
COMPUTATIONAL 

SOCIAL CHOICE 

Maria Silvia Pini     (pini@dei.unipd.it) 

 

 

 

 

 

 

 

 

 

 

PhD course in Computer Science 

University of Bologna & University of  Padova 

June 2012 

 

 

Maria Silvia Pini 

Francesca Rossi 

K. Brent Venable          



Computational Social Choice 

 It is an interdisciplinary field at the interface of 

 social choice theory 

 computer science and AI 
 

 Main goals 

1. Application of techniques of computer science, such as 

complexity analysis or algorithm design, to the study of 

social choice mechanisms, such as voting procedures 

2. Importing concepts from social choice theory into 

computing. For instance, the study of preference 

aggregation mechanisms is relevant to multiagent 

systems 

Chevaleyre, Endriss, Lang, Maudet, 2007 

A short introduction to Computational Social Choice 



(Computational) Social Choice 

 

 Voting procedures 

 Impossibility results 

 Manipulation 

 

 

 Circumventing manipulation 

 Uncertainty 

 Voting in combinatorial domains 

Social choice problems  

Computational 

techniques  



Outline 

 Impossibility results  

 Attempts to modify the winner 

 Manipulation 

 Control 

 Bribery 

 Complexity barrier against manipulation 

 Uncertainty in preference aggregation 

 Preference aggregation with incompleteness 

and incomparability 

 Voting tree 

 Related work 



Impossibility results 



Which rule? 

 Since there are so many rules, which one 

should we choose? 

 

 

 Let us look at some criteria that we would like 

our voting rule to satisfy 

 



Monotonicity criteria (1) 

• Informally, monotonicity means that “ranking a 

candidate higher should help that candidate,” but 

there are multiple nonequivalent definitions 

 

• A weak monotonicity requirement:  

    if  

– candidate w wins for the current votes,  

– we then improve the position of w in some of the 

votes and leave everything else the same, 

 then w should still win 



Monotonicity criteria (2) 

• A weak monotonicity requirement: if  

– candidate w wins for the current votes,  

– we then improve the position of w in some of the votes and leave 

everything else the same, 

 then w should still win. 

• E.g., STV does not satisfy weak monotonicity 

– 7 votes b > c > a 

– 7 votes a > b > c 

– 6 votes c > a > b 

• c drops out first, its votes transfer to a, a wins 

• But if 2 votes b > c > a change to a > b > c, b drops out 

first, its 5 votes transfer to c, and c wins 



Monotonicity criteria (3) 

• A strong monotonicity requirement:  

   if  

– candidate w wins for the current votes,  

– we then change the votes in such a way that for 

each vote, if a candidate c was ranked below w 

originally, c is still ranked below w in the new vote 

 then w should still win 

 



Independence of irrelevant alternatives 

• Independence of irrelevant alternatives criterion: 

if 

– the rule ranks a above b for the current votes, 

– we then change the votes but do not change which is 

ahead between a and b in each vote 

 then a should still be ranked ahead of b. 

 

 

 



Arrow’s impossibility theorem [1951] 

• Suppose there are at least 3 

candidates 

• Then there exists no rule that is 

simultaneously: 

– Pareto efficient (if all votes rank a 

above b, then the rule ranks a above 

b), 

– nondictatorial (there does not exist a 

voter such that the rule simply always 

copies that voter’s ranking), and 

– independent of irrelevant alternatives 

 

 

Nobel prize  

in Economics 1972 



Muller-Satterthwaite impossibility theorem 
[1977] 

• Suppose there are at least 3 candidates 

• Then there exists no rule that 

simultaneously: 

– satisfies unanimity (if all votes rank a first, then 

a should win), 

– is nondictatorial (there does not exist a voter 

such that the rule simply always selects that 

voter’s first candidate as the winner), and 

– is monotone (in the strong sense) 

 

 



Manipulation 



Manipulability 

• Sometimes, a voter is better off revealing her 

preferences insincerely, aka. manipulating 

 

• Example for plurality 

– Suppose a voter prefers a > b > c 

– Also suppose she knows that the other votes are 

• 2 times b > c > a 

• 2 times c > a > b 

– Voting truthfully will lead to a tie between b and c 

– She would be better off voting e.g. b > a > c, guaranteeing b 

wins 

 

• All our rules are (sometimes) manipulable 

 



Gibbard-Satterthwaite impossibility theorem 

• Suppose there are at 

least 3 candidates 

• There exists no rule that 

is simultaneously: 

– onto (for every candidate, 

there are some votes that 

would make that 

candidate win), 

– nondictatorial (there does 

not exist a voter such that 

the rule simply always 

selects that voter’s first 

candidate as the winner), 

and 

– nonmanipulable 

 

Allan Gibbard 

Mark Satterthwaite 



Gibbard-Satterthwaite impossibility theorem 

• Suppose there are at least 3 candidates 

• If f is onto and nonmanipulable 

 Then is dictatorial 

Proof 

 Step 1: If f is onto and nonmanipulable 

                Then f is monotone 

 Step 2: If f is onto, nonmanipulable, and monotone 

                Then f is unanimous 

 Step 3: If f is monotone and unanimous 

                Then f is dictatorial (Muller-Satterthwaite theorem) 

 Step 4: If f is onto and nonmanipulable 

            Then (by steps 1, 2, 3) f is dictatorial  

 

 



Single-peaked preferences 

• Suppose candidates are ordered on a line 

 

a1 a2 a3 a4 a5 

• Every voter prefers candidates that are closer to 
her most preferred candidate 

• Let every voter report only her most preferred 
candidate (“peak”) 

 

v1 v2 v3 v4 
v5 

• Choose the median voter’s peak as the winner 
– This will also be the Condorcet winner 

 • Nonmanipulable! 
Impossibility results do not necessarily hold 

when the space of preferences is restricted 



Constructive/destructive 

manipulation 

 Two kinds of manipulation 

Constructive maniplation 

Goal: to make a certain candidate win 

Destructive manipularion 

Goal: to make a certain candidate a loser 

 
 Conitzer, Sandholm, and Lang. When are elections with few 

candidates hard to manipulate, J. ACM, 2007 



Constructive manipulation 

 The simplest version of the manipulation problem: 

 

 CONSTRUCTIVE-MANIPULATION:  

 We are given a voting rule r 

  the (unweighted) votes of the other voters 

 an alternative p 

 We are asked if we can cast our (single) vote to 
make p win. 



Constructive manipulation 

 Example for the Borda rule 

 Voter 1 votes A > B > C 

 Voter 2 votes B > A > C 

 Voter 3 votes C > A > B 

 Borda scores are 

 A: 4    

 B: 3 

 C: 2 

 A is the winner 

 Can we make B win by adding my vote? 

 Answer: YES.  

My vote: B > C > A (Borda scores: A: 4, B: 5, C: 3) 



Destructive manipulation 

 Exactly the same, except: 

 Instead of a preferred alternative 

 We now have a hated alternative 

 Our goal is to make sure that the hated 

alternative does not win (whoever else 

wins) 

 



Destructive manipulation 

 

 DESTRUCTIVE-MANIPULATION:  

 We are given a voting rule r 

  the (unweighted) votes of the other voters 

 an alternative p 

 We are asked if we can cast our (single) vote to 
make p a loser. 



Coalitions 

 It will rarely be the case that a single voter can 

make a difference. So we should look into 

manipulation by a coalition of voters. 

 

 New problems 

Coalitional constructive manipulation 

Coalitional destructive manipulation 

 

 

 

 



Constructive coalitional manipulation 

 CONSTRUCTIVE-COALITIONAL-MANIPULATION:  

 We are given a voting rule r 

 a set S of votes (the nonmanipulators votes) 

 a set T of votes that area still open (the manipolator votes) 

 an alternative p 

 We are asked if we can cast votes in T so that p wins  

 



Destructive coalitional manipulation 

 DESTRUCTIVE-COALITIONAL-MANIPULATION:  

 We are given a voting rule r 

 a set S of votes (the nonmanipulators votes) 

 a set T of votes that area still open (the manipolator votes) 

 an alternative p 

 We are asked if we can cast votes in T so that p does 
not win  

 



Weighted voters 

 Variants of the problem 

 Voters may be weighted 

 Examples:  

 countries in the EU;  

 shareholders of a company 

 

 New problems 

Weighted constructive (coalitional)  manipulation 

Weighted destructive (coalitional) manipulation 

 

 

 



Control 



The control problem 

 The control problem refers to situations where a 

chair seeks to change the outcome of an election  

 by adding/deleting voters 

 by partitioning voters 

 by adding/deleting candidates 

 

 Assumptions:  

 the chair knows all the voters' preferences and 

  all votes are cast simultaneously 

 Bartholdi, Tovey, and Trick. How hard is it to control an election? 

Math. And Computer Modeling, 1992. 



Constructive/destructive control 

 Constructive control  

 It refers to situations where a chair seeks to make 

a certain outcome the winner of an election 

 

 Destructive control 

 It refers to situations where a chair seeks to make 

a certain outcome a loser of an election 

 



Control by deleting voters 

 Let E be a rule 

 Constructive control by deleting voters 

we are given  

 an election (C,V) 

  a distinguished candidate c ∈ C 

 a nonnegative integer k ≤ ||V|| 

we ask whether we can delete at most k voters 

from V such that c is an E winner of the resulting 

election  

 



Control by adding voters 

 Let E be a rule 

 Constructive control by adding voters 

 we are given  

 a candidate set C 

 a list V of registered voters with preferences over C 

  a list V′ of as yet unregistered voters with preferences over 

C 

 a distinguished candidate c ∈ C 

 a nonnegative integer k ≤ ||V′|| 

  the question is whether we can add to V at most k 

voters from V′ such that c is an E winner of the 

resulting election 



Control by partitioning voters 

 Let E be a rule 

 Constructive control by adding voters 

we are given  

 An election (C,V) 

 a distinguished candidate c ∈ C 

we ask whether V can be partitioned into two 

sublists, V1 and V2, such that c is the unique 

winner of the two-stage election in which the 

winners of the two first-stage subelections (C,V1) 

and (C,V2) runs against each other in the final 

stage 



Control by adding candidates 

 Let E be a rule 

 Constructive control by adding candidates 

 we are given  

 a candidate set CD with CD= 

 C is the set of originally qualified candidates 

 D is the set of spoiler candidates that may be added 

 a list V of registered voters with preferences over C 

 a distinguished candidate c ∈ C 

 a nonnegative integer k 

 The question is whether we can add to C at most k 

candidates from D such that c is an E winner of the resulting 

election 

 



Control by deleting candidates 

 Let E be a rule 

 Constructive control by deleting candidates 

we are given  

 a candidate set C 

 a list V of registered voters with preferences over C 

 a distinguished candidate c ∈ C 

 a nonnegative integer k 

 The question is whether we can remove from C at 

most k candidates such that c is an E winner of the 

resulting election 

 



Example of control 

 Imagine that the chairperson of the election controls whether 

some alternatives participate 

 Suppose there are 5 alternatives, a, b, c, d, e 

 Chair controls whether c, d, e run (can choose any subset); 

chair wants b to win 

 Rule is plurality; voters’ preferences are: 

 a > b > c > d > e (11 votes) 

 b > a > c > d > e (10 votes) 

 c > e > b > a > e (2 votes) 

 d > b > a > c > e (2 votes) 

 c > a > b > d > e (2 votes) 

 e > a > b > c > e (2 votes) 

 



Outline 

 Impossibility results  

 Attempts to modify the winner 

 Manipulation 

 Control 

 Bribery 

 Complexity barrier against manipulation 

 Uncertainty in preference aggregation 

 Preference aggregation with incompleteness 

and incomparability 

 Voting tree 

 Related work 



Bribery 



The bribery problem 

 In bribery  

 there is an external agent who wishes to change 

the outcome of the election 

 To do this, he offers payments (within a budget) to 

voters for changing the preference orders to his 

liking 

 

 



Bribery 

 Let R be a voting rule 

 R-BRIBERY problem  

we are given  

 an election E = (C, V) 

  a designated candidate p in C 

 a natural number B 

we ask if it is possible to ensure that p is an R-

winner of E through changing the votes of at 

most B voters. 



$-Bribery 

 In R-BRIBERY, effectively, each voter has the same unit 

cost: We only care about bribing as few voters as possible 

  However, in many settings, the voters might have 

different prices, depending, for example, 

 on how much a particular voter cares about the result of the 

election or 

 on the nature of the bribery 

 

 R-$BRIBERY where each voter v has a price pv for 

changing his vote (after we pay v the pv units, we obtain full 

control over v’s vote) 



Swap-Bribery 

 R-SWAP-BRIBERY 
 each voter v has a cost function pv such that for each two 

candidates c, c’, pv (c, c’) is the cost of swapping c and c’ on 
v’s preference list (provided c and c’ are ranked next to each 
other).  

 

 For example 

 a voter might be willing to swap his two least favorite candidates at a 
small cost 

  but he would never— irrespective of the payment — change the top-
ranked candidate 

 

 The goal of the briber is to find a sequence of adjacent swaps  

 that leads to his or her preferred candidate’s victory, and 

 that has lowest cost 



Manipulation and $Bribery 

 Manipulation is a special case of $BRIBERY 

 the manipulation problem is a bribery problem 

where  

 the prices of manipulators are very low 

 the prices of nonmanipulators are very high 

 our budget allows us to buy the votes of all the 

manipulators but none of the nonmanipulators 



Uncertainty about votes 



Possible and necessary winners 

 Setting: some (parts of) votes are missing 

 Possible winner 

 There is a way for remaining votes to be cast so 

that he win 

 Necessary winner 

 However remaining preferences are cast, he 

must win 

 

 

 

Konzak and Lang. Voting Procedures with Incomplete Preferences.  IJCAI 
workshop 2005 

Pini, Rossi, Venable, Walsh. Incompleteness and Incomparability in Preference 
Aggregation. IJCAI 2007 



Preference elicitation and the 

possible/necessary winner problem 

 Preference elicitation 
 Some preferences may be missing 

 Time consuming, costly, difficult, … 

 Want to terminate elicitation as soon as winner 
fixed 

 

 Closely connected to preference elicitation 

 Elicitation can only be terminated iff  possible 

winner set = necessary winner set 

 



Manipulation and the possible 

winner problem 

 Manipulation is a special case of the 

possible winner problem, where  

 the nonmanipulators have fully specified 

preference orders 

  the manipulators have completely unspecifed 

preference orders 



Complexity barrier against 

manipulation 



The complexity shield (1) 

 The Gibbard-Satterthwaite Theorem shows that 
strategic manipulation can never be rule out 

 

 Idea: So it is always possible to manipulate; but 
may it may also difficult? 

 Tools from complexity theory can make this idea 
precise 

 

 Let F be a voting rule, if manipulation is 
computationally intractable for F, then F might be 
considered resistant to manipulation 



The complexity shield (2) 

 Standard procedures turn out to be easy to 

manipulate 

 It might still be possible to design new ones 

that are resistant 

 This approach is most interesting for voting 

procedures for which winner determination is 

tractable 



Manipulability as a decision problem 

 F: voting rule 

 Manipulability(F) 

  Instance: Set of votes for all except one voter; 

alternative x 

  Question: Is there a vote for the final voter such 

that x wins? 

 

   If this can be answered in polynomial time,              

then F is easy to manipulate 



Manipulability complexity 

 If  Manipulability(F) is computationally intractable, then 

manipulability may be considered less of a worry for 

procedure F 

 

 Remark: We assume that the manipulator knows all the other 

votes 

 This unrealistic assumption is reasonable for intractability 

results 

 If manipulation is intractable even under such favorable 

conditions, then all the better 

 For tractability results, one can assume to have polls 

 



Plurality is easy to manipulate 

 TH: Manipulability(Plurality)ε P 

 Proof 

 Simply vote for x, the alternative to be made 
winner by means of manipulation. If manipulation is 
possible at all, this will work. Otherwise not. 

 

 General: Manipulability(F) ε P for any rule F with  

 polynomial winner determination problem and 

  polynomial number of votes 

 

Bartholdi,Tovey,Trick. The Computational Difficulty of Manipulating an 

Election. Social Choice and Welfare 6(3): 227–241, 1989. 



Borda is easy to manipulate 

 MANIPULABILITY(Borda) ε P 

 Proof 

 Place x (the alternative to be made winner 

through manipulation) at the top of your vote 

 Then inductively proceed as follows: Check if any 

of the remaining alternatives can be put next on 

the ballot without preventing x from winning. If 

yes, do so. (If no, manipulation is impossible.) 

Bartholdi,Tovey,Trick. The Computational Difficulty of Manipulating an 

Election. Social Choice and Welfare 6(3): 227–241.] 



Algorithm Greedy-Manipulation 

 
 Input 

 preferences of all other voters 

 a distinguished candidate c 

 Output 

 a preference order that, together with those of all the other 

voters, will ensure that c is a winner, or  

 a claim that no such preference order exists, 

 Initialization: Place c at the top of the preference order. 

 Iterative Step. Determine whether any candidate can be 

placed in the next lower position (independent of other 

choices) without preventing c from winning 

 If so, place such a candidate in the next position  

 otherwise terminate claiming that c cannot win 



STV is difficult to manipulate 

 MANIPULABILITY(STV) ε NP-complete 

 Proof 

 NP-membership is clear: checking whether a given vote makes x 

win can be done in polynomial time (just try it, STV is polynomial 

to compute) 

 NP-hardness: by reduction from 3-Cover (X3C)  

 In an X3C instance 

 we are given  

 a set  

 a collection of subsets of size 3 of this set 

  we are asked if we can cover all of the elements in the set 

with nonoverlapping subsets 

 

 
Bartholdi, J., and Orlin, J. Single Transferable Vote Resists Strategic Voting. 

Social Choice and Welfare 1991 



Adding a preround 

 A preround proceeds as follows: 

 Pair the candidates 

 Each candidate faces its opponent in a 
pairwise knockout election 

 The winners proceed to the original rule 

 P-R: voting rule obtained running 
first a preround and the rule R 

 TH: Manipulability(P-Plurality) 
is NP-complete. 

 TH: Manipulability(P-Borda) is 
NP-complete. 

 Also holds for other rules 
Conitzer, Sandholm. Universal Voting Protocol Tweaks to Make 

Manipulation Hard. In Proc. IJCAI 2003 



Preround example (with Borda) 

Voter 1: A>B>C>D>E>F 

Voter 2: D>E>F>A>B>C 

Voter 3: F>D>B>E>C>A 

A gets 2 points 

F gets 3 points 

D gets 4 points and thus it wins 

Voter 1: A>D>F 

Voter 2: D>F>A 

Voter 3: F>D>A 

A vs B: A ranked higher by 1,2 

C vs F: F ranked higher by 2,3 

D vs E: D ranked higher by all 

Match A with B 

Match C with F 

Match D with E 

  STEP 1: 

A. Collect votes and  

B. Match alternatives  

(no order required) 

  STEP 2: 

Determine winners of 

preround 

  STEP 3: 

Infer votes on remaining 

alternatives 

  STEP 4: 

Execute original rule  

(Borda) 



Coalitions and weights 

 Manipulation can be done by 
 a single voter 

 a coalition of voters 

 It will rarely be the case that a single voter can make a 
difference. So we should look into manipulation by a coalition 
of voters 

 

 Manipulation can be done by 
 Weighted voters 

 Unweighted voters 

 

 Manipulation may be  
 constructive: making alternative x a unique or tied winner 

 destructive: ensuring x does not win 

 



Computational hardness as a 

barrier to manipulation 

 A (successful) manipulation is a way of misreporting one’s 

preferences that leads to a better result for oneself 

 

 Gibbard-Satterthwaite theorem 

 It tells us that for some instances, successful manipulations exist 

 It does not say that these manipulations are always easy to find 

 

 Do voting rules exist for which manipulations are 

computationally hard to find? 

 



Inevitability of manipulability 

 Recall Gibbard-Satterthwaite theorem: 

 Suppose there are at least 3 alternatives 

 There exists no rule that is simultaneously: 
 onto (for every alternative, there are some votes that 

would make that alternative win), 

 nondictatorial, and 

 nonmanipulable 

 Typically don’t want a rule that is dictatorial or not 
onto 



(Coalitional) Manipulation with 

weighted/unweighted votes 

Unweighted 

voters 

Weighted 

voters 

Individual 

manipulation  

Coalitional 

manipulation 

Can be 

hard 
easy 

easy 

easy 

Constant #alternatives Unbounded #alternatives 

Can be 

hard 

Can be 

hard 

Can be 

hard 
Potentially 

hard 

Unweighted 

voters 

Weighted 

voters 

Do voting rules exist for which manipulations are 

computationally hard to find? 



Constructive manipulation 

 CONSTRUCTIVE-MANIPULATION:  

We are given a voting rule r,  the (unweighted) votes 
of the other voters, and an alternative p  

We are asked if we can cast our (single) vote to 
make p win 



Constructive weighted manipulation  

 We are given the weighted votes of the others 
(with the weights) 

 And we are given the weights of members of 
our coalition 

 Can we make our preferred alternative p win? 

 

  



Constructive weighted manipulation  

 Borda example 

 Voters 
 Voter 1 (weight 4): A>B>C 

 Voter 2 (weight 7): B>A>C 

 Manipulators 
 one with weight 4 

 one with weight 9 

 Can we make C win? Yes! 
Solution:  

 weight 4 voter votes C>B>A,  

 weight 9 voter votes C>A>B 
 Borda scores: A: 24, B: 22, C: 26  



Veto is NP-hard to manipulate 

with 3 or more candidates 

 TH: WEIGHTED-COALITIONAL-CONSTRUCTIVE-
MANIPULABILITY(Veto) is NP-complete with 3 or more 
candidates. 

 Proof 

 In NP since we can just give the manipulation 

 To show NP-hardness, we give a simple reduction of PARTITION  

 Given m integers ki with sum 2K, is there a partition with sum K? 

 Reduce to manipulate election so p wins against a or b 

 Assume one agent with weight 2K-1 has vetoed p 

 Each of the votes of the m manipulators has weight 2ki 

 their combined weight is 4K 

 The only way for p to win is if the manipulators can veto a with 2K 
weight, and b with 2K weight 

 But this solves the PARTITION problem 



 
Weighted-coalitional constructive manipulation 

 Conitzer, Sandholm, and Lang. When are elections with few 

candidates hard to manipulate, J. ACM, 2007 



Destructive manipulation 

 Exactly the same, except: 

 Instead of a preferred alternative 

 We now have a hated alternative 

 Our goal is to make sure that the hated 

alternative does not win (whoever else wins) 

 



  Weighted-coalitional destructive manipulation 

 Conitzer, Sandholm, and Lang. When are elections with few 

candidates hard to manipulate, J. ACM, 2007 



  Weighted-coalitional manipulation 



Destructive manipulation with 

weighted votes 

 If constructive manipulation is easy     

then destructive manipulation is easy 

Destructive manipulation can be easy even though 

constructive manipulation is hard 

 E.g. Borda is  

 Polynomial to manipulate destructively  

 NP-hard to manipulate constructively for 3 or more 

candidates for a weighted coalition 

 



Hardness is only worst-case… 

 Results such as NP-hardness suggest that the 
runtime of any successful manipulation 
algorithm is going to grow dramatically on some 
instances 

 But there may be algorithms that solve most 
instances fast 



Bad news… 

 Increasingly many results suggest that many instances 
are in fact easy to manipulate 

 

 Heuristic algorithms and/or experimental (simulation) 
evaluation [Conitzer & Sandholm AAAI-06, Procaccia & Rosenschein JAIR-07, 

Conitzer et al. JACM-07, Walsh IJCAI-09 / CARE-09] 

 

 Algorithms that only have a small “window of error” of 
instances on which they fail [Zuckerman et al. AIJ-09, Xia et al. 
EC-10] 



Uncertainty in Preference 

aggregation 



Outline 

 Uncertainty in preference aggregation 

Preference aggregation with 

incompleteness and incomparability 

 Incompleteness: missing preferences 

 Incomparability: incomparable pairs 

Preference aggregation in voting trees  

Simple voting trees 

Voting trees 

 

 

 



Preference aggregation with 

incompleteness and incomparability  



Motivation - (1) 

 How to combine preferences of multiple agents in 

presence of incompleteness and incomparability in 

their preference orderings over a set of outcomes? 

 Incompleteness: absence of knowledge on 

relationship between pairs of outcomes 

 ongoing preference elicitation  

 agents’ privacy 

 Incomparability: some elements cannot be compared 

 novel incomparable to a biography 

 fast expensive car incomparable to slow cheap car 



Motivation - (2) 

 Goal: aggregate the agents’ preferences into a 

single pref. ordering 

 Since there are incomplete preferences, we focus 

on computing: 

 Possible winners (PW): 

 outcomes that can be the most preferred ones for the agents 

 Necessary winners (NW): 

outcomes that are always the most preferred ones for the 

agents 

 Useful for preference elicitation 



Outline 

 Basic notions on preferences 

 Possible and necessary winners 

 Computing PW and NW: NP-hard  

 Approximating PW and NW: NP-hard 

 Sufficient conditions on preference aggregation 

such that computing PW and NW is polynomial  

 How PW and NW are useful in preference 

elicitation 



Basic notions - (1) 

 Multi-agent scenario: each agent expresses his 

preferences via an (incomplete) partial ordering 

over the possible outcomes 

 preferences over outcomes A and B 

 A>B or A<B       (ordered) 

 A=B                   (in a tie) 

 A~B                   (incomparable) 

 A?B                   (not specified) 

 Example: A,B,C outcomes   

? 

> ~ 



Basic notions - (2) 

 Incomplete profile: sequence of  partial orders over 

outcomes, one for every agent, where at least one partial 

order is incomplete 

• Preference aggregation function:             

incomplete profiles  sets of P0s 
 

    We will consider only functions that take polynomial time to apply 

? 

> ~ 

> 

~ > 

> 

> > 



? 

> ~ 

> 

~ > 

> 

> > 

Preference aggregation function: example with Pareto 

only completions that are POs! 

Pref. aggr. function:  

incomplete profiles  sets of P0s  

Pareto: POs  PO 

•A>B iff A>B  or A=B for all 

agents, and A>B for at least 

one 
•A~B otherwise 

~ 

~ ~ 

> 

~ ~ 

>, ~ 

~ ~ 

Combined result 

> 

~ > 

> 

> > 

> 

> ~ 

> 

~ > 

> 

> > 

~ 

> ~ 



Possible and necessary winners 

 We extend notions of PW and NW to POs 

 Necessary winners 

  outcomes which are maximal in every completion 

 winners no matter how incompleteness is resolved 

 Possible winners  

  outcomes which are maximal in at least one 

completion 

 winners in at least one way in which incompleteness is 

resolved  



? 

> ~ 

> 

~ > 

> 

> > 

> 

~ ~ 

> 

~ > 

> 

> > 

> 

~ > 

> 

> > 

~ 

~ ~ 

> 

> ~ 

~ 

> ~ 

NW={A,B} 

PW={A,B,C} 

Possible and necessary winners: example with Pareto 



PW and NW: complexity results 

 Computing PW and NW is NP-hard        

 (even restricting to incomplete TOs) 

 deciding if an outcome is   

 a possible winner: NP-complete 

 a necessary winner: coNP-complete 

 Computing good approximations of PW and NW is 

NP-hard 

  good approximation:    for all k positive integer 

 a superset PW* s.t. |PW*| < k |PW| 

 a subset NW* s.t. . |NW*| >1/k |NW|, whenever |NW|>0 

 



PW and NW: tractable case 

 Given the combined result, PW and NW are easy to find 

 A in NW if no arc (A-B) with B>A 

 A in PW if all arcs (A-B) with B>A contain also other labels  

 Computing the combined result: in general NP-hard 

 If f is IIA and monotonic 

 we can compute an upper approximation (cr*) in polynomial 

time 

 Also, given cr*, polynomial to compute PW and NW 

 algorithm not affected by approximation 

 IIA: when  rel(A,B) in the result depends only by rel(A,B) given by 

the agents 

 monotonic: when we improve an outcome in a profile (for ex. we 

pass from A>B to A=B ), then it improves also in the result 



Cr*: upper approximation of the  

combined result 

 Obtained by: 

 Considering two profile completions:  

 (A?B) replaced with (A>B) for every agent   

 (A?B) replaced with (A<B) for every agent  

 Then two results (A r1 B) and (A r2 B) 

 In cr*, put (A r B) where r is {r1,r2,everything between 

them} 

 Order of relations: <, = and , >  

 f is IIA and monotonic  cr* upper approx.of cr 

 Approximation only on arcs with all four labels 

 involves only = and  



cr* upper approx.of cr: example with Lex 

? 

> > 

> 

> > 

< 

> > 

Lex:                    
agents are ordered, 

ArB given by the 

first agent in the 

order that doesn’t 

declare A=B 

>, =,~, < 

> > 

cr*  

PW = {A,B} 

NW =   



Computing PW and NW 

 Algorithm computing NW and PW in 

polynomial time, given cr* 

 Input 

 f: IIA, monotonic  pref. aggregation function 

 ip: incomplete profile over outcomes in  

 cr*(f,ip): approximation of combined result 

Output  

 P, N: sets of outcomes 



Computing PW and NW easily  

Input:  f: IIA, monotonic pref. aggr. function,   

           ip: incomplete profile,  

           cr*(f,ip): approximation of combined result 

Output:  P, N: sets of outcomes  

P, N 

foreach A do 

 if  C   s.t.   {<}  rel*(A,C) then 

 N  N  {A} 

 if  C   s.t.   {<} = rel*(A,C) then 

 P  P  {A} 

return P,N 

It terminates in O(||2) time  

with N=NW and P=PW 



IIA+monotone pref. aggr. functions 

 Pareto: given any two outcomes A and B 

 A>B iff A>B  or A=B for all agents and A>B for at least 
one 

 A~B otherwise 

 Lex 
 agents are ordered and, given any two outcomes A 

and B, the relation between them in the result is the 
one given by the first agent in the order that doesn’t 
declare A=B 

 Approval voting 
 tractability result already proven in [Konczak and 

Lang, 2005] since it is a positional scoring rule 



Preference elicitation - (1) 

 Process of asking queries to agents in order to 
determine their preferences over outcomes   

                                                                              [Chen and Pu, 2004] 

 At each stage in eliciting preference there is a set of 
possible and necessary winners 

 PW = NW  preference elicitation is over, no 
matter how incompleteness is resolved   

 Checking when PW = NW: hard in general           

                                                    [Conitzer and Sandholm, 2002]  

 We prove that pref.elicitation is easy if f is IIA 



Preference elicitation - (2) 

 PW = NW preference elicitation is over 

 At the beginning:                       NW=   PW= 

 As preferences are declared:    NW      PW  

 If PW  NW, and APWNW, A can become a   

loser or  necessary winner 

Enough to perform ask(A,B), BPW   

 CPW is a loser  dominated 

 f is IIA   ask(A.B) involves only A-B preferences 

 O(|PW|2) steps to remove incompleteness 



Preference elicitation - (3) 

 f is IIA  determining set of winners via 

pref. elicitation is polynomial in |agents| 

and |outcomes| 



 

Input:  f: IIA, pol. computable pref. aggr. function,  

            P, N: set of outcomes 

Output:  W: set of outcomes 

wins: bool, PPW, NNW 

while  PN do 
 choose APN  
 wins  true, Pa  P  {A} 
 repeat 

 choose BPa  
 if agent s.t.  A?B then 

 ask(A,B) 
 compute f(A,B) 

  if f(A,B)=(A>B) then 
  P  P  {B} 

  if f(A,B)=(A<B) then 
  P  P  {A}; wins  false 

 Pa  Pa  {B} 
 until f(A,B) = (A<B) or Pa =  
 if wins=true  then 

 N  N  {A} 

W N, return W 

We can use P and N returned 

by previous algorithm 

Winner  
determination 



Main results 

 Computing PW and NW : NP-hard 

 Computing good approximations of PW and NW: 
NP-hard 

 Computing the combined result: NP-hard 

 If f IIA+monotonic (and pol. computable) then 
 computing an approximation of cr is polynomial 
 computing PW and NW is polynomial 

 if f IIA then 
 preference elicitation (i.e., until PW=NW) is 

polynomial 

Pini,Rossi,Venable,Walsh, Incompleteness and Incomparability in 

Preference Aggregation: Complexity Results. Artificial Intelligence 2011 



Future work 

 Adding constraints to agents’ preferences 

 possible and necessary winner must be also 
feasible 

 Expressing preferences via compact knowledge 
representation formalisms (Ex.: CP-nets and soft 
constraints) 

 determining PW and NW directly from these 
compact formalisms 

 Adding possibility distribution over the 
completions of an incomplete preference relation 
between outcomes 



Winner determination in voting trees 



Outline 

 Background 
 Incomplete preferences 

 Incomplete profiles 

 Complete majority graph 
 Condorcet winner 

 Schwartz winner 

 Fair Schwartz winner 

 Incomplete majority graph 
 Possible/necessary Condorcet winners 

 Possible/necessary Schwartz winner 

 Winner determination for (simple) voting tree 
 From the majority graph 

 From the weighted/unweighted profile 

 Complexity results 

 Balanced agendas  
 



Preferences 

 Agents express their preferences over 

candidates by a (possibly incomplete) 

total order 

An agent may state  

a preference over a  

pair of candidates 

Other agents may not  

know their preference  

Why? 

…or may not want  

to disclose it  

A?B A>B 



Profiles 

 When many (n) agents are involved: 

 Profile: sequence of n total orders 

 

 

 

 

 

 Incomplete profile: one or more total orders are incomplete 

 

A>B>C>D A>C>B>D B>D>A>C C>B>D>A D>A>C>B 

A>B>C>D 
A>C>B, A?D, 

B?D, C?D 
B>D>A>C 

C>B>A,D>A 

B?D,C?D  

D>A>B,C>B 

A?C, D?C 



Complete Weighted profiles 
 

 Complete weighted profile:  

 Each agent has a given weight 

 all preferences are known 

 

weights 20 2 2 2 2 

A>B>C C>B>A B>A>C C>B>A A>C>B preferences 



Incomplete Weighted profiles 

A>B>C>D 
A>C>B, A?D, 

B?D, C?D 
B>D>A>C 

C>B>A,D>A 

B?D,C?D  

D>A>B,C>B 

A?C, D?C 

20 2 5 10 2 

 

 Incomplete weighted profile:  

 Each agent has a given weight  

 Some preferences are not known 

 



 Given profile P, its majority graph M(P) is s.t.: 

 Nodes correspond to candidates 

 Directed edge AB iff majority says A>B   

A 

C 

B 

D 

Profile P 

Majority Graph M(P) 

A 

D 

B 

Relation of the  

majority graph  

not transitive! 

n is odd! 

A>B>C>D A>C>B>D B>D>A>C C>B>D>A D>A>C>B 

Majority Graph of a Profile 



Majority Graph of an Incomplete Profile 
 Given an incomplete profile P, its majority graph 

M(P) is s.t.: 

 Nodes correspond to candidates 

 Directed edge A B iff more than half says A>B 

 No edge if no majority   

Incomplete Profile P 

Incomplete Majority Graph   

M(P) 

A 

C 

B 

D D 

B 

A>B>C>D 
A>C>B, A?D, 

B?D, C?D 
B>D>A>C 

C>B>A,D>A 

B?D,C?D  
D>A>B,C>B 

A?C, D?C 



Majority Graph of an Incomplete Weighted Profile 

 Given an incomplete weighted profile P, its majority graph M(P) is s.t.: 

 Nodes correspond to candidates 

 Directed edge AB iff the weighted majority says A>B 

 No edge if no weighted majority 

Incomplete Profile P 

Incomplete Majority Graph   

M(P) 

A 

C 

B 

D D 

A>B>C>D 
A>C>B, A?D, 

B?D, C?D 
B>D>A>C 

C>B>A,D>A 

B?D,C?D  

D>A>B,C>B 

A?C, D?C 

15 3 5 10 2 

C 



Binary voting tree 

 Given a set of candidates, a binary voting tree T is 

such that 

 Terminal node = candidate 

 Non-terminal node = winner of its two children 

 Balanced iff  |maxdepth - mindepth| ≤ 1 

A B C D 

W1= 

W(A,B) 

W2= 

W(C,D) 

W(W1, 

W2) 

C 

D 

W(W2, 

D) 

W2= 

W(W1,C) 

B A 

W1= 

W(A,B) 

Balanced  Unbalanced  



Simple voting tree 

 Binary voting tree T  voting rule rT 

 rT: majority graph G  candidate (winner) 

 Every candidate can appear once in the leaves 

 Sequence of pairwise comparisons   (also called agenda) 

between candidates 

A 

C 

B 

D 

A B C D 

W1= 

W(A,B) 

W2= 

W(C,D) 

W(W1, 

W2) 

G 
T 

rT 

Winner 

rT(G) 

A B A B 

C D 

A C 

C D 

A C 

A 

A 

A B C D 

W1= 

W(A,B) 

W2= 

W(C,D) 

W(W1, 

W2) 



Voting tree 

 Voting tree: an extension of 

simple voting tree where 

 every candidate can appear 

several times as leaf 

 

 

A B C D 

W1= 

W(A,B) 

W2= 

W(C,D) 

W(W1, 

W2) 

A B 

A C 

C D 

A C 

A 

A B A D 

W1= 

W(A,B) 

W2= 

W(A,D) 

W(W1, 

W2) 



Different  tree, different winner 

A 

C 

B 

D 

G 

T 

rT 

Winner 

rT(G) 

A B 

C D 

Winner 

rT(G) 

C 

D 

W(W2, 

D) 

W2= 

W(W1,C) 

B A 

W1= 

W(A,B) 

A B 

A A C 

A A D 

D 

D 

C 

D 

W(W2, 

D) 

W2= 

W(W1,C) 

B A 

W1= 

W(A,B) 



Simple voting trees 



Condorcet winner 

 Given a profile P, candidate A is a Condorcet 
winner iff ∀T, binary tree, rT(M(P))=A.  

 Given M(P), A is a Condorcet winner iff its node 

in M(P) has only outgoing edges 

 Polynomial time   

A 

C 

B 

D 

No Condorcet winner 

A 

C 

B 

D 

Condorcet winner 

If Ǝ, then unique 



Schwartz winners 

 Given a profile P, candidate A is a Schwartz 
winner iff ƎT, binary tree, such that rT(M(P))=A.  

 Given M(P), candidate A is a possible winner iff 
there is path from node A to every other node 

  Polynomial time   

A 

C 

B 

D 

A B 

C D 

A 

B 

A 

A 

D C 

C 



Incomplete preferences 

 
Possible Schwarz (PS) winner A: ∃ completion of maj. graph /profile,          

∃ voting tree s.t. A wins 

Necessary Schwartz (NS) winner A:  ∀ completion of maj. graph/profile,    
∃ voting tree s.t. A wins  

Possible Condorcet (PC) winner A: ∃ completion of maj. graph/profile,                                      
s.t. ∀ voting tree A wins  

Necessary Condorcet (NC) winner A:∀ completion of maj. graph/profile, 
s.t. ∀voting tree  A wins 

 

               

 

 Who will win? Different types of uncertainty: 

 Unknown voting tree 

 Incomplete preferences  
 incomplete profile 

 incomplete majority graph 

                                        

 

 

                

 



Incomplete preferences 

 
Possible Schwarz (PS) winner A: ∃ completion of maj. graph /profile,          

∃ voting tree s.t. A wins 

Necessary Schwartz (NS) winner A:  ∀ completion of maj. 
graph/profile,    ∃ voting tree s.t. A wins  

Possible Condorcet (PC) winner A: ∃ completion of maj. graph/profile,                                      
s.t. ∀ voting tree A wins  

Necessary Condorcet (NC) winner A:∀ completion of maj. 
graph/profile, s.t. ∀voting tree  A wins 

 

                    NC ⊆ PC ∩ NS        PC   NS ⊆ PS 

 

 

PC 

NS 
NC 

PS 



Completions of the Majority graph and Profile 

 completion of the profile P     completion of the maj. graph M(P) 

 Not vice versa (transitivity!) 

 Completions(M(P)) ⊇ {M(P’)| P’ completion of P} 

 Example: 1 agent 

Profile             profile completions  Majority graph      Maj. G. completions 

A 

C 

B 

? 

? 

A C 

B 

A 

B 

C 

A 

C 

B 

C 

A 

B 

A C 

B 

A C 

B 

A C 

B 

A C 

B 



Possible Schwartz winners 
 P : unweighted profile 

 M(P) : majority graph 

 PS(P): A∈PS(P) iff ∃ completion of profile P, ∃ voting tree s.t. A 
wins 

 PS(M(P)): A∈WP(M(P)) iff ∃ completion of maj. graph M(P) , ∃ 
voting tree s.t. A wins 

 

PS(M(P)) 

∃ completion of P  ∃ completion of M(P) 

PS(P) 

Profile             profile completions  

B 

? 

? 

A 

B 

C 

A 

C 

B 

C 

A 

B 

Majority graph      Maj. G. completions 
A C 

B 

A C 

B 

A C 

B 

A C 

B B 

A 

C 

A 

B 

C 

B ∉ PS(P) 

B ∈ PS(M(P)) 

B 

B B 

PS(P)⊆PS(M(P)) 



Possible Condorcet  winners 

WC(M(P)) 

∃ completion of P  ∃ completion of M(P) 

PC(P)=PC(M(P))  P : unweighted profile 

 M(P) : majority graph 

 PC(P): A∈PC(P) iff ∃ completion of profile P, ∀ voting tree s.t. A 
wins 

 PC(M(P):  A∈PC(M(P)) iff ∃ completion of maj. graph M(P) , ∀ 
voting tree s.t. A wins 

 

M(P) 

A∈PC(M(P)) 
      iff A 

C B D 

A 

C B D 

Agent 

Putting a candidate above all others 

never causes transitivity problems 

If A∈PC(M(P)) 
then A∈PC(P) 

PC(P)=PC(M(P)) 



Necessary Schwartz winners 
 P : unweighted profile 

 M(P) : majority graph 

 NS(P): A∈NS(P) iff ∀ completion of profile P, ∃ voting tree s.t. A 
wins 

 NS(M(P)):  A∈NS(M(P)) iff ∀ completion of maj. graph M(P) , ∃ 
voting tree s.t. A wins 

 

Completions(M(P)) ⊇ {M(P’)| P’ completion of P} 

NS(M(P))⊆NS(P) 

NS(M(P) 

NS(P) 



Necessary Condorcet winners 
 P : unweighted profile 

 M(P) : majority graph 

 NC(P): A∈NC(P) iff ∀ completion of profile P, ∀ voting tree s.t. 
A wins 

 NC(M(P)):  A∈NC(M(P)) iff ∀ completion of maj. graph M(P) , ∀ 
voting tree s.t. A wins 

 

Completions(M(P)) ⊇ {M(P’)| P’ completion of P} 

NC(M(P))=NC(P) 

SP(P) 

If A ∈ NC(P)   then   

M(P) 
A 

C B D C 

No arrows involving A  
can be missing or against A   

A ∈ NC(M(P)) 

NC(P)=NC(M(P)) 



Computing majority graph winners 

 Polynomial for simple voting trees for all types of winners 

 A is a Possible Schwartz winner iff it is possible to 

complete the majority graph such that every outcome is 

reachable from A 

 A is a necessary Schwartz winner iff, ∀B, there is a path 

from A to B in G 

 A is possible Condorcet winner iff A has no ingoing edges 

 A is a necessary Condorcet winner iff A has  outgoing 

edges to all other candidates  

 

 

 

 

[Lang, Pini,Rossi,Venable,Walsh, IJCAI 07] 

[Pini,Rossi,Venable,Walsh, KR08] 



Outline 

 Background 
 Incomplete preferences 

 Incomplete profiles 

 Complete majority graph 
 Condorcet winner 

 Schwartz winner 

 Fair Schwartz winner 

 Incomplete majority graph 
 Possible/necessary Condorcet winners 

 Possible/necessary Schwartz winner 

 Winner determination for (simple) voting tree 
 From the majority graph 

 From the weighted/unweighted profile 

 Complexity results 

 Balanced agendas  
 



A>B>C>D 
A>C>B, A?D, 

B?D, C?D 
B>D>A>C 

C>B>A,D>A 

B?D,C?D  

D>A>B,C>B 

A?C, D?C 

8 3 10 2 

1 

1 1 
1 

1 
1 1 

1 

1 1 1 1 1 1 1 1 

1 
1 1 1 
1 
1 
1 

1 1 

A>B>C>D 
A>C>B, A?D, 

B?D, C?D 
B>D>A>C 

C>B>A,D>A 

B?D,C?D  

D>A>B,C>B 

A?C, D?C 

1 

Weighted profile P 

Unweighted profile P’ 

M(P)=M(P’) 

Completions(P’)⊇Completions(P) 

NC(P)=NC(P’) 

PC(P)=PC(P’) 

                       From weighted to unweighted 



Winners sets  
(weighted or unweighted profile)  

PS(M(P)) 
PS(P) 

PC(P)=PC(M(P)) 

NS(P) 

NS(M(P)) 

NC(P)=NC(M(P)) 

 PC(P) = PC(M(P))    and   NC(P) = NC(M(P)) 

 PS(P)  PS(M(P))    and   NS(P)  NS(M(P)) 

 



Complexity results:  

Possible Condorcet Winners 

Theorem: 

 P incomplete weighted profile 

 “A ∈PC(P)?” is polynomial 

Proof 

1. P  unweighted P’ 

2. PC(P)=PC(P’) 

3. PC(P’)=PC(M(P’)) 

4. A∈PC(M(P’)) iff all arrows involving A in 
M(P’) do not point against A (polynomial 
test)  



Complexity results:                                    

Necessary Condorcet Winners 

Theorem: 

 P incomplete weighted profile 

 “A ∈NC(P)?” is polynomial 

Proof 

1. P  unweighted P’ 

2. NC(P)=NC(P’) 

3. NC(P’)=NC(M(P’)) 

4. A∈NC(M(P’)) iff all arrows involving A in 
M(P’) are not missing and do not point 
against A (polynomial test)  



Complexity results:                     

Possible Schwartz Winners 

Theorem: 

 P incomplete weighted profile, 3 or more 

candidates 

 “A ∈PS(P)?” is NP-complete 

Proof 

     Reduction from the number partitioning 

problem 



X= incomplete 

maj.graph 

Y=tree                              
[Lang et al. iIJCAI’07] 

X=incomplete weighted 

profile 

Y=tree 

PossibleCondorcet 

ƎX  ∀Y 
EASY 

No ingoing edges 

EASY 

Same set as 

Necessary Condorcet 

∀X  ∀Y 
EASY 

Only outgoing edges 

EASY 

Same set as 

 

Possible Schwartz 

ƎX  ƎY 

EASY 

Completion with path 

to every candidate 

NP-complete   

Reduction from the 

number partitioning 

problem 

Necessary Schwartz 

∀X  ƎY 

EASY 

Path to every 

candidate 

? 

Complexity results 



Fair Possible Schwartz Winners 

 Some possible winners may win only on very 
unbalanced trees, competing only few times. 
UNFAIR! 

 

 Fair  possible Schwartz  (FPS) winner A :                              
∃ completion of maj. graph/profile, ∃ balanced 
simple voting tree s.t. A wins 

 

 Fairness comes from the fact that both finalists will 

have faced the same number of competitions, or the 

same number plus or minus one. 

 

 

 



Complexity results:                       

Fair Possible Schwartz Winners 

Theorem: 

 P incomplete weighted profile, 3 or 
more candidates 

 “A ∈FPS(P)?” is NP-complete 

Proof 

1. When there are 3 candidates, then 
every simple voting tree is balanced 

2. Conclude as for PS(P) 



Fixed trees: possible and necessary winners 

 T: simple voting tree 

 A: a candidate 

 

 Necessary winner (NW):   completion of maj. 
graph/profile, A wins in the fixed tree T 

 

 Possible winner (PW) :   completion of maj. 
graph/profile, A wins in the fixed tree T 

 

 



Determining possible/necessary winners 

for simple voting trees 

Algorithm 1: Win 

1.  Input: T: simple voting tree, G: incomplete maj. graph; 

2.  Output: W: set of candidates; 

3.  if  root(T)≠nil and left(T)=right(T)=nil  then 

4.         W  root(T); 

5.  else 

6.        W1  Win(left(T), G); 

7.        W2  Win(right(T), G); 

8.        W   W1  W2; 
9.        foreach  sW1 do 

10.               if  s <m r,  rW2   then  

11.                    W  W – {s}; 

12.        foreach  rW2 do 

13.               if  r <m s,  sW1   then  

14.                    W  W – {r}; 

15.  return W;                                                 

 

W contains 

 possible 

winners 

If |W|=1  

necessary 

winner 

Th.: “A ∈PW(G)?”, “A ∈NW(G)?”, are polynomial 

  



Possible and necessary winners: an example 

 ={A, B, C, D, E, F, H, I}:  set of candidates 

 T: simple voting tree 

 G: incomplete majority graph 

A 

F 

B 

E 

G T 

A B 

F E 

A 

C D C D 

H I H I 
B E F 

W1= 

W(A,B) 

W2= 

(H,I) 

W3= 

W(C,D) 

W4= 

W(E,F) 

W5= 

W(W1,W2)) 
W6= 

W(W3,W4)) 

W(W5,W6)) 

A I {C,D} E 

A {C,D,E} 

A 

A B H I H I C D C D E F 

Win returns a single 

candidate A  A is a NW 



Complexity result: Possible winners 

Theorem: 
 P incomplete weighted profile,  
 3 or more candidates 
 T simple voting tree 
 “A ∈PW(P,T)?” is NP-complete 
 

Proof 
 Reduction from the number partitioning problem 

 

This theorem holds also  when T is balanced 
when there are 3 candidates, every simple voting tree is balanced 

 



Complexity result: Necessary winners 

Theorem: 

 P incomplete weighted profile,  

 4 or more candidates 

 T simple voting tree 

 “A ∈NW(P,T)?” is coNP-complete 

 

Proof 

 Reduction from the number partitioning 
problem 



Summary: Winners with missing preferences 

 

                                        A is a : 
Possible Schwartz winner  (PS)       if  ∃ completion of maj. graph /profile,  ∃ (simple) voting tree   

 

Necessary Schwartz winner (NS)   if  ∀ completion of maj. graph/profile,  ∃ (simple) voting tree    

 

Possible Condorcet winner   (PC)   if  ∃ completion of maj. graph/profile,  ∀(simple) voting tree   

 

Necessary Condorcet  winner  (NC)  if ∀ completion of maj. graph/profile,  ∀ (simple) voting tree  

                                                          

                                        A wins         
 

 

When tree T is fixed: 

 

Possible winner A  (PW):         ∃ completion of maj. graph/profile s.t. A wins given T 

 

Necessary  winner A  (NW):   ∀ completion of maj. graph/profile s.t. A wins given T 

 
 

                     

 

 

 

                

 



M(P) 

          P 

Weights  

n bounded 

No Weights,  

n bounded 

Weights,  

n unbounded 

 

No Weights,  

n unbounded 

 

PS 

NS 

PC 

NC 

FPS 

PW 

NW 

P 
NP-c 

P 

P 

P 

P 

P 

P 

P 

P 

NP-c 

NP-c 

coNP-c 

? 

P P 

P P 

P P 
P 

P 

P P 

P P 

P P 

P 

P 

P 

P 

P 

NP-c 

? 
NP-c 

P ? 
P 

P 

NP-c 

coNP-c 

P ? 
P ? 
P 

P 
P 

P 

? ? 
P 

P 

NP 

coNP 

? 

Lang,Pini,Rossi, Salvagnin,Venable,Walsh,          

Journal of Autonomous Agents and Multiagent Systems 2012 



Majority graph vs profile 

 What was known about winners 

Simple voting trees 

Possible Schwartz ≠ 

Necessary Schwartz ? 

Possible Condorcet = 

Necessary Condorcet = 

Possible winners ? 

Necessary winners ? 

Lang,Pini,Rossi,Venable,Walsh, IJCAI 07 

Pini,Rossi,Venable,Walsh,  KR08 



Necessary Schwartz winners 
Simple voting trees 

Possible Schwartz ≠ 

Necessary Schwartz ≠ 

Possible Condorcet = 

Necessary Condorcet = 

Possible winners ? 

Necessary winners ? 

 Consider this incomplete profile with 5 agents and 5 candidates 

 agent 1: (A1>B2>B3, A>B1) 

 agent 2: (B2>B3>A1>B1>A) 

 agent 3: (A>A1>B3>B1>B2) 

 agent 4: (B1>A>B2>B3>A1) 

 agent 5: (B3>B1>B2>A>A1) 

 

 A is a not Necessary Schwartz winner from the majority graph (no path from A to B1) 

 A is a Necessary Schwartz Winner from the profile: 2 possible completions for P:  

 1st completion:  A1>A   A1>B1 for transitivity   A1>B1 in G     

 Tree:  B2,B3 B2,B1  B1,A1  A1,A A wins 

  2nd completion : A>A1  A> B2  for transitivity   A>B2 in G     

 Tree:  B1,B3 B3,B2  B2,A A,A1 A wins 

B1 

B2 

A 

A1 

B3 

Incomplete 

Majority  

Graph G 

But = with 3 candidates 

∀ completion of  

maj. graph/profile,   

∃ (simple) voting tree  



Possible  winners 
Simple voting trees 

Possible Schwartz ≠ 

Necessary Schwartz ≠ 

Possible Condorcet = 

Necessary Condorcet = 

Possible winners ≠ 

Necessary winners ? 

Consider this incomplete profile with 1 agent and 3 candidates 

agent 1: (A>B) 

 

 

 

 

 

 

 

 

B is a Possible Winner from the majority graph 

B is not a Possible Winner from the profile 

A 

B 

C 

Majority  

graph 

(Simple) voting tree 

A C 

B 

∃ completion of  

maj. graph/profile,   

Fixed (simple)  

voting tree  



Necessary winners 
Simple voting trees 

Possible Schwartz ≠ 

Necessary Schwartz ≠ 

Possible Condorcet = 

Necessary Condorcet = 

Possible winners ≠ 

Necessary winners ≠ 

E C F D 

B 

A 

B 

C 

A 

D 

E 

F 

Majority  

graph 

Consider this incomplete profile with 5 

agents and 5 candidates 

agent 1: (E>B>C, F>D>A) 

agent 2: (A>E>F>D>B>C) 

agent 3: (A>C>D>F>E>B) 

agent 4: (C>D>F>E>B>A) 

agent 5: (B>A>F>E>C>D) 

     (E>F  E>D in G) 

No Necessary Winners from  

the majority graph   

 

A is a Necessary winner from the profile 

(Simple) 

voting  

tree 

But = with 3 candidates 

C,F E,D 

B,F,E 

A,B 

E,F,C 

E>F F>E 



Voting trees 



Voting tree 

 Voting tree: an extension 

of simple voting tree 

where 

 every candidate can 

appear several times as lea 

 

 

A B C D 

W1= 

W(A,B) 

W2= 

W(C,D) 

W(W1, 

W2) 

A B 

A C 

C D 

A C 

A 

A B A D 

W1= 

W(A,B) 

W2= 

W(A,D) 

W(W1, 

W2) 



Results for voting trees 
Simple voting 

trees 

Voting trees 

Possible Schwartz ≠ ≠ 

Necessary Schwartz ≠ ≠ 

Possible Condorcet = = 

Necessary Condorcet = = 

Possible winners ≠ ≠ 

Necessary winners ≠ ≠ 

All inequality results transfer automatically from simple voting 
trees that are a special case of voting trees. 

 

All equality results can be derived from the proofs since it is 
never required for a candidate to appear in at most one leaf 

 



Computing majority graph winners 

 Polynomial for simple voting trees for all types of 
winners 
 A is a Possible Schwartz winner iff it is possible to 

complete the majority graph G such that every outcome 
is reachable from A 

 A is a necessary Schwartz winner iff, ∀B, there is a path 
from A to B in G 

 A is possible Condorcet winner iff A has no ingoing 
edges in G 

 A is a necessary Condorcet winner iff A has  outgoing 
edges to all other candidates in G 

 

 

 All results transfer to voting trees 

 

 

[Lang, Pini,Rossi,Venable,Walsh, IJCAI 07] 

[Pini,Rossi,Venable,Walsh, KR08] 



Computing winners from majority graphs 

 For simple voting trees it is polynomial:  

1. If root(T)≠∅ and right(T)=∅ and left(T)=∅ then 
winner=label(root(T)) 

2. otherwise the winners are the possible winners of each 
branch that beat at least one of the possible winners of the 
other branch 

3. if only one winner is returned then it is a necessary winner  

 

 

 However this procedure does not work for voting 
trees  

 An upper approximation of possible winners is 
computed 

 Lower approximation of Necessary winners 

[Pini,Rossi,Venable,Walsh, CLIMA 07] 



B 

D 

C 

E 

A 

D 

A 

B C 

E 

A 

B C 

B,C B,C 

A,B,C 

C,A 

E,B 

B,A 

C,D 

Win returns {A,B,C} as possible 

winners 

But A can never win  

B>C 

B B 

B 

A 

B 

B 

D 

B<C 

C C 

C 

C 

E 

A 

C 

Upper approximation of possible winners 



Profile vs majority graph:                       

summary and future work 

  
 Complexity and algorithms for  

 Necessary Schwartz winner from profile for (simple) voting trees 

 Possible and necessary winners from profile and from majority 

graph with voting trees 

Simple voting trees Voting trees 

Possible Schwartz ≠ ≠ 

Necessary Schwartz ≠ 

= for 3 candidates 

≠ 

Possible Condorcet = = 

Necessary Condorcet = = 

Possible winners ≠ ≠ 

Necessary winners ≠ 

= for 3 candidates 

≠ 



Winners over balanced agenda 



Computing winners for balanced agendas 

 Given a complete majority graph G,  A is a fair 

Schwartz winner if there is a balanced tree where 

A wins 

 

 Given a majority graph G with 2k nodes, candidate 

A is a fair Schwartz winner iff it exists a binomial 

tree Tk:  

Covering G (arrows from father to child) 

Rooted at A 



Binomial trees 

 Binomial tree 

 T0 1 node 

 TK the root has k children and the i-th child is the root of a Tk-i 

 Tk has 2k nodes 

T0 T1 T2 T3 

T0 
T1 T2 



From binomial tree to a balanced 

voting tree 

 Node of binomial tree  leafs of  voting tree 

 Edge AB: knock-out competition between A and B 

where A wins  

 Incoming edge of leafs  initial knock-out competition 

 

A 

B 

C 

D 
A B C D 

A C 

A 



Determining  fair Schwartz winners 

 Given a majority graph G with 2k nodes, candidate A is 

a fair possible winner iff it exists a binomial tree Tk:  

 Covering G (arrows from father to child) 

 Rooted at A 

A 

C 

B 

D 

A 

C 

B 

D 

A 

C 

D 

B 

A D C B 

A C 

A 



Complexity of determining fair 

Schwartz winners 

 Th: “is A a fair Schwartz winner of minimum 
weight?” is NP-complete. 

 Proof: Polynomial reduction from the Exact Cover 
problem.  

 

 Weighted majority graphs  are used in social choice 
theory 

 weights may represent, for example, the amount of 
disagreement 

 

 



 

 

Variants of classical possible & 

necessary winner problems 



Unique winner and co-winner 

 C: a candidate 

Unique winner:  C is the unique winner 

Co-winner: C is in the set of winners 

 

 Possible co-winner 

 Possible unique winner 

 

 Necessary co-winner 

 Necessary unique winner 



Possible winner Necessary winner 

STV NP-complete  

(Bartholdi, Orlin 1991) 

coNP-complete 

(Bartholdi, Orlin 1991) 

Plurality P P 

Veto P P 

Pos. Scoring NP-complete P 

Copeland NP-complete coNP-complete 

Maximim NP-complete P 

Bucklin NP-complete P 

Ranked Pairs NP-complete coNP-complete 

Voting trees NP-complete coNP-complete 

Plurality with runoff NP-complete (unique winner) 

P (co-winner) 

P (unique winner) 

coNP-complete (co-winner) 

Conitzer, Xia. Determining Possible and Necessary Winners Given Partial Orders. 

Journal of Artificial Intelligence Research 2011 

Unbounded n. of candidates, unweighted votes 



New candidates 

In some voting situations, some new candidates may show up 

in the course of the process 

 

We may want to determine which of the initial candidates are 

possible winners, given that a fixed number k of new 

candidates will be added 

 
Example: suppose that  

 the voters’ preferences about a set of initial alternatives  have already 

been elicited 

 we know that a given number k of new alternatives will join the 

election 

 we ask who among the initial alternatives can possibly win the election 

in the end 

 



New candidates: complexity results 

for scoring rules 

 Question: what is the complexity of  deciding if 

x is a possible winner  with respect to the 

addition of three new candidates? 

 Chevaleyre et al. Possible Winners when New Candidates Are Added: The 

Case of Scoring Rules. AAAI 2010 and submitted to MSS 2010 

Voting rule Possible winner 

Borda P 

Plurality P 

Veto P 

3-approval NP-complete 

http://www.informatik.uni-trier.de/~ley/db/conf/aaai/aaai2010.html


New candidates: complexity results  

for other voting rules 

Voting rule Possible winner 

Approval P (def1)  

NP-complete (def2) 

Bucklin NP-complete 

Copeland0 NP-complete 

Simpson (aka maximin) NP-complete 

Plurality with runoff P 

 Xia, Lang, Monnot. Possible Winners when New Alternatives join: New 

results coming up. AAMAS 2011 

All NP-hardness results are proved by reductions from the Exact Cover 

problem (denoted by X3C) 



Approval definitions 

 Definition 1 assumes that the threshold 

approved/unacceptable cannot move 

 any alternative approved in C is still approved in C′ (the 

extension of C) 

 

 Definition 2 assumes that the threshold can stay 

the same or move upward (because the set of 

alternatives grows) 

 Some alternatives approved initially may be disapproved 

 

 

 Xia, Lang, Monnot. Possible Winners when New Alternatives join: New 

results coming up. AAMAS 2011 



Possible and necessary winners of partial 

tournament (aka incomplete majority graph) 

H. Aziz, M. Brill, F. Fischer, P. Harrenstein, J. Lang, and H. G. Seedig. 

Possible and necessary winners of partial tournaments. AAMAS 2012 

Voting rule Possible winner Necessary winner 

Copeland P P 

Uncovered set P P 

Borda* P P 

Maximin* P P 

Ranked pairs* NP-complete NP-complete 

* = for weighted tournament 



Other related papers on 

possible/necessary winners 

1. Elkind et al. Cloning in Elections: Finding the Possible Winners. J. 

Artif. Intell. Res. (JAIR) 42: 529-573 (2011)   

 It considers the problem of manipulating elections by cloning candidates 

 

2. Baumeister et al. The Possible Winner Problem with Uncertain 

Weight. ECAI’12 

 It considers elections where not some of the voters’ preferences, but some 

of their weights, are uncertain. 

 

3. Edith and Erdeli: Manipulation Under Voting Rule Uncertainty. 

AAMAS’12 

 the manipulator(s) know that the election will be conducted using a 

voting rule from a given list, and need to select their votes so as to 

succeed no matter which voting rule will eventually be chosen 

 

http://www.informatik.uni-trier.de/~ley/db/journals/jair/jair42.html
http://www.informatik.uni-trier.de/~ley/db/journals/jair/jair42.html
http://www.informatik.uni-trier.de/~ley/db/journals/jair/jair42.html
http://www.informatik.uni-trier.de/~ley/db/journals/jair/jair42.html
http://www.informatik.uni-trier.de/~ley/db/journals/jair/jair42.html
http://www.informatik.uni-trier.de/~ley/db/conf/aaai/aaai2010.html
http://www.informatik.uni-trier.de/~ley/db/conf/aaai/aaai2010.html
http://www.informatik.uni-trier.de/~ley/db/conf/aaai/aaai2010.html
http://www.informatik.uni-trier.de/~ley/db/conf/aaai/aaai2010.html
http://www.informatik.uni-trier.de/~ley/db/conf/aaai/aaai2010.html


Related papers on control 

 Erdéli et al. The complexity of voter partition in 
Bucklin and fallback voting: solving three open 
problems. AAMAS 2011: 837-844 

 

 Hemaspandra et al.: Online control ECAI 2012 

 

 Faliszewski et al. The shield that never was: 
Societies with single-peaked preferences are 
more open to manipulation and control.              
Inf. Comput. 209(2): 89-107 (2011) 

http://www.informatik.uni-trier.de/~ley/db/conf/atal/aamas2011.html
http://www.informatik.uni-trier.de/~ley/db/conf/atal/aamas2011.html
http://www.informatik.uni-trier.de/~ley/db/conf/atal/aamas2011.html
http://www.informatik.uni-trier.de/~ley/db/journals/iandc/iandc209.html
http://www.informatik.uni-trier.de/~ley/db/journals/iandc/iandc209.html
http://www.informatik.uni-trier.de/~ley/db/journals/iandc/iandc209.html


Related papers on bribery 

 P. Faliszewski. Nonuniform bribery.   

AAMAS 2008, pp.1569–1572, 2008. 

 

 Faliszewski et al. :How Hard Is Bribery in 

Elections? J. Artif. Intell. Res. (JAIR) 35: 485-

532 (2009) 

http://www.informatik.uni-trier.de/~ley/db/journals/jair/jair35.html
http://www.informatik.uni-trier.de/~ley/db/journals/jair/jair35.html
http://www.informatik.uni-trier.de/~ley/db/journals/jair/jair35.html
http://www.informatik.uni-trier.de/~ley/db/journals/jair/jair35.html
http://www.informatik.uni-trier.de/~ley/db/journals/jair/jair35.html
http://www.informatik.uni-trier.de/~ley/db/journals/jair/jair35.html
http://www.informatik.uni-trier.de/~ley/db/journals/jair/jair35.html
http://www.informatik.uni-trier.de/~ley/db/journals/jair/jair35.html


COMPUTATIONAL 

SOCIAL CHOICE 

Maria Silvia Pini     (pini@dei.unipd.it) 

 

 

 

 

 

 

 

 

 

 

PhD course in Computer Science 

University of Bologna & University of  Padova 

June 2012 

 

 

Thank you!   


