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Computational Social Choice 

 It is an interdisciplinary field at the interface of 

 social choice theory 

 computer science and AI 
 

 Main goals 

1. Application of techniques of computer science, such as 

complexity analysis or algorithm design, to the study of 

social choice mechanisms, such as voting procedures 

2. Importing concepts from social choice theory into 

computing. For instance, the study of preference 

aggregation mechanisms is relevant to multiagent 

systems 

Chevaleyre, Endriss, Lang, Maudet, 2007 

A short introduction to Computational Social Choice 



(Computational) Social Choice 

 

 Voting procedures 

 Impossibility results 

 Manipulation 

 

 

 Circumventing manipulation 

 Uncertainty 

 Voting in combinatorial domains 

Social choice problems  

Computational 

techniques  



Outline 

 Impossibility results  

 Attempts to modify the winner 

 Manipulation 

 Control 

 Bribery 

 Complexity barrier against manipulation 

 Uncertainty in preference aggregation 

 Preference aggregation with incompleteness 

and incomparability 

 Voting tree 

 Related work 



Impossibility results 



Which rule? 

 Since there are so many rules, which one 

should we choose? 

 

 

 Let us look at some criteria that we would like 

our voting rule to satisfy 

 



Monotonicity criteria (1) 

• Informally, monotonicity means that “ranking a 

candidate higher should help that candidate,” but 

there are multiple nonequivalent definitions 

 

• A weak monotonicity requirement:  

    if  

– candidate w wins for the current votes,  

– we then improve the position of w in some of the 

votes and leave everything else the same, 

 then w should still win 



Monotonicity criteria (2) 

• A weak monotonicity requirement: if  

– candidate w wins for the current votes,  

– we then improve the position of w in some of the votes and leave 

everything else the same, 

 then w should still win. 

• E.g., STV does not satisfy weak monotonicity 

– 7 votes b > c > a 

– 7 votes a > b > c 

– 6 votes c > a > b 

• c drops out first, its votes transfer to a, a wins 

• But if 2 votes b > c > a change to a > b > c, b drops out 

first, its 5 votes transfer to c, and c wins 



Monotonicity criteria (3) 

• A strong monotonicity requirement:  

   if  

– candidate w wins for the current votes,  

– we then change the votes in such a way that for 

each vote, if a candidate c was ranked below w 

originally, c is still ranked below w in the new vote 

 then w should still win 

 



Independence of irrelevant alternatives 

• Independence of irrelevant alternatives criterion: 

if 

– the rule ranks a above b for the current votes, 

– we then change the votes but do not change which is 

ahead between a and b in each vote 

 then a should still be ranked ahead of b. 

 

 

 



Arrow’s impossibility theorem [1951] 

• Suppose there are at least 3 

candidates 

• Then there exists no rule that is 

simultaneously: 

– Pareto efficient (if all votes rank a 

above b, then the rule ranks a above 

b), 

– nondictatorial (there does not exist a 

voter such that the rule simply always 

copies that voter’s ranking), and 

– independent of irrelevant alternatives 

 

 

Nobel prize  

in Economics 1972 



Muller-Satterthwaite impossibility theorem 
[1977] 

• Suppose there are at least 3 candidates 

• Then there exists no rule that 

simultaneously: 

– satisfies unanimity (if all votes rank a first, then 

a should win), 

– is nondictatorial (there does not exist a voter 

such that the rule simply always selects that 

voter’s first candidate as the winner), and 

– is monotone (in the strong sense) 

 

 



Manipulation 



Manipulability 

• Sometimes, a voter is better off revealing her 

preferences insincerely, aka. manipulating 

 

• Example for plurality 

– Suppose a voter prefers a > b > c 

– Also suppose she knows that the other votes are 

• 2 times b > c > a 

• 2 times c > a > b 

– Voting truthfully will lead to a tie between b and c 

– She would be better off voting e.g. b > a > c, guaranteeing b 

wins 

 

• All our rules are (sometimes) manipulable 

 



Gibbard-Satterthwaite impossibility theorem 

• Suppose there are at 

least 3 candidates 

• There exists no rule that 

is simultaneously: 

– onto (for every candidate, 

there are some votes that 

would make that 

candidate win), 

– nondictatorial (there does 

not exist a voter such that 

the rule simply always 

selects that voter’s first 

candidate as the winner), 

and 

– nonmanipulable 

 

Allan Gibbard 

Mark Satterthwaite 



Gibbard-Satterthwaite impossibility theorem 

• Suppose there are at least 3 candidates 

• If f is onto and nonmanipulable 

 Then is dictatorial 

Proof 

 Step 1: If f is onto and nonmanipulable 

                Then f is monotone 

 Step 2: If f is onto, nonmanipulable, and monotone 

                Then f is unanimous 

 Step 3: If f is monotone and unanimous 

                Then f is dictatorial (Muller-Satterthwaite theorem) 

 Step 4: If f is onto and nonmanipulable 

            Then (by steps 1, 2, 3) f is dictatorial  

 

 



Single-peaked preferences 

• Suppose candidates are ordered on a line 

 

a1 a2 a3 a4 a5 

• Every voter prefers candidates that are closer to 
her most preferred candidate 

• Let every voter report only her most preferred 
candidate (“peak”) 

 

v1 v2 v3 v4 
v5 

• Choose the median voter’s peak as the winner 
– This will also be the Condorcet winner 

 • Nonmanipulable! 
Impossibility results do not necessarily hold 

when the space of preferences is restricted 



Constructive/destructive 

manipulation 

 Two kinds of manipulation 

Constructive maniplation 

Goal: to make a certain candidate win 

Destructive manipularion 

Goal: to make a certain candidate a loser 

 
 Conitzer, Sandholm, and Lang. When are elections with few 

candidates hard to manipulate, J. ACM, 2007 



Constructive manipulation 

 The simplest version of the manipulation problem: 

 

 CONSTRUCTIVE-MANIPULATION:  

 We are given a voting rule r 

  the (unweighted) votes of the other voters 

 an alternative p 

 We are asked if we can cast our (single) vote to 
make p win. 



Constructive manipulation 

 Example for the Borda rule 

 Voter 1 votes A > B > C 

 Voter 2 votes B > A > C 

 Voter 3 votes C > A > B 

 Borda scores are 

 A: 4    

 B: 3 

 C: 2 

 A is the winner 

 Can we make B win by adding my vote? 

 Answer: YES.  

My vote: B > C > A (Borda scores: A: 4, B: 5, C: 3) 



Destructive manipulation 

 Exactly the same, except: 

 Instead of a preferred alternative 

 We now have a hated alternative 

 Our goal is to make sure that the hated 

alternative does not win (whoever else 

wins) 

 



Destructive manipulation 

 

 DESTRUCTIVE-MANIPULATION:  

 We are given a voting rule r 

  the (unweighted) votes of the other voters 

 an alternative p 

 We are asked if we can cast our (single) vote to 
make p a loser. 



Coalitions 

 It will rarely be the case that a single voter can 

make a difference. So we should look into 

manipulation by a coalition of voters. 

 

 New problems 

Coalitional constructive manipulation 

Coalitional destructive manipulation 

 

 

 

 



Constructive coalitional manipulation 

 CONSTRUCTIVE-COALITIONAL-MANIPULATION:  

 We are given a voting rule r 

 a set S of votes (the nonmanipulators votes) 

 a set T of votes that area still open (the manipolator votes) 

 an alternative p 

 We are asked if we can cast votes in T so that p wins  

 



Destructive coalitional manipulation 

 DESTRUCTIVE-COALITIONAL-MANIPULATION:  

 We are given a voting rule r 

 a set S of votes (the nonmanipulators votes) 

 a set T of votes that area still open (the manipolator votes) 

 an alternative p 

 We are asked if we can cast votes in T so that p does 
not win  

 



Weighted voters 

 Variants of the problem 

 Voters may be weighted 

 Examples:  

 countries in the EU;  

 shareholders of a company 

 

 New problems 

Weighted constructive (coalitional)  manipulation 

Weighted destructive (coalitional) manipulation 

 

 

 



Control 



The control problem 

 The control problem refers to situations where a 

chair seeks to change the outcome of an election  

 by adding/deleting voters 

 by partitioning voters 

 by adding/deleting candidates 

 

 Assumptions:  

 the chair knows all the voters' preferences and 

  all votes are cast simultaneously 

 Bartholdi, Tovey, and Trick. How hard is it to control an election? 

Math. And Computer Modeling, 1992. 



Constructive/destructive control 

 Constructive control  

 It refers to situations where a chair seeks to make 

a certain outcome the winner of an election 

 

 Destructive control 

 It refers to situations where a chair seeks to make 

a certain outcome a loser of an election 

 



Control by deleting voters 

 Let E be a rule 

 Constructive control by deleting voters 

we are given  

 an election (C,V) 

  a distinguished candidate c ∈ C 

 a nonnegative integer k ≤ ||V|| 

we ask whether we can delete at most k voters 

from V such that c is an E winner of the resulting 

election  

 



Control by adding voters 

 Let E be a rule 

 Constructive control by adding voters 

 we are given  

 a candidate set C 

 a list V of registered voters with preferences over C 

  a list V′ of as yet unregistered voters with preferences over 

C 

 a distinguished candidate c ∈ C 

 a nonnegative integer k ≤ ||V′|| 

  the question is whether we can add to V at most k 

voters from V′ such that c is an E winner of the 

resulting election 



Control by partitioning voters 

 Let E be a rule 

 Constructive control by adding voters 

we are given  

 An election (C,V) 

 a distinguished candidate c ∈ C 

we ask whether V can be partitioned into two 

sublists, V1 and V2, such that c is the unique 

winner of the two-stage election in which the 

winners of the two first-stage subelections (C,V1) 

and (C,V2) runs against each other in the final 

stage 



Control by adding candidates 

 Let E be a rule 

 Constructive control by adding candidates 

 we are given  

 a candidate set CD with CD= 

 C is the set of originally qualified candidates 

 D is the set of spoiler candidates that may be added 

 a list V of registered voters with preferences over C 

 a distinguished candidate c ∈ C 

 a nonnegative integer k 

 The question is whether we can add to C at most k 

candidates from D such that c is an E winner of the resulting 

election 

 



Control by deleting candidates 

 Let E be a rule 

 Constructive control by deleting candidates 

we are given  

 a candidate set C 

 a list V of registered voters with preferences over C 

 a distinguished candidate c ∈ C 

 a nonnegative integer k 

 The question is whether we can remove from C at 

most k candidates such that c is an E winner of the 

resulting election 

 



Example of control 

 Imagine that the chairperson of the election controls whether 

some alternatives participate 

 Suppose there are 5 alternatives, a, b, c, d, e 

 Chair controls whether c, d, e run (can choose any subset); 

chair wants b to win 

 Rule is plurality; voters’ preferences are: 

 a > b > c > d > e (11 votes) 

 b > a > c > d > e (10 votes) 

 c > e > b > a > e (2 votes) 

 d > b > a > c > e (2 votes) 

 c > a > b > d > e (2 votes) 

 e > a > b > c > e (2 votes) 

 



Outline 

 Impossibility results  

 Attempts to modify the winner 

 Manipulation 

 Control 

 Bribery 

 Complexity barrier against manipulation 

 Uncertainty in preference aggregation 

 Preference aggregation with incompleteness 

and incomparability 

 Voting tree 

 Related work 



Bribery 



The bribery problem 

 In bribery  

 there is an external agent who wishes to change 

the outcome of the election 

 To do this, he offers payments (within a budget) to 

voters for changing the preference orders to his 

liking 

 

 



Bribery 

 Let R be a voting rule 

 R-BRIBERY problem  

we are given  

 an election E = (C, V) 

  a designated candidate p in C 

 a natural number B 

we ask if it is possible to ensure that p is an R-

winner of E through changing the votes of at 

most B voters. 



$-Bribery 

 In R-BRIBERY, effectively, each voter has the same unit 

cost: We only care about bribing as few voters as possible 

  However, in many settings, the voters might have 

different prices, depending, for example, 

 on how much a particular voter cares about the result of the 

election or 

 on the nature of the bribery 

 

 R-$BRIBERY where each voter v has a price pv for 

changing his vote (after we pay v the pv units, we obtain full 

control over v’s vote) 



Swap-Bribery 

 R-SWAP-BRIBERY 
 each voter v has a cost function pv such that for each two 

candidates c, c’, pv (c, c’) is the cost of swapping c and c’ on 
v’s preference list (provided c and c’ are ranked next to each 
other).  

 

 For example 

 a voter might be willing to swap his two least favorite candidates at a 
small cost 

  but he would never— irrespective of the payment — change the top-
ranked candidate 

 

 The goal of the briber is to find a sequence of adjacent swaps  

 that leads to his or her preferred candidate’s victory, and 

 that has lowest cost 



Manipulation and $Bribery 

 Manipulation is a special case of $BRIBERY 

 the manipulation problem is a bribery problem 

where  

 the prices of manipulators are very low 

 the prices of nonmanipulators are very high 

 our budget allows us to buy the votes of all the 

manipulators but none of the nonmanipulators 



Uncertainty about votes 



Possible and necessary winners 

 Setting: some (parts of) votes are missing 

 Possible winner 

 There is a way for remaining votes to be cast so 

that he win 

 Necessary winner 

 However remaining preferences are cast, he 

must win 

 

 

 

Konzak and Lang. Voting Procedures with Incomplete Preferences.  IJCAI 
workshop 2005 

Pini, Rossi, Venable, Walsh. Incompleteness and Incomparability in Preference 
Aggregation. IJCAI 2007 



Preference elicitation and the 

possible/necessary winner problem 

 Preference elicitation 
 Some preferences may be missing 

 Time consuming, costly, difficult, … 

 Want to terminate elicitation as soon as winner 
fixed 

 

 Closely connected to preference elicitation 

 Elicitation can only be terminated iff  possible 

winner set = necessary winner set 

 



Manipulation and the possible 

winner problem 

 Manipulation is a special case of the 

possible winner problem, where  

 the nonmanipulators have fully specified 

preference orders 

  the manipulators have completely unspecifed 

preference orders 



Complexity barrier against 

manipulation 



The complexity shield (1) 

 The Gibbard-Satterthwaite Theorem shows that 
strategic manipulation can never be rule out 

 

 Idea: So it is always possible to manipulate; but 
may it may also difficult? 

 Tools from complexity theory can make this idea 
precise 

 

 Let F be a voting rule, if manipulation is 
computationally intractable for F, then F might be 
considered resistant to manipulation 



The complexity shield (2) 

 Standard procedures turn out to be easy to 

manipulate 

 It might still be possible to design new ones 

that are resistant 

 This approach is most interesting for voting 

procedures for which winner determination is 

tractable 



Manipulability as a decision problem 

 F: voting rule 

 Manipulability(F) 

  Instance: Set of votes for all except one voter; 

alternative x 

  Question: Is there a vote for the final voter such 

that x wins? 

 

   If this can be answered in polynomial time,              

then F is easy to manipulate 



Manipulability complexity 

 If  Manipulability(F) is computationally intractable, then 

manipulability may be considered less of a worry for 

procedure F 

 

 Remark: We assume that the manipulator knows all the other 

votes 

 This unrealistic assumption is reasonable for intractability 

results 

 If manipulation is intractable even under such favorable 

conditions, then all the better 

 For tractability results, one can assume to have polls 

 



Plurality is easy to manipulate 

 TH: Manipulability(Plurality)ε P 

 Proof 

 Simply vote for x, the alternative to be made 
winner by means of manipulation. If manipulation is 
possible at all, this will work. Otherwise not. 

 

 General: Manipulability(F) ε P for any rule F with  

 polynomial winner determination problem and 

  polynomial number of votes 

 

Bartholdi,Tovey,Trick. The Computational Difficulty of Manipulating an 

Election. Social Choice and Welfare 6(3): 227–241, 1989. 



Borda is easy to manipulate 

 MANIPULABILITY(Borda) ε P 

 Proof 

 Place x (the alternative to be made winner 

through manipulation) at the top of your vote 

 Then inductively proceed as follows: Check if any 

of the remaining alternatives can be put next on 

the ballot without preventing x from winning. If 

yes, do so. (If no, manipulation is impossible.) 

Bartholdi,Tovey,Trick. The Computational Difficulty of Manipulating an 

Election. Social Choice and Welfare 6(3): 227–241.] 



Algorithm Greedy-Manipulation 

 
 Input 

 preferences of all other voters 

 a distinguished candidate c 

 Output 

 a preference order that, together with those of all the other 

voters, will ensure that c is a winner, or  

 a claim that no such preference order exists, 

 Initialization: Place c at the top of the preference order. 

 Iterative Step. Determine whether any candidate can be 

placed in the next lower position (independent of other 

choices) without preventing c from winning 

 If so, place such a candidate in the next position  

 otherwise terminate claiming that c cannot win 



STV is difficult to manipulate 

 MANIPULABILITY(STV) ε NP-complete 

 Proof 

 NP-membership is clear: checking whether a given vote makes x 

win can be done in polynomial time (just try it, STV is polynomial 

to compute) 

 NP-hardness: by reduction from 3-Cover (X3C)  

 In an X3C instance 

 we are given  

 a set  

 a collection of subsets of size 3 of this set 

  we are asked if we can cover all of the elements in the set 

with nonoverlapping subsets 

 

 
Bartholdi, J., and Orlin, J. Single Transferable Vote Resists Strategic Voting. 

Social Choice and Welfare 1991 



Adding a preround 

 A preround proceeds as follows: 

 Pair the candidates 

 Each candidate faces its opponent in a 
pairwise knockout election 

 The winners proceed to the original rule 

 P-R: voting rule obtained running 
first a preround and the rule R 

 TH: Manipulability(P-Plurality) 
is NP-complete. 

 TH: Manipulability(P-Borda) is 
NP-complete. 

 Also holds for other rules 
Conitzer, Sandholm. Universal Voting Protocol Tweaks to Make 

Manipulation Hard. In Proc. IJCAI 2003 



Preround example (with Borda) 

Voter 1: A>B>C>D>E>F 

Voter 2: D>E>F>A>B>C 

Voter 3: F>D>B>E>C>A 

A gets 2 points 

F gets 3 points 

D gets 4 points and thus it wins 

Voter 1: A>D>F 

Voter 2: D>F>A 

Voter 3: F>D>A 

A vs B: A ranked higher by 1,2 

C vs F: F ranked higher by 2,3 

D vs E: D ranked higher by all 

Match A with B 

Match C with F 

Match D with E 

  STEP 1: 

A. Collect votes and  

B. Match alternatives  

(no order required) 

  STEP 2: 

Determine winners of 

preround 

  STEP 3: 

Infer votes on remaining 

alternatives 

  STEP 4: 

Execute original rule  

(Borda) 



Coalitions and weights 

 Manipulation can be done by 
 a single voter 

 a coalition of voters 

 It will rarely be the case that a single voter can make a 
difference. So we should look into manipulation by a coalition 
of voters 

 

 Manipulation can be done by 
 Weighted voters 

 Unweighted voters 

 

 Manipulation may be  
 constructive: making alternative x a unique or tied winner 

 destructive: ensuring x does not win 

 



Computational hardness as a 

barrier to manipulation 

 A (successful) manipulation is a way of misreporting one’s 

preferences that leads to a better result for oneself 

 

 Gibbard-Satterthwaite theorem 

 It tells us that for some instances, successful manipulations exist 

 It does not say that these manipulations are always easy to find 

 

 Do voting rules exist for which manipulations are 

computationally hard to find? 

 



Inevitability of manipulability 

 Recall Gibbard-Satterthwaite theorem: 

 Suppose there are at least 3 alternatives 

 There exists no rule that is simultaneously: 
 onto (for every alternative, there are some votes that 

would make that alternative win), 

 nondictatorial, and 

 nonmanipulable 

 Typically don’t want a rule that is dictatorial or not 
onto 



(Coalitional) Manipulation with 

weighted/unweighted votes 

Unweighted 

voters 

Weighted 

voters 

Individual 

manipulation  

Coalitional 

manipulation 

Can be 

hard 
easy 

easy 

easy 

Constant #alternatives Unbounded #alternatives 

Can be 

hard 

Can be 

hard 

Can be 

hard 
Potentially 

hard 

Unweighted 

voters 

Weighted 

voters 

Do voting rules exist for which manipulations are 

computationally hard to find? 



Constructive manipulation 

 CONSTRUCTIVE-MANIPULATION:  

We are given a voting rule r,  the (unweighted) votes 
of the other voters, and an alternative p  

We are asked if we can cast our (single) vote to 
make p win 



Constructive weighted manipulation  

 We are given the weighted votes of the others 
(with the weights) 

 And we are given the weights of members of 
our coalition 

 Can we make our preferred alternative p win? 

 

  



Constructive weighted manipulation  

 Borda example 

 Voters 
 Voter 1 (weight 4): A>B>C 

 Voter 2 (weight 7): B>A>C 

 Manipulators 
 one with weight 4 

 one with weight 9 

 Can we make C win? Yes! 
Solution:  

 weight 4 voter votes C>B>A,  

 weight 9 voter votes C>A>B 
 Borda scores: A: 24, B: 22, C: 26  



Veto is NP-hard to manipulate 

with 3 or more candidates 

 TH: WEIGHTED-COALITIONAL-CONSTRUCTIVE-
MANIPULABILITY(Veto) is NP-complete with 3 or more 
candidates. 

 Proof 

 In NP since we can just give the manipulation 

 To show NP-hardness, we give a simple reduction of PARTITION  

 Given m integers ki with sum 2K, is there a partition with sum K? 

 Reduce to manipulate election so p wins against a or b 

 Assume one agent with weight 2K-1 has vetoed p 

 Each of the votes of the m manipulators has weight 2ki 

 their combined weight is 4K 

 The only way for p to win is if the manipulators can veto a with 2K 
weight, and b with 2K weight 

 But this solves the PARTITION problem 



 
Weighted-coalitional constructive manipulation 

 Conitzer, Sandholm, and Lang. When are elections with few 

candidates hard to manipulate, J. ACM, 2007 



Destructive manipulation 

 Exactly the same, except: 

 Instead of a preferred alternative 

 We now have a hated alternative 

 Our goal is to make sure that the hated 

alternative does not win (whoever else wins) 

 



  Weighted-coalitional destructive manipulation 

 Conitzer, Sandholm, and Lang. When are elections with few 

candidates hard to manipulate, J. ACM, 2007 



  Weighted-coalitional manipulation 



Destructive manipulation with 

weighted votes 

 If constructive manipulation is easy     

then destructive manipulation is easy 

Destructive manipulation can be easy even though 

constructive manipulation is hard 

 E.g. Borda is  

 Polynomial to manipulate destructively  

 NP-hard to manipulate constructively for 3 or more 

candidates for a weighted coalition 

 



Hardness is only worst-case… 

 Results such as NP-hardness suggest that the 
runtime of any successful manipulation 
algorithm is going to grow dramatically on some 
instances 

 But there may be algorithms that solve most 
instances fast 



Bad news… 

 Increasingly many results suggest that many instances 
are in fact easy to manipulate 

 

 Heuristic algorithms and/or experimental (simulation) 
evaluation [Conitzer & Sandholm AAAI-06, Procaccia & Rosenschein JAIR-07, 

Conitzer et al. JACM-07, Walsh IJCAI-09 / CARE-09] 

 

 Algorithms that only have a small “window of error” of 
instances on which they fail [Zuckerman et al. AIJ-09, Xia et al. 
EC-10] 



Uncertainty in Preference 

aggregation 



Outline 

 Uncertainty in preference aggregation 

Preference aggregation with 

incompleteness and incomparability 

 Incompleteness: missing preferences 

 Incomparability: incomparable pairs 

Preference aggregation in voting trees  

Simple voting trees 

Voting trees 

 

 

 



Preference aggregation with 

incompleteness and incomparability  



Motivation - (1) 

 How to combine preferences of multiple agents in 

presence of incompleteness and incomparability in 

their preference orderings over a set of outcomes? 

 Incompleteness: absence of knowledge on 

relationship between pairs of outcomes 

 ongoing preference elicitation  

 agents’ privacy 

 Incomparability: some elements cannot be compared 

 novel incomparable to a biography 

 fast expensive car incomparable to slow cheap car 



Motivation - (2) 

 Goal: aggregate the agents’ preferences into a 

single pref. ordering 

 Since there are incomplete preferences, we focus 

on computing: 

 Possible winners (PW): 

 outcomes that can be the most preferred ones for the agents 

 Necessary winners (NW): 

outcomes that are always the most preferred ones for the 

agents 

 Useful for preference elicitation 



Outline 

 Basic notions on preferences 

 Possible and necessary winners 

 Computing PW and NW: NP-hard  

 Approximating PW and NW: NP-hard 

 Sufficient conditions on preference aggregation 

such that computing PW and NW is polynomial  

 How PW and NW are useful in preference 

elicitation 



Basic notions - (1) 

 Multi-agent scenario: each agent expresses his 

preferences via an (incomplete) partial ordering 

over the possible outcomes 

 preferences over outcomes A and B 

 A>B or A<B       (ordered) 

 A=B                   (in a tie) 

 A~B                   (incomparable) 

 A?B                   (not specified) 

 Example: A,B,C outcomes   

? 

> ~ 



Basic notions - (2) 

 Incomplete profile: sequence of  partial orders over 

outcomes, one for every agent, where at least one partial 

order is incomplete 

• Preference aggregation function:             

incomplete profiles  sets of P0s 
 

    We will consider only functions that take polynomial time to apply 

? 

> ~ 

> 

~ > 

> 

> > 



? 

> ~ 

> 

~ > 

> 

> > 

Preference aggregation function: example with Pareto 

only completions that are POs! 

Pref. aggr. function:  

incomplete profiles  sets of P0s  

Pareto: POs  PO 

•A>B iff A>B  or A=B for all 

agents, and A>B for at least 

one 
•A~B otherwise 

~ 

~ ~ 

> 

~ ~ 

>, ~ 

~ ~ 

Combined result 

> 

~ > 

> 

> > 

> 

> ~ 

> 

~ > 

> 

> > 

~ 

> ~ 



Possible and necessary winners 

 We extend notions of PW and NW to POs 

 Necessary winners 

  outcomes which are maximal in every completion 

 winners no matter how incompleteness is resolved 

 Possible winners  

  outcomes which are maximal in at least one 

completion 

 winners in at least one way in which incompleteness is 

resolved  



? 

> ~ 

> 

~ > 

> 

> > 

> 

~ ~ 

> 

~ > 

> 

> > 

> 

~ > 

> 

> > 

~ 

~ ~ 

> 

> ~ 

~ 

> ~ 

NW={A,B} 

PW={A,B,C} 

Possible and necessary winners: example with Pareto 



PW and NW: complexity results 

 Computing PW and NW is NP-hard        

 (even restricting to incomplete TOs) 

 deciding if an outcome is   

 a possible winner: NP-complete 

 a necessary winner: coNP-complete 

 Computing good approximations of PW and NW is 

NP-hard 

  good approximation:    for all k positive integer 

 a superset PW* s.t. |PW*| < k |PW| 

 a subset NW* s.t. . |NW*| >1/k |NW|, whenever |NW|>0 

 



PW and NW: tractable case 

 Given the combined result, PW and NW are easy to find 

 A in NW if no arc (A-B) with B>A 

 A in PW if all arcs (A-B) with B>A contain also other labels  

 Computing the combined result: in general NP-hard 

 If f is IIA and monotonic 

 we can compute an upper approximation (cr*) in polynomial 

time 

 Also, given cr*, polynomial to compute PW and NW 

 algorithm not affected by approximation 

 IIA: when  rel(A,B) in the result depends only by rel(A,B) given by 

the agents 

 monotonic: when we improve an outcome in a profile (for ex. we 

pass from A>B to A=B ), then it improves also in the result 



Cr*: upper approximation of the  

combined result 

 Obtained by: 

 Considering two profile completions:  

 (A?B) replaced with (A>B) for every agent   

 (A?B) replaced with (A<B) for every agent  

 Then two results (A r1 B) and (A r2 B) 

 In cr*, put (A r B) where r is {r1,r2,everything between 

them} 

 Order of relations: <, = and , >  

 f is IIA and monotonic  cr* upper approx.of cr 

 Approximation only on arcs with all four labels 

 involves only = and  



cr* upper approx.of cr: example with Lex 

? 

> > 

> 

> > 

< 

> > 

Lex:                    
agents are ordered, 

ArB given by the 

first agent in the 

order that doesn’t 

declare A=B 

>, =,~, < 

> > 

cr*  

PW = {A,B} 

NW =   



Computing PW and NW 

 Algorithm computing NW and PW in 

polynomial time, given cr* 

 Input 

 f: IIA, monotonic  pref. aggregation function 

 ip: incomplete profile over outcomes in  

 cr*(f,ip): approximation of combined result 

Output  

 P, N: sets of outcomes 



Computing PW and NW easily  

Input:  f: IIA, monotonic pref. aggr. function,   

           ip: incomplete profile,  

           cr*(f,ip): approximation of combined result 

Output:  P, N: sets of outcomes  

P, N 

foreach A do 

 if  C   s.t.   {<}  rel*(A,C) then 

 N  N  {A} 

 if  C   s.t.   {<} = rel*(A,C) then 

 P  P  {A} 

return P,N 

It terminates in O(||2) time  

with N=NW and P=PW 



IIA+monotone pref. aggr. functions 

 Pareto: given any two outcomes A and B 

 A>B iff A>B  or A=B for all agents and A>B for at least 
one 

 A~B otherwise 

 Lex 
 agents are ordered and, given any two outcomes A 

and B, the relation between them in the result is the 
one given by the first agent in the order that doesn’t 
declare A=B 

 Approval voting 
 tractability result already proven in [Konczak and 

Lang, 2005] since it is a positional scoring rule 



Preference elicitation - (1) 

 Process of asking queries to agents in order to 
determine their preferences over outcomes   

                                                                              [Chen and Pu, 2004] 

 At each stage in eliciting preference there is a set of 
possible and necessary winners 

 PW = NW  preference elicitation is over, no 
matter how incompleteness is resolved   

 Checking when PW = NW: hard in general           

                                                    [Conitzer and Sandholm, 2002]  

 We prove that pref.elicitation is easy if f is IIA 



Preference elicitation - (2) 

 PW = NW preference elicitation is over 

 At the beginning:                       NW=   PW= 

 As preferences are declared:    NW      PW  

 If PW  NW, and APWNW, A can become a   

loser or  necessary winner 

Enough to perform ask(A,B), BPW   

 CPW is a loser  dominated 

 f is IIA   ask(A.B) involves only A-B preferences 

 O(|PW|2) steps to remove incompleteness 



Preference elicitation - (3) 

 f is IIA  determining set of winners via 

pref. elicitation is polynomial in |agents| 

and |outcomes| 



 

Input:  f: IIA, pol. computable pref. aggr. function,  

            P, N: set of outcomes 

Output:  W: set of outcomes 

wins: bool, PPW, NNW 

while  PN do 
 choose APN  
 wins  true, Pa  P  {A} 
 repeat 

 choose BPa  
 if agent s.t.  A?B then 

 ask(A,B) 
 compute f(A,B) 

  if f(A,B)=(A>B) then 
  P  P  {B} 

  if f(A,B)=(A<B) then 
  P  P  {A}; wins  false 

 Pa  Pa  {B} 
 until f(A,B) = (A<B) or Pa =  
 if wins=true  then 

 N  N  {A} 

W N, return W 

We can use P and N returned 

by previous algorithm 

Winner  
determination 



Main results 

 Computing PW and NW : NP-hard 

 Computing good approximations of PW and NW: 
NP-hard 

 Computing the combined result: NP-hard 

 If f IIA+monotonic (and pol. computable) then 
 computing an approximation of cr is polynomial 
 computing PW and NW is polynomial 

 if f IIA then 
 preference elicitation (i.e., until PW=NW) is 

polynomial 

Pini,Rossi,Venable,Walsh, Incompleteness and Incomparability in 

Preference Aggregation: Complexity Results. Artificial Intelligence 2011 



Future work 

 Adding constraints to agents’ preferences 

 possible and necessary winner must be also 
feasible 

 Expressing preferences via compact knowledge 
representation formalisms (Ex.: CP-nets and soft 
constraints) 

 determining PW and NW directly from these 
compact formalisms 

 Adding possibility distribution over the 
completions of an incomplete preference relation 
between outcomes 



Winner determination in voting trees 



Outline 

 Background 
 Incomplete preferences 

 Incomplete profiles 

 Complete majority graph 
 Condorcet winner 

 Schwartz winner 

 Fair Schwartz winner 

 Incomplete majority graph 
 Possible/necessary Condorcet winners 

 Possible/necessary Schwartz winner 

 Winner determination for (simple) voting tree 
 From the majority graph 

 From the weighted/unweighted profile 

 Complexity results 

 Balanced agendas  
 



Preferences 

 Agents express their preferences over 

candidates by a (possibly incomplete) 

total order 

An agent may state  

a preference over a  

pair of candidates 

Other agents may not  

know their preference  

Why? 

…or may not want  

to disclose it  

A?B A>B 



Profiles 

 When many (n) agents are involved: 

 Profile: sequence of n total orders 

 

 

 

 

 

 Incomplete profile: one or more total orders are incomplete 

 

A>B>C>D A>C>B>D B>D>A>C C>B>D>A D>A>C>B 

A>B>C>D 
A>C>B, A?D, 

B?D, C?D 
B>D>A>C 

C>B>A,D>A 

B?D,C?D  

D>A>B,C>B 

A?C, D?C 



Complete Weighted profiles 
 

 Complete weighted profile:  

 Each agent has a given weight 

 all preferences are known 

 

weights 20 2 2 2 2 

A>B>C C>B>A B>A>C C>B>A A>C>B preferences 



Incomplete Weighted profiles 

A>B>C>D 
A>C>B, A?D, 

B?D, C?D 
B>D>A>C 

C>B>A,D>A 

B?D,C?D  

D>A>B,C>B 

A?C, D?C 

20 2 5 10 2 

 

 Incomplete weighted profile:  

 Each agent has a given weight  

 Some preferences are not known 

 



 Given profile P, its majority graph M(P) is s.t.: 

 Nodes correspond to candidates 

 Directed edge AB iff majority says A>B   

A 

C 

B 

D 

Profile P 

Majority Graph M(P) 

A 

D 

B 

Relation of the  

majority graph  

not transitive! 

n is odd! 

A>B>C>D A>C>B>D B>D>A>C C>B>D>A D>A>C>B 

Majority Graph of a Profile 



Majority Graph of an Incomplete Profile 
 Given an incomplete profile P, its majority graph 

M(P) is s.t.: 

 Nodes correspond to candidates 

 Directed edge A B iff more than half says A>B 

 No edge if no majority   

Incomplete Profile P 

Incomplete Majority Graph   

M(P) 

A 

C 

B 

D D 

B 

A>B>C>D 
A>C>B, A?D, 

B?D, C?D 
B>D>A>C 

C>B>A,D>A 

B?D,C?D  
D>A>B,C>B 

A?C, D?C 



Majority Graph of an Incomplete Weighted Profile 

 Given an incomplete weighted profile P, its majority graph M(P) is s.t.: 

 Nodes correspond to candidates 

 Directed edge AB iff the weighted majority says A>B 

 No edge if no weighted majority 

Incomplete Profile P 

Incomplete Majority Graph   

M(P) 

A 

C 

B 

D D 

A>B>C>D 
A>C>B, A?D, 

B?D, C?D 
B>D>A>C 

C>B>A,D>A 

B?D,C?D  

D>A>B,C>B 

A?C, D?C 

15 3 5 10 2 

C 



Binary voting tree 

 Given a set of candidates, a binary voting tree T is 

such that 

 Terminal node = candidate 

 Non-terminal node = winner of its two children 

 Balanced iff  |maxdepth - mindepth| ≤ 1 

A B C D 

W1= 

W(A,B) 

W2= 

W(C,D) 

W(W1, 

W2) 

C 

D 

W(W2, 

D) 

W2= 

W(W1,C) 

B A 

W1= 

W(A,B) 

Balanced  Unbalanced  



Simple voting tree 

 Binary voting tree T  voting rule rT 

 rT: majority graph G  candidate (winner) 

 Every candidate can appear once in the leaves 

 Sequence of pairwise comparisons   (also called agenda) 

between candidates 

A 

C 

B 

D 

A B C D 

W1= 

W(A,B) 

W2= 

W(C,D) 

W(W1, 

W2) 

G 
T 

rT 

Winner 

rT(G) 

A B A B 

C D 

A C 

C D 

A C 

A 

A 

A B C D 

W1= 

W(A,B) 

W2= 

W(C,D) 

W(W1, 

W2) 



Voting tree 

 Voting tree: an extension of 

simple voting tree where 

 every candidate can appear 

several times as leaf 

 

 

A B C D 

W1= 

W(A,B) 

W2= 

W(C,D) 

W(W1, 

W2) 

A B 

A C 

C D 

A C 

A 

A B A D 

W1= 

W(A,B) 

W2= 

W(A,D) 

W(W1, 

W2) 



Different  tree, different winner 

A 

C 

B 

D 

G 

T 

rT 

Winner 

rT(G) 

A B 

C D 

Winner 

rT(G) 

C 

D 

W(W2, 

D) 

W2= 

W(W1,C) 

B A 

W1= 

W(A,B) 

A B 

A A C 

A A D 

D 

D 

C 

D 

W(W2, 

D) 

W2= 

W(W1,C) 

B A 

W1= 

W(A,B) 



Simple voting trees 



Condorcet winner 

 Given a profile P, candidate A is a Condorcet 
winner iff ∀T, binary tree, rT(M(P))=A.  

 Given M(P), A is a Condorcet winner iff its node 

in M(P) has only outgoing edges 

 Polynomial time   

A 

C 

B 

D 

No Condorcet winner 

A 

C 

B 

D 

Condorcet winner 

If Ǝ, then unique 



Schwartz winners 

 Given a profile P, candidate A is a Schwartz 
winner iff ƎT, binary tree, such that rT(M(P))=A.  

 Given M(P), candidate A is a possible winner iff 
there is path from node A to every other node 

  Polynomial time   

A 

C 

B 

D 

A B 

C D 

A 

B 

A 

A 

D C 

C 



Incomplete preferences 

 
Possible Schwarz (PS) winner A: ∃ completion of maj. graph /profile,          

∃ voting tree s.t. A wins 

Necessary Schwartz (NS) winner A:  ∀ completion of maj. graph/profile,    
∃ voting tree s.t. A wins  

Possible Condorcet (PC) winner A: ∃ completion of maj. graph/profile,                                      
s.t. ∀ voting tree A wins  

Necessary Condorcet (NC) winner A:∀ completion of maj. graph/profile, 
s.t. ∀voting tree  A wins 

 

               

 

 Who will win? Different types of uncertainty: 

 Unknown voting tree 

 Incomplete preferences  
 incomplete profile 

 incomplete majority graph 

                                        

 

 

                

 



Incomplete preferences 

 
Possible Schwarz (PS) winner A: ∃ completion of maj. graph /profile,          

∃ voting tree s.t. A wins 

Necessary Schwartz (NS) winner A:  ∀ completion of maj. 
graph/profile,    ∃ voting tree s.t. A wins  

Possible Condorcet (PC) winner A: ∃ completion of maj. graph/profile,                                      
s.t. ∀ voting tree A wins  

Necessary Condorcet (NC) winner A:∀ completion of maj. 
graph/profile, s.t. ∀voting tree  A wins 

 

                    NC ⊆ PC ∩ NS        PC   NS ⊆ PS 

 

 

PC 

NS 
NC 

PS 



Completions of the Majority graph and Profile 

 completion of the profile P     completion of the maj. graph M(P) 

 Not vice versa (transitivity!) 

 Completions(M(P)) ⊇ {M(P’)| P’ completion of P} 

 Example: 1 agent 

Profile             profile completions  Majority graph      Maj. G. completions 

A 

C 

B 

? 

? 

A C 

B 

A 

B 

C 

A 

C 

B 

C 

A 

B 

A C 

B 

A C 

B 

A C 

B 

A C 

B 



Possible Schwartz winners 
 P : unweighted profile 

 M(P) : majority graph 

 PS(P): A∈PS(P) iff ∃ completion of profile P, ∃ voting tree s.t. A 
wins 

 PS(M(P)): A∈WP(M(P)) iff ∃ completion of maj. graph M(P) , ∃ 
voting tree s.t. A wins 

 

PS(M(P)) 

∃ completion of P  ∃ completion of M(P) 

PS(P) 

Profile             profile completions  

B 

? 

? 

A 

B 

C 

A 

C 

B 

C 

A 

B 

Majority graph      Maj. G. completions 
A C 

B 

A C 

B 

A C 

B 

A C 

B B 

A 

C 

A 

B 

C 

B ∉ PS(P) 

B ∈ PS(M(P)) 

B 

B B 

PS(P)⊆PS(M(P)) 



Possible Condorcet  winners 

WC(M(P)) 

∃ completion of P  ∃ completion of M(P) 

PC(P)=PC(M(P))  P : unweighted profile 

 M(P) : majority graph 

 PC(P): A∈PC(P) iff ∃ completion of profile P, ∀ voting tree s.t. A 
wins 

 PC(M(P):  A∈PC(M(P)) iff ∃ completion of maj. graph M(P) , ∀ 
voting tree s.t. A wins 

 

M(P) 

A∈PC(M(P)) 
      iff A 

C B D 

A 

C B D 

Agent 

Putting a candidate above all others 

never causes transitivity problems 

If A∈PC(M(P)) 
then A∈PC(P) 

PC(P)=PC(M(P)) 



Necessary Schwartz winners 
 P : unweighted profile 

 M(P) : majority graph 

 NS(P): A∈NS(P) iff ∀ completion of profile P, ∃ voting tree s.t. A 
wins 

 NS(M(P)):  A∈NS(M(P)) iff ∀ completion of maj. graph M(P) , ∃ 
voting tree s.t. A wins 

 

Completions(M(P)) ⊇ {M(P’)| P’ completion of P} 

NS(M(P))⊆NS(P) 

NS(M(P) 

NS(P) 



Necessary Condorcet winners 
 P : unweighted profile 

 M(P) : majority graph 

 NC(P): A∈NC(P) iff ∀ completion of profile P, ∀ voting tree s.t. 
A wins 

 NC(M(P)):  A∈NC(M(P)) iff ∀ completion of maj. graph M(P) , ∀ 
voting tree s.t. A wins 

 

Completions(M(P)) ⊇ {M(P’)| P’ completion of P} 

NC(M(P))=NC(P) 

SP(P) 

If A ∈ NC(P)   then   

M(P) 
A 

C B D C 

No arrows involving A  
can be missing or against A   

A ∈ NC(M(P)) 

NC(P)=NC(M(P)) 



Computing majority graph winners 

 Polynomial for simple voting trees for all types of winners 

 A is a Possible Schwartz winner iff it is possible to 

complete the majority graph such that every outcome is 

reachable from A 

 A is a necessary Schwartz winner iff, ∀B, there is a path 

from A to B in G 

 A is possible Condorcet winner iff A has no ingoing edges 

 A is a necessary Condorcet winner iff A has  outgoing 

edges to all other candidates  

 

 

 

 

[Lang, Pini,Rossi,Venable,Walsh, IJCAI 07] 

[Pini,Rossi,Venable,Walsh, KR08] 



Outline 

 Background 
 Incomplete preferences 

 Incomplete profiles 

 Complete majority graph 
 Condorcet winner 

 Schwartz winner 

 Fair Schwartz winner 

 Incomplete majority graph 
 Possible/necessary Condorcet winners 

 Possible/necessary Schwartz winner 

 Winner determination for (simple) voting tree 
 From the majority graph 

 From the weighted/unweighted profile 

 Complexity results 

 Balanced agendas  
 



A>B>C>D 
A>C>B, A?D, 

B?D, C?D 
B>D>A>C 

C>B>A,D>A 

B?D,C?D  

D>A>B,C>B 

A?C, D?C 

8 3 10 2 

1 

1 1 
1 

1 
1 1 

1 

1 1 1 1 1 1 1 1 

1 
1 1 1 
1 
1 
1 

1 1 

A>B>C>D 
A>C>B, A?D, 

B?D, C?D 
B>D>A>C 

C>B>A,D>A 

B?D,C?D  

D>A>B,C>B 

A?C, D?C 

1 

Weighted profile P 

Unweighted profile P’ 

M(P)=M(P’) 

Completions(P’)⊇Completions(P) 

NC(P)=NC(P’) 

PC(P)=PC(P’) 

                       From weighted to unweighted 



Winners sets  
(weighted or unweighted profile)  

PS(M(P)) 
PS(P) 

PC(P)=PC(M(P)) 

NS(P) 

NS(M(P)) 

NC(P)=NC(M(P)) 

 PC(P) = PC(M(P))    and   NC(P) = NC(M(P)) 

 PS(P)  PS(M(P))    and   NS(P)  NS(M(P)) 

 



Complexity results:  

Possible Condorcet Winners 

Theorem: 

 P incomplete weighted profile 

 “A ∈PC(P)?” is polynomial 

Proof 

1. P  unweighted P’ 

2. PC(P)=PC(P’) 

3. PC(P’)=PC(M(P’)) 

4. A∈PC(M(P’)) iff all arrows involving A in 
M(P’) do not point against A (polynomial 
test)  



Complexity results:                                    

Necessary Condorcet Winners 

Theorem: 

 P incomplete weighted profile 

 “A ∈NC(P)?” is polynomial 

Proof 

1. P  unweighted P’ 

2. NC(P)=NC(P’) 

3. NC(P’)=NC(M(P’)) 

4. A∈NC(M(P’)) iff all arrows involving A in 
M(P’) are not missing and do not point 
against A (polynomial test)  



Complexity results:                     

Possible Schwartz Winners 

Theorem: 

 P incomplete weighted profile, 3 or more 

candidates 

 “A ∈PS(P)?” is NP-complete 

Proof 

     Reduction from the number partitioning 

problem 



X= incomplete 

maj.graph 

Y=tree                              
[Lang et al. iIJCAI’07] 

X=incomplete weighted 

profile 

Y=tree 

PossibleCondorcet 

ƎX  ∀Y 
EASY 

No ingoing edges 

EASY 

Same set as 

Necessary Condorcet 

∀X  ∀Y 
EASY 

Only outgoing edges 

EASY 

Same set as 

 

Possible Schwartz 

ƎX  ƎY 

EASY 

Completion with path 

to every candidate 

NP-complete   

Reduction from the 

number partitioning 

problem 

Necessary Schwartz 

∀X  ƎY 

EASY 

Path to every 

candidate 

? 

Complexity results 



Fair Possible Schwartz Winners 

 Some possible winners may win only on very 
unbalanced trees, competing only few times. 
UNFAIR! 

 

 Fair  possible Schwartz  (FPS) winner A :                              
∃ completion of maj. graph/profile, ∃ balanced 
simple voting tree s.t. A wins 

 

 Fairness comes from the fact that both finalists will 

have faced the same number of competitions, or the 

same number plus or minus one. 

 

 

 



Complexity results:                       

Fair Possible Schwartz Winners 

Theorem: 

 P incomplete weighted profile, 3 or 
more candidates 

 “A ∈FPS(P)?” is NP-complete 

Proof 

1. When there are 3 candidates, then 
every simple voting tree is balanced 

2. Conclude as for PS(P) 



Fixed trees: possible and necessary winners 

 T: simple voting tree 

 A: a candidate 

 

 Necessary winner (NW):   completion of maj. 
graph/profile, A wins in the fixed tree T 

 

 Possible winner (PW) :   completion of maj. 
graph/profile, A wins in the fixed tree T 

 

 



Determining possible/necessary winners 

for simple voting trees 

Algorithm 1: Win 

1.  Input: T: simple voting tree, G: incomplete maj. graph; 

2.  Output: W: set of candidates; 

3.  if  root(T)≠nil and left(T)=right(T)=nil  then 

4.         W  root(T); 

5.  else 

6.        W1  Win(left(T), G); 

7.        W2  Win(right(T), G); 

8.        W   W1  W2; 
9.        foreach  sW1 do 

10.               if  s <m r,  rW2   then  

11.                    W  W – {s}; 

12.        foreach  rW2 do 

13.               if  r <m s,  sW1   then  

14.                    W  W – {r}; 

15.  return W;                                                 

 

W contains 

 possible 

winners 

If |W|=1  

necessary 

winner 

Th.: “A ∈PW(G)?”, “A ∈NW(G)?”, are polynomial 

  



Possible and necessary winners: an example 

 ={A, B, C, D, E, F, H, I}:  set of candidates 

 T: simple voting tree 

 G: incomplete majority graph 

A 

F 

B 

E 

G T 

A B 

F E 

A 

C D C D 

H I H I 
B E F 

W1= 

W(A,B) 

W2= 

(H,I) 

W3= 

W(C,D) 

W4= 

W(E,F) 

W5= 

W(W1,W2)) 
W6= 

W(W3,W4)) 

W(W5,W6)) 

A I {C,D} E 

A {C,D,E} 

A 

A B H I H I C D C D E F 

Win returns a single 

candidate A  A is a NW 



Complexity result: Possible winners 

Theorem: 
 P incomplete weighted profile,  
 3 or more candidates 
 T simple voting tree 
 “A ∈PW(P,T)?” is NP-complete 
 

Proof 
 Reduction from the number partitioning problem 

 

This theorem holds also  when T is balanced 
when there are 3 candidates, every simple voting tree is balanced 

 



Complexity result: Necessary winners 

Theorem: 

 P incomplete weighted profile,  

 4 or more candidates 

 T simple voting tree 

 “A ∈NW(P,T)?” is coNP-complete 

 

Proof 

 Reduction from the number partitioning 
problem 



Summary: Winners with missing preferences 

 

                                        A is a : 
Possible Schwartz winner  (PS)       if  ∃ completion of maj. graph /profile,  ∃ (simple) voting tree   

 

Necessary Schwartz winner (NS)   if  ∀ completion of maj. graph/profile,  ∃ (simple) voting tree    

 

Possible Condorcet winner   (PC)   if  ∃ completion of maj. graph/profile,  ∀(simple) voting tree   

 

Necessary Condorcet  winner  (NC)  if ∀ completion of maj. graph/profile,  ∀ (simple) voting tree  

                                                          

                                        A wins         
 

 

When tree T is fixed: 

 

Possible winner A  (PW):         ∃ completion of maj. graph/profile s.t. A wins given T 

 

Necessary  winner A  (NW):   ∀ completion of maj. graph/profile s.t. A wins given T 

 
 

                     

 

 

 

                

 



M(P) 

          P 

Weights  

n bounded 

No Weights,  

n bounded 

Weights,  

n unbounded 

 

No Weights,  

n unbounded 

 

PS 

NS 

PC 

NC 

FPS 

PW 

NW 

P 
NP-c 

P 

P 

P 

P 

P 

P 

P 

P 

NP-c 

NP-c 

coNP-c 

? 

P P 

P P 

P P 
P 

P 

P P 

P P 

P P 

P 

P 

P 

P 

P 

NP-c 

? 
NP-c 

P ? 
P 

P 

NP-c 

coNP-c 

P ? 
P ? 
P 

P 
P 

P 

? ? 
P 

P 

NP 

coNP 

? 

Lang,Pini,Rossi, Salvagnin,Venable,Walsh,          

Journal of Autonomous Agents and Multiagent Systems 2012 



Majority graph vs profile 

 What was known about winners 

Simple voting trees 

Possible Schwartz ≠ 

Necessary Schwartz ? 

Possible Condorcet = 

Necessary Condorcet = 

Possible winners ? 

Necessary winners ? 

Lang,Pini,Rossi,Venable,Walsh, IJCAI 07 

Pini,Rossi,Venable,Walsh,  KR08 



Necessary Schwartz winners 
Simple voting trees 

Possible Schwartz ≠ 

Necessary Schwartz ≠ 

Possible Condorcet = 

Necessary Condorcet = 

Possible winners ? 

Necessary winners ? 

 Consider this incomplete profile with 5 agents and 5 candidates 

 agent 1: (A1>B2>B3, A>B1) 

 agent 2: (B2>B3>A1>B1>A) 

 agent 3: (A>A1>B3>B1>B2) 

 agent 4: (B1>A>B2>B3>A1) 

 agent 5: (B3>B1>B2>A>A1) 

 

 A is a not Necessary Schwartz winner from the majority graph (no path from A to B1) 

 A is a Necessary Schwartz Winner from the profile: 2 possible completions for P:  

 1st completion:  A1>A   A1>B1 for transitivity   A1>B1 in G     

 Tree:  B2,B3 B2,B1  B1,A1  A1,A A wins 

  2nd completion : A>A1  A> B2  for transitivity   A>B2 in G     

 Tree:  B1,B3 B3,B2  B2,A A,A1 A wins 

B1 

B2 

A 

A1 

B3 

Incomplete 

Majority  

Graph G 

But = with 3 candidates 

∀ completion of  

maj. graph/profile,   

∃ (simple) voting tree  



Possible  winners 
Simple voting trees 

Possible Schwartz ≠ 

Necessary Schwartz ≠ 

Possible Condorcet = 

Necessary Condorcet = 

Possible winners ≠ 

Necessary winners ? 

Consider this incomplete profile with 1 agent and 3 candidates 

agent 1: (A>B) 

 

 

 

 

 

 

 

 

B is a Possible Winner from the majority graph 

B is not a Possible Winner from the profile 

A 

B 

C 

Majority  

graph 

(Simple) voting tree 

A C 

B 

∃ completion of  

maj. graph/profile,   

Fixed (simple)  

voting tree  



Necessary winners 
Simple voting trees 

Possible Schwartz ≠ 

Necessary Schwartz ≠ 

Possible Condorcet = 

Necessary Condorcet = 

Possible winners ≠ 

Necessary winners ≠ 

E C F D 

B 

A 

B 

C 

A 

D 

E 

F 

Majority  

graph 

Consider this incomplete profile with 5 

agents and 5 candidates 

agent 1: (E>B>C, F>D>A) 

agent 2: (A>E>F>D>B>C) 

agent 3: (A>C>D>F>E>B) 

agent 4: (C>D>F>E>B>A) 

agent 5: (B>A>F>E>C>D) 

     (E>F  E>D in G) 

No Necessary Winners from  

the majority graph   

 

A is a Necessary winner from the profile 

(Simple) 

voting  

tree 

But = with 3 candidates 

C,F E,D 

B,F,E 

A,B 

E,F,C 

E>F F>E 



Voting trees 



Voting tree 

 Voting tree: an extension 

of simple voting tree 

where 

 every candidate can 

appear several times as lea 

 

 

A B C D 

W1= 

W(A,B) 

W2= 

W(C,D) 

W(W1, 

W2) 

A B 

A C 

C D 

A C 

A 

A B A D 

W1= 

W(A,B) 

W2= 

W(A,D) 

W(W1, 

W2) 



Results for voting trees 
Simple voting 

trees 

Voting trees 

Possible Schwartz ≠ ≠ 

Necessary Schwartz ≠ ≠ 

Possible Condorcet = = 

Necessary Condorcet = = 

Possible winners ≠ ≠ 

Necessary winners ≠ ≠ 

All inequality results transfer automatically from simple voting 
trees that are a special case of voting trees. 

 

All equality results can be derived from the proofs since it is 
never required for a candidate to appear in at most one leaf 

 



Computing majority graph winners 

 Polynomial for simple voting trees for all types of 
winners 
 A is a Possible Schwartz winner iff it is possible to 

complete the majority graph G such that every outcome 
is reachable from A 

 A is a necessary Schwartz winner iff, ∀B, there is a path 
from A to B in G 

 A is possible Condorcet winner iff A has no ingoing 
edges in G 

 A is a necessary Condorcet winner iff A has  outgoing 
edges to all other candidates in G 

 

 

 All results transfer to voting trees 

 

 

[Lang, Pini,Rossi,Venable,Walsh, IJCAI 07] 

[Pini,Rossi,Venable,Walsh, KR08] 



Computing winners from majority graphs 

 For simple voting trees it is polynomial:  

1. If root(T)≠∅ and right(T)=∅ and left(T)=∅ then 
winner=label(root(T)) 

2. otherwise the winners are the possible winners of each 
branch that beat at least one of the possible winners of the 
other branch 

3. if only one winner is returned then it is a necessary winner  

 

 

 However this procedure does not work for voting 
trees  

 An upper approximation of possible winners is 
computed 

 Lower approximation of Necessary winners 

[Pini,Rossi,Venable,Walsh, CLIMA 07] 



B 

D 

C 

E 

A 

D 

A 

B C 

E 

A 

B C 

B,C B,C 

A,B,C 

C,A 

E,B 

B,A 

C,D 

Win returns {A,B,C} as possible 

winners 

But A can never win  

B>C 

B B 

B 

A 

B 

B 

D 

B<C 

C C 

C 

C 

E 

A 

C 

Upper approximation of possible winners 



Profile vs majority graph:                       

summary and future work 

  
 Complexity and algorithms for  

 Necessary Schwartz winner from profile for (simple) voting trees 

 Possible and necessary winners from profile and from majority 

graph with voting trees 

Simple voting trees Voting trees 

Possible Schwartz ≠ ≠ 

Necessary Schwartz ≠ 

= for 3 candidates 

≠ 

Possible Condorcet = = 

Necessary Condorcet = = 

Possible winners ≠ ≠ 

Necessary winners ≠ 

= for 3 candidates 

≠ 



Winners over balanced agenda 



Computing winners for balanced agendas 

 Given a complete majority graph G,  A is a fair 

Schwartz winner if there is a balanced tree where 

A wins 

 

 Given a majority graph G with 2k nodes, candidate 

A is a fair Schwartz winner iff it exists a binomial 

tree Tk:  

Covering G (arrows from father to child) 

Rooted at A 



Binomial trees 

 Binomial tree 

 T0 1 node 

 TK the root has k children and the i-th child is the root of a Tk-i 

 Tk has 2k nodes 

T0 T1 T2 T3 

T0 
T1 T2 



From binomial tree to a balanced 

voting tree 

 Node of binomial tree  leafs of  voting tree 

 Edge AB: knock-out competition between A and B 

where A wins  

 Incoming edge of leafs  initial knock-out competition 

 

A 

B 

C 

D 
A B C D 

A C 

A 



Determining  fair Schwartz winners 

 Given a majority graph G with 2k nodes, candidate A is 

a fair possible winner iff it exists a binomial tree Tk:  

 Covering G (arrows from father to child) 

 Rooted at A 

A 

C 

B 

D 

A 

C 

B 

D 

A 

C 

D 

B 

A D C B 

A C 

A 



Complexity of determining fair 

Schwartz winners 

 Th: “is A a fair Schwartz winner of minimum 
weight?” is NP-complete. 

 Proof: Polynomial reduction from the Exact Cover 
problem.  

 

 Weighted majority graphs  are used in social choice 
theory 

 weights may represent, for example, the amount of 
disagreement 

 

 



 

 

Variants of classical possible & 

necessary winner problems 



Unique winner and co-winner 

 C: a candidate 

Unique winner:  C is the unique winner 

Co-winner: C is in the set of winners 

 

 Possible co-winner 

 Possible unique winner 

 

 Necessary co-winner 

 Necessary unique winner 



Possible winner Necessary winner 

STV NP-complete  

(Bartholdi, Orlin 1991) 

coNP-complete 

(Bartholdi, Orlin 1991) 

Plurality P P 

Veto P P 

Pos. Scoring NP-complete P 

Copeland NP-complete coNP-complete 

Maximim NP-complete P 

Bucklin NP-complete P 

Ranked Pairs NP-complete coNP-complete 

Voting trees NP-complete coNP-complete 

Plurality with runoff NP-complete (unique winner) 

P (co-winner) 

P (unique winner) 

coNP-complete (co-winner) 

Conitzer, Xia. Determining Possible and Necessary Winners Given Partial Orders. 

Journal of Artificial Intelligence Research 2011 

Unbounded n. of candidates, unweighted votes 



New candidates 

In some voting situations, some new candidates may show up 

in the course of the process 

 

We may want to determine which of the initial candidates are 

possible winners, given that a fixed number k of new 

candidates will be added 

 
Example: suppose that  

 the voters’ preferences about a set of initial alternatives  have already 

been elicited 

 we know that a given number k of new alternatives will join the 

election 

 we ask who among the initial alternatives can possibly win the election 

in the end 

 



New candidates: complexity results 

for scoring rules 

 Question: what is the complexity of  deciding if 

x is a possible winner  with respect to the 

addition of three new candidates? 

 Chevaleyre et al. Possible Winners when New Candidates Are Added: The 

Case of Scoring Rules. AAAI 2010 and submitted to MSS 2010 

Voting rule Possible winner 

Borda P 

Plurality P 

Veto P 

3-approval NP-complete 

http://www.informatik.uni-trier.de/~ley/db/conf/aaai/aaai2010.html


New candidates: complexity results  

for other voting rules 

Voting rule Possible winner 

Approval P (def1)  

NP-complete (def2) 

Bucklin NP-complete 

Copeland0 NP-complete 

Simpson (aka maximin) NP-complete 

Plurality with runoff P 

 Xia, Lang, Monnot. Possible Winners when New Alternatives join: New 

results coming up. AAMAS 2011 

All NP-hardness results are proved by reductions from the Exact Cover 

problem (denoted by X3C) 



Approval definitions 

 Definition 1 assumes that the threshold 

approved/unacceptable cannot move 

 any alternative approved in C is still approved in C′ (the 

extension of C) 

 

 Definition 2 assumes that the threshold can stay 

the same or move upward (because the set of 

alternatives grows) 

 Some alternatives approved initially may be disapproved 

 

 

 Xia, Lang, Monnot. Possible Winners when New Alternatives join: New 

results coming up. AAMAS 2011 



Possible and necessary winners of partial 

tournament (aka incomplete majority graph) 

H. Aziz, M. Brill, F. Fischer, P. Harrenstein, J. Lang, and H. G. Seedig. 

Possible and necessary winners of partial tournaments. AAMAS 2012 

Voting rule Possible winner Necessary winner 

Copeland P P 

Uncovered set P P 

Borda* P P 

Maximin* P P 

Ranked pairs* NP-complete NP-complete 

* = for weighted tournament 



Other related papers on 

possible/necessary winners 

1. Elkind et al. Cloning in Elections: Finding the Possible Winners. J. 

Artif. Intell. Res. (JAIR) 42: 529-573 (2011)   

 It considers the problem of manipulating elections by cloning candidates 

 

2. Baumeister et al. The Possible Winner Problem with Uncertain 

Weight. ECAI’12 

 It considers elections where not some of the voters’ preferences, but some 

of their weights, are uncertain. 

 

3. Edith and Erdeli: Manipulation Under Voting Rule Uncertainty. 

AAMAS’12 

 the manipulator(s) know that the election will be conducted using a 

voting rule from a given list, and need to select their votes so as to 

succeed no matter which voting rule will eventually be chosen 

 

http://www.informatik.uni-trier.de/~ley/db/journals/jair/jair42.html
http://www.informatik.uni-trier.de/~ley/db/journals/jair/jair42.html
http://www.informatik.uni-trier.de/~ley/db/journals/jair/jair42.html
http://www.informatik.uni-trier.de/~ley/db/journals/jair/jair42.html
http://www.informatik.uni-trier.de/~ley/db/journals/jair/jair42.html
http://www.informatik.uni-trier.de/~ley/db/conf/aaai/aaai2010.html
http://www.informatik.uni-trier.de/~ley/db/conf/aaai/aaai2010.html
http://www.informatik.uni-trier.de/~ley/db/conf/aaai/aaai2010.html
http://www.informatik.uni-trier.de/~ley/db/conf/aaai/aaai2010.html
http://www.informatik.uni-trier.de/~ley/db/conf/aaai/aaai2010.html


Related papers on control 

 Erdéli et al. The complexity of voter partition in 
Bucklin and fallback voting: solving three open 
problems. AAMAS 2011: 837-844 

 

 Hemaspandra et al.: Online control ECAI 2012 

 

 Faliszewski et al. The shield that never was: 
Societies with single-peaked preferences are 
more open to manipulation and control.              
Inf. Comput. 209(2): 89-107 (2011) 

http://www.informatik.uni-trier.de/~ley/db/conf/atal/aamas2011.html
http://www.informatik.uni-trier.de/~ley/db/conf/atal/aamas2011.html
http://www.informatik.uni-trier.de/~ley/db/conf/atal/aamas2011.html
http://www.informatik.uni-trier.de/~ley/db/journals/iandc/iandc209.html
http://www.informatik.uni-trier.de/~ley/db/journals/iandc/iandc209.html
http://www.informatik.uni-trier.de/~ley/db/journals/iandc/iandc209.html


Related papers on bribery 

 P. Faliszewski. Nonuniform bribery.   

AAMAS 2008, pp.1569–1572, 2008. 

 

 Faliszewski et al. :How Hard Is Bribery in 

Elections? J. Artif. Intell. Res. (JAIR) 35: 485-

532 (2009) 

http://www.informatik.uni-trier.de/~ley/db/journals/jair/jair35.html
http://www.informatik.uni-trier.de/~ley/db/journals/jair/jair35.html
http://www.informatik.uni-trier.de/~ley/db/journals/jair/jair35.html
http://www.informatik.uni-trier.de/~ley/db/journals/jair/jair35.html
http://www.informatik.uni-trier.de/~ley/db/journals/jair/jair35.html
http://www.informatik.uni-trier.de/~ley/db/journals/jair/jair35.html
http://www.informatik.uni-trier.de/~ley/db/journals/jair/jair35.html
http://www.informatik.uni-trier.de/~ley/db/journals/jair/jair35.html
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