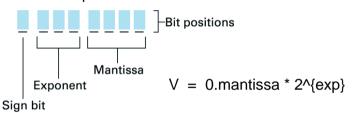
- Convertire i seguenti numeri binari in formato decimale:
 - \Box 11.01 \rightarrow 3 +1/4 = 13/4 = 3.25
 - \square **101,111** \rightarrow 5 + 7/8 = 47/8 = 5.87
 - \Box 10.1 \rightarrow 2.5
- Esprimere i seguenti valori in notazione binaria:
 - □ **4.5** → 100,1
 - □ **2.75** → 10,11
- Eseguire le seguenti somme binarie:
 - \square **1010,001 + 1,101** \rightarrow 1011,110
 - □ **111,11 + 0,01** → 1000,00

Correzioni (2)

- Da complemento a 2 a base 10:
 - \square 00011 \rightarrow 3,
 - \Box 01111 \rightarrow 15,
 - □ 11100 \rightarrow -4,
 - □ 11010 \rightarrow -6,
 - \square 000000 \rightarrow 0.
 - □ 10000 → -16
- Da base 10 a complemento a 2 su 8 bit:
 - □ 6, -6, 13, -1, 0
- Numero piu' grande e piu' piccolo per la notazione in complemento a 2 su 4, 6, 8 bit
 - □ Numero piu' piccolo -2^{n-1} (n=6 \rightarrow -2⁵ = -32)
 - □ Numero piu' grande $2^{n-1} 1$ (n=6 \Rightarrow 2⁵-1 = 31)

Correzioni (3)

- Da eccesso 8 a decimale:
 - \Box **1110** \rightarrow 14-8=6
 - □ **0111** → 7-8=-1
 - □ 1000, 0010, 0000, 1001
 - 0, -6, -8, 1
- Da decimale a eccesso 8
 - \Box 5 \rightarrow 5+8 \rightarrow 13 \rightarrow 1101
 - \Box -5 \rightarrow -5+8 \rightarrow 3 \rightarrow 0011
 - □ **3, 0, 7, -8** 1011, 1000, 1111, 0000


Correzioni (4)

- Numero piu' grande e piu' piccolo per la notazione in eccesso 8, 16, 32
 - \square eccesso 8: 8=2ⁿ⁻¹ \rightarrow n=4
 - numero piu' piccolo: -8, numero piu' grande 7
 - □ eccesso 16: $16=2^{n-1} \rightarrow n=5$
 - numero piu' piccolo: -16 numero piu' grande 15

Rappresentazione dei reali in un computer

- Bisogna rappresentare la posizione della virgola
- Notazione in virgola mobile (floating point): suddivisione in tre campi
- Esempio con 8 bit:
 - □ Partendo da sinistra: primo bit → segno (0 pos., 1 neg.)
 - ☐ Tre bit per esponente
 - □ Quattro bit per mantissa

Da floating point a decimale

- Anteporre 0, alla mantissa
 01101011 → 0.1011
- 2. Interpretare l' esponente come un numero in eccesso su tre bit (eccesso 4)

110→6, 6-4 =**2**

 Spostare la virgola della mantissa della quantita' ottenuta dall'esponente a dx se il numero positivo a sx se e' negativo

 $0,1011 \rightarrow 10,11$

 Tradurre da binario a decimale mettendo il segno a seconda del bit piu' significativo del foating point 10,11→2,75

Altro esempio di decodifica

10111100

■ Segno: 1 → negativo

■ Mantissa: 1100 → 0,1100

■ Esponente: 011 → -1 in notazione in eccesso 4 → virgola a sinistra di 1 posto

→ 0,01100 (3/8, infatti 2x2^(-2) + 2x2^(-3))

■ Numero decimale: -3/8

Ŋ.

Da decimale a floating point

- 1. Da decimale a binario:
 - 0.375 (=3/8) → **0.011**
- La mantissa si ottiene dall'1 piu' a sinistra completando con zeri i quattro bit 1100
- Data la mantissa contare di quante posizioni si deve spostare la virgola rispetto a 0,mantissa.
 Il numero e' negativo se la virgola va a sinistra
 1 bit a sinistra → -1
- Codificare il numero ottenuto in eccesso 4
 -1 +4= 3 → 011
- Mettere nel bit piu' significativo il bit di segno 00111100

Errori di troncamento

- Codifichiamo 2 + 5/8= 2.625 in 8 bit
- Binario: 10,101
- Mantissa: vorremmo scrivere 10101, ma abbiamo solo 4 bit → 1010, tronco il bit meno significativo
- Esponente: 110 (2)
- Risultato: **01101010**, che rappresenta 2.5 e non 2 + 5/8
 - □ Infatti: 0,1010 \rightarrow 110 (2) \rightarrow 10,10 \rightarrow 2+ $\frac{1}{2}$ = 2.5

Esercizi

- Decodifica: 01001010, 01101101, 00111001
- Codifica: 2.75, 5.25
- Qual e' il piu' grande tra 01001001 e 00111101?

Correzioni (1)

Decodifica:

- 0 100 1010 \rightarrow 5/8 = 0.625 Infatti:
 - 0 100 1010 --> positivo 0,1010 100 --> 4-4=0 0.1010 1/2+1/8= 5/8 = 0.625 --> 0.625
- Codifica:

2.75 --> 0 110 1011 Infatti:

binario 10,11 1011 --> 2 posti a dx 2 --> 110 0 110 1011

Correzioni (2)

Decodifica:

- $0\ 100\ 1010\ \rightarrow 5/8 = 0.625$
- \bullet 0 110 1101 \rightarrow 3 + 1/4 = 13/4 = 3.25
- 0 011 1001 → 9/32

Codifica:

- 2.75 → 0 110 1011
- 5.25 → 0 111 1010

Qual e' il piu' grande tra 01001001 e 00111101?

■ Il primo e' 0.56, il secondo e' 0.40 → il piu' grande e' il primo