COMPUTATIONAL SOCIAL CHOICE

Maria Silvia Pini
Francesca Rossi
K. Brent Venable

PhD course in Computer Science
University of Bologna \& University of Padova
June 2012

Computational Social Choice

- It is an interdisciplinary field at the interface of
- social choice theory
\square computer science and AI
- Main goals

1. Application of techniques of computer science, such as complexity analysis or algorithm design, to the study of social choice mechanisms, such as voting procedures
2. Importing concepts from social choice theory into computing. For instance, the study of preference aggregation mechanisms is relevant to multiagent systems

Chevaleyre, Endriss, Lang, Maudet, 2007
A short introduction to Computational Social Choice

(Computational) Social Choice

\square Voting procedures

- Impossibility results
\square Manipulation

Social choice problems
\square Circumventing manipulation
\square Uncertainty
\square Voting in combinatorial domains

Computational techniques

- Impossibility results
\square Attempts to modify the winner
- Manipulation
- Control
- Bribery
- Complexity barrier against manipulation
- Uncertainty in preference aggregation
\square Preference aggregation with incompleteness and incomparability
- Voting tree
- Related work

Impossibility results

Which rule?

\square Since there are so many rules, which one should we choose?

- Let us look at some criteria that we would like our voting rule to satisfy

Monotonicity criteria (1)

- Informally, monotonicity means that "ranking a candidate higher should help that candidate," but there are multiple nonequivalent definitions
- A weak monotonicity requirement:
if
- candidate w wins for the current votes,
- we then improve the position of w in some of the votes and leave everything else the same, then w should still win

Monotonicity criteria (2)

- A weak monotonicity requirement: if
- candidate w wins for the current votes,
- we then improve the position of w in some of the votes and leave everything else the same,
then w should still win.
- E.g., STV does not satisfy weak monotonicity
-7 votes $b>c>a$
-7 votes $a>b>c$
-6 votes $c>a>b$
- c drops out first, its votes transfer to a, a wins
- But if 2 votes $b>c>a$ change to $a>b>c, b$ drops out first, its 5 votes transfer to c, and c wins

Monotonicity criteria (3)

- A strong monotonicity requirement: if
- candidate w wins for the current votes,
- we then change the votes in such a way that for each vote, if a candidate c was ranked below w originally, c is still ranked below w in the new vote then w should still win

Independence of irrelevant alternatives

- Independence of irrelevant alternatives criterion: if
- the rule ranks a above b for the current votes,
- we then change the votes but do not change which is ahead between a and b in each vote
then a should still be ranked ahead of b.

Arrow's impossibility theorem [1951]

- Suppose there are at least 3 candidates
- Then there exists no rule that is simultaneously:
- Pareto efficient (if all votes rank a above b, then the rule ranks a above b),
- nondictatorial (there does not exist a voter such that the rule simply always copies that voter's ranking), and
- independent of irrelevant alternatives

Nobel prize in Economics 1972

Muller-Satterthwaite impossibility theorem [1977]

- Suppose there are at least 3 candidates
- Then there exists no rule that simultaneously:
- satisfies unanimity (if all votes rank a first, then a should win),
- is nondictatorial (there does not exist a voter such that the rule simply always selects that voter's first candidate as the winner), and
- is monotone (in the strong sense)

Manipulation

Manipulability

- Sometimes, a voter is better off revealing her preferences insincerely, aka. manipulating
- Example for plurality
- Suppose a voter prefers a > b > c
- Also suppose she knows that the other votes are
- 2 times b>c>a
- 2 times c>a>b
- Voting truthfully will lead to a tie between b and c
- She would be better off voting e.g. $b>a>c$, guaranteeing b wins
- All our rules are (sometimes) manipulable

Gibbard-Satterthwaite impossibility theorem

- Suppose there are at least 3 candidates
- There exists no rule that is simultaneously:
- onto (for every candidate, there are some votes that would make that candidate win),
- nondictatorial (there does not exist a voter such that the rule simply always selects that voter's first candidate as the winner), and

Allan Gibbard

Mark Satterthwaite

- nonmanipulable

Gibbard-Satterthwaite impossibility theorem

- Suppose there are at least 3 candidates
- If f is onto and nonmanipulable

Then is dictatorial
Proof
$>$ Step 1: If f is onto and nonmanipulable
Then f is monotone
$>$ Step 2: If f is onto, nonmanipulable, and monotone
Then f is unanimous
$>$ Step 3: If f is monotone and unanimous
Then f is dictatorial (Muller-Satterthwaite theorem)
$>$ Step 4: If f is onto and nonmanipulable
Then (by steps $1,2,3$) f is dictatorial

Single-peaked preferences

- Suppose candidates are ordered on a line
- Every voter prefers candidates that are closer to her most preferred candidate
- Let every voter report only her most preferred candidate ("peak")
- Choose the median voter's peak as the winner
- This will also be the Condorcet winner
- Nonmanipulable!

Constructive/destructive manipulation

Two kinds of manipulation

- Constructive maniplation
- Goal: to make a certain candidate win
- Destructive manipularion
- Goal: to make a certain candidate a loser

Conitzer, Sandholm, and Lang. When are elections with few candidates hard to manipulate, J. ACM, 2007

Constructive manipulation

\square The simplest version of the manipulation problem:

- CONSTRUCTIVE-MANIPULATION:
\square We are given a voting rule r
- the (unweighted) votes of the other voters
\square an alternative p
\square We are asked if we can cast our (single) vote to make p win.

Constructive manipulation

\square Example for the Borda rule
\square Voter 1 votes A > B > C

- Voter 2 votes $\mathrm{B}>\mathrm{A}>\mathrm{C}$
- Voter 3 votes C > A > B
\square Borda scores are
- A: 4
- B: 3
- C: 2
$\square A$ is the winner
\square Can we make B win by adding my vote?
- Answer: YES.

■ My vote: $\mathrm{B}>\mathrm{C}>\mathrm{A}$ (Borda scores: A: 4, B: 5, C: 3)

Destructive manipulation

\square Exactly the same, except:
\square Instead of a preferred alternative
\square We now have a hated alternative
\square Our goal is to make sure that the hated alternative does not win (whoever else wins)

Destructive manipulation

- DESTRUCTIVE-MANIPULATION:
\square We are given a voting rule r
- the (unweighted) votes of the other voters
\square an alternative p
\square We are asked if we can cast our (single) vote to make p a loser.

Coalitions

- It will rarely be the case that a single voter can make a difference. So we should look into manipulation by a coalition of voters.
\square New problems
\square Coalitional constructive manipulation
\square Coalitional destructive manipulation

Constructive coalitional manipulation

- CONSTRUCTIVE-COALITIONAL-MANIPULATION:
\square We are given a voting rule r
\square a set S of votes (the nonmanipulators votes)
\square a set T of votes that area still open (the manipolator votes)
\square an alternative p
\square We are asked if we can cast votes in T so that p wins

Destructive coalitional manipulation

- DESTRUCTIVE-COALITIONAL-MANIPULATION:
- We are given a voting rule r
\square a set S of votes (the nonmanipulators votes)
\square a set T of votes that area still open (the manipolator votes)
- an alternative p
\square We are asked if we can cast votes in T so that p does not win

Weighted voters

\square Variants of the problem
\square Voters may be weighted
\square Examples:

- countries in the EU;
- shareholders of a company
\square New problems
\square Weighted constructive (coalitional) manipulation
\square Weighted destructive (coalitional) manipulation

The control problem

\square The control problem refers to situations where a chair seeks to change the outcome of an election
\square by adding/deleting voters
\square by partitioning voters
\square by adding/deleting candidates
\square Assumptions:

- the chair knows all the voters' preferences and
- all votes are cast simultaneously

Bartholdi, Tovey, and Trick. How hard is it to control an election?
Math. And Computer Modeling, 1992.

Constructive/destructive control

\square Constructive control

- It refers to situations where a chair seeks to make a certain outcome the winner of an election
\square Destructive control
- It refers to situations where a chair seeks to make a certain outcome a loser of an election

Control by deleting voters

\square Let E be a rule

- Constructive control by deleting voters
\square we are given
- an election (C, V)
- a distinguished candidate $c \in C$

■ a nonnegative integer $\mathrm{k} \leq\|\mathrm{V}\|$
\square we ask whether we can delete at most k voters from V such that c is an E winner of the resulting election

Control by adding voters

- Let E be a rule
\square Constructive control by adding voters
\square we are given
- a candidate set C
- a list V of registered voters with preferences over C
- a list V ' of as yet unregistered voters with preferences over C
\square a distinguished candidate $c \in C$
- a nonnegative integer $k \leq| | V^{\prime} \|$
- the question is whether we can add to V at most k voters from V ' such that c is an E winner of the resulting election

Control by partitioning voters

\square Let E be a rule
\square Constructive control by adding voters
\square we are given

- An election (C, V)
- a distinguished candidate $c \in C$
\square we ask whether V can be partitioned into two sublists, V 1 and V 2 , such that c is the unique winner of the two-stage election in which the winners of the two first-stage subelections (C,V1) and $(\mathrm{C}, \mathrm{V} 2)$ runs against each other in the final stage

Control by adding candidates

- Let E be a rule
- Constructive control by adding candidates
\square we are given
- a candidate set $\mathrm{C} \cup \mathrm{D}$ with $\mathrm{C} \cap \mathrm{D}=\varnothing$
- C is the set of originally qualified candidates
- D is the set of spoiler candidates that may be added
- a list V of registered voters with preferences over C
- a distinguished candidate $\mathrm{c} \in \mathrm{C}$
- a nonnegative integer k
\square The question is whether we can add to C at most k candidates from D such that c is an E winner of the resulting election

Control by deleting candidates

\square Let E be a rule
\square Constructive control by deleting candidates
\square we are given

- a candidate set C
- a list V of registered voters with preferences over C
- a distinguished candidate $c \in C$
- a nonnegative integer k
\square The question is whether we can remove from C at most k candidates such that c is an E winner of the resulting election

Example of control

- Imagine that the chairperson of the election controls whether some alternatives participate
- Suppose there are 5 alternatives, a, b, c, d, e
- Chair controls whether c, d, e run (can choose any subset); chair wants b to win
\square Rule is plurality; voters' preferences are:
- $a>b>c>d>e(11$ votes $)$
- $b>a>c>d>e(10$ votes $)$
- $c>e>b>a>e$ (2 votes)
$\square d>b>a>c>e(2$ votes $)$
- $c>a>b>d>e$ (2 votes)
$\square e>a>b>c>e(2$ votes $)$
- Impossibility results
\square Attempts to modify the winner
- Manipulation
- Control
- Bribery
- Complexity barrier against manipulation
- Uncertainty in preference aggregation
\square Preference aggregation with incompleteness and incomparability
- Voting tree
- Related work

The bribery problem

\square In bribery
\square there is an external agent who wishes to change the outcome of the election
\square To do this, he offers payments (within a budget) to voters for changing the preference orders to his liking
\square Let R be a voting rule
$\square R$-BRIBERY problem
\square we are given
\square an election $E=(C, V)$

- a designated candidate p in C
- a natural number B
\square we ask if it is possible to ensure that p is an R winner of E through changing the votes of at most B voters.
- In R-BRIBERY, effectively, each voter has the same unit cost: We only care about bribing as few voters as possible
\square However, in many settings, the voters might have different prices, depending, for example,
- on how much a particular voter cares about the result of the election or
- on the nature of the bribery
\square R-\$BRIBERY where each voter v has a price \boldsymbol{p}_{v} for changing his vote (after we pay v the p_{v} units, we obtain full control over v's vote)

Swap-Bribery

- R-SWAP-BRIBERY
- each voter v has a cost function p_{v} such that for each two candidates $c, c^{\prime}, p_{v}\left(c, c^{\prime}\right)$ is the cost of swapping c and c^{\prime} on v's preference list (provided c and c' are ranked next to each other).
- For example
- a voter might be willing to swap his two least favorite candidates at a small cost
- but he would never- irrespective of the payment - change the topranked candidate
- The goal of the briber is to find a sequence of adjacent swaps
- that leads to his or her preferred candidate's victory, and
- that has lowest cost

Manipulation and \$Bribery

\square Manipulation is a special case of \$BRIBERY

\square the manipulation problem is a bribery problem where

- the prices of manipulators are very low
- the prices of nonmanipulators are very high
- our budget allows us to buy the votes of all the manipulators but none of the nonmanipulators

Possible and necessary winners

\square Setting: some (parts of) votes are missing

- Possible winner
\square There is a way for remaining votes to be cast so that he win
\square Necessary winner
\square However remaining preferences are cast, he must win

Konzak and Lang. Voting Procedures with Incomplete Preferences. IJCAI workshop 2005

Pini, Rossi, Venable, Walsh. Incompleteness and Incomparability in Preference Aggregation. IJCAI 2007

Preference elicitation and the possible/necessary winner problem

\square Preference elicitation
\square Some preferences may be missing

- Time consuming, costly, difficult, ...
\square Want to terminate elicitation as soon as winner fixed
\square Closely connected to preference elicitation
- Elicitation can only be terminated iff possible winner set = necessary winner set

Manipulation and the possible winner problem

\square Manipulation is a special case of the possible winner problem, where

- the nonmanipulators have fully specified preference orders
- the manipulators have completely unspecifed preference orders

Complexity barrier against manioulation

The complexity shield (1)

\square The Gibbard-Satterthwaite Theorem shows that strategic manipulation can never be rule out

- Idea: So it is always possible to manipulate; but may it may also difficult?
\square Tools from complexity theory can make this idea precise
\square Let F be a voting rule, if manipulation is computationally intractable for F, then F might be considered resistant to manipulation

The complexity shield (2)

\square Standard procedures turn out to be easy to manipulate

- It might still be possible to design new ones that are resistant
\square This approach is most interesting for voting procedures for which winner determination is tractable

Manipulability as a decision problem

\square F: voting rule
\square Manipulability(F)

- Instance: Set of votes for all except one voter; alternative x
- Question: Is there a vote for the final voter such that x wins?

If this can be answered in polynomial time, then F is easy to manipulate

Manipulability complexity

- If Manipulability(F) is computationally intractable, then manipulability may be considered less of a worry for procedure F
- Remark: We assume that the manipulator knows all the other votes
- This unrealistic assumption is reasonable for intractability results
- If manipulation is intractable even under such favorable conditions, then all the better
- For tractability results, one can assume to have polls

Plurality is easy to manipulate

\square TH: Manipulability(Plurality) $\in \mathrm{P}$

- Proof
\square Simply vote for x, the alternative to be made winner by means of manipulation. If manipulation is possible at all, this will work. Otherwise not.
\square General: Manipulability $(F) \in \mathbf{P}$ for any rule F with
\square polynomial winner determination problem and
- polynomial number of votes

Bartholdi,Tovey,Trick. The Computational Difficulty of Manipulating an Election. Social Choice and Welfare 6(3): 227-241, 1989.

Borda is easy to manipulate

\square MANIPULABILITY(Borda) \in P
\square Proof

- Place x (the alternative to be made winner through manipulation) at the top of your vote
- Then inductively proceed as follows: Check if any of the remaining alternatives can be put next on the ballot without preventing x from winning. If yes, do so. (If no, manipulation is impossible.)

Bartholdi,Tovey,Trick. The Computational Difficulty of Manipulating an Election. Social Choice and Welfare 6(3): 227-241.]

Algorithm Greedy-Manipulation

\square Input
\square preferences of all other voters
\square a distinguished candidate c
\square Output

- a preference order that, together with those of all the other voters, will ensure that c is a winner, or
- a claim that no such preference order exists,
- Initialization: Place c at the top of the preference order.
- Iterative Step. Determine whether any candidate can be placed in the next lower position (independent of other choices) without preventing c from winning
- If so, place such a candidate in the next position
\square otherwise terminate claiming that c cannot win

STV is difficult to manipulate

\square MANIPULABILITY(STV) € NP-complete

- Proof
\square NP-membership is clear: checking whether a given vote makes x win can be done in polynomial time (just try it, STV is polynomial to compute)
- NP-hardness: by reduction from 3-Cover (X3C)
- In an X3C instance
- we are given
- a set
- a collection of subsets of size 3 of this set

■ we are asked if we can cover all of the elements in the set with nonoverlapping subsets

Bartholdi, J., and Orlin, J. Single Transferable Vote Resists Strategic Voting. Social Choice and Welfare 1991

Adding a preround

\square A preround proceeds as follows:

- Pair the candidates
- Each candidate faces its opponent in pairwise knockout election
\square The winners proceed to the original rul
- P-R: voting rule obtained running first a preround and the rule R
\square TH: Manipulability(P-Plurality) is NP-complete.
\square TH: Manipulability(P-Borda) is NP-complete.
\square Also holds for other rules
Conitzer, Sandholm. Universal Voting Protocol Tweaks to Make Manipulation Hard. In Proc. IJCAI 2003

Preround example (with Borda)

STEP 1:
A. Collect votes and
B. Match alternatives (no order required)

STEP 2 :

Determine winners of preround

STEP 3:
Infer votes on remaining alternatives

STEP 4:
Execute original rule
(Borda)

Voter 1: $A>B>C>D>E>F$
Voter 2: $D>E>F>A>B>C$
Voter 3: $\mathrm{F}>\mathrm{D}>\mathrm{B}>\mathrm{E}>\mathrm{C}>\mathrm{A}$

A vs B: A ranked higher by 1,2
C vs F: F ranked higher by 2,3
D vs E: D ranked higher by all

Voter 1: $A>D>F$
Voter 2: $D>F>A$
Voter 3: $\mathrm{F}>\mathrm{D}>\mathrm{A}$
\downarrow
A gets 2 points
F gets 3 points
D gets 4 points and thus it wins

Coalitions and weights

\square Manipulation can be done by

- a single voter
- a coalition of voters
- It will rarely be the case that a single voter can make a difference. So we should look into manipulation by a coalition of voters
\square Manipulation can be done by
- Weighted voters
- Unweighted voters
- Manipulation may be
- constructive: making alternative x a unique or tied winner
\square destructive: ensuring x does not win

Computational hardness as a barrier to manipulation

- A (successful) manipulation is a way of misreporting one's preferences that leads to a better result for oneself
- Gibbard-Satterthwaite theorem
- It tells us that for some instances, successful manipulations exist
\square It does not say that these manipulations are always easy to find
- Do voting rules exist for which manipulations are computationally hard to find?

Inevitability of manipulability

\square Recall Gibbard-Satterthwaite theorem: Suppose there are at least 3 alternatives There exists no rule that is simultaneously:

- onto (for every alternative, there are some votes that would make that alternative win),
- nondictatorial, and
- nonmanipulable
- Typically don't want a rule that is dictatorial or not onto

(Coalitional) Manipulation with weighted/unweighted votes

Do voting rules exist for which manipulations are computationally hard to find?

Unbounded \#alternatives
Unweighted Weighted

Constant \#alternatives
Unweighted Weighted
voters voters

Constructive manipulation

- CONSTRUCTIVE-MANIPULATION:
\square We are given a voting rule r, the (unweighted) votes of the other voters, and an alternative p
\square We are asked if we can cast our (single) vote to make p win

Constructive weighted manipulation

\square We are given the weighted votes of the others (with the weights)
\square And we are given the weights of members of our coalition

- Can we make our preferred alternative p win?

Constructive weighted manipulation

Borda example

\square Voters
\square Voter 1 (weight 4): $A>B>C$
\square Voter 2 (weight 7): B>A>C
\square Manipulators

- one with weight 4
- one with weight 9
\square Can we make C win? Yes!
Solution:
\square weight 4 voter votes $C>B>A$,
\square weight 9 voter votes $C>A>B$
- Borda scores: A: 24, B: 22, C: 26

Veto is NP-hard to manipulate with 3 or more candidates

- TH: WEIGHTED-COALITIONAL-CONSTRUCTIVEMANIPULABILITY(Veto) is NP-complete with 3 or more candidates.
- Proof
- In NP since we can just give the manipulation
- To show NP-hardness, we give a simple reduction of PARTITION
- Given m integers k_{i} with sum 2 K , is there a partition with sum K ?
- Reduce to manipulate election so p wins against a or b
\square Assume one agent with weight $2 K-1$ has vetoed p
- Each of the votes of the m manipulators has weight 2 ki
- their combined weight is 4 K
- The only way for p to win is if the manipulators can veto a with 2 K weight, and b with 2 K weight
- But this solves the PARTITION problem

Weighted-coalitional constructive manipulation

Number of candidates	2	3	4,5,6	≥ 7
Borda	P	NP-c	NP-c	NP-c
veto	P	NP-c*	NP-c*	NP-c*
STV	P	NP-c	NP-c	NP-c
plurality with runoff	P	NP-c*	NP-c*	NP-c*
Copeland	P	P*	NP-c	NP-c
maximin	P	P^{*}	NP-c	NP-c
randomized cup	P	P^{*}	P^{*}	NP-c
regular cup	P	P	P	P
plurality	P	P	P	P

Complexity of CONSTRUCTIVE CW-MANIPULATION
Conitzer, Sandholm, and Lang. When are elections with few candidates hard to manipulate, J. ACM, 2007

Destructive manipulation

\square Exactly the same, except:

- Instead of a preferred alternative
\square We now have a hated alternative
\square Our goal is to make sure that the hated alternative does not win (whoever else wins)

Weighted-coalitional destructive manipulation

Number of candidates	2	≥ 3
STV	P	$\mathrm{NP}^{*} \mathrm{c}^{*}$
plurality with runoff	P	${\mathrm{NP}-\mathrm{c}^{*}}^{\|l\|} \mid$
randomized cup	P	$?$
Borda	P	P
veto	P	P^{*}
Copeland	P	P
maximin	P	P
regular cup	P	P
plurality	P	P

Conitzer, Sandholm, and Lang. When are elections with few candidates hard to manipulate, J. ACM, 2007

Weighted-coalitional manipulation

Number of candidates	2	3	4,5,6	≥ 7
Borda	P	NP-c	NP-c	NP-c
veto	P	NP-c*	NP-c*	NP-c*
STV	P	NP-c	NP-c	NP-c
plurality with runoff	P	NP-c*	NP-c*	NP-c*
Copeland	P	P^{*}	NP-c	NP-c
maximin	P	P^{*}	NP-c	NP-c
randomized cup	P	P^{*}	P^{*}	NP-c
regular cup	P	P	P	P
plurality	P	P	P	P

Complexity of CONSTRUCTIVE CW-MANIPULATION

Number of candidates	2	≥ 3
STV	P	NP-c*
plurality with runoff	P	NP-c*
randomized cup	P	?
Borda	P	P
veto	P	P^{*}
Copeland	P	P
maximin	P	P
regular cup	P	P
plurality	P	P

Complexity of DESTRUCTIVE CW-MANIPULATION

Destructive manipulation with weighted votes

- If constructive manipulation is easy then destructive manipulation is easy
- Destructive manipulation can be easy even though constructive manipulation is hard
- E.g. Borda is
- Polynomial to manipulate destructively
- NP-hard to manipulate constructively for 3 or more candidates for a weighted coalition

Hardness is only worst-case...

\square Results such as NP-hardness suggest that the runtime of any successful manipulation algorithm is going to grow dramatically on some instances
\square But there may be algorithms that solve most instances fast
\square Increasingly many results suggest that many instances are in fact easy to manipulate

- Heuristic algorithms and/or experimental (simulation) evaluation [Conitzer \& Sandholm AAAI-06, Procaccia \& Rosenschein JAIR-07, Conitzer et al. JACM-07, Walsh IJCAI-09 / CARE-09]
- Algorithms that only have a small "window of error" of instances on which they fail [Zuckerman et al. AIJ-09, Xia et al. EC-10]

Uncertainty in Preference acoreoation

\square Uncertainty in preference aggregation
-Preference aggregation with incompleteness and incomparability

- Incompleteness: missing preferences
- Incomparability: incomparable pairs
-Preference aggregation in voting trees
- Simple voting trees
- Voting trees

Motivation - (1)

\square How to combine preferences of multiple agents in presence of incompleteness and incomparability in their preference orderings over a set of outcomes?

- Incompleteness: absence of knowledge on relationship between pairs of outcomes
\square ongoing preference elicitation
\square agents' privacy
\square Incomparability: some elements cannot be compared
- novel incomparable to a biography
- fast expensive car incomparable to slow cheap car

Motivation - (2)

\square Goal: aggregate the agents' preferences into a single pref. ordering
\square Since there are incomplete preferences, we focus on computing:

- Possible winners (PW): outcomes that can be the most preferred ones for the agents \square Necessary winners (NW):
outcomes that are always the most preferred ones for the agents
\square Useful for preference elicitation

Outline

\square Basic notions on preferences
\square Possible and necessary winners
\square Computing PW and NW: NP-hard
\square Approximating PW and NW: NP-hard
\square Sufficient conditions on preference aggregation such that computing PW and NW is polynomial
\square How PW and NW are useful in preference elicitation

Basic notions - (1)

\square Multi-agent scenario: each agent expresses his preferences via an (incomplete) partial ordering over the possible outcomes
\square preferences over outcomes A and B
$\square A>B$ or $A<B \quad$ (ordered)
$\square A=B \quad$ (in a tie)

- A~B
(incomparable)
- A?B
(not specified)
- Example: A,B,C outcomes

Basic notions - (2)

- Incomplete profile: sequence of partial orders over outcomes, one for every agent, where at least one partial order is incomplete

Preference aggregation function: incomplete profiles \rightarrow sets of P0s

We will consider only functions that take polynomial time to apply

only completions that are POs!

Pref. aggr. function:
incomplete profiles \rightarrow sets of P0s
Pareto: $\mathrm{POs} \rightarrow \mathrm{PO}$

- $\mathrm{A}>\mathrm{B}$ iff $\mathrm{A}>\mathrm{B}$ or $\mathrm{A}=\mathrm{B}$ for all agents, and $\mathrm{A}>\mathrm{B}$ for at least - $\mathrm{A} \sim \mathrm{B} \sim \mathrm{B}$ otherwise

Combined result

Possible and necessary winners

\square We extend notions of PW and NW to POs
\square Necessary winners

- outcomes which are maximal in every completion - winners no matter how incompleteness is resolved
\square Possible winners
- outcomes which are maximal in at least one completion
■ winners in at least one way in which incompleteness is resolved

Agent $1 \quad$ Agent $2 \quad$ Agent 3

$N W=\{A, B\}$ $P W=\{A, B, C\}$

PW and NW: complexity results

\square Computing PW and NW is NP-hard
(even restricting to incomplete TOs)
\square deciding if an outcome is

- a possible winner: NP-complete
- a necessary winner: coNP-complete
- Computing good approximations of PW and NW is NP-hard
- good approximation: for all k positive integer
- a superset PW* s.t. $\left|P W^{*}\right|<k|P W|$

■ a subset NW* s.t. . $\left|N W^{*}\right|>1 / k|N W|$, whenever $|N W|>0$

PW and NW: tractable case

\square Given the combined result, PW and NW are easy to find

- A in NW if no arc (A-B) with B>A
- A in PW if all arcs (A-B) with B>A contain also other labels
\square Computing the combined result: in general NP-hard
- If f is IIA and monotonic
- we can compute an upper approximation (cr*) in polynomial time
- Also, given cr*, polynomial to compute PW and NW
- algorithm not affected by approximation
- IIA: when rel(A,B) in the result depends only by rel(A,B) given by the agents
- monotonic: when we improve an outcome in a profile (for ex. we pass from $A>B$ to $A=B$), then it improves also in the result

Cr*: upper approximation of the combined result

- Obtained by:
\square Considering two profile completions:
- (A?B) replaced with (A>B) for every agent
- (A?B) replaced with (A<B) for every agent
- Then two results ($A r_{1} B$) and ($A r_{2} B$)
\square In cr*, put (ArB) where r is $\left\{r_{1}, r_{2}\right.$, everything between them
\square Order of relations: <, = and ~, >
$\square f$ is IIA and monotonic \rightarrow cr* * upper approx.of cr
\square Approximation only on arcs with all four labels
- involves only = and ~

Computing PW and NW

\square Algorithm computing NW and PW in polynomial time, given cr*
\square Input

- f : IIA, monotonic pref. aggregation function
- ip: incomplete profile over outcomes in Ω

■ $\mathrm{cr}^{*}(\mathrm{f}, \mathrm{ip})$: approximation of combined result
\square Output
$■ P, N$: sets of outcomes

Computing PW and NW easily

Input: f: IIA, monotonic pref. aggr. function, ip: incomplete profile, cr*(f,ip): approximation of combined result
Output: P, N: sets of outcomes
$\mathrm{P} \leftarrow \Omega, \mathrm{N} \leftarrow \Omega$
foreach $A \in \Omega$ do

- if $\exists \mathrm{C} \in \Omega$ s.t. $\{<\} \subseteq$ rel* (A, C) then
- $\mathrm{N} \leftarrow \mathrm{N}-\{\mathrm{A}\}$
\square if $\exists \mathrm{C} \in \Omega$ s.t. $\{<\}=\operatorname{rel}{ }^{*}(\mathrm{~A}, \mathrm{C})$ then
$■ \mathrm{P} \leftarrow \mathrm{P}-\{\mathrm{A}\} \quad$ It terminates in $\mathrm{O}\left(|\Omega|^{2}\right)$ time
return P,N with $N=N W$ and $P=P W$

IIA+monotone pref. aggr. functions

\square Pareto: given any two outcomes A and B
$\square A>B$ iff $A>B$ or $A=B$ for all agents and $A>B$ for at least one
$\square \mathrm{A} \sim B$ otherwise
\square Lex
\square agents are ordered and, given any two outcomes A and B, the relation between them in the result is the one given by the first agent in the order that doesn't declare $A=B$
\square Approval voting
\square tractability result already proven in [Konczak and Lang, 2005] since it is a positional scoring rule

Preference elicitation - (1)

\square Process of asking queries to agents in order to determine their preferences over outcomes
[Chen and $\mathrm{Pu}, 2004]$

- At each stage in eliciting preference there is a set of possible and necessary winners
$\square \mathrm{PW}=\mathrm{NW} \rightarrow$ preference elicitation is over, no matter how incompleteness is resolved
\square Checking when PW = NW: hard in general
[Conitzer and Sandholm, 2002]
\square We prove that pref.elicitation is easy if f is IIA

Preference elicitation - (2)

$\square \mathrm{PW}=\mathrm{NW} \rightarrow$ preference elicitation is over
\square At the beginning:
\square As preferences are declared:
$N W=\varnothing \quad P W=\Omega$
NW $\uparrow \quad P W \downarrow$

- If PW $\supset N W$, and $\mathbf{A} \in \mathrm{PW}-\mathrm{NW}, \mathrm{A}$ can become a loser or necessary winner
- Enough to perform $\mathbf{a s k}(\mathrm{A}, \mathrm{B}), \forall \mathrm{B} \in \mathrm{PW}$
$■ \mathrm{C} \notin \mathrm{PW}$ is a loser \rightarrow dominated
- f is IIA \rightarrow ask(A.B) involves only A-B preferences
$\square \mathrm{O}\left(|\mathrm{PW}|^{2}\right)$ steps to remove incompleteness

Preference elicitation - (3)

$\square f$ is IIA \rightarrow determining set of winners via pref. elicitation is polynomial in |agents| and |outcomes|

Input: f: IIA, pol. computable pref. aggr. function,

Winner determination

 \mathbf{P}, \mathbf{N} : set of outcomesOutput: W: set of outcomes wins: bool, $\mathrm{P} \leftarrow \mathrm{PW}, \mathrm{N} \leftarrow \mathrm{NW}$ while $P \neq N$ do
\square choose $A \in P-N$

- wins \leftarrow true, $\mathrm{Pa} \leftarrow \mathrm{P}-\{\mathrm{A}\}$
- repeat
- choose $\mathrm{B} \in \mathrm{Pa}$
- if \exists agent s.t. A? B then
- ask(A,B)
- compute f(A,B)
- if $f(A, B)=(A>B)$ then

- if $f(A, B)=(A<B)$ then
$-P \leftarrow P-\{A\} ;$ wins \leftarrow false
$=\mathrm{Pa} \leftarrow \mathrm{Pa}-\{\mathrm{B}\}$
- until $f(A, B)=(A<B)$ or $\mathrm{Pa}=\varnothing$
- if wins=true then

$$
-N \leftarrow N \cup\{A\}
$$

$\mathrm{W} \leftarrow \mathrm{N}$, return W

Main results

\square Computing PW and NW : NP-hard
\square Computing good approximations of PW and NW: NP-hard
\square Computing the combined result: NP-hard

- If f IIA+monotonic (and pol. computable) then
- computing an approximation of cr is polynomial
- computing PW and NW is polynomial
\square if $f \| A$ then
\square preference elicitation (i.e., until $\mathrm{PW}=\mathrm{NW}$) is polynomial

Pini,Rossi,Venable,Walsh, Incompleteness and Incomparability in Preference Aggregation: Complexity Results. Artificial Intelligence 2011

Future work

\square Adding constraints to agents' preferences

- possible and necessary winner must be also feasible
\square Expressing preferences via compact knowledge representation formalisms (Ex.: CP-nets and soft constraints)
\square determining PW and NW directly from these compact formalisms
\square Adding possibility distribution over the completions of an incomplete preference relation between outcomes

Winner determination in voting trees

Outline

- Background
- Incomplete preferences
- Incomplete profiles
- Complete majority graph
- Condorcet winner
- Schwartz winner
- Fair Schwartz winner
- Incomplete majority graph
\square Possible/necessary Condorcet winners
- Possible/necessary Schwartz winner
\square Winner determination for (simple) voting tree
- From the majority graph
- From the weighted/unweighted profile
- Complexity results
- Balanced agendas

Preferences

\square Agents express their preferences over candidates by a (possibly incomplete) total order

An agent may state a preference over a pair of candidates

Other agents may not know their preference
...or may not want
to disclose it

Profiles

\square When many (n) agents are involved:

- Profille: sequence of n total orders

- Incomplete profile: one or more total orders are incomplete

A>C>B, A?D, B ?D, C?D

$C>B>A, D>A$ B?D,C?D

D $>A>B, C>B$ A?C, D?C

Complete Weighted profiles

\square Complete weighted profile:

- Each agent has a given weight
- all preferences are known

weights
preferences $\quad A>B>C$

2
$C>B>A$

2
$B>A>C$

2
$\mathrm{C}>\mathrm{B}>\mathrm{A}$

2
$\mathrm{A}>\mathrm{C}>\mathrm{B}$

Incomplete Weighted profiles

- Incomplete weighted profile:
\square Each agent has a given weight
- Some preferences are not known

20

2
A>C>B, A?D,
B?D, C?D

5

10
C>B>A,D>A B?D,C?D

2
$A>B>C>D$

Majority Graph of a Profile

\square Given profile \mathbf{P}, its majority graph $\mathbf{M}(\mathbf{P})$ is s.t.:
\square Nodes correspond to candidates
n is odd!
\square Directed edge $A \rightarrow B$ iff majority says $A>B$

Majority Graph of an Incomplete Profile

- Given an incomplete profile \mathbf{P}, its majority graph $\mathbf{M}(\mathbf{P})$ is s.t.:
\square Nodes correspond to candidates
- Directed edge $A \rightarrow B$ iff more than half says $A>B$
- No edge if no majority

$A>B>C>D$	$\begin{aligned} & A>C>B, A ? D, \\ & B ? D, C ? D \end{aligned}$	$B>D>A>C$	$\begin{aligned} & C>B>A, D>A \\ & B ? D C ? D \end{aligned}$	$D>A>B, C>B$ A?C, D?C

Incomplete Profile P

Majority Graph of an Incomplete Weighted Profile

Given an incomplete weighted profile \mathbf{P}, its majority graph $\mathbf{M}(\mathbf{P})$ is s.t.:

- Nodes correspond to candidates
- Directed edge $A \rightarrow B$ iff the weighted majority says $A>B$
- No edge if no weighted majority

$A>B>C>D$	$A>C>B, A ? D$, $B ? D, C ? D$	$B>D>A>C$	$C>B>A, D>A$	$D>A>B, C>B$
		$B ? D, C ? D$	$A ? C, D ? C$	

3

Incomplete Profile P

Binary voting tree

- Given a set of candidates, a binary voting tree T is such that
\square Terminal node = candidate
\square Non-terminal node $=$ winner of its two children
\square Balanced iff |maxdepth - mindepth| ≤ 1

Balanced

Simple voting tree

\square Binary voting tree $\mathbf{T} \rightarrow$ voting rule r_{T}
$\square \mathrm{r}_{\mathrm{T}}:$ majority graph $\mathbf{G} \rightarrow$ candidate (winner)

- Every candidate can appear once in the leaves
- Sequence of pairwise comparisons (also called agenda) between candidates

G

$\mathbf{r}_{\mathbf{T}}$

Voting tree

\square Voting tree: an extension of simple voting tree where
o every candidate can appear several times as leaf

Different tree, different winner

Condorcet winner

\square Given a profile P, candidate A is a Condorcet winner iff $\forall T$, binary tree, $r_{T}(M(P))=A$.
\square Given $M(P), A$ is a Condorcet winner iff its node in $\mathrm{M}(\mathrm{P})$ has only outgoing edges
\square Polynomial time
If \exists, then unique

Schwartz winners

\square Given a profile P, candidate A is a Schwartz winner iff $\exists T$, binary tree, such that $r_{T}(M(P))=A$.
\square Given $M(P)$, candidate A is a possible winner iff there is path from node A to every other node

- Polynomial time

Incomplete preferences

- Who will win? Different types of uncertainty:
- Unknown voting tree
- Incomplete preferences
- incomplete profile
- incomplete majority graph

Possible Schwarz (PS) winner A: \exists completion of maj. graph /profile, \exists voting tree s.t. A wins
Necessary Schwartz (NS) winner A: \forall completion of maj. graph/profile, \exists voting tree s.t. A wins
Possible Condorcet (PC) winner A: \exists completion of maj. graph/profile, s.t. \forall voting tree A wins

Necessary Condorcet (NC) winner A: \forall completion of maj. graph/profile, s.t. \forall voting tree A wins

Incomplete preferences

Possible Schwarz (PS) winner A: \exists completion of maj. graph /profile,
\exists voting tree s.t. A wins
Necessary Schwartz (NS) winner A: \forall completion of maj.
graph/profile, $\quad \exists$ voting tree s.t. A wins
Possible Condorcet (PC) winner A: \exists completion of maj. graph/profile,
s.t. \forall voting tree A wins

Necessary Condorcet (NC) winner A: \forall completion of maj. graph/profile, s.t. \forall voting tree A wins

Completions of the Majority graph and Profile

$\square \forall$ completion of the profile $\mathbf{P} \rightarrow \exists$ completion of the maj. graph $\mathbf{M}(\mathbf{P})$ Not vice versa (transitivity!)

- Completions $(\mathrm{M}(\mathrm{P})) \supseteq\left\{\mathrm{M}\left(\mathrm{P}^{\prime}\right) \mid \mathrm{P}^{\prime}\right.$ completion of P$\}$
- Example: 1 agent

Possible Schwartz winners

\mathbf{P} : unweighted profile
$\mathrm{PS}(\mathrm{P}) \subseteq \mathrm{PS}(\mathrm{M}(\mathrm{P}))$

- M(P) : majority graph
- PS(P): A $\in P S(P)$ iff \exists completion of profile P, \exists voting tree s.t. A wins
- PS(M(P)): A $\in W P(M(P))$ iff \exists completion of maj. graph $M(P), \exists$ voting tree s.t. A wins
\exists completion of $P \rightarrow \exists$ completion of $M(P)$

Profile

Majority graph

profile completions

Maj. G. completions

Possible Condorcet winners

- P : unweighted profile
- $\mathbf{M}(P)$: majority graph
o $P C(P): A \in P C(P)$ iff \exists completion of profile P, \forall voting tree s.t. A wins
o $\quad \mathrm{PC}(\mathrm{M}(\mathrm{P}): A \in \mathrm{PC}(\mathrm{M}(\mathrm{P}))$ iff \exists completion of maj. graph $\mathrm{M}(P), \forall$ voting tree s.t. A wins
\exists completion of $P \rightarrow \exists$ completion of $M(P)$

Putting a candidate above all others never causes transitivity problems
then $\mathrm{A} \in \mathrm{PC}(\mathrm{P})$

Necessary Schwartz winners

- P : unweighted profile
- M(P) : majority graph
- NS(P): A $\operatorname{AS}(P)$ iff \forall completion of profile P, \exists voting tree s.t. A wins
- $\mathbf{N S}(M(P)): A \in N S(M(P))$ iff \forall completion of maj. graph $M(P), \exists$ voting tree s.t. A wins

Completions $(M(P)) \supseteq\left\{M\left(P^{\prime}\right) \mid P^{\prime}\right.$ completion of $\left.P\right\}$

Necessary Condorcet winners

- \mathbf{P} : unweighted profile

$$
N C(M(P))=N C(P)
$$

- $\mathbf{M (P)}$: majority graph
- NC(P): $A \in N C(P)$ iff \forall completion of profile P, \forall voting tree s.t.

A wins
$\square \mathbf{N C}(M(P)): A \in N C(M(P))$ iff \forall completion of maj. graph $M(P), \forall$ voting tree s.t. A wins

Completions $(M(P)) \supseteq\left\{M\left(P^{\prime}\right) \mid P^{\prime}\right.$ completion of $\left.P\right\}$

No arrows involving A can be missing or against A

Computing majority graph winners

- Polynomial for simple voting trees for all types of winners
\square A is a Possible Schwartz winner iff it is possible to complete the majority graph such that every outcome is reachable from A
$\square A$ is a necessary Schwartz winner iff, $\forall B$, there is a path from A to B in G
$\square A$ is possible Condorcet winner iff A has no ingoing edges
\square A is a necessary Condorcet winner iff A has outgoing edges to all other candidates
[Lang, Pini,Rossi,Venable,Walsh, IJCAI 07] [Pini,Rossi,Venable,Walsh, KR08]

Outline

- Background
- Incomplete preferences
- Incomplete profiles
- Complete majority graph
- Condorcet winner
- Schwartz winner
- Fair Schwartz winner
- Incomplete majority graph
\square Possible/necessary Condorcet winners
- Possible/necessary Schwartz winner
\square Winner determination for (simple) voting tree
- From the majority graph
- From the weighted/unweighted profile
- Complexity results
- Balanced agendas

Weighted profile P

From weighted to unweighted $A>B>C>D$

A>C>B, A?D, B?D, C?D

$M(P)=M\left(P^{\prime}\right)$
Unweighted profile P'

A $>$ B $>$ C $>$ D	$\begin{aligned} & \text { A>C>B, A?D, } \\ & \text { B?D, C?D } \end{aligned}$	$B>D>A>C$	$\begin{aligned} & \text { C>B>A,D>A } \\ & \text { B?D,C?D } \end{aligned}$	$\begin{aligned} & D>A>B, C>B \\ & A ? C, D ? C \end{aligned}$

Winners sets (weighted or unweighted profile)

- $\operatorname{PC}(P)=P C(M(P))$ and $N C(P)=N C(M(P))$
- $\mathrm{PS}(\mathrm{P}) \supset \mathrm{PS}(\mathrm{M}(\mathrm{P}))$ and $\mathrm{NS}(\mathrm{P}) \supseteq \mathrm{NS}(\mathrm{M}(\mathrm{P}))$

PS(M(P))

PS(P)
$\mathrm{PC}(\mathrm{P})=\mathrm{PC}(\mathrm{M}(\mathrm{P}))$

Complexity results: Possible Condorcet Winners

Theorem:

$\square \mathrm{P}$ incomplete weighted profile - " $A \in P C(P)$?" is polynomial

Proof

1. $P \rightarrow$ unweighted P '
2. $P C(P)=P C\left(P^{\prime}\right)$
3. $P C\left(P^{\prime}\right)=P C\left(M\left(P^{\prime}\right)\right)$
4. $A \in P C\left(M\left(P^{\prime}\right)\right)$ iff all arrows involving A in $M\left(P^{\prime}\right)$ do not point against A (polynomial test)

Complexity results:
 Necessary Condorcet Winners

Theorem:

- P incomplete weighted profile - "A $\in N C(P)$?" is polynomial

Proof

1. $P \rightarrow$ unweighted P '
2. $N C(P)=N C\left(P^{\prime}\right)$
3. $N C\left(P^{\prime}\right)=N C\left(M\left(P^{\prime}\right)\right)$
4. $A \in N C\left(M\left(P^{\prime}\right)\right)$ iff all arrows involving A in $\mathrm{M}\left(\mathrm{P}^{\prime}\right)$ are not missing and do not point against A (polynomial test)

Complexity results: Possible Schwartz Winners

Theorem:

- P incomplete weighted profile, 3 or more candidates
- "A $\in P S(P)$?" is NP-complete

Proof
Reduction from the number partitioning problem

Complexity results

	```X= incomplete maj.graph Y=tree [Lang et al. ilICAYOT]```	X=incomplete weighted profile $Y=$ tree
PossibleCondorcet $\exists X \quad \forall Y$	EASY   No ingoing edges	$\stackrel{\text { EASY }}{\text { Same set as }}$
Necessary Condorcet $\forall X \quad \forall Y$	EASY   Only outgoing edges	$\underset{\text { EASY }}{\text { EASt as }}$
Possible Schwartz   $\exists X \quad \exists Y$	EASY   Completion with path to every candidate	NP-complete   Reduction from the number partitioning problem
Necessary Schwartz $\forall X \quad \exists Y$	EASY   Path to every candidate	?

## Fair Possible Schwartz Winners

- Some possible winners may win only on very unbalanced trees, competing only few times. UNFAIR!
- Fair possible Schwartz (FPS) winner A : $\exists$ completion of maj. graph/profile, $\exists$ balanced simple voting tree s.t. A wins
$\square$ Fairness comes from the fact that both finalists will have faced the same number of competitions, or the same number plus or minus one.


## Complexity results: Fair Possible Schwartz Winners

Theorem:

- P incomplete weighted profile, 3 or more candidates
- "A $\in$ FPS(P)?" is NP-complete Proof

1. When there are 3 candidates, then every simple voting tree is balanced
2. Conclude as for $P S(P)$

## Fixed trees: possible and necessary winners

o T: simple voting tree

- A: a candidate
o Necessary winner (NW): $\forall$ completion of maj. graph/profile, A wins in the fixed tree T
o Possible winner (PW) : $\exists$ completion of maj. graph/profile, A wins in the fixed tree T


## Determining possible/necessary winners for simple voting trees

## Algorithm 1: Win

Input: T: simple voting tree, $G$ : incomplete maj. graph; Output: W: set of candidates;
if $\operatorname{root}(T) \neq$ nil and $\operatorname{left}(T)=\operatorname{right}(T)=$ nil then
$W \leftarrow \operatorname{root}(T)$;
else
W1 $\leftarrow \operatorname{Win}(l e f t(T), ~ G) ;$
$W 2 \leftarrow \operatorname{Win}(\operatorname{right}(T), G) ;$
$W \leftarrow W 1 \cup W 2$;
foreach $s \in W 1$ do
if $s<\mathrm{m} r, \forall r \in W 2$ then $W \leftarrow W-\{s\} ;$
foreach $r \in W 2$ do
if $r<\mathrm{m} s, \forall s \in W 1$ then
$W \leftarrow W-\{r\} ;$
return W;

## Possible and necessary winners: an example

- $\Omega=\{A, B, C, D, E, F, H, I\}$ : set of candidates
- T: simple voting tree
- G: incomplete majority graph

Win returns a single<br>candidate $A \rightarrow A$ is a NW



# Complexity result: Possible winners 

Theorem:
P incomplete weighted profile,
3 or more candidates
T simple voting tree
" $A \in P W(P, T)$ ?" is NP-complete
Proof

- Reduction from the number partitioning problem

This theorem holds also when $T$ is balanced
when there are 3 candidates, every simple voting tree is balanced

## Complexity result: Necessary winners

Theorem:
$\square \quad \mathrm{P}$ incomplete weighted profile,

- 4 or more candidates
$\square$ T simple voting tree
$\square$
"A $\in N W(P, T)$ ?" is coNP-complete

Proof
$\square \quad$ Reduction from the number partitioning problem

## Summary: Winners with missing preferences

## A is a :

Possible Schwartz winner (PS) if $\exists$ completion of maj. graph /profile, $\exists$ (simple) voting tree Necessary Schwartz winner (NS) if $\forall$ completion of maj. graph/profile, $\exists$ (simple) voting tree Possible Condorcet winner (PC) if $\exists$ completion of maj. graph/profile, $\forall$ (simple) voting tree Necessary Condorcet winner (NC) if $\forall$ completion of maj. graph/profile, $\forall$ (simple) voting tree

## A wins

When tree T is fixed:
Possible winner A (PW): $\exists$ completion of maj. graph/profile s.t. A wins given T
Necessary winner A (NW): $\forall$ completion of maj. graph/profile s.t. A wins given $T$

$M(P)$   P	Weights n bounded	No Weights, n bounded	Weights, n unbounded	No Weights, n unbounded
PS	$\mathrm{P} \quad \sqrt{\mathrm{NP}-\mathrm{c}}$		$P \quad N P-c$	$P$ $?$
NS	P $?$	P P	P	$P$
PC			P	
NC			P P	$P \quad P$
FPS			? $N P-c$	$\bar{?}$ $?$
PW	P NP-c		$P$ $N P-c$	P $N P$
NW	P coNP-c		P coNP-c	$\mathrm{P} \quad \mathrm{coNP}$

Lang,Pini,Rossi, Salvagnin,Venable,Walsh, Journal of Autonomous Agents and Multiagent Systems 2012

## Majority graph vs profile

## $\square$ What was known about winners

	Simple voting trees
Possible Schwartz	$\neq$
Necessary Schwartz	$?$
Possible Condorcet	$=$
Necessary Condorcet	$=$
Possible winners	$?$
Necessary winners	$?$

Lang,Pini,Rossi,Venable,Walsh, IJCAI 07
Pini,Rossi,Venable,Walsh, KR08

# Necessary Schwartz winners 

	Simple voting trees
Possible Schwartz	$\neq$
Necessary Schwartz	$\neq$
Possible Condorcet	$=$
Necessary Condorcet	$=$
Possible winners	$?$
Necessary winners	$?$

$\forall$ completion of maj. graph/profile, $\exists$ (simple) voting tree

## But $=$ with 3 candidates

- Consider this incomplete profile with 5 agents and 5 candidates
- agent 1: ( $\mathrm{A} 1>\mathrm{B} 2>\mathrm{B} 3, \mathrm{~A}>\mathrm{B} 1)$
- agent 2: $(\mathrm{B} 2>\mathrm{B} 3>\mathrm{A} 1>\mathrm{B} 1>\mathrm{A})$
- agent 3: $(\mathrm{A}>\mathrm{A} 1>\mathrm{B} 3>\mathrm{B} 1>\mathrm{B} 2)$
- agent 4: ( $\mathrm{B} 1>\mathrm{A}>\mathrm{B} 2>\mathrm{B} 3>\mathrm{A} 1$ )
- agent 5: $(\mathrm{B} 3>\mathrm{B} 1>\mathrm{B} 2>\mathrm{A}>\mathrm{A} 1)$

Incomplete Majority Graph G

$\square$ A is a not Necessary Schwartz winner from the majority graph (no path from A to B1)
$\square \quad A$ is a Necessary Schwartz Winner from the profile: 2 possible completions for $P$ :
$\square$ 1st completion: $A 1>A \rightarrow A 1>B 1$ for transitivity $\rightarrow A 1>B 1$ in $G$
Tree: $\mathrm{B} 2, \mathrm{~B} 3 \rightarrow \mathrm{~B} 2, \mathrm{~B} 1 \rightarrow \mathrm{~B} 1, \mathrm{~A} 1 \rightarrow \mathrm{~A} 1, \mathrm{~A} \rightarrow \mathrm{~A}$ wins
$\square \quad 2^{\text {nd }}$ completion: $\mathrm{A}>\mathrm{A} 1 \rightarrow \mathrm{~A}>\mathrm{B} 2$ for transitivity $\rightarrow \mathrm{A}>\mathrm{B} 2$ in $G$ Tree: $\mathrm{B} 1, \mathrm{~B} 3 \rightarrow \mathrm{~B} 3, \mathrm{~B} 2 \rightarrow \mathrm{~B} 2, \mathrm{~A} \rightarrow \mathrm{~A}, \mathrm{~A} 1 \rightarrow \mathrm{~A}$ wins

## Possible winners

	Simple voting trees
Possible Schwartz	$\neq$
Necessary Schwartz	$\neq$
Possible Condorcet	
Necessary Condorcet	$=$
Possible winners	$\neq$
Necessary winners	$\boldsymbol{?}$

Consider this incomplete profile with 1 agent and 3 candidates agent 1: (A>B)

$B$ is a Possible Winner from the majority graph $B$ is not a Possible Winner from the profile

# Necessary winners 

Simple voting trees

Possible Schwartz	$\neq$
Necessary Schwartz	$\neq$
Possible Condorcet	$=$
Necessary Condorcet	$\neq$
Possible winners	$\neq$
Necessary winners	

But $=$ with 3 candidates
Majority


Consider this incomplete profile with 5 agents and 5 candidates agent 1: $(E>B>C, F>D>A)$

(Simple) voting agent 2: $(A>E>F>D>B>C)$ agent 3: $(A>C>D>F>E>B)$ agent 4: $(C>D>F>E>B>A)$ agent 5: $(B>A>F>E>C>D)$

$$
(E>F \Rightarrow E>D \text { in } G)
$$

No Necessary Winners from the majority graph

A is a Necessary winner from the profile

## Voting tree

$\square$ Voting tree: an extension of simple voting tree where

- every candidate can appear several times as lea



## Results for voting trees

	Simple voting   trees	Voting trees	
Possible Schwartz	$\neq$	$\neq$	
Necessary Schwartz	$\neq$	$\neq$	
Possible Condorcet		$=$	$=$
Necessary Condorcet	$=$	$\neq$	
Possible winners	$\neq$	$\neq$	
Necessary winners	$\neq$		

All inequality results transfer automatically from simple voting trees that are a special case of voting trees.

All equality results can be derived from the proofs since it is never required for a candidate to appear in at most one leaf

## Computing majority graph winners

- Polynomial for simple voting trees for all types of winners
$\square$ A is a Possible Schwartz winner iff it is possible to complete the majority graph $G$ such that every outcome is reachable from A
$\square$ A is a necessary Schwartz winner iff, $\forall \mathrm{B}$, there is a path from $A$ to $B$ in $G$
$\square$ A is possible Condorcet winner iff $A$ has no ingoing edges in G
$\square$ A is a necessary Condorcet winner iff $A$ has outgoing edges to all other candidates in G
[Lang, Pini,Rossi,Venable,Walsh, IJCAI 07] [Pini,Rossi,Venable,Walsh, KR08]
$\square$ All results transfer to voting trees


## Computing winners from majority graphs

$\square$ For simple voting trees it is polynomial:

1. If $\operatorname{root}(T) \neq \varnothing$ and $\operatorname{right}(T)=\varnothing$ and $\operatorname{left}(T)=\varnothing$ then winner=label(root(T))
2. Otherwise the winners are the possible winners of each branch that beat at least one of the possible winners of the other branch
3. if only one winner is returned then it is a necessary winner
[Pini,Rossi,Venable,Walsh, CLIMA 07]
$\square \quad$ However this procedure does not work for voting trees

- An upper approximation of possible winners is computed
- Lower approximation of Necessary winners


## Upper approximation of possible winners



## Profile vs majority graph: summary and future work

|  | Simple voting trees | Voting trees |
| :--- | :---: | :---: | :---: |
| Possible Schwartz | $\neq$ | $\neq$ |
| Necessary Schwartz | = for $\mathbf{3}$ candidates | $\neq$ |
| Possible Condorcet | $=$ | $=$ |
| Necessary Condorcet | $=$ | $=$ |
| Possible winners | $\neq$ | $\neq$ |
| Necessary winners | $=$ for $\mathbf{3}$ candidates | $\neq$ |

Complexity and algorithms for

- Necessary Schwartz winner from profile for (simple) voting trees
$\square$ Possible and necessary winners from profile and from majority graph with voting trees


# Winners over balanced agenda 

## Computing winners for balanced agendas

$\square$ Given a complete majority graph $G, A$ is a fair Schwartz winner if there is a balanced tree where A wins

- Given a majority graph G with $2^{\mathrm{k}}$ nodes, candidate A is a fair Schwartz winner iff it exists a binomial tree $\mathrm{T}_{\mathrm{k}}$ :
- Covering G (arrows from father to child)
$\square$ Rooted at A


## Binomial trees

$\square$ Binomial tree

- $\mathrm{T}_{0} \rightarrow 1$ node
$\square T_{K} \rightarrow$ the root has $k$ children and the $i$-th child is the root of a $T_{k-i}$
$\square T_{k}$ has $2^{k}$ nodes


## T0

$$
\begin{array}{ll}
\mathrm{T} 1 & \mathrm{~T} 2
\end{array}
$$

T3


## From binomial tree to a balanced voting tree

- Node of binomial tree $\leftarrow \rightarrow$ leafs of voting tree
$\square$ Edge $A \rightarrow B$ : knock-out competition between $A$ and $B$ where A wins
$\square$ Incoming edge of leafs $\rightarrow$ initial knock-out competition



## Determining fair Schwartz winners

- Given a majority graph $G$ with $2^{k}$ nodes, candidate $A$ is a fair possible winner iff it exists a binomial tree $T_{k}$ :
$\square$ Covering G (arrows from father to child)
- Rooted at A

(D)


## Complexity of determining fair Schwartz winners

- Th: "is A a fair Schwartz winner of minimum weight?" is NP-complete.
- Proof: Polynomial reduction from the Exact Cover problem.
$\square$ Weighted majority graphs are used in social choice theory
$\square$ weights may represent, for example, the amount of disagreement


# Variants of classical possible \& necessary winner problems 

## Unique winner and co-winner

$\square \mathrm{C}$ : a candidate
$\square$ Unique winner: C is the unique winner
$\square$ Co-winner: C is in the set of winners
$\square$ Possible co-winner
$\square$ Possible unique winner
$\square$ Necessary co-winner
$\square$ Necessary unique winner

## Unbounded n . of candidates, unweighted votes

STV	Possible winner	Necessary winner
Nlurality	NP-complete   (Bartholdi, Orlin 1991)	coNP-complete   (Bartholdi, Orlin 1991)
Veto	P	P
Pos. Scoring	NP-complete	P
Copeland	NP-complete	P
Maximim	NP-complete	coNP-complete
Bucklin	NP-complete	P
Ranked Pairs	NP-complete	coNP-complete
Voting trees	NP-complete	coNP-complete
Plurality with runoff	NP-complete (unique winner)	
P (co-winner)	(unique winner)   coNP-complete (co-winner)	

Conitzer, Xia. Determining Possible and Necessary Winners Given Partial Orders. Journal of Artificial Intelligence Research 2011

## New candidates

In some voting situations, some new candidates may show up in the course of the process

We may want to determine which of the initial candidates are possible winners, given that a fixed number $k$ of new candidates will be added

Example: suppose that
$>$ the voters' preferences about a set of initial alternatives have already been elicited
> we know that a given number $k$ of new alternatives will join the election
> we ask who among the initial alternatives can possibly win the election in the end

## New candidates: complexity results for scoring rules

$\square$ Question: what is the complexity of deciding if x is a possible winner with respect to the addition of three new candidates?

Voting rule	Possible winner
Borda	P
Plurality	P
Veto	P
3-approval	NP-complete

Chevaleyre et al. Possible Winners when New Candidates Are Added: The Case of Scoring Rules. AAAI 2010 and submitted to MSS 2010

## New candidates: complexity results for other voting rules

## Voting rule

Approval

Bucklin
Copeland $_{0}$
Simpson (aka maximin)
Plurality with runoff

## Possible winner

$$
\begin{gathered}
\text { P (def1) } \\
\text { NP-complete (def2) } \\
\text { NP-complete } \\
\text { NP-complete } \\
\text { NP-complete } \\
\text { P }
\end{gathered}
$$

All NP-hardness results are proved by reductions from the Exact Cover problem (denoted by X3C)

Xia, Lang, Monnot. Possible Winners when New Alternatives join: New results coming up. AAMAS 2011

## Approval definitions

- Definition 1 assumes that the threshold approved/unacceptable cannot move
$\square$ any alternative approved in C is still approved in $\mathrm{C}^{\prime}$ (the extension of $C$ )
- Definition 2 assumes that the threshold can stay the same or move upward (because the set of alternatives grows)
$\square$ Some alternatives approved initially may be disapproved
Xia, Lang, Monnot. Possible Winners when New Alternatives join: New
results coming up. AAMAS 2011


## Possible and necessary winners of partial tournament (aka incomplete majority graph)

Voting rule	Possible winner	Necessary winner
Copeland	P	P
Uncovered set	P	P
Borda* *	P	P
Maximin *	Pr-complete	NP-complete
Ranked pairs		

* = for weighted tournament
H. Aziz, M. Brill, F. Fischer, P. Harrenstein, J. Lang, and H. G. Seedig.

Possible and necessary winners of partial tournaments. AAMAS 2012

## Other related papers on possible/necessary winners

1. Elkind et al. Cloning in Elections: Finding the Possible Winners. J. Artif. Intell. Res. (JAIR) 42: 529-573 (2011)

- It considers the problem of manipulating elections by cloning candidates

2. Baumeister et al. The Possible Winner Problem with Uncertain Weight. ECAl'12

- It considers elections where not some of the voters' preferences, but some of their weights, are uncertain.

3. Edith and Erdeli: Manipulation Under Voting Rule Uncertainty. AAMAS'12

- the manipulator(s) know that the election will be conducted using a voting rule from a given list, and need to select their votes so as to succeed no matter which voting rule will eventually be chosen


## Related papers on control

$\square$ Erdéli et al. The complexity of voter partition in Bucklin and fallback voting: solving three open problems. AAMAS 2011: 837-844
$\square$ Hemaspandra et al.: Online control ECAI 2012
$\square$ Faliszewski et al. The shield that never was: Societies with single-peaked preferences are more open to manipulation and control.
Inf. Comput. 209(2): 89-107 (2011)

## Related papers on bribery

$\square$ P. Faliszewski. Nonuniform bribery. AAMAS 2008, pp.1569-1572, 2008.

- Faliszewski et al. :How Hard Is Bribery in Elections? J. Artif. Intell. Res. (JAIR) 35: 485532 (2009)


## COMPUTATIONAL SOCIAL CHOICE



## Thank you!

PhD course in Computer Science University of Bologna \& University of Padova

June 2012

