
COMPUTATIONAL

SOCIAL CHOICE

Maria Silvia Pini (pini@dei.unipd.it)

PhD course in Computer Science

University of Bologna & University of Padova

June 2012

Maria Silvia Pini

Francesca Rossi

K. Brent Venable

Computational Social Choice

 It is an interdisciplinary field at the interface of

 social choice theory

 computer science and AI

 Main goals

1. Application of techniques of computer science, such as

complexity analysis or algorithm design, to the study of

social choice mechanisms, such as voting procedures

2. Importing concepts from social choice theory into

computing. For instance, the study of preference

aggregation mechanisms is relevant to multiagent

systems

Chevaleyre, Endriss, Lang, Maudet, 2007

A short introduction to Computational Social Choice

(Computational) Social Choice

 Voting procedures

 Impossibility results

 Manipulation

 Circumventing manipulation

 Uncertainty

 Voting in combinatorial domains

Social choice problems

Computational

techniques

Outline

 Impossibility results

 Attempts to modify the winner

 Manipulation

 Control

 Bribery

 Complexity barrier against manipulation

 Uncertainty in preference aggregation

 Preference aggregation with incompleteness

and incomparability

 Voting tree

 Related work

Impossibility results

Which rule?

 Since there are so many rules, which one

should we choose?

 Let us look at some criteria that we would like

our voting rule to satisfy

Monotonicity criteria (1)

• Informally, monotonicity means that “ranking a

candidate higher should help that candidate,” but

there are multiple nonequivalent definitions

• A weak monotonicity requirement:

 if

– candidate w wins for the current votes,

– we then improve the position of w in some of the

votes and leave everything else the same,

 then w should still win

Monotonicity criteria (2)

• A weak monotonicity requirement: if

– candidate w wins for the current votes,

– we then improve the position of w in some of the votes and leave

everything else the same,

 then w should still win.

• E.g., STV does not satisfy weak monotonicity

– 7 votes b > c > a

– 7 votes a > b > c

– 6 votes c > a > b

• c drops out first, its votes transfer to a, a wins

• But if 2 votes b > c > a change to a > b > c, b drops out

first, its 5 votes transfer to c, and c wins

Monotonicity criteria (3)

• A strong monotonicity requirement:

 if

– candidate w wins for the current votes,

– we then change the votes in such a way that for

each vote, if a candidate c was ranked below w

originally, c is still ranked below w in the new vote

 then w should still win

Independence of irrelevant alternatives

• Independence of irrelevant alternatives criterion:

if

– the rule ranks a above b for the current votes,

– we then change the votes but do not change which is

ahead between a and b in each vote

 then a should still be ranked ahead of b.

Arrow’s impossibility theorem [1951]

• Suppose there are at least 3

candidates

• Then there exists no rule that is

simultaneously:

– Pareto efficient (if all votes rank a

above b, then the rule ranks a above

b),

– nondictatorial (there does not exist a

voter such that the rule simply always

copies that voter’s ranking), and

– independent of irrelevant alternatives

Nobel prize

in Economics 1972

Muller-Satterthwaite impossibility theorem
[1977]

• Suppose there are at least 3 candidates

• Then there exists no rule that

simultaneously:

– satisfies unanimity (if all votes rank a first, then

a should win),

– is nondictatorial (there does not exist a voter

such that the rule simply always selects that

voter’s first candidate as the winner), and

– is monotone (in the strong sense)

Manipulation

Manipulability

• Sometimes, a voter is better off revealing her

preferences insincerely, aka. manipulating

• Example for plurality

– Suppose a voter prefers a > b > c

– Also suppose she knows that the other votes are

• 2 times b > c > a

• 2 times c > a > b

– Voting truthfully will lead to a tie between b and c

– She would be better off voting e.g. b > a > c, guaranteeing b

wins

• All our rules are (sometimes) manipulable

Gibbard-Satterthwaite impossibility theorem

• Suppose there are at

least 3 candidates

• There exists no rule that

is simultaneously:

– onto (for every candidate,

there are some votes that

would make that

candidate win),

– nondictatorial (there does

not exist a voter such that

the rule simply always

selects that voter’s first

candidate as the winner),

and

– nonmanipulable

Allan Gibbard

Mark Satterthwaite

Gibbard-Satterthwaite impossibility theorem

• Suppose there are at least 3 candidates

• If f is onto and nonmanipulable

 Then is dictatorial

Proof

 Step 1: If f is onto and nonmanipulable

 Then f is monotone

 Step 2: If f is onto, nonmanipulable, and monotone

 Then f is unanimous

 Step 3: If f is monotone and unanimous

 Then f is dictatorial (Muller-Satterthwaite theorem)

 Step 4: If f is onto and nonmanipulable

 Then (by steps 1, 2, 3) f is dictatorial

Single-peaked preferences

• Suppose candidates are ordered on a line

a1 a2 a3 a4 a5

• Every voter prefers candidates that are closer to
her most preferred candidate

• Let every voter report only her most preferred
candidate (“peak”)

v1 v2 v3 v4
v5

• Choose the median voter’s peak as the winner
– This will also be the Condorcet winner

 • Nonmanipulable!
Impossibility results do not necessarily hold

when the space of preferences is restricted

Constructive/destructive

manipulation

 Two kinds of manipulation

Constructive maniplation

Goal: to make a certain candidate win

Destructive manipularion

Goal: to make a certain candidate a loser

 Conitzer, Sandholm, and Lang. When are elections with few

candidates hard to manipulate, J. ACM, 2007

Constructive manipulation

 The simplest version of the manipulation problem:

 CONSTRUCTIVE-MANIPULATION:

 We are given a voting rule r

 the (unweighted) votes of the other voters

 an alternative p

 We are asked if we can cast our (single) vote to
make p win.

Constructive manipulation

 Example for the Borda rule

 Voter 1 votes A > B > C

 Voter 2 votes B > A > C

 Voter 3 votes C > A > B

 Borda scores are

 A: 4

 B: 3

 C: 2

 A is the winner

 Can we make B win by adding my vote?

 Answer: YES.

My vote: B > C > A (Borda scores: A: 4, B: 5, C: 3)

Destructive manipulation

 Exactly the same, except:

 Instead of a preferred alternative

 We now have a hated alternative

 Our goal is to make sure that the hated

alternative does not win (whoever else

wins)

Destructive manipulation

 DESTRUCTIVE-MANIPULATION:

 We are given a voting rule r

 the (unweighted) votes of the other voters

 an alternative p

 We are asked if we can cast our (single) vote to
make p a loser.

Coalitions

 It will rarely be the case that a single voter can

make a difference. So we should look into

manipulation by a coalition of voters.

 New problems

Coalitional constructive manipulation

Coalitional destructive manipulation

Constructive coalitional manipulation

 CONSTRUCTIVE-COALITIONAL-MANIPULATION:

 We are given a voting rule r

 a set S of votes (the nonmanipulators votes)

 a set T of votes that area still open (the manipolator votes)

 an alternative p

 We are asked if we can cast votes in T so that p wins

Destructive coalitional manipulation

 DESTRUCTIVE-COALITIONAL-MANIPULATION:

 We are given a voting rule r

 a set S of votes (the nonmanipulators votes)

 a set T of votes that area still open (the manipolator votes)

 an alternative p

 We are asked if we can cast votes in T so that p does
not win

Weighted voters

 Variants of the problem

 Voters may be weighted

 Examples:

 countries in the EU;

 shareholders of a company

 New problems

Weighted constructive (coalitional) manipulation

Weighted destructive (coalitional) manipulation

Control

The control problem

 The control problem refers to situations where a

chair seeks to change the outcome of an election

 by adding/deleting voters

 by partitioning voters

 by adding/deleting candidates

 Assumptions:

 the chair knows all the voters' preferences and

 all votes are cast simultaneously

 Bartholdi, Tovey, and Trick. How hard is it to control an election?

Math. And Computer Modeling, 1992.

Constructive/destructive control

 Constructive control

 It refers to situations where a chair seeks to make

a certain outcome the winner of an election

 Destructive control

 It refers to situations where a chair seeks to make

a certain outcome a loser of an election

Control by deleting voters

 Let E be a rule

 Constructive control by deleting voters

we are given

 an election (C,V)

 a distinguished candidate c ∈ C

 a nonnegative integer k ≤ ||V||

we ask whether we can delete at most k voters

from V such that c is an E winner of the resulting

election

Control by adding voters

 Let E be a rule

 Constructive control by adding voters

 we are given

 a candidate set C

 a list V of registered voters with preferences over C

 a list V′ of as yet unregistered voters with preferences over

C

 a distinguished candidate c ∈ C

 a nonnegative integer k ≤ ||V′||

 the question is whether we can add to V at most k

voters from V′ such that c is an E winner of the

resulting election

Control by partitioning voters

 Let E be a rule

 Constructive control by adding voters

we are given

 An election (C,V)

 a distinguished candidate c ∈ C

we ask whether V can be partitioned into two

sublists, V1 and V2, such that c is the unique

winner of the two-stage election in which the

winners of the two first-stage subelections (C,V1)

and (C,V2) runs against each other in the final

stage

Control by adding candidates

 Let E be a rule

 Constructive control by adding candidates

 we are given

 a candidate set CD with CD=

 C is the set of originally qualified candidates

 D is the set of spoiler candidates that may be added

 a list V of registered voters with preferences over C

 a distinguished candidate c ∈ C

 a nonnegative integer k

 The question is whether we can add to C at most k

candidates from D such that c is an E winner of the resulting

election

Control by deleting candidates

 Let E be a rule

 Constructive control by deleting candidates

we are given

 a candidate set C

 a list V of registered voters with preferences over C

 a distinguished candidate c ∈ C

 a nonnegative integer k

 The question is whether we can remove from C at

most k candidates such that c is an E winner of the

resulting election

Example of control

 Imagine that the chairperson of the election controls whether

some alternatives participate

 Suppose there are 5 alternatives, a, b, c, d, e

 Chair controls whether c, d, e run (can choose any subset);

chair wants b to win

 Rule is plurality; voters’ preferences are:

 a > b > c > d > e (11 votes)

 b > a > c > d > e (10 votes)

 c > e > b > a > e (2 votes)

 d > b > a > c > e (2 votes)

 c > a > b > d > e (2 votes)

 e > a > b > c > e (2 votes)

Outline

 Impossibility results

 Attempts to modify the winner

 Manipulation

 Control

 Bribery

 Complexity barrier against manipulation

 Uncertainty in preference aggregation

 Preference aggregation with incompleteness

and incomparability

 Voting tree

 Related work

Bribery

The bribery problem

 In bribery

 there is an external agent who wishes to change

the outcome of the election

 To do this, he offers payments (within a budget) to

voters for changing the preference orders to his

liking

Bribery

 Let R be a voting rule

 R-BRIBERY problem

we are given

 an election E = (C, V)

 a designated candidate p in C

 a natural number B

we ask if it is possible to ensure that p is an R-

winner of E through changing the votes of at

most B voters.

$-Bribery

 In R-BRIBERY, effectively, each voter has the same unit

cost: We only care about bribing as few voters as possible

 However, in many settings, the voters might have

different prices, depending, for example,

 on how much a particular voter cares about the result of the

election or

 on the nature of the bribery

 R-$BRIBERY where each voter v has a price pv for

changing his vote (after we pay v the pv units, we obtain full

control over v’s vote)

Swap-Bribery

 R-SWAP-BRIBERY
 each voter v has a cost function pv such that for each two

candidates c, c’, pv (c, c’) is the cost of swapping c and c’ on
v’s preference list (provided c and c’ are ranked next to each
other).

 For example

 a voter might be willing to swap his two least favorite candidates at a
small cost

 but he would never— irrespective of the payment — change the top-
ranked candidate

 The goal of the briber is to find a sequence of adjacent swaps

 that leads to his or her preferred candidate’s victory, and

 that has lowest cost

Manipulation and $Bribery

 Manipulation is a special case of $BRIBERY

 the manipulation problem is a bribery problem

where

 the prices of manipulators are very low

 the prices of nonmanipulators are very high

 our budget allows us to buy the votes of all the

manipulators but none of the nonmanipulators

Uncertainty about votes

Possible and necessary winners

 Setting: some (parts of) votes are missing

 Possible winner

 There is a way for remaining votes to be cast so

that he win

 Necessary winner

 However remaining preferences are cast, he

must win

Konzak and Lang. Voting Procedures with Incomplete Preferences. IJCAI
workshop 2005

Pini, Rossi, Venable, Walsh. Incompleteness and Incomparability in Preference
Aggregation. IJCAI 2007

Preference elicitation and the

possible/necessary winner problem

 Preference elicitation
 Some preferences may be missing

 Time consuming, costly, difficult, …

 Want to terminate elicitation as soon as winner
fixed

 Closely connected to preference elicitation

 Elicitation can only be terminated iff possible

winner set = necessary winner set

Manipulation and the possible

winner problem

 Manipulation is a special case of the

possible winner problem, where

 the nonmanipulators have fully specified

preference orders

 the manipulators have completely unspecifed

preference orders

Complexity barrier against

manipulation

The complexity shield (1)

 The Gibbard-Satterthwaite Theorem shows that
strategic manipulation can never be rule out

 Idea: So it is always possible to manipulate; but
may it may also difficult?

 Tools from complexity theory can make this idea
precise

 Let F be a voting rule, if manipulation is
computationally intractable for F, then F might be
considered resistant to manipulation

The complexity shield (2)

 Standard procedures turn out to be easy to

manipulate

 It might still be possible to design new ones

that are resistant

 This approach is most interesting for voting

procedures for which winner determination is

tractable

Manipulability as a decision problem

 F: voting rule

 Manipulability(F)

 Instance: Set of votes for all except one voter;

alternative x

 Question: Is there a vote for the final voter such

that x wins?

 If this can be answered in polynomial time,

then F is easy to manipulate

Manipulability complexity

 If Manipulability(F) is computationally intractable, then

manipulability may be considered less of a worry for

procedure F

 Remark: We assume that the manipulator knows all the other

votes

 This unrealistic assumption is reasonable for intractability

results

 If manipulation is intractable even under such favorable

conditions, then all the better

 For tractability results, one can assume to have polls

Plurality is easy to manipulate

 TH: Manipulability(Plurality)ε P

 Proof

 Simply vote for x, the alternative to be made
winner by means of manipulation. If manipulation is
possible at all, this will work. Otherwise not.

 General: Manipulability(F) ε P for any rule F with

 polynomial winner determination problem and

 polynomial number of votes

Bartholdi,Tovey,Trick. The Computational Difficulty of Manipulating an

Election. Social Choice and Welfare 6(3): 227–241, 1989.

Borda is easy to manipulate

 MANIPULABILITY(Borda) ε P

 Proof

 Place x (the alternative to be made winner

through manipulation) at the top of your vote

 Then inductively proceed as follows: Check if any

of the remaining alternatives can be put next on

the ballot without preventing x from winning. If

yes, do so. (If no, manipulation is impossible.)

Bartholdi,Tovey,Trick. The Computational Difficulty of Manipulating an

Election. Social Choice and Welfare 6(3): 227–241.]

Algorithm Greedy-Manipulation

 Input

 preferences of all other voters

 a distinguished candidate c

 Output

 a preference order that, together with those of all the other

voters, will ensure that c is a winner, or

 a claim that no such preference order exists,

 Initialization: Place c at the top of the preference order.

 Iterative Step. Determine whether any candidate can be

placed in the next lower position (independent of other

choices) without preventing c from winning

 If so, place such a candidate in the next position

 otherwise terminate claiming that c cannot win

STV is difficult to manipulate

 MANIPULABILITY(STV) ε NP-complete

 Proof

 NP-membership is clear: checking whether a given vote makes x

win can be done in polynomial time (just try it, STV is polynomial

to compute)

 NP-hardness: by reduction from 3-Cover (X3C)

 In an X3C instance

 we are given

 a set

 a collection of subsets of size 3 of this set

 we are asked if we can cover all of the elements in the set

with nonoverlapping subsets

Bartholdi, J., and Orlin, J. Single Transferable Vote Resists Strategic Voting.

Social Choice and Welfare 1991

Adding a preround

 A preround proceeds as follows:

 Pair the candidates

 Each candidate faces its opponent in a
pairwise knockout election

 The winners proceed to the original rule

 P-R: voting rule obtained running
first a preround and the rule R

 TH: Manipulability(P-Plurality)
is NP-complete.

 TH: Manipulability(P-Borda) is
NP-complete.

 Also holds for other rules
Conitzer, Sandholm. Universal Voting Protocol Tweaks to Make

Manipulation Hard. In Proc. IJCAI 2003

Preround example (with Borda)

Voter 1: A>B>C>D>E>F

Voter 2: D>E>F>A>B>C

Voter 3: F>D>B>E>C>A

A gets 2 points

F gets 3 points

D gets 4 points and thus it wins

Voter 1: A>D>F

Voter 2: D>F>A

Voter 3: F>D>A

A vs B: A ranked higher by 1,2

C vs F: F ranked higher by 2,3

D vs E: D ranked higher by all

Match A with B

Match C with F

Match D with E

 STEP 1:

A. Collect votes and

B. Match alternatives

(no order required)

 STEP 2:

Determine winners of

preround

 STEP 3:

Infer votes on remaining

alternatives

 STEP 4:

Execute original rule

(Borda)

Coalitions and weights

 Manipulation can be done by
 a single voter

 a coalition of voters

 It will rarely be the case that a single voter can make a
difference. So we should look into manipulation by a coalition
of voters

 Manipulation can be done by
 Weighted voters

 Unweighted voters

 Manipulation may be
 constructive: making alternative x a unique or tied winner

 destructive: ensuring x does not win

Computational hardness as a

barrier to manipulation

 A (successful) manipulation is a way of misreporting one’s

preferences that leads to a better result for oneself

 Gibbard-Satterthwaite theorem

 It tells us that for some instances, successful manipulations exist

 It does not say that these manipulations are always easy to find

 Do voting rules exist for which manipulations are

computationally hard to find?

Inevitability of manipulability

 Recall Gibbard-Satterthwaite theorem:

 Suppose there are at least 3 alternatives

 There exists no rule that is simultaneously:
 onto (for every alternative, there are some votes that

would make that alternative win),

 nondictatorial, and

 nonmanipulable

 Typically don’t want a rule that is dictatorial or not
onto

(Coalitional) Manipulation with

weighted/unweighted votes

Unweighted

voters

Weighted

voters

Individual

manipulation

Coalitional

manipulation

Can be

hard
easy

easy

easy

Constant #alternatives Unbounded #alternatives

Can be

hard

Can be

hard

Can be

hard
Potentially

hard

Unweighted

voters

Weighted

voters

Do voting rules exist for which manipulations are

computationally hard to find?

Constructive manipulation

 CONSTRUCTIVE-MANIPULATION:

We are given a voting rule r, the (unweighted) votes
of the other voters, and an alternative p

We are asked if we can cast our (single) vote to
make p win

Constructive weighted manipulation

 We are given the weighted votes of the others
(with the weights)

 And we are given the weights of members of
our coalition

 Can we make our preferred alternative p win?

Constructive weighted manipulation

 Borda example

 Voters
 Voter 1 (weight 4): A>B>C

 Voter 2 (weight 7): B>A>C

 Manipulators
 one with weight 4

 one with weight 9

 Can we make C win? Yes!
Solution:

 weight 4 voter votes C>B>A,

 weight 9 voter votes C>A>B
 Borda scores: A: 24, B: 22, C: 26

Veto is NP-hard to manipulate

with 3 or more candidates

 TH: WEIGHTED-COALITIONAL-CONSTRUCTIVE-
MANIPULABILITY(Veto) is NP-complete with 3 or more
candidates.

 Proof

 In NP since we can just give the manipulation

 To show NP-hardness, we give a simple reduction of PARTITION

 Given m integers ki with sum 2K, is there a partition with sum K?

 Reduce to manipulate election so p wins against a or b

 Assume one agent with weight 2K-1 has vetoed p

 Each of the votes of the m manipulators has weight 2ki

 their combined weight is 4K

 The only way for p to win is if the manipulators can veto a with 2K
weight, and b with 2K weight

 But this solves the PARTITION problem

Weighted-coalitional constructive manipulation

 Conitzer, Sandholm, and Lang. When are elections with few

candidates hard to manipulate, J. ACM, 2007

Destructive manipulation

 Exactly the same, except:

 Instead of a preferred alternative

 We now have a hated alternative

 Our goal is to make sure that the hated

alternative does not win (whoever else wins)

 Weighted-coalitional destructive manipulation

 Conitzer, Sandholm, and Lang. When are elections with few

candidates hard to manipulate, J. ACM, 2007

 Weighted-coalitional manipulation

Destructive manipulation with

weighted votes

 If constructive manipulation is easy

then destructive manipulation is easy

Destructive manipulation can be easy even though

constructive manipulation is hard

 E.g. Borda is

 Polynomial to manipulate destructively

 NP-hard to manipulate constructively for 3 or more

candidates for a weighted coalition

Hardness is only worst-case…

 Results such as NP-hardness suggest that the
runtime of any successful manipulation
algorithm is going to grow dramatically on some
instances

 But there may be algorithms that solve most
instances fast

Bad news…

 Increasingly many results suggest that many instances
are in fact easy to manipulate

 Heuristic algorithms and/or experimental (simulation)
evaluation [Conitzer & Sandholm AAAI-06, Procaccia & Rosenschein JAIR-07,

Conitzer et al. JACM-07, Walsh IJCAI-09 / CARE-09]

 Algorithms that only have a small “window of error” of
instances on which they fail [Zuckerman et al. AIJ-09, Xia et al.
EC-10]

Uncertainty in Preference

aggregation

Outline

 Uncertainty in preference aggregation

Preference aggregation with

incompleteness and incomparability

 Incompleteness: missing preferences

 Incomparability: incomparable pairs

Preference aggregation in voting trees

Simple voting trees

Voting trees

Preference aggregation with

incompleteness and incomparability

Motivation - (1)

 How to combine preferences of multiple agents in

presence of incompleteness and incomparability in

their preference orderings over a set of outcomes?

 Incompleteness: absence of knowledge on

relationship between pairs of outcomes

 ongoing preference elicitation

 agents’ privacy

 Incomparability: some elements cannot be compared

 novel incomparable to a biography

 fast expensive car incomparable to slow cheap car

Motivation - (2)

 Goal: aggregate the agents’ preferences into a

single pref. ordering

 Since there are incomplete preferences, we focus

on computing:

 Possible winners (PW):

 outcomes that can be the most preferred ones for the agents

 Necessary winners (NW):

outcomes that are always the most preferred ones for the

agents

 Useful for preference elicitation

Outline

 Basic notions on preferences

 Possible and necessary winners

 Computing PW and NW: NP-hard

 Approximating PW and NW: NP-hard

 Sufficient conditions on preference aggregation

such that computing PW and NW is polynomial

 How PW and NW are useful in preference

elicitation

Basic notions - (1)

 Multi-agent scenario: each agent expresses his

preferences via an (incomplete) partial ordering

over the possible outcomes

 preferences over outcomes A and B

 A>B or A<B (ordered)

 A=B (in a tie)

 A~B (incomparable)

 A?B (not specified)

 Example: A,B,C outcomes

?

> ~

Basic notions - (2)

 Incomplete profile: sequence of partial orders over

outcomes, one for every agent, where at least one partial

order is incomplete

• Preference aggregation function:

incomplete profiles  sets of P0s

 We will consider only functions that take polynomial time to apply

?

> ~

>

~ >

>

> >

?

> ~

>

~ >

>

> >

Preference aggregation function: example with Pareto

only completions that are POs!

Pref. aggr. function:

incomplete profiles  sets of P0s

Pareto: POs  PO

•A>B iff A>B or A=B for all

agents, and A>B for at least

one
•A~B otherwise

~

~ ~

>

~ ~

>, ~

~ ~

Combined result

>

~ >

>

> >

>

> ~

>

~ >

>

> >

~

> ~

Possible and necessary winners

 We extend notions of PW and NW to POs

 Necessary winners

 outcomes which are maximal in every completion

 winners no matter how incompleteness is resolved

 Possible winners

 outcomes which are maximal in at least one

completion

 winners in at least one way in which incompleteness is

resolved

?

> ~

>

~ >

>

> >

>

~ ~

>

~ >

>

> >

>

~ >

>

> >

~

~ ~

>

> ~

~

> ~

NW={A,B}

PW={A,B,C}

Possible and necessary winners: example with Pareto

PW and NW: complexity results

 Computing PW and NW is NP-hard

 (even restricting to incomplete TOs)

 deciding if an outcome is

 a possible winner: NP-complete

 a necessary winner: coNP-complete

 Computing good approximations of PW and NW is

NP-hard

 good approximation: for all k positive integer

 a superset PW* s.t. |PW*| < k |PW|

 a subset NW* s.t. . |NW*| >1/k |NW|, whenever |NW|>0

PW and NW: tractable case

 Given the combined result, PW and NW are easy to find

 A in NW if no arc (A-B) with B>A

 A in PW if all arcs (A-B) with B>A contain also other labels

 Computing the combined result: in general NP-hard

 If f is IIA and monotonic

 we can compute an upper approximation (cr*) in polynomial

time

 Also, given cr*, polynomial to compute PW and NW

 algorithm not affected by approximation

 IIA: when rel(A,B) in the result depends only by rel(A,B) given by

the agents

 monotonic: when we improve an outcome in a profile (for ex. we

pass from A>B to A=B), then it improves also in the result

Cr*: upper approximation of the

combined result

 Obtained by:

 Considering two profile completions:

 (A?B) replaced with (A>B) for every agent

 (A?B) replaced with (A<B) for every agent

 Then two results (A r1 B) and (A r2 B)

 In cr*, put (A r B) where r is {r1,r2,everything between

them}

 Order of relations: <, = and , >

 f is IIA and monotonic  cr* upper approx.of cr

 Approximation only on arcs with all four labels

 involves only = and 

cr* upper approx.of cr: example with Lex

?

> >

>

> >

<

> >

Lex:
agents are ordered,

ArB given by the

first agent in the

order that doesn’t

declare A=B

>, =,~, <

> >

cr*

PW = {A,B}

NW = 

Computing PW and NW

 Algorithm computing NW and PW in

polynomial time, given cr*

 Input

 f: IIA, monotonic pref. aggregation function

 ip: incomplete profile over outcomes in 

 cr*(f,ip): approximation of combined result

Output

 P, N: sets of outcomes

Computing PW and NW easily

Input: f: IIA, monotonic pref. aggr. function,

 ip: incomplete profile,

 cr*(f,ip): approximation of combined result

Output: P, N: sets of outcomes

P, N

foreach A do

 if  C s.t. {<}  rel*(A,C) then

 N  N  {A}

 if  C s.t. {<} = rel*(A,C) then

 P  P  {A}

return P,N

It terminates in O(||2) time

with N=NW and P=PW

IIA+monotone pref. aggr. functions

 Pareto: given any two outcomes A and B

 A>B iff A>B or A=B for all agents and A>B for at least
one

 A~B otherwise

 Lex
 agents are ordered and, given any two outcomes A

and B, the relation between them in the result is the
one given by the first agent in the order that doesn’t
declare A=B

 Approval voting
 tractability result already proven in [Konczak and

Lang, 2005] since it is a positional scoring rule

Preference elicitation - (1)

 Process of asking queries to agents in order to
determine their preferences over outcomes

 [Chen and Pu, 2004]

 At each stage in eliciting preference there is a set of
possible and necessary winners

 PW = NW  preference elicitation is over, no
matter how incompleteness is resolved

 Checking when PW = NW: hard in general

 [Conitzer and Sandholm, 2002]

 We prove that pref.elicitation is easy if f is IIA

Preference elicitation - (2)

 PW = NW preference elicitation is over

 At the beginning: NW= PW=

 As preferences are declared: NW  PW 

 If PW  NW, and APWNW, A can become a

loser or necessary winner

Enough to perform ask(A,B), BPW

 CPW is a loser  dominated

 f is IIA  ask(A.B) involves only A-B preferences

 O(|PW|2) steps to remove incompleteness

Preference elicitation - (3)

 f is IIA  determining set of winners via

pref. elicitation is polynomial in |agents|

and |outcomes|

Input: f: IIA, pol. computable pref. aggr. function,

 P, N: set of outcomes

Output: W: set of outcomes

wins: bool, PPW, NNW

while PN do
 choose APN
 wins  true, Pa  P  {A}
 repeat

 choose BPa
 if agent s.t. A?B then

 ask(A,B)
 compute f(A,B)

 if f(A,B)=(A>B) then
 P  P  {B}

 if f(A,B)=(A<B) then
 P  P  {A}; wins  false

 Pa  Pa  {B}
 until f(A,B) = (A<B) or Pa = 
 if wins=true then

 N  N  {A}

W N, return W

We can use P and N returned

by previous algorithm

Winner
determination

Main results

 Computing PW and NW : NP-hard

 Computing good approximations of PW and NW:
NP-hard

 Computing the combined result: NP-hard

 If f IIA+monotonic (and pol. computable) then
 computing an approximation of cr is polynomial
 computing PW and NW is polynomial

 if f IIA then
 preference elicitation (i.e., until PW=NW) is

polynomial

Pini,Rossi,Venable,Walsh, Incompleteness and Incomparability in

Preference Aggregation: Complexity Results. Artificial Intelligence 2011

Future work

 Adding constraints to agents’ preferences

 possible and necessary winner must be also
feasible

 Expressing preferences via compact knowledge
representation formalisms (Ex.: CP-nets and soft
constraints)

 determining PW and NW directly from these
compact formalisms

 Adding possibility distribution over the
completions of an incomplete preference relation
between outcomes

Winner determination in voting trees

Outline

 Background
 Incomplete preferences

 Incomplete profiles

 Complete majority graph
 Condorcet winner

 Schwartz winner

 Fair Schwartz winner

 Incomplete majority graph
 Possible/necessary Condorcet winners

 Possible/necessary Schwartz winner

 Winner determination for (simple) voting tree
 From the majority graph

 From the weighted/unweighted profile

 Complexity results

 Balanced agendas

Preferences

 Agents express their preferences over

candidates by a (possibly incomplete)

total order

An agent may state

a preference over a

pair of candidates

Other agents may not

know their preference

Why?

…or may not want

to disclose it

A?B A>B

Profiles

 When many (n) agents are involved:

 Profile: sequence of n total orders

 Incomplete profile: one or more total orders are incomplete

A>B>C>D A>C>B>D B>D>A>C C>B>D>A D>A>C>B

A>B>C>D
A>C>B, A?D,

B?D, C?D
B>D>A>C

C>B>A,D>A

B?D,C?D

D>A>B,C>B

A?C, D?C

Complete Weighted profiles

 Complete weighted profile:

 Each agent has a given weight

 all preferences are known

weights 20 2 2 2 2

A>B>C C>B>A B>A>C C>B>A A>C>B preferences

Incomplete Weighted profiles

A>B>C>D
A>C>B, A?D,

B?D, C?D
B>D>A>C

C>B>A,D>A

B?D,C?D

D>A>B,C>B

A?C, D?C

20 2 5 10 2

 Incomplete weighted profile:

 Each agent has a given weight

 Some preferences are not known

 Given profile P, its majority graph M(P) is s.t.:

 Nodes correspond to candidates

 Directed edge AB iff majority says A>B

A

C

B

D

Profile P

Majority Graph M(P)

A

D

B

Relation of the

majority graph

not transitive!

n is odd!

A>B>C>D A>C>B>D B>D>A>C C>B>D>A D>A>C>B

Majority Graph of a Profile

Majority Graph of an Incomplete Profile
 Given an incomplete profile P, its majority graph

M(P) is s.t.:

 Nodes correspond to candidates

 Directed edge A B iff more than half says A>B

 No edge if no majority

Incomplete Profile P

Incomplete Majority Graph

M(P)

A

C

B

D D

B

A>B>C>D
A>C>B, A?D,

B?D, C?D
B>D>A>C

C>B>A,D>A

B?D,C?D
D>A>B,C>B

A?C, D?C

Majority Graph of an Incomplete Weighted Profile

 Given an incomplete weighted profile P, its majority graph M(P) is s.t.:

 Nodes correspond to candidates

 Directed edge AB iff the weighted majority says A>B

 No edge if no weighted majority

Incomplete Profile P

Incomplete Majority Graph

M(P)

A

C

B

D D

A>B>C>D
A>C>B, A?D,

B?D, C?D
B>D>A>C

C>B>A,D>A

B?D,C?D

D>A>B,C>B

A?C, D?C

15 3 5 10 2

C

Binary voting tree

 Given a set of candidates, a binary voting tree T is

such that

 Terminal node = candidate

 Non-terminal node = winner of its two children

 Balanced iff |maxdepth - mindepth| ≤ 1

A B C D

W1=

W(A,B)

W2=

W(C,D)

W(W1,

W2)

C

D

W(W2,

D)

W2=

W(W1,C)

B A

W1=

W(A,B)

Balanced Unbalanced

Simple voting tree

 Binary voting tree T  voting rule rT

 rT: majority graph G  candidate (winner)

 Every candidate can appear once in the leaves

 Sequence of pairwise comparisons (also called agenda)

between candidates

A

C

B

D

A B C D

W1=

W(A,B)

W2=

W(C,D)

W(W1,

W2)

G
T

rT

Winner

rT(G)

A B A B

C D

A C

C D

A C

A

A

A B C D

W1=

W(A,B)

W2=

W(C,D)

W(W1,

W2)

Voting tree

 Voting tree: an extension of

simple voting tree where

 every candidate can appear

several times as leaf

A B C D

W1=

W(A,B)

W2=

W(C,D)

W(W1,

W2)

A B

A C

C D

A C

A

A B A D

W1=

W(A,B)

W2=

W(A,D)

W(W1,

W2)

Different tree, different winner

A

C

B

D

G

T

rT

Winner

rT(G)

A B

C D

Winner

rT(G)

C

D

W(W2,

D)

W2=

W(W1,C)

B A

W1=

W(A,B)

A B

A A C

A A D

D

D

C

D

W(W2,

D)

W2=

W(W1,C)

B A

W1=

W(A,B)

Simple voting trees

Condorcet winner

 Given a profile P, candidate A is a Condorcet
winner iff ∀T, binary tree, rT(M(P))=A.

 Given M(P), A is a Condorcet winner iff its node

in M(P) has only outgoing edges

 Polynomial time

A

C

B

D

No Condorcet winner

A

C

B

D

Condorcet winner

If Ǝ, then unique

Schwartz winners

 Given a profile P, candidate A is a Schwartz
winner iff ƎT, binary tree, such that rT(M(P))=A.

 Given M(P), candidate A is a possible winner iff
there is path from node A to every other node

 Polynomial time

A

C

B

D

A B

C D

A

B

A

A

D C

C

Incomplete preferences

Possible Schwarz (PS) winner A: ∃ completion of maj. graph /profile,

∃ voting tree s.t. A wins

Necessary Schwartz (NS) winner A: ∀ completion of maj. graph/profile,
∃ voting tree s.t. A wins

Possible Condorcet (PC) winner A: ∃ completion of maj. graph/profile,
s.t. ∀ voting tree A wins

Necessary Condorcet (NC) winner A:∀ completion of maj. graph/profile,
s.t. ∀voting tree A wins

 Who will win? Different types of uncertainty:

 Unknown voting tree

 Incomplete preferences
 incomplete profile

 incomplete majority graph

Incomplete preferences

Possible Schwarz (PS) winner A: ∃ completion of maj. graph /profile,

∃ voting tree s.t. A wins

Necessary Schwartz (NS) winner A: ∀ completion of maj.
graph/profile, ∃ voting tree s.t. A wins

Possible Condorcet (PC) winner A: ∃ completion of maj. graph/profile,
s.t. ∀ voting tree A wins

Necessary Condorcet (NC) winner A:∀ completion of maj.
graph/profile, s.t. ∀voting tree A wins

 NC ⊆ PC ∩ NS PC  NS ⊆ PS

PC

NS
NC

PS

Completions of the Majority graph and Profile

 completion of the profile P   completion of the maj. graph M(P)

 Not vice versa (transitivity!)

 Completions(M(P)) ⊇ {M(P’)| P’ completion of P}

 Example: 1 agent

Profile profile completions Majority graph Maj. G. completions

A

C

B

?

?

A C

B

A

B

C

A

C

B

C

A

B

A C

B

A C

B

A C

B

A C

B

Possible Schwartz winners
 P : unweighted profile

 M(P) : majority graph

 PS(P): A∈PS(P) iff ∃ completion of profile P, ∃ voting tree s.t. A
wins

 PS(M(P)): A∈WP(M(P)) iff ∃ completion of maj. graph M(P) , ∃
voting tree s.t. A wins

PS(M(P))

∃ completion of P  ∃ completion of M(P)

PS(P)

Profile profile completions

B

?

?

A

B

C

A

C

B

C

A

B

Majority graph Maj. G. completions
A C

B

A C

B

A C

B

A C

B B

A

C

A

B

C

B ∉ PS(P)

B ∈ PS(M(P))

B

B B

PS(P)⊆PS(M(P))

Possible Condorcet winners

WC(M(P))

∃ completion of P  ∃ completion of M(P)

PC(P)=PC(M(P))  P : unweighted profile

 M(P) : majority graph

 PC(P): A∈PC(P) iff ∃ completion of profile P, ∀ voting tree s.t. A
wins

 PC(M(P): A∈PC(M(P)) iff ∃ completion of maj. graph M(P) , ∀
voting tree s.t. A wins

M(P)

A∈PC(M(P))
 iff A

C B D

A

C B D

Agent

Putting a candidate above all others

never causes transitivity problems

If A∈PC(M(P))
then A∈PC(P)

PC(P)=PC(M(P))

Necessary Schwartz winners
 P : unweighted profile

 M(P) : majority graph

 NS(P): A∈NS(P) iff ∀ completion of profile P, ∃ voting tree s.t. A
wins

 NS(M(P)): A∈NS(M(P)) iff ∀ completion of maj. graph M(P) , ∃
voting tree s.t. A wins

Completions(M(P)) ⊇ {M(P’)| P’ completion of P}

NS(M(P))⊆NS(P)

NS(M(P)

NS(P)

Necessary Condorcet winners
 P : unweighted profile

 M(P) : majority graph

 NC(P): A∈NC(P) iff ∀ completion of profile P, ∀ voting tree s.t.
A wins

 NC(M(P)): A∈NC(M(P)) iff ∀ completion of maj. graph M(P) , ∀
voting tree s.t. A wins

Completions(M(P)) ⊇ {M(P’)| P’ completion of P}

NC(M(P))=NC(P)

SP(P)

If A ∈ NC(P) then

M(P)
A

C B D C

No arrows involving A
can be missing or against A

A ∈ NC(M(P))

NC(P)=NC(M(P))

Computing majority graph winners

 Polynomial for simple voting trees for all types of winners

 A is a Possible Schwartz winner iff it is possible to

complete the majority graph such that every outcome is

reachable from A

 A is a necessary Schwartz winner iff, ∀B, there is a path

from A to B in G

 A is possible Condorcet winner iff A has no ingoing edges

 A is a necessary Condorcet winner iff A has outgoing

edges to all other candidates

[Lang, Pini,Rossi,Venable,Walsh, IJCAI 07]

[Pini,Rossi,Venable,Walsh, KR08]

Outline

 Background
 Incomplete preferences

 Incomplete profiles

 Complete majority graph
 Condorcet winner

 Schwartz winner

 Fair Schwartz winner

 Incomplete majority graph
 Possible/necessary Condorcet winners

 Possible/necessary Schwartz winner

 Winner determination for (simple) voting tree
 From the majority graph

 From the weighted/unweighted profile

 Complexity results

 Balanced agendas

A>B>C>D
A>C>B, A?D,

B?D, C?D
B>D>A>C

C>B>A,D>A

B?D,C?D

D>A>B,C>B

A?C, D?C

8 3 10 2

1

1 1
1

1
1 1

1

1 1 1 1 1 1 1 1

1
1 1 1
1
1
1

1 1

A>B>C>D
A>C>B, A?D,

B?D, C?D
B>D>A>C

C>B>A,D>A

B?D,C?D

D>A>B,C>B

A?C, D?C

1

Weighted profile P

Unweighted profile P’

M(P)=M(P’)

Completions(P’)⊇Completions(P)

NC(P)=NC(P’)

PC(P)=PC(P’)

 From weighted to unweighted

Winners sets
(weighted or unweighted profile)

PS(M(P))
PS(P)

PC(P)=PC(M(P))

NS(P)

NS(M(P))

NC(P)=NC(M(P))

 PC(P) = PC(M(P)) and NC(P) = NC(M(P))

 PS(P)  PS(M(P)) and NS(P)  NS(M(P))

Complexity results:

Possible Condorcet Winners

Theorem:

 P incomplete weighted profile

 “A ∈PC(P)?” is polynomial

Proof

1. P  unweighted P’

2. PC(P)=PC(P’)

3. PC(P’)=PC(M(P’))

4. A∈PC(M(P’)) iff all arrows involving A in
M(P’) do not point against A (polynomial
test)

Complexity results:

Necessary Condorcet Winners

Theorem:

 P incomplete weighted profile

 “A ∈NC(P)?” is polynomial

Proof

1. P  unweighted P’

2. NC(P)=NC(P’)

3. NC(P’)=NC(M(P’))

4. A∈NC(M(P’)) iff all arrows involving A in
M(P’) are not missing and do not point
against A (polynomial test)

Complexity results:

Possible Schwartz Winners

Theorem:

 P incomplete weighted profile, 3 or more

candidates

 “A ∈PS(P)?” is NP-complete

Proof

 Reduction from the number partitioning

problem

X= incomplete

maj.graph

Y=tree
[Lang et al. iIJCAI’07]

X=incomplete weighted

profile

Y=tree

PossibleCondorcet

ƎX ∀Y
EASY

No ingoing edges

EASY

Same set as

Necessary Condorcet

∀X ∀Y
EASY

Only outgoing edges

EASY

Same set as

Possible Schwartz

ƎX ƎY

EASY

Completion with path

to every candidate

NP-complete

Reduction from the

number partitioning

problem

Necessary Schwartz

∀X ƎY

EASY

Path to every

candidate

?

Complexity results

Fair Possible Schwartz Winners

 Some possible winners may win only on very
unbalanced trees, competing only few times.
UNFAIR!

 Fair possible Schwartz (FPS) winner A :
∃ completion of maj. graph/profile, ∃ balanced
simple voting tree s.t. A wins

 Fairness comes from the fact that both finalists will

have faced the same number of competitions, or the

same number plus or minus one.

Complexity results:

Fair Possible Schwartz Winners

Theorem:

 P incomplete weighted profile, 3 or
more candidates

 “A ∈FPS(P)?” is NP-complete

Proof

1. When there are 3 candidates, then
every simple voting tree is balanced

2. Conclude as for PS(P)

Fixed trees: possible and necessary winners

 T: simple voting tree

 A: a candidate

 Necessary winner (NW):  completion of maj.
graph/profile, A wins in the fixed tree T

 Possible winner (PW) :  completion of maj.
graph/profile, A wins in the fixed tree T

Determining possible/necessary winners

for simple voting trees

Algorithm 1: Win

1. Input: T: simple voting tree, G: incomplete maj. graph;

2. Output: W: set of candidates;

3. if root(T)≠nil and left(T)=right(T)=nil then

4. W  root(T);

5. else

6. W1  Win(left(T), G);

7. W2  Win(right(T), G);

8. W  W1  W2;
9. foreach sW1 do

10. if s <m r, rW2 then

11. W  W – {s};

12. foreach rW2 do

13. if r <m s, sW1 then

14. W  W – {r};

15. return W;

W contains

 possible

winners

If |W|=1 

necessary

winner

Th.: “A ∈PW(G)?”, “A ∈NW(G)?”, are polynomial

Possible and necessary winners: an example

 ={A, B, C, D, E, F, H, I}: set of candidates

 T: simple voting tree

 G: incomplete majority graph

A

F

B

E

G T

A B

F E

A

C D C D

H I H I
B E F

W1=

W(A,B)

W2=

(H,I)

W3=

W(C,D)

W4=

W(E,F)

W5=

W(W1,W2))
W6=

W(W3,W4))

W(W5,W6))

A I {C,D} E

A {C,D,E}

A

A B H I H I C D C D E F

Win returns a single

candidate A A is a NW

Complexity result: Possible winners

Theorem:
 P incomplete weighted profile,
 3 or more candidates
 T simple voting tree
 “A ∈PW(P,T)?” is NP-complete

Proof
 Reduction from the number partitioning problem

This theorem holds also when T is balanced
when there are 3 candidates, every simple voting tree is balanced

Complexity result: Necessary winners

Theorem:

 P incomplete weighted profile,

 4 or more candidates

 T simple voting tree

 “A ∈NW(P,T)?” is coNP-complete

Proof

 Reduction from the number partitioning
problem

Summary: Winners with missing preferences

 A is a :
Possible Schwartz winner (PS) if ∃ completion of maj. graph /profile, ∃ (simple) voting tree

Necessary Schwartz winner (NS) if ∀ completion of maj. graph/profile, ∃ (simple) voting tree

Possible Condorcet winner (PC) if ∃ completion of maj. graph/profile, ∀(simple) voting tree

Necessary Condorcet winner (NC) if ∀ completion of maj. graph/profile, ∀ (simple) voting tree

 A wins

When tree T is fixed:

Possible winner A (PW): ∃ completion of maj. graph/profile s.t. A wins given T

Necessary winner A (NW): ∀ completion of maj. graph/profile s.t. A wins given T

M(P)

 P

Weights

n bounded

No Weights,

n bounded

Weights,

n unbounded

No Weights,

n unbounded

PS

NS

PC

NC

FPS

PW

NW

P
NP-c

P

P

P

P

P

P

P

P

NP-c

NP-c

coNP-c

?

P P

P P

P P
P

P

P P

P P

P P

P

P

P

P

P

NP-c

?
NP-c

P ?
P

P

NP-c

coNP-c

P ?
P ?
P

P
P

P

? ?
P

P

NP

coNP

?

Lang,Pini,Rossi, Salvagnin,Venable,Walsh,

Journal of Autonomous Agents and Multiagent Systems 2012

Majority graph vs profile

 What was known about winners

Simple voting trees

Possible Schwartz ≠

Necessary Schwartz ?

Possible Condorcet =

Necessary Condorcet =

Possible winners ?

Necessary winners ?

Lang,Pini,Rossi,Venable,Walsh, IJCAI 07

Pini,Rossi,Venable,Walsh, KR08

Necessary Schwartz winners
Simple voting trees

Possible Schwartz ≠

Necessary Schwartz ≠

Possible Condorcet =

Necessary Condorcet =

Possible winners ?

Necessary winners ?

 Consider this incomplete profile with 5 agents and 5 candidates

 agent 1: (A1>B2>B3, A>B1)

 agent 2: (B2>B3>A1>B1>A)

 agent 3: (A>A1>B3>B1>B2)

 agent 4: (B1>A>B2>B3>A1)

 agent 5: (B3>B1>B2>A>A1)

 A is a not Necessary Schwartz winner from the majority graph (no path from A to B1)

 A is a Necessary Schwartz Winner from the profile: 2 possible completions for P:

 1st completion: A1>A  A1>B1 for transitivity  A1>B1 in G

 Tree: B2,B3 B2,B1  B1,A1  A1,A A wins

 2nd completion : A>A1  A> B2 for transitivity  A>B2 in G

 Tree: B1,B3 B3,B2  B2,A A,A1 A wins

B1

B2

A

A1

B3

Incomplete

Majority

Graph G

But = with 3 candidates

∀ completion of

maj. graph/profile,

∃ (simple) voting tree

Possible winners
Simple voting trees

Possible Schwartz ≠

Necessary Schwartz ≠

Possible Condorcet =

Necessary Condorcet =

Possible winners ≠

Necessary winners ?

Consider this incomplete profile with 1 agent and 3 candidates

agent 1: (A>B)

B is a Possible Winner from the majority graph

B is not a Possible Winner from the profile

A

B

C

Majority

graph

(Simple) voting tree

A C

B

∃ completion of

maj. graph/profile,

Fixed (simple)

voting tree

Necessary winners
Simple voting trees

Possible Schwartz ≠

Necessary Schwartz ≠

Possible Condorcet =

Necessary Condorcet =

Possible winners ≠

Necessary winners ≠

E C F D

B

A

B

C

A

D

E

F

Majority

graph

Consider this incomplete profile with 5

agents and 5 candidates

agent 1: (E>B>C, F>D>A)

agent 2: (A>E>F>D>B>C)

agent 3: (A>C>D>F>E>B)

agent 4: (C>D>F>E>B>A)

agent 5: (B>A>F>E>C>D)

 (E>F  E>D in G)

No Necessary Winners from

the majority graph

A is a Necessary winner from the profile

(Simple)

voting

tree

But = with 3 candidates

C,F E,D

B,F,E

A,B

E,F,C

E>F F>E

Voting trees

Voting tree

 Voting tree: an extension

of simple voting tree

where

 every candidate can

appear several times as lea

A B C D

W1=

W(A,B)

W2=

W(C,D)

W(W1,

W2)

A B

A C

C D

A C

A

A B A D

W1=

W(A,B)

W2=

W(A,D)

W(W1,

W2)

Results for voting trees
Simple voting

trees

Voting trees

Possible Schwartz ≠ ≠

Necessary Schwartz ≠ ≠

Possible Condorcet = =

Necessary Condorcet = =

Possible winners ≠ ≠

Necessary winners ≠ ≠

All inequality results transfer automatically from simple voting
trees that are a special case of voting trees.

All equality results can be derived from the proofs since it is
never required for a candidate to appear in at most one leaf

Computing majority graph winners

 Polynomial for simple voting trees for all types of
winners
 A is a Possible Schwartz winner iff it is possible to

complete the majority graph G such that every outcome
is reachable from A

 A is a necessary Schwartz winner iff, ∀B, there is a path
from A to B in G

 A is possible Condorcet winner iff A has no ingoing
edges in G

 A is a necessary Condorcet winner iff A has outgoing
edges to all other candidates in G

 All results transfer to voting trees

[Lang, Pini,Rossi,Venable,Walsh, IJCAI 07]

[Pini,Rossi,Venable,Walsh, KR08]

Computing winners from majority graphs

 For simple voting trees it is polynomial:

1. If root(T)≠∅ and right(T)=∅ and left(T)=∅ then
winner=label(root(T))

2. otherwise the winners are the possible winners of each
branch that beat at least one of the possible winners of the
other branch

3. if only one winner is returned then it is a necessary winner

 However this procedure does not work for voting
trees

 An upper approximation of possible winners is
computed

 Lower approximation of Necessary winners

[Pini,Rossi,Venable,Walsh, CLIMA 07]

B

D

C

E

A

D

A

B C

E

A

B C

B,C B,C

A,B,C

C,A

E,B

B,A

C,D

Win returns {A,B,C} as possible

winners

But A can never win

B>C

B B

B

A

B

B

D

B<C

C C

C

C

E

A

C

Upper approximation of possible winners

Profile vs majority graph:

summary and future work

 Complexity and algorithms for

 Necessary Schwartz winner from profile for (simple) voting trees

 Possible and necessary winners from profile and from majority

graph with voting trees

Simple voting trees Voting trees

Possible Schwartz ≠ ≠

Necessary Schwartz ≠

= for 3 candidates

≠

Possible Condorcet = =

Necessary Condorcet = =

Possible winners ≠ ≠

Necessary winners ≠

= for 3 candidates

≠

Winners over balanced agenda

Computing winners for balanced agendas

 Given a complete majority graph G, A is a fair

Schwartz winner if there is a balanced tree where

A wins

 Given a majority graph G with 2k nodes, candidate

A is a fair Schwartz winner iff it exists a binomial

tree Tk:

Covering G (arrows from father to child)

Rooted at A

Binomial trees

 Binomial tree

 T0 1 node

 TK the root has k children and the i-th child is the root of a Tk-i

 Tk has 2k nodes

T0 T1 T2 T3

T0
T1 T2

From binomial tree to a balanced

voting tree

 Node of binomial tree  leafs of voting tree

 Edge AB: knock-out competition between A and B

where A wins

 Incoming edge of leafs  initial knock-out competition

A

B

C

D
A B C D

A C

A

Determining fair Schwartz winners

 Given a majority graph G with 2k nodes, candidate A is

a fair possible winner iff it exists a binomial tree Tk:

 Covering G (arrows from father to child)

 Rooted at A

A

C

B

D

A

C

B

D

A

C

D

B

A D C B

A C

A

Complexity of determining fair

Schwartz winners

 Th: “is A a fair Schwartz winner of minimum
weight?” is NP-complete.

 Proof: Polynomial reduction from the Exact Cover
problem.

 Weighted majority graphs are used in social choice
theory

 weights may represent, for example, the amount of
disagreement

Variants of classical possible &

necessary winner problems

Unique winner and co-winner

 C: a candidate

Unique winner: C is the unique winner

Co-winner: C is in the set of winners

 Possible co-winner

 Possible unique winner

 Necessary co-winner

 Necessary unique winner

Possible winner Necessary winner

STV NP-complete

(Bartholdi, Orlin 1991)

coNP-complete

(Bartholdi, Orlin 1991)

Plurality P P

Veto P P

Pos. Scoring NP-complete P

Copeland NP-complete coNP-complete

Maximim NP-complete P

Bucklin NP-complete P

Ranked Pairs NP-complete coNP-complete

Voting trees NP-complete coNP-complete

Plurality with runoff NP-complete (unique winner)

P (co-winner)

P (unique winner)

coNP-complete (co-winner)

Conitzer, Xia. Determining Possible and Necessary Winners Given Partial Orders.

Journal of Artificial Intelligence Research 2011

Unbounded n. of candidates, unweighted votes

New candidates

In some voting situations, some new candidates may show up

in the course of the process

We may want to determine which of the initial candidates are

possible winners, given that a fixed number k of new

candidates will be added

Example: suppose that

 the voters’ preferences about a set of initial alternatives have already

been elicited

 we know that a given number k of new alternatives will join the

election

 we ask who among the initial alternatives can possibly win the election

in the end

New candidates: complexity results

for scoring rules

 Question: what is the complexity of deciding if

x is a possible winner with respect to the

addition of three new candidates?

 Chevaleyre et al. Possible Winners when New Candidates Are Added: The

Case of Scoring Rules. AAAI 2010 and submitted to MSS 2010

Voting rule Possible winner

Borda P

Plurality P

Veto P

3-approval NP-complete

http://www.informatik.uni-trier.de/~ley/db/conf/aaai/aaai2010.html

New candidates: complexity results

for other voting rules

Voting rule Possible winner

Approval P (def1)

NP-complete (def2)

Bucklin NP-complete

Copeland0 NP-complete

Simpson (aka maximin) NP-complete

Plurality with runoff P

 Xia, Lang, Monnot. Possible Winners when New Alternatives join: New

results coming up. AAMAS 2011

All NP-hardness results are proved by reductions from the Exact Cover

problem (denoted by X3C)

Approval definitions

 Definition 1 assumes that the threshold

approved/unacceptable cannot move

 any alternative approved in C is still approved in C′ (the

extension of C)

 Definition 2 assumes that the threshold can stay

the same or move upward (because the set of

alternatives grows)

 Some alternatives approved initially may be disapproved

 Xia, Lang, Monnot. Possible Winners when New Alternatives join: New

results coming up. AAMAS 2011

Possible and necessary winners of partial

tournament (aka incomplete majority graph)

H. Aziz, M. Brill, F. Fischer, P. Harrenstein, J. Lang, and H. G. Seedig.

Possible and necessary winners of partial tournaments. AAMAS 2012

Voting rule Possible winner Necessary winner

Copeland P P

Uncovered set P P

Borda* P P

Maximin* P P

Ranked pairs* NP-complete NP-complete

* = for weighted tournament

Other related papers on

possible/necessary winners

1. Elkind et al. Cloning in Elections: Finding the Possible Winners. J.

Artif. Intell. Res. (JAIR) 42: 529-573 (2011)

 It considers the problem of manipulating elections by cloning candidates

2. Baumeister et al. The Possible Winner Problem with Uncertain

Weight. ECAI’12

 It considers elections where not some of the voters’ preferences, but some

of their weights, are uncertain.

3. Edith and Erdeli: Manipulation Under Voting Rule Uncertainty.

AAMAS’12

 the manipulator(s) know that the election will be conducted using a

voting rule from a given list, and need to select their votes so as to

succeed no matter which voting rule will eventually be chosen

http://www.informatik.uni-trier.de/~ley/db/journals/jair/jair42.html
http://www.informatik.uni-trier.de/~ley/db/journals/jair/jair42.html
http://www.informatik.uni-trier.de/~ley/db/journals/jair/jair42.html
http://www.informatik.uni-trier.de/~ley/db/journals/jair/jair42.html
http://www.informatik.uni-trier.de/~ley/db/journals/jair/jair42.html
http://www.informatik.uni-trier.de/~ley/db/conf/aaai/aaai2010.html
http://www.informatik.uni-trier.de/~ley/db/conf/aaai/aaai2010.html
http://www.informatik.uni-trier.de/~ley/db/conf/aaai/aaai2010.html
http://www.informatik.uni-trier.de/~ley/db/conf/aaai/aaai2010.html
http://www.informatik.uni-trier.de/~ley/db/conf/aaai/aaai2010.html

Related papers on control

 Erdéli et al. The complexity of voter partition in
Bucklin and fallback voting: solving three open
problems. AAMAS 2011: 837-844

 Hemaspandra et al.: Online control ECAI 2012

 Faliszewski et al. The shield that never was:
Societies with single-peaked preferences are
more open to manipulation and control.
Inf. Comput. 209(2): 89-107 (2011)

http://www.informatik.uni-trier.de/~ley/db/conf/atal/aamas2011.html
http://www.informatik.uni-trier.de/~ley/db/conf/atal/aamas2011.html
http://www.informatik.uni-trier.de/~ley/db/conf/atal/aamas2011.html
http://www.informatik.uni-trier.de/~ley/db/journals/iandc/iandc209.html
http://www.informatik.uni-trier.de/~ley/db/journals/iandc/iandc209.html
http://www.informatik.uni-trier.de/~ley/db/journals/iandc/iandc209.html

Related papers on bribery

 P. Faliszewski. Nonuniform bribery.

AAMAS 2008, pp.1569–1572, 2008.

 Faliszewski et al. :How Hard Is Bribery in

Elections? J. Artif. Intell. Res. (JAIR) 35: 485-

532 (2009)

http://www.informatik.uni-trier.de/~ley/db/journals/jair/jair35.html
http://www.informatik.uni-trier.de/~ley/db/journals/jair/jair35.html
http://www.informatik.uni-trier.de/~ley/db/journals/jair/jair35.html
http://www.informatik.uni-trier.de/~ley/db/journals/jair/jair35.html
http://www.informatik.uni-trier.de/~ley/db/journals/jair/jair35.html
http://www.informatik.uni-trier.de/~ley/db/journals/jair/jair35.html
http://www.informatik.uni-trier.de/~ley/db/journals/jair/jair35.html
http://www.informatik.uni-trier.de/~ley/db/journals/jair/jair35.html

COMPUTATIONAL

SOCIAL CHOICE

Maria Silvia Pini (pini@dei.unipd.it)

PhD course in Computer Science

University of Bologna & University of Padova

June 2012

Thank you!

