
COMPUTATIONAL SOCIAL 
CHOICE 

Maria Silvia Pini 
Francesca Rossi  

K. Brent Venable   
University of Padova, Italy 



General information 

¨  When and where: 
¤ 20 Giugno: 11-13 e 14-16, aula 1BC50 
¤ 21 Giugno: 11-13 e 14-16, aula 2AB40 
¤ 26 Giugno: 11-13 aula 2AB45, 14-16 aula1BC50 
¤ 27 Giugno: 11-13 e 14-16, aula 2AB45 
¤ 28 Giugno: 11-13 e 14-16, aula 1BC45 

¨  Who: 
¤ Maria Silvia Pini, pini@dei.unipd.it 
¤ Francesca Rossi, frossi@math.unipd.it 
¤ K. Brent Venable, kvenable@math.unipd.it 



Outline 

1.  Introduction, Motivation and Overview (Venable) 
2.  Voting theory: procedures and properties 

(Venable) 
3.  Characterization and Impossibility theorems 

(Venable) 
4.  Computational aspects of social choice (Pini) 
5.  Uncertainty in preference aggregation (Pini) 
6.  Compact preference representation (Rossi) 
7.  Matching Problems (Rossi) 
 



What are we going to talk about 

SOCIAL CHOICE THEORY COMPUTER SCIENCE  

Collective decision making 
Economics, Political Sciences 

Social welfare, Fairness…. Societies of artificial agents 

Complexity analysis,  
algorithm design…  

Voting procedures,  
Fair division algorithms  



In more detail 

¨  Social Choice gives us the problem e.g.: 
¤  electing a winner given individual preferences over 

candidates 
¤  aggregating individual judgments into a collective verdict 
¤  fairly dividing a cake given individual tastes 

¨  We provide  the computational technique, e.g: 
¤  algorithm design to implement complex mechanisms 
¤  complexity theory to understand limitations 
¤  logical modelling to fully formalise intuitions 
¤  knowledge representation techniques to compactly model 

problems 
¤  deployment in a multiagent system 



Applications  

 
¨  Meta search engine 
¨  Importance of a web page 
¨  Sensor fusion 
¨  Collaborative filtering in recommender systems 
¨  Ontology merging in the Semantic Web 
 



Plurality 

¨  Ballot: 1 alternative 
¨  Result: alternative(s) with the most vote(s) 
¨  Example:  

¤ 6 voters  
¤ Candidates:  

Profile Ballot Winner 



Could someone  be better off lying? 

49% 20% 20% 11% 

Plurality 

49% 20% 20% 11% 

Plurality 



Complexity of Manipulation 

¨  TH: Manipulability(Plurality)ε P 
¨  Proof 
¨  Simply vote for x, the alternative to be made 

winner by means of manipulation. If manipulation is 
possible at all, this will work. Otherwise not. 

[Bartholdi,Tovey,Trick,1989] 



Uncertainty in preference aggregation 

Example:  
¤ 6 voters  
¤ Candidates:  

Profile Possible Winners 

Profile Necessary Winner 

Plurality 

Plurality 

? 

? 



Compactness à combinatorial structure 
for the set of decisions 

¨  Example: 
¤  Three friends need to decide what to cook for dinner 
¤  4 items (pasta, main, dessert, drink) 
¤  5 options for each è 54 = 625 possible dinners 

¨  In general: Cartesian product of several variable 
domains 

¨  A compact representation of the preferences is needed 



ROVER 1 ROVER 2 ROVER 3 

Voting with compact preferences  

WHERE 

WHAT 

Loc-A >Loc-B   

WHERE 

WHAT 

Loc-B> Loc-A   

St2>St1 

WHERE 

WHAT 

Loc-A >Loc-B   

Plurality WHERE 
   = 

Loc-A 

Loc-A     Loc-A Loc-A  

Plurality 

WHAT 
   = 

Image 

Winner 

3 Rovers must decide: 
•  Where to go: Location A or Location B 
•  What to do: Analyze a rock or Take and image 
•  Which station to downlink the data to: Station 1 or Station 2 

Image >Analyze   

DLINK 

St1 >St2   

DLINK DLINK 

St2>St1 

Loc-A: Image > Analyze 
Loc-B: Analyze> Image 

Plurality 

DLINK 
     = 
   St2 

Analyze >Image   Image >Analyze   

Loc-A: Analyze> Image 
Loc-B: Image> Analyze 



Matching Problems 

 

¨  Rovers 
¤  Rover1:  downlink>picture>drill 
¤  Rover2:  downlink>picture>drill 
¤  Rover3:  downlink>picture>drill 

¨  Tasks (e.g. mission coordinator) 
¤  Drill:    Rover1>Rover2>Rover3 
¤  Picture: Rover2>Rover3>Rover1 
¤  Downlink: Rover3>Rover1>Rover2 

¨  The rovers  have decided 
to go at Loc-A, and they 
have to perform an 
analysis  
¤ One drills  
¤ One takes pictures 
¤ One downlinks data 

¨  Two sets: 
¤  {Rover1, Rover2, Rover3} 
¤  {Drill,Picture,Download} 

¨  Goal 
¤  find a stable matching 



Voting procedures 
Choice theoretic properties 
Characterization Theorems   
Impossibility and Possibility Theorems 

Voting Theory 



Voting Procedures 

¨  n voters (individuals, agents, players) 
¨  m candidates (or alternatives) 
¨  goal: collective choice among the candidates 
¨  Each voter gives a ballot  

¤  the name of a single alternative,  
¤ a ranking (=linear orders of all alternatives … 

¨  Profile: a set of n ballots (one for each voter) 



Voting Procedures 

¨  The procedure defines 
¤  the valid ballots 
¤ how they are aggregated 

¨  Different types of result 
¤ Resolute voting procedures: a single winner 
¤ Voting correspondences:  a set of winners 
¤ Social welfare functions: an ordering over the set of 

candidates 



Resoluteness and Tie-breaking 

¨  More formally 
¤  X: set of candidates 
¤ N: set of voters 
¤  L(X): set of linear orders over X 

¨  (Resolute) Voting rule                   F: L(X)N à X 
¨  (Irresolute) Voting correspondence  C: L(X)N à 2X 

¨  Tie breaking rule:          T: 2X-{} à X 

¨  The composition of a voting correspondence with a tie 
breaking rule is a resolute voting rule 



Overview of voting rules 

¨  Positional Scoring Rules, e.g.:  
¤  Plurality  
¤  Borda 
¤  Veto  
¤  k-approval 

¨  Plurality with Runoff 
¨  Single Transferable Vote (STV)  
¨  Approval Voting 
¨  Condorcet-consistent methods based 

on the simple majority graph, e.g.:  
¤  Cup Rule/Voting Trees  
¤  Copeland  
¤  Banks  
¤  Slater 
¤  Schwartz, 
¤  Condorcet rule  

¨  Condorcet-consistent methods based 
on the weighted majority graph, e.g: 
¤  Maximin/Simpson  
¤  Kemeny 
¤  Ranked Pairs/Tideman 

¨  Condorcet-consistent methods 
requiring full ballot information, e.g.:  
¤  Bucklin  
¤  Dodgson  
¤  Young 

¨  Majoritarian Judgment;  
¨  Cumulative Voting;  
¨  Range Voting. 



Positional scoring rules 



Positional scoring rule 

¨  Each candidate gets points for being ranked in a 
certain position by a voter 

¨  Candidate score: sum of its points 

¨  Winner: candidate(s) with the highest number of 
points  



Plurality(1) 

¨  Ballot: 1 alternative 
¨  Result: alternative(s) with the most vote(s) 
¨  Example:  

¤ 6 voters  
¤ Candidates:  

Profile Ballot Winner 



Plurality(2) 

¨  Also called simple majority ( ≠ absolute majority) 
¨  Most widely used voting procedure 
¨  If there are only two alternatives it is the best possible 

procedure (May’s theorem) 
¨  In any race with more than two candidates, plurality voting 

may elect the candidate least acceptable to the majority of 
voters. 

¨  The information on voter preferences other than who their 
favorite candidate is gets ignored. 

¨  Dispersion of votes across ideologically similar candidates. 
¨  Encourages voters not to vote for their true favorite, if that 

candidate is perceived to have little chance of winning 



Unanimity and Pareto Condition 

¨  A voting procedure is unanimous if it elects (only) x 
whenever all voters say that x is the best 
alternative.  

¨  The weak Pareto condition holds if an alternative y 
that is dominated by some other alternative x in all 
ballots cannot win.  

¨  Pareto condition entails unanimity, but the converse 
is not true. 



Plurality satisfies unanimity 

Profile Winner 



Veto 

¨  Ballot: 1 vetoed alternative 
¨  Result: candidate with the least vetos 
¨  Example:  

¤ 6 voters  
¤ Candidates:  

Profile Ballot Winner 



Neutrality 

¨  If the names of the alternatives are permuted in the 
preferences of the voters, then the alternative 
selected by the voting rule change accordingly.  



Veto satisfies neutrality  
Profile Winner 

Profile Winner 



k-Approval 

¨  Ballot: k favorite candidates 
¨  Procedure:   

¤  for each voter 
n Each approved candidate gets one point 

¤ The score is the sum of all the points. The candidate(s) 
with the highest score win. 

¤ May need to tie break 

 
¨  More informative balloting 



2-approval example  
  

1 voter 1 voter 1 voter 1 voters 1 voter 

4 

3 

2 

1 

Scores 
Winner 



Anonymity  

 
¨  A voting rule is anonymous if the voters are 

treated symmetrically: if two voters switch ballots, 
then the winners don’t change.  



K-approval satisfies anonymity  
  

1 voter 1 voter 1 voter 1 voter 1 voter 

4 

3 

2 

1 

Scores 
Winner 



Borda rule 

¨  Ballot: complete ranking of all m candidates 
¨  Procedure:   

¤  for each voter 
n  candidate  ranked 1st gets m−1 points 
n  candidate ranked  2nd gets m−2 points 
n  …  

¤  Borda count is the sum of all the points. The candidates with the 
highest Borda count win. 

¨  Proposed by Jean-Charles de Borda  

¨  More informative balloting 
¨  Higher elicitation and communication costs 



Borda rule: example  
  

1 voter 1 voter 1 voter 1 voters 1 voter 

3 

2 

1 

0 

rank 

3 

2 

1 

0 

rank 

3 

2 

1 

0 

rank 

3 

2 

1 

0 

rank 

3 

2 

1 

0 

rank 

9 

8 

7 

6 

Borda  
Count 

Winner 



Positional scoring rule 
 
¨  Ballot: complete ranking of all m candidates 
¨  Procedure 

¤  Scoring vector <s1,s2,…sm> 
¤  si = points the candidate gets for being in position i for a 

voter 
¤ Count is the sum of all the points. The candidates with the 

highest count win. 
¨  Examples of scoring vectors 

¤  Plurality: <1,0,…,0> 
¤ Veto: <1,1,…,1,0> 
¤  K-approval <1,1,…,1,0,0,…,0> 
 
¤  Borda: <m-1,m-2, …,1,0> 

{
k 



Condorcet Principle 
¨  Condorcet winner: an alternative that beats every other 

alternative in pairwise majority contests (if exists, unique)   

49% 20% 20% 11% 

Condorcet winner 

51% 89% 



Condorcet Consistency 

¨  A voting rule is Condorcet consistent if, whenever 
there is a Condorcet winner, it is returned  as the 
winner 



Positional scoring rules are not 
Condorcet Consistent 

3 voters 2 voters 1 voter 1 voter 

Condorcet winner 

4 on 7 4 on 7 

s1 

s2 

s3 

score vect.  

s1 

s2 

s3 

score vect.  

s1 

s2 

s3 

score vect.  

s1 

s2 

s3 

score vect.  

3 s1+ 2 s2 + 2 s3 

3 s1+ 3 s2 + 1 s3 

1 s1+ 2 s2 + 4 s3 if  
s2>s3 



Approval 

¨  Ballot: a set of favorite candidates 
¨  Procedure:   

¤  for each voter 
n Each approved candidate gets one point 

¤ The score is the sum of all the points. The candidates 
with the highest score win. 

¤ May need to tie break 
¤ Named so by Weber in 1977 
¤ Widely used 
¤ Allows to express very different preferences 
 

 



Approval example  
  

1 voter 1 voter 1 voter 1 voters 1 voter 

4 

3 

3 

2 

Scores 
Winner 



Approval voting(2) 

¨  Allows voters to vote for as many candidates as they find acceptable. For 
instance, a minor-party favorite an acceptable major-party candidate.  

¨  There is no ranking; the candidate with the most approval votes wins, 
ensuring that the winning candidate is acceptable to the largest fraction of 
the electorate. 

¨  Reduce negative campaigning, encouraging candidates to make more 
positive appeals to gain support from voters with primary commitments to 
other candidates. 

 
¨  Can result in the defeat of a candidate who would win an absolute 

majority in a plurality system 
¨  Can allow a candidate to win who might not win any support in a plurality 

elections,  
¨  Has  incentives for tactical voting  



Dictatorship 

¨  A voting procedure is dictatorial if there exists a 
voter (the dictator) such that the unique winner will 
always be his top-ranked alternative. 

¨  A voting procedure is non-dictatorial if it is not 
dictatorial.  

¨  Any anonymous voting procedure is non-dictatorial 



Approval is non-dictatorial  
  

4 

3 

3 

1 

Scores 
Winner 



Plurality with runoff(1) 
¨  Ballot: 1 alternative 
¨  Procedure: 2 rounds 

¤  1st round: the top two choices are selected 
¤  2nd round: plurality on the top two choices 

¨  Example:  
¤  5 voters  
¤ Candidates:  

Winner 1st round 

Top 2 



Plurality with runoff (2) 

 
¨  Used to elect the president in France 
¨  Elicits more information from voters: second best gets 

another chance 
¨  Solves some problems of plurality: 

¤  Winner without a majority  
¤  Spoiler candidates 

¨  Does not solve vote splitting 
¤  candidato least preferred by a majority may win 

¨  Still: heavily criticized when Le Pen entered run-off in 2002 



Participation 

¨  Given a voter, his addition to a profile leads to an 
equally or more preferred result for this voter 

¨  No  incentive to abstain 



Plurality with run-off is not participative  
¨  With plurality with run-off it may be better to abstain than to 

vote for your favorite candidate!  

25 voters 46 voters 24 voters 

Top 2 Winner 

23 voters 46 voters 24 voters 

Top 2 
Winner 



Single Transferrable Vote (STV) 

¨  Ballot: ranking of candidates 
¨  Procedure: 

¤  If one of the candidates is the 1st choice for over 50% of 
the voters (quota), she wins. 

¤ Otherwise, the candidate who is ranked 1st by the fewest 
voters gets eliminated from the race. 

¤ Votes for eliminated candidates get transferred: delete 
removed candidates from ballots and “shift” rankings (i.e., if 
your 1st choice got eliminated, then your 2nd choice 
becomes 1st). 

¨  Used in Australia, New Zeland etc. 



STV: example  
¨  At least 4 candidates otherwise is like Plur. with run-off  

3 voters 3 voters 1 voters 2 voters 1 voters 

Winner 



Single Transferrable Vote (2) 

¨  Minimizes the number of wasted votes 

¨  Before computers it was criticized for its complexity 

¨  Allows the transfer of votes to a candidate from 
voters of another party à mitigates partisanship 

¨  Interesting in terms of complexity of manipulation   



Based on pair-wise competitions between candidates 
 
All Condorcet-consistent 
 
Different choice when there is no Condorcet winner 

Majority-graph-based rules 



Condorcet Paradox 

¨  There may be no Condorcet winner  

1 voter 1 voter 1 voter 

2 

2 

2 



Majority Graph 
¨  Ballot: complete ranking of candidates 
¨  Majority graph 

¤ One node for each candidate 
¤  A→B iff a majority of voters prefer A over B 

¤  In general not transitive (Condorcet paradox) 
¤ May be weighted  

2 voters 1 voter 1 voter 1 voter 



Copeland 

¨  Winner(s):  candidate(s) with the largest number of outgoing edges 

¨  That is, the ones winning in the most number of pairwise competitions 

¨  Tie-breaking plays and important role 

Copeland winners 



Monotonicity 

¨  Intuitively, when a winner receives 
increased support, she should not 
become a loser. 

¨  If x is a winner given a ballot b, then x 
wins in all other ballots obtained from b 
by moving x higher in the voters 
preferences. 

¨  Also known as Maskin monotonicity  
 

2007 

2007 



Copeland is monotonic 

¨  Moving a candidate up in the rankings can only 
increase the number of pairwise competitions he 
wins 

2 voters 1 voter 1 voter 1 voter 



Plurality with runoff is not monotonic 
¨  Plurality satisfies monotonicity,  but  with run-off it 

does not 

27 voters 42 voters 24 voters 

Top 2 Winner 

23 voters 46 voters 24 voters 

Top 2 
Winner 

4 voters of the 1st  group raise Gonzo to the top and join the 2nd group 



Cup rule 

¨  An agenda of pairwise competitions is given via a binary tree where the 
leafs are candidates and each node corresponds to the winner of a 
pairwise competition   

¨  The winner is the candidate associated with the root 



Different agenda, different winner 



Complexity of computing the winner 

¨  For the rules we have considered so far, the procedure that gives the 
winner is polynomial in the size of the profile O(|voters|*|candidates|). 

¨  More formally consider the  following decision problems: 
   R-WINNER: 
   Given voting rule R, profile p of n voters on m candidates, and a 

candidate x, is x a winner using R? 

¨  TH: R-WINNER is in P when Rε{Plurality,Plur. w. run-off,  STV, Borda} 
¨  Proof:  
1.  Compute the winner (polynomial time) 
2.  Check if it is x 



Banks  

¨  A candidate x is a winner if it is a top element in a 
maximal acyclic subgraph of the majority graph. 

 

Banks winners 



Banks rule  

¨  TH1: Banks-WINNER is NP-complete 
¨  Proof 

1.  Compute the majority graph (polynomial time) 
2.  NP: polynomial witness is a maximal acyclic 

subgraph 
3.  NP-hardness: reduction from GRAPH 3-

COLORING 
¨  TH1 implies that computing all the Banks 

winners is NP-hard 
¨  TH2: Computing a Banks winner is easy 
¨  Proof: 

1.  Order the candidates,  
2.  start with the set with just the first candidate and 

then  
3.  try to add 1 by 1 the others while preserving 

acyclicity  
  

A 

B 

C D 

E 

Banks winner 



Slater 

¨  Slater ranking: a linear 
order over the 
candidates which 
disagrees with the 
majority graph on the 
smallest set of pairs 
¤ NP-hard to compute 

¨  Slater winner: top 
candidate of a Slater 
ranking 

¨  NP-hard to compute 



Weighted-majority-graph-base rules 



Weighted majority graph 

¨  Arcs are labeled with the entity of the majority 

2 voters 5 voter 1 voter 3 voter 

8 

8 

6 
6 

9 

8 

Number of voters  
preferring Miss Piggy 
 to Beaker 



Minimax (1) 

¨  Selects the winner with the smallest biggest pairwise 
defeat 

¨  For each ordered pair of candidates (x,y), 
N(x,y)=number of voters that prefer x to y 

¨  Minimax score: Sx=max y≠x N(y,x) 
¨  Minimax winner x: minimal Sx score 



Minimax (2) 

¨  In the weighted majority graph: with the smallest 
maximum weight on incoming arcs 

8 

8 

6 
6 

9 

8 



Independence of Irrelevant Alternatives 

¨  A voting procedure is independent of irrelevant 
alternatives (IIA) if, whenever x is a winner and y 
is not  and the relative ranking of x and y does 
not change in the ballots, then y cannot win 
(independently of any possible changes wrt. other, 
irrelevant, alternatives).  



Minimax violates IIA 

2 votes 4 votes 3 votes 4 votes 

7 9 

8 

13 voters 

2 votes 4 votes 3 votes 4 votes 

9 9 

8 

13 voters 



Kemeny(1) 

¨  Closest social preference on average to the individual 
preferences 

¨  Given  
¤  r: linear order over the candidates (aka ranking)  
¤  v: linear order representing the preferences of a voter 
¤  a,b: two candidates 

¨  We define  
¤  dab(r,v)=1 if r and v disagree on the order of a and b 
¤  dab(r,v)=0 otherwise 

¨  A Kemeny ranking r minimizes  ΣabΣv dab(r,v)   



Kemeny(2) 

¨  In the weighted majority graph: minimizes the total 
weight of the inverted edges 

2 

10 

4 
2 

2 

4 



Condorcet-consistent rules that use full 
ballot information 



Bucklin 

¨  Ballot: linear order over candidates 
¨  Consider only first votes. If a candidate has 

majorityà elected 
¨  Add second choices, and so on, until one candidate 

has the majority 



Bucklin: example  

1 voter 1 voter 1 voter 1 voters 1 voter 

Winner 



Dodgson rule 

¨  Ballot: linear order over the candidates 
¨  Winner: the candidate that can be made a 

Condorcet winner with the fewest number of 
inversions in the profile 



Dodgson: example  

2  1 1 2  2  2  2  

2  1 1 1  2  2  2  1  



Homogeneity 

¨  A voting rule is homogeneous if uniformly 
replicating voters does not affect the election 
outcome 

¨  Uniformly duplicating: multiply by a constant factor 
greater than 0 



Dodgson violates homogeneity  

2  1 1 2  2  2  2  

6  3 6  6  6  3  6  

6  3 3 6  6  6  6  

4 1 1 



Range voting 

¨  Voters assign to each candidate a score in an 
interval (e.g. [0,99]) 

¨  Scores are summed  
¨  The candidate with the highest score wins 



Range voting: example  
  

1 voter 1 voter 1 voter 1 voters 1 voter 

99 

10 

10 

0 

score 

50 

20 

10 

5 

score 

99 

50 

50 

0 

score 

50 

50 

50 

50 

score 

30 

20 

10 

0 

score 

268 

130 

140 

125 

Total  
Count 

Winner 



Later-no-harm 

¨  If in any election a voter giving an additional 
ranking or positive rating to a less preferred 
candidate cannot cause a more preferred 
candidate to loose 



Range voting violates later-no-harm 

10 

4 

0 

4 

10 

8 

0 

4 

1 vote 1 vote 

1 vote 1 vote 

10 

8 

10 

12 

Winner 

Winner 



Which rule? 

¨  Since there are so many rules, which one should we 
choose? 

 
¨  Social Choice Theory gives an axiomatic answer 

1.  Define several desirable properties (axioms) 
2.  Characterization Theorems: show that a particular 

class of procedures is the only one satisfying a given 
set of axioms 

3.  Impossibility Theorems: show that there exists no 
voting rule satisfying a given set of axioms  



Characterization Theorems 



Two candidates 

¨  All the rules defined collapse to the same voting 
rule when there are only two candidates and 
behave as expected 

¨  May’s Theorem formalizes this idea 



Positive responsiveness 

¨  Whenever some voter raises a (possibly tied) winner 
in her ballot, then it becomes the unique winner of 
the election 

¨  Weak monotonicity requires only for such a 
candidate to remain a winner 

¨  Positive Responsiveness implies weak monotonicity 
(for voting correspondences) 



May’s Theorem 

TH: A voting procedure for two alternatives 
satisfies 

¤ Anonynimity 
¤ Neutrality  
¤ Positive Responsiveness 

If and only if it is the plurality rule (=majority). 

 
Works also when ties are allowed in the ballots 



Proof sketch of May’s Theorem 

¨  ß Plurality is anonymous, neutral, and positively responsive 
¨  à 
¨  Assume odd number of voters 
¨  Anonymity + Neutrality + 2 candidates à only the number of votes 

matters 
¨  A: set of voters voting for a 
¨  B: set of voters voting for b 
¨  Scenario 1: If |A|=|B|+1 then only a wins 

¤  Thus, by PR we have that a wins whenever |A|>|B| 
¤  Thus we are using plurality 

¨  Scenario 2: there exist A and B such that |A|=|B|+1 but b wins 
¤  Let one voter in A switch to B  
¤  Thus, by PR, b still wins 
¤  This however contradicts the fact that now we have |B’|=|A’|+1 and the new 

profile can be obtained swapping a snd b in the previous profile 
¤  Thus by neutrality a should win    



Reinforcement (aka Consistency) 

¨  Split the voters into two sets 
¨  A candidate that wins the election with both sets 

wins also the full election 



Continuity 

¨  Whenever a set of voters N elects a unique winner 
x, then for any other set of voters N’ there exist a 
number k such that N’ together with k copies of N 
will elect only x 

¨  Weak requirement 



Young’s Theorem 

TH: A voting procedure satisfies 
¤ Anonynimity 
¤ Neutrality  
¤ Reinforcement 
¤ Continuity 

If and only if it is a positional scoring rule. 

 



Characterization via consensus and 
distance 
¨  Rationalization of voting procedures 

¨  Consensus class: subset of profiles with a clear set of winners 

¨  Distance: measures how different are two profiles 

¨  Induced rule:  
1.  Fix a consensus class 
2.  Fix a distance measure 
3.  for each profile, compute the closest profile in the consensus class 

according to the distance measure and elect the corresponding 
winner(s)  



Consensus classes 

¨  Condorcet winner: beats all other candidates in 
pairwise competitions 

¨  Majority winner: there is a candidate which is 
ranked first by an absolute majority 

¨  Unanimous winner: there is a candidate which is 
ranked first by all voters 

¨  Unanimous ranking: all the voters have the exact 
same ranking (and the top wins) 



Distance metrics 

¨  Swap distance of two profiles b and b’: number of 
adjacent pairs of candidates  that need to be swapped 
to get from  b to b’ 

¨  Discrete distance between two ballots, for example: 
¤  0 if the they are the same 
¤  1 otherwise 

¨  Discrete distance of profile: sum of ballots distances 



Characterization results 

¨  Dodgson rule: Condorcet winner + swap distance 

¨  Kemeny rule: Unanimous ranking + swap distance 

¨  Borda: Unanimous winner + swap distance 
 
¨  Plurality: Unanimous winner + discrete distance 



Impossibility Theorems 



Non-imposition 

¨  A voting procedure satisfies non-imposition if each 
alternative is the unique winner under at least 
one ballot profile.  

¨  Any surjective (onto) voting procedure satisfies non-
imposition. For resolute procedures, the two 
properties coincide. 

¨  Any neutral resolute voting procedure satisfies non-
imposition 



Dictatorship 

¨  A voting procedure is dictatorial if there exists a 
voter (the dictator) such that the unique winner will 
always be his top-ranked alternative. 

¨  A voting procedure is non-dictatorial if it is not 
dictatorial.  

¨  Any anonymous voting procedure is non-dictatorial 



Unanimity and Pareto Condition 

¨  A voting procedure is unanimous if it elects (only) x 
whenever all voters say that x is the best 
alternative.  

¨  The weak Pareto condition holds if an alternative y 
that is dominated by some other alternative x in all 
ballots cannot win.  

¨  Pareto condition entails unanimity, but the converse 
is not true. 



Independence of Irrelevant Alternatives 

¨  A voting procedure is independent of irrelevant 
alternatives (IIA) if, whenever x is a winner and y 
is not  and the relative ranking of x and y does 
not change in the ballots, then y cannot win 
(independently of any possible changes wrt. other, 
irrelevant, alternatives).  



Arrow’s Theorem 

¨  TH: No voting 
procedure for more 
than 3 candidates can 
be at the same time 

1.  weakly Pareto 
2.  IIA 
3.  non dictatorial 
¨  Wow! 

¨  Does not hold for two 
alternatives (majority) 

¨  IIA is debatable (hard to 
satisfy) Nobel prize in Economics 1972 



Proof of Arrow’s Theorem (1) 

¨  Many versions of Arrow’s Theorem 
¨  We use Sen 1986, “decisive coalition technique” 
¨  X set of candidates 
¨  N set of voters 
¨  Decisive subset of voters G for pair of candidates 

(x,y), if when voters in G prefer x to y, then y is not a 
winner 

¨  Almost decisive subset of voters G for pair of 
candidates (x,y), if when only the voters in G prefer x 
to y, then y is not a winner 



Proof of Arrow’s Theorem (2) 

¨  Proof steps 
1.  Weak Pareto condition = N is decisive for all pairs 
2.  Lemma1: G almost decisive for some (x,y) è G 

decisive for all (x,y) 
3.  Lemma2: given subset of voters G, with |G|>1, 

decisive for all pairs è there exists G’ subset of 
G which is decisive for all pairs 

4.  Thus, by induction, there is a decisive subset of size 
1(= a dictator) 



Proof of Arrow’s Theorem (3) 

¨  Pareto condition = N is decisive for all pairs 

¨  The weak Pareto condition holds if an alternative y 
that is dominated by some other alternative x in all 
ballots cannot win.  

¨  Decisive subset of voters G for pair of candidates 
(x,y), if when voters in G prefer x to y, then y is not 
a winner 



Proof of Arrow’s Theorem’s (4) 

¨  Lemma1: G almost decisive for some (x,y) è G decisive 
for all (x,y) 

¨  Proof 
¨  Let x,y,a,b be distinct candidates 
¨  Consider the profiles where: 

¤  Voters in G have :  a>x>y>b 
¤  All others: a>x, y>b, y>x (rest unspecified) 

¨  G almost decisive for (x,y) à y cannot win 
¨  Weak Pareto à x cannot win and b cannot win 
¨  Thus b loses and a wins in a situation where a>b in G 

independently of how a and b are raked by all others 
¨  IIA à be will not win in any profile where a>b in G 
¨  Thus G is decisive for (a,b)  



Proof of Arrow’s Theorem’s (4) 

¨  Lemma2 (Contraction): given 
subset of voters G, with |G|
>1, decisive for all pairs è 
there exists G’ subset of G 
which is decisive for all 
pairs  

¨  Proof 
¨  Divide G into two non empty 

subsets: G1 and G2 
¨  Consider the following profile: 

¤  Voters in G1: x>y>z 
¤  Voters in G2: y>z>x 
¤  All others: z>x>y 

¨  G decisive à z cannot win à 
either x wins or y wins 

¨  Case 1: x wins 

¨  Note that only G1 has x>z 

¨  IIA à z will not win in any profile 
where G1 has x>z 

¨  Thus, G1 is almost decisive for 
(x,z) 

¨  From lemma 1 G1 is decisive for 
all pairs, and its cardinality is 
smaller than the cardinality of G.  

¨  Case 2: y wins 

¨  Note that only G2 has y>x 

¨  Same as above G2 is decisive 
for all pairs and its cardinality is 
smaller than the cardinality of G.  



Escaping Arrow’s Theorem 

¨  There are cases that allow to escape the reach of 
Arrows theorem 

¨  For example, range voting satisfies all three axioms 
¨  Arrow’s theorem does not apply to range voting 

since the input is a not a profile composed of linear 
orders 

¨  Another possibility is to put restrictions on the ballots 



Single Peaked Preferences 

¨  There exist a fixed linear ordering of the 
candidates such that the preferences of all 
individuals are single-peaked w.r.t. this ordering  
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Two voters deciding at which volume to listen to the radio 



Black’s Possibility Theorem 

¨  TH: If a profile of ballots from an odd number of 
voters dealing with more than two alternatives 
has single-peaked preferences in some ordering 
of the alternatives, then the social preference 
relation P is transitive (the majority graph is 
acyclic). 

¨  Thus, the majority rule is weakly Pareto, IIA and non 
dictatorial 



Sen’s Theorem generalizes  
Black’s Theorem 

¨  A profile of ballots is coherent if for any three 
alternatives, at least one of the three, which we call x, 
satisfies at least one of these conditions:  
¤ No voter ranks x above both of the other two alternatives.  
¤ No voter ranks x between the other two alternatives.  
¤ No voter ranks x below both of the other two alternatives.  

¨  TH If a profile of ballots from an odd number of 
voters dealing with more than two alternatives is 
coherent, then the social preference relation is 
transitive (=no cycles in the majority graph).  



Monotonicity 

¨  Intuitively, when a winner receives 
increased support, she should not 
become a loser. 

¨  If x is a winner given a ballot b, then x 
wins in all other ballots obtained from b 
by moving x higher in the voters 
preferences. 

¨  Also known as Maskin monotonicity  
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The Muller Satterthwaite theorem  

¨  Monotonicity turns out to be (desirable but) too 
demanding: 

¨  TH: No resolute voting procedure for at least 3 
alternatives can be  

1.  non-imposing (surjective),  

2.  monotonic, 
3.  and non-dictatorial 



What happens if we have partial 
orders 
¨  In many AI frameworks alternatives are partially 

ordered rather than totally ordered 
¤ Candidate domain of large size 
¤ Uncertainty 
¤ Combinatorial structure 

¨  Do we escape impossibility results if we allow voters 
to relax their ordering from total to partial orders 
(thus allowing incomparability)? 

¨  Unfortunately not. Arrow’s and Muller-Satterthwaite 
theorem can be extended to partial orders  

[Pini, Rossi, Venable,Walsh, 2009]  


