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Abstract For the solution of linear discrete ill-posed problems, in this paper we con-
sider the Arnoldi-Tikhonov method coupled with the Generalized Cross Validation
for the computation of the regularization parameter at each iteration. We study the
convergence behavior of the Arnoldi method and its properties for the approximation
of the (generalized) singular values, under the hypothesis that Picard condition is sat-
isfied. Numerical experiments on classical test problems and on image restoration are
presented.
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1 Introduction

In this paper we consider discrete ill-posed problems,

Ax = b, A ∈ R
N×N, b ∈ R

N, (1.1)

in which the right-hand side b is assumed to be affected by noise, caused by measure-
ment or discretization errors. These systems typically arise from the discretization of
linear ill-posed problem, such as Fredholm integral equations of the first kind with
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compact kernel (see e.g. [15, Chap. 1] for a background). A common property of these
kind of problems, is that the singular values of the kernel rapidly decay and cluster
near zero. In this situation, provided that the discretization which leads to (1.1) is
consistent with the continuous problem, this property is inherited by the matrix A.

Because of the ill conditioning of A and the presence of noise in b, some sort
of regularization is generally employed for solving this kind of problems. In this
framework, a popular and well established regularization technique is the Tikhonov
method, which consists in solving the minimization problem

min
x∈RN

{‖Ax − b‖2 + λ2‖Lx‖2}, (1.2)

where λ > 0 is the regularization parameter and L ∈ R
P×N is the regularization ma-

trix (see e.g. [13] and [15] for a background). We denote the solution of (1.2) by xλ.
For a discussion about the choice of L we may quote here the recent work [5] and
the references therein. As well known, the choice of the parameter λ is crucial in
this setting, since it defines the amount of regularization one wants to impose. Many
techniques have been developed to determine a suitable value for the regularizing pa-
rameter and we can refer to the recent papers [1, 11, 22, 31] for the state of the art,
comparison and discussions. We remark that in (1.2) and throughout the paper, the
norm used is always the Euclidean norm.

Assuming that b = b + e, where b represents the unknown error-free right-hand
side, in this paper we assume that no information is available on the error e. In such a
situation, the most popular and established techniques for the definition of λ in (1.2),
as for instance the L-curve criterion and the Generalized Cross Validation (GCV),
typically requires the computation of the Generalized Singular Value Decomposition
(GSVD) of the matrix pair (A,L). Of course this decomposition may represent a
serious computational drawback for large-scale problems, such as the image deblur-
ring. In order to overcome this problem, Krylov projection methods such as the ones
based on the Lanczos bidiagonalization [2, 12, 20, 21] and the Arnoldi algorithm [3,
24] are generally used. Pure iterative methods such as the GMRES or the LSQR,
eventually implemented in a hybrid fashion ([15, §6.6]) can also be considered in this
framework.

In this paper we analyze the Arnoldi method for the solution of (1.2) (the so called
Arnoldi-Tikhonov method, introduced in [3]), coupled with the GCV as parameter
choice rule. Similarly to what made in [4] for the Lanczos bidiagonalization process,
we show that the resulting algorithm can be fruitfully used for large-scale regular-
ization. Being based on the orthogonal projection of the matrix A onto the Krylov
subspaces Km(A,b) = span{b,Ab, . . . ,Am−1b}, we shall observe that for discrete
ill-posed problems, the Arnoldi algorithm is particularly efficient for the approxima-
tion of the GCV curve, after a very few number of iterations.

Indeed, under the hypothesis that Picard condition is satisfied [14], we provide
some theoretical results about the convergence of the Arnoldi-Tikhonov methods and
its properties for the approximation of the singular values of A. These properties al-
low us to consider approximation of the GCV curve which can be obtained working in
small dimension (similarly to what made in [3] where a “projected” L-curve criterion
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is used). The GCV curve approximation leads to the definition of a sequence of reg-
ularization parameters (one for each step of the algorithm), which are fairly good ap-
proximation of the regularization parameter arising from the exact SVD (or GSVD).

The paper is organized as follows. In Sect. 2 we present a brief outline about
the Arnoldi-Tikhonov method for the iterative solution of (1.2). In Sect. 3 and 4 we
provide some theoretical results concerning the convergence of the Arnoldi algorithm
and the SVD (GSVD) approximation. In Sect. 5 we explain the use of the AT method
with the GCV criterion. Some numerical experiments are presented in Sect. 6 and 7.

2 The Arnoldi-Tikhonov method

Denoting by Km(A,b) = span{b,Ab, . . . ,Am−1b} the Krylov subspaces generated
by A and the vector b, the Arnoldi algorithm (see e.g. [33] for a background) com-
putes an orthonormal basis {w1, . . . ,wm} of Km(A,b). Setting Wm = [w1, . . . ,wm] ∈
R

N×m, the algorithm can be written in matrix form as

AWm = WmHm + hm+1,mwm+1e
T
m, (2.1)

where Hm = (hi,j ) ∈ R
m×m is an upper Hessenberg matrix which represents the or-

thogonal projection of A onto Km(A,b), and em = (0, . . . ,0,1)T ∈R
m. Equivalently,

the relation (2.1) can be written as

AWm = Wm+1Hm, (2.2)

where

Hm =
[

Hm

hm+1,meT
m

]
∈ R

(m+1)×m. (2.3)

In exact arithmetics the Arnoldi process terminates whenever hm+1,m = 0, which
means that Km+1(A,b) = Km(A,b).

If we consider the constrained minimization

min
x∈Km(A,b)

{‖Ax − b‖2 + λ2‖Lx‖2}, (2.4)

writing x = Wmym, ym ∈R
m, and using (2.2), we obtain

min
ym∈Rm

{∥∥Hmym − ‖b‖e1
∥∥2 + λ2‖LWmym‖2}, (2.5)

which is known as the Arnoldi-Tikhonov (AT) method. Dealing with Krylov type
solvers, one generally hopes that a good approximation of the exact solution can
be achieved for m � N , which, in other words, means that the spectral properties
of the matrix A are rapidly simulated by the ones of Hm. This method has been
introduced in [3] in the case of L = IN (where IN is the identity matrix of order
N , so that ‖LWmym‖ = ‖ym‖) and then used in [7, 28] with L �= IN , with the basic
aim of reducing the dimension of the original problem and to avoid the matrix-vector
multiplication with AT used by Lanczos type schemes (see [2, 12] and the references
therein).
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It is worth noting that (2.5) can also be interpreted as an hybrid method. Indeed,
the minimization (2.5) with L = IN is equivalent to the inner regularization of the
GMRES [20]. We remark however, that for L �= IN , the philosophy is completely
different, since (2.5) represents the projection of a regularization, while the hybrid
approach aims to regularize the projected problem. As we shall see, this difference
can be appreciated more clearly whenever a parameter choice rule for λ is adopted.

As well known, in many applications the use of a suitable regularization opera-
tor L �= IN , may substantially improve the quality of the approximate solution with
respect to the choice of L = IN . Anyway, we need to observe that with a general
L ∈ R

P×N , the minimization (2.5) is equivalent to

min
ym∈Rm

∥∥∥∥

(
Hm

λLWm

)
ym −

(‖b‖e1
0

)∥∥∥∥

2

, (2.6)

so that, for P ≈ N , the dimension of (2.6) inherits the dimension of the original prob-
lem. Computationally, the situation can be efficiently faced by means of the “skinny”
QR factorization. Anyway, assuming that P ≤ N , in order to work with reduced di-
mension problems, we add N − P zero rows to L (which does not alter (2.4)) and
consider the orthogonal projection of L onto Km(A,b), that is,

Lm := WT
mLWm ∈ R

m×m. (2.7)

This modification leads to the reduced minimization

min
ym∈Rm

{∥∥Hmym − ‖b‖e1
∥∥2 + λ2‖Lmym‖2}

= min
x∈Km(A,b)

{‖Ax − b‖2 + λ2
∥
∥WT

mLx
∥
∥2}

, (2.8)

which is not equivalent to (2.4) anymore. Anyway, the use of Lm appears natural in
this framework, and it is also justified by the fact that

∥∥WT
mLx

∥∥≤ ‖Lx‖,
since ‖WT

mLx‖ = ‖WmWT
mLx‖ and ‖WmWT

m‖ = 1, being WmWT
m an orthogonal pro-

jection. We observe moreover that Lm would be the regularization operator of the
projection of a Franklin type regularization [6]

(A + λL)x = b.

In order to reduce completely the dimension of (2.6), instead of considering the pro-
jection (2.7) one may even consider the QR factorization LWm = QmRm as in [17].
In terms of convergence rate and accuracy, to our experience these approaches per-
form about the same.

3 Convergence analysis for discrete ill-posed problems

In what follows we denote by A = UΣV T ∈ R
N×N the SVD of A where Σ =

diag(σ1, . . . , σN), and by Am := UmΣmV T
m the truncated SVD. We remember that

the matrix Δm := A − Am is such that ‖Δm‖ = σm+1.
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An important property of the methods based on orthogonal projections such as
the Arnoldi algorithm, is the fast theoretical convergence (hm+1,m → 0) if the matrix
A comes from the discretization of operators whose spectrum is clustered around
zero. Denote by λj , j ≥ 1 the eigenvalues of A and assume that |λj | ≥ |λj+1| for
j ≥ 1. We have the following result (cf. [27, Theorem 5.8.10]), in which we assume
N arbitrarily large.

Theorem 3.1 Assume that 1 /∈ σ(A) and

∑

j≥1

σ
p
j < ∞ for a certain 0 < p ≤ 1. (3.1)

Let pm(z) =∏m
i=1(z − λi). Then

∥∥pm(A)
∥∥≤

(
ηe

m

)m/p

, (3.2)

where

η(p) ≤ (1 + p)
∑

j≥1

σ
p
j . (3.3)

Since
m∏

i=1

hi+1,i ≤ ∥
∥pm(A)b

∥
∥, (3.4)

for each monic polynomial pm of exact degree m (see [36, p. 269]), Theorem 3.1
reveals that the rate of decay of

∏m
i=1 hi+1,i is superlinear and depends on the p-

summability of the singular values of A. We remark that the superlinear convergence
of certain Krylov subspace methods when applied to linear equations involving com-
pact operators is known in literature (see e.g. [26] and the references therein). The
rate of convergence depends on the degree of compactness of the operator, which can
be measured in terms of the decay of the singular values.

Here, dealing with severely ill-posed problems, the typical situation is σj =
O(e−αj ), where α > 0 handles the degree of ill-conditioning [19, Definition 2.42].
In this situation, the following result expresses more clearly the fast decay of hi+1,i

with respect to the value of α.

Proposition 3.1 Let σj = O(e−αj ). Then, for m → ∞,

(
m∏

i=1

hi+1,i

)1/m

≤ ke
− mα

e2 + α+2
2 +O( 1

m
)
, (3.5)

where k is a constant independent of m.
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Proof Let k be a constant such that σj ≤ ke−αj for each j . Then for p > 0

η(p) ≤ (1 + p)
∑

j≥1

σ
p
j ≤ kp (1 + p)

1 − e−αp
, (3.6)

(cf. (3.3)). Now consider the approximation

kp (1 + p)

1 − e−αp
≈ 1

αp
=: η̃(p),

which is fairly accurate for p ≈ 0. Using this approximation in (3.2), we find that the
minimum of

(
η̃(p)e

m

)m/p

,

is attained for p∗ = e2

mα
. Using this value, the bound (3.6), and defining t := e2

m
, we

obtain

(
η(p∗)e

m

)m/p∗

≤ km

(
(1 + p∗)

1 − e−αp∗
e

m

)m/p∗

= km exp

(
mα

t
ln

(
1 + t

α

1 − e−t

t

e

))

= km exp

(
mα

t

(
−1 + t

(
1

α
+ 1

2

)
+ O

(
t2)
))

for t → 0

= km exp

(
−m2α

e2
+ m

(
α + 2

2

)
+ O(1)

)
for m → ∞.

The result immediately follows from (3.4) and (3.2). �

In Fig. 1(a)–(b) we experimentally test the bound (3.5) working with test problems
SHAW and WING, taken from Hansen’s Regularization Toolbox [16]. For these two
problems it is known that α = 2 and α = 4.5 respectively.

In the following results we assume to work with problems in which the discrete
Picard condition (see [14]) is satisfied, that is, uT

mb = O(σm), where um denotes the
m-th column of U , and b is assumed to be the exact right-hand side.

Proposition 3.2 Assume that the singular values of A are of the type σj =
O(e−αj ). Assume moreover that the discrete Picard condition is satisfied. Let
Ṽm := [̃v0, . . . , ṽm−1] ∈ R

N×m where ṽk := Akb/‖Akb‖. If Ṽm has full column rank,
then there exists Cm ∈R

m×m nonsingular, Em,Fm ∈R
N×m, such that

Ṽm = UmCm + Em, ‖Em‖ = O
(
m1/2σm

)
, (3.7)

Um = ṼmC−1
m + Fm, ‖FmΣm‖ = O

(
m3/2σm

)
. (3.8)
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Fig. 1 (a)–(b) Decay rate of (
∏m

i=1 hi+1,i )
1/m (dash-dot line) and bound (3.5) (solid line), (c)–(d) decay

of hm+1,m and σm . On the left the results for SHAW and on the right the results for WING. In each
experiment N = 32

Proof Let U⊥
m := [um+1, . . . , uN ] ∈ R

N×(N−m). Defining Cm := UT
mṼm ∈ R

m×m

and Em := U⊥
m (U⊥

m )T Ṽm ∈ R
N×m we have Ṽm = UmCm + Em. Now we observe

that for 0 ≤ k ≤ m − 1
∣∣uT

j ṽk

∣∣∼ σj . (3.9)

For k = 0 the above relation is ensured by the Picard Condition, whereas for k ≥ 1 it
holds since

ṽk = ‖Ak−1b‖
‖Akb‖ Aṽk−1.

Therefore, using σj = O(e−αj ), we immediately obtain

‖Em‖ = ∥∥(U⊥
m

)T
Ṽm

∥∥= O
(
m1/2σm

)
. (3.10)

We observe that the matrix Cm can be written as

Cm = UT
mWmSm,

where Sm is upper triangular and nonsingular if Ṽm has full rank. Now, from the
relation [8, §2.6.3]

σmin
(
UT

mWm

)2 = 1 − ∥∥(U⊥
m

)T
Wm

∥∥2
,
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the quantity ‖(U⊥
m )T Wm‖, which express the distance between R(Um) and R(Wm),

is strictly less than one if the Picard Condition is satisfied. Thus, by (3.7), we can
write

Um = ṼmC−1
m − EmC−1

m , (3.11)

and since Em = U⊥
m (U⊥

m )T Ṽm we have that

EmC−1
m = U⊥

m

(
U⊥

m

)T
Ṽm

(
UT

mṼm

)−1
. (3.12)

By (3.9), using the Cramer rule to compute (UT
mṼm)−1Σm ∈ R

m×m we can see that
each element of this matrix is of the type O(1), so that

∣∣(U⊥
m

)T
Ṽm

(
UT

mṼm

)−1
Σm

∣∣∼ m

⎛

⎜
⎝

σm+1 · · · σm+1
...

...

σN · · · σN

⎞

⎟
⎠ ∈ R

(N−m)×m,

and hence
∥∥(U⊥

m

)T
Ṽm

(
UT

mṼm

)−1
Σm

∥∥= O
(
m3/2σm

)
, (3.13)

using again σj = O(e−αj ). Defining Fm = −EmC−1
m we obtain (3.8) by (3.11), (3.12)

and (3.13). �

Remark 3.1 The hypothesis σj = O(e−αj ) of Proposition 3.2 is just used to have
‖ε(0)‖ = O(σm) by

( ∑

j≥m+1

e−2αj

)1/2

≤ 1√
2α

e−αm. (3.14)

The result of the proposition can be extended to work with moderately ill-posed prob-
lems, in which σj = O(j−α), provided that α is large enough. As consequence in this
situation we would have a slower decay of ‖Em‖ and ‖FmΣm‖.

The following result improves the one of Proposition 3.1 (which holds without
hypothesis on b).

Proposition 3.3 Under the hypothesis of Proposition 3.2

hm+1,m = O
(
m3/2σm

)
.

Proof By (2.1)

hm+1,m = wT
m+1Awm

= wT
m+1Δmwm + wT

m+1Amwm

= O(σm+1) + wT
m+1UmΣmV T

m wm,
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since ‖Δm‖ = σm+1. Therefore, using (3.8) we obtain

hm+1,m = O(σm+1) + wT
m+1

(
ṼmC−1

m + Fm

)
ΣmV T

m wm,

which concludes the proof, since wT
m+1Ṽm = 0 and ‖FmΣm‖ = O(m3/2σm). �

In Fig. 1(c)–(d) we compare the decay of the sequence {hm+1,m}m≥1 with that of
the singular values, working again with the test problems SHAW and WING.

We need to remark that the results of Fig. 1 are obtained working with the House-
holder implementation of the Arnoldi algorithm and hence simulating what happens
in exact arithmetics.

4 The approximation of the SVD

The use of the Arnoldi algorithm as a method to approximate the marginal values of
the spectrum of a matrix is widely known in literature. We may refer to [32, Chap. 6]
for an exhaustive background. Using similar arguments, in this section we analyze the
convergence of the singular values of the matrices Hm to the largest singular values
of A. For the Lanczos bidiagonalization method [2, 30], the analysis can be done by
exploiting the connection between this method and the symmetric Lanczos process
(see e.g. [10]). The use of the Lanczos bidiagonalization to construct iteratively the
GSVD of (A,L) has been studied in [21].

Let us consider the SVD factorization of Hm, that is, Hm = U(m)Σ(m)V (m)T ,
U(m) ∈ R

(m+1)×(m+1), V (m) ∈ R
m×m and

Σ(m) =

⎛

⎜⎜
⎜
⎝

σ
(m)
1

. . .

σ
(m)
m

0 · · · 0

⎞

⎟⎟
⎟
⎠

∈ R
(m+1)×m.

We can state the following results.

Proposition 4.1 Let Um+1 = Wm+1U
(m) ∈R

N×(m+1) and V m = WmV (m) ∈R
N×m.

Then
∥∥A − Um+1Σ

(m)V
T

m

∥∥= ∥∥A
(
I − WmWT

m

)∥∥.

Proof Using (2.2), we have

A − Um+1Σ
(m)V

T

m = A − Wm+1U
(m)Σ(m)V (m)T WT

m

= A − Wm+1HmWT
m

= A − AWmWT
m . �

Observe that since Um+1Σ
(m) = Wm+1Ũ

(m)Σ̃(m), where Σ̃(m) ∈ R
m×m is just

Σ(m) without the last row, and Ũ (m) ∈R
(m+1)×m is U(m) without the last column, the
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above result states that the triplet (Wm+1Ũ
(m), Σ̃(m),WmV (m)) defines an approxi-

mation of the truncated SVD of A, which cannot be too bad since ‖A(I −WmWT
m)‖ ≤

‖A‖. Moreover, it states that if the Arnoldi algorithm does not terminate before N

iterations, then it produces the complete SVD. The following result gives some addi-
tional information.

Proposition 4.2 Let u
(m)
k ∈ R

m+1 and v
(m)
k ∈ R

m be respectively the right and

left singular vectors relative to the singular value σ
(m)
k of Hm, that is, Hmv

(m)
k =

σ
(m)
k u

(m)
k and H

T

mu
(m)
k = σ

(m)
k v

(m)
k , with 1 ≤ k ≤ m. Then defining uk = Wm+1u

(m)
k

and vk = Wmv
(m)
k we have that

Avk − σ
(m)
k uk = 0, (4.1)

WT
m

(
AT uk − σ

(m)
k vk

) = 0. (4.2)

Proof (4.1) follows directly by (2.2). Moreover, since

H
T

mu
(m)
k − σ

(m)
k v

(m)
k = 0,

using H
T

m = WT
mAT Wm+1, and the definition of uk and vk , we easily obtain (4.2). �

Remark 4.1 Using the square matrix Hm to approximate the singular values of A,
that is, computing the SVD Hm = U(m)Σ(m)V (m)T , where now U(m),Σ(m),V (m) ∈
R

m×m, if Hmv
(m)
k = σ

(m)
k u

(m)
k then

∥∥Avk − σ
(m)
k uk

∥∥≤ hm+1,m with uk = Wmu
(m)
k , vk = Wmv

(m)
k . (4.3)

The above relation is very similar to the one which arises when using the eigenvalues
of Hm (the Ritz values) to approximate the eigenvalues of A [32, §6.2]. Note more-
over that whenever hm+1,m ≈ 0, and hence very quickly for linear ill-posed problems
(see Sect. 3), the use of Hm or Hm is almost equivalent to approximate the largest
singular values of A.

The Galerkin condition (4.2) is consequence of the fact that the Arnoldi algorithm
does not work with the transpose. Obviously, if A = AT , the algorithm reduces to the
symmetric Lanczos process and, under the hypothesis of Proposition 4.2, we easily
obtain AT uk − σ

(m)
k vk = 0. In the general case of A �= AT , Proposition 4.2 ensures

that since vk = Wmv
(m)
k ∈ Km(A,b), by (4.2) the vector σ

(m)
k vk is just the orthogonal

projection of AT uk onto Km(A,b), that is, σ
(m)
k vk = WmWT

mAT uk , which implies

∥∥AT uk − σ
(m)
k vk

∥∥≤ ∥∥(I − WmWT
m

)
AT WmWT

m

∥∥. (4.4)

This means that the approximation is good if AT uk is close to Km(A,b). It is inter-
esting to observe that (4.4) is just the “transpose version” of (4.3) since

hm+1,m = ∥∥(I − WmWT
m

)
AWmWT

m

∥∥,



A GCV based Arnoldi-Tikhonov regularization method

Fig. 2 Decay behavior of ‖A − Um+1Σ(m)V
T
m‖ (solid line) and lower bound ‖WT

m+1Awm+1‖ arising
from Proposition 4.3 (dash-dot line) for BAART (a), WING (b), SHAW (c) and I_LAPLACE (d). The
dimension of each problem is N = 32

which can be easily proved using again (2.1) (cf. [32, Chap. 4]).
Experimentally, one observes that the Arnoldi algorithm seems to be very efficient

for approximating the largest singular values for discrete ill-posed problems. In order
to have a-posteriori strategy to monitor step-by-step the quality of approximation, we
can state the following.

Proposition 4.3 Assume that the matrix A has full rank. Then

∥∥AT uk − σ
(m)
k vk

∥∥≤ ∥∥WT
m+1AW⊥

m

∥∥, (4.5)

where uk , vk , σ
(m)
k are defined as in Proposition 4.2, and W⊥

m = [wm+1, . . . ,wN ].

Proof Since vk ∈ Km(A,b), and uk = Wm+1u
(m)
k , by (4.2)

∥∥AT uk − σ
(m)
k vk

∥∥≤ ∥∥(W⊥
m

)T
AT Wm+1

∥∥. (4.6)�
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Formula (4.5) is rather interesting because since hij = wT
i Awj from the Arnoldi

algorithm,

WT
m+1AW⊥

m =
⎡

⎢
⎣

h1,m+1 · · · h1,N

...
...

hm+1,m+1 · · · hm+1,N

⎤

⎥
⎦ .

Since in many cases the elements of the projected matrix Hm tend to annihilate de-
parting from the diagonal (this is the basic assumption of the methods based on the
incomplete orthogonalization, see e.g. [34]), one may obtain useful estimates for the
bound (4.5) working with few columns of WT

m+1AW⊥
m , that is, with few columns of

W⊥
m , and hence obtaining a-posteriori estimates for the quality of the SVD approx-

imation. In order to have an experimental confirmation of this statement, in Fig. 2

we show the behavior of ‖A − Um+1Σ
(m)V

T

m‖ and ‖WT
m+1Awm+1‖, for some test

problems. Note that ‖WT
m+1Awm+1‖ comes from the bound (4.5) with W⊥

m replaced
by wm+1.

We remark that Proposition 3.3 and 4.3 can be used to stop the procedure whenever
the noise level ε is known, since it is generally useless to continue with the SVD
approximation if we find σ

(m)
k � ε, for a certain k and m. Indeed, in this situation the

Picard condition is no longer satisfied since typically UT
mb ≈ ε for m large enough.

For what concerns the generalized SVD of the matrix pair (A,L), let AX =
US and LX = V C, where S = diag(s1, . . . , sN ) and C = diag(c1, . . . , cN), X ∈
R

N×N is nonsingular and U,V ∈ R
N×N are orthogonal. Moreover let HmX(m) =

U(m)S(m) and LmX(m) = V (m)C(m), where S(m) = diag(s
(m)
1 , . . . , s

(m)
m ) and C(m) =

diag(c
(m)
1 , . . . , c

(m)
m ), be the generalized SVD of the matrix pair (Hm,Lm). In this

situation, for the convergence of the approximated generalized singular values and
vectors, we can state the following result.

Proposition 4.4 Let u
(m)
k , v

(m)
k and x

(m)
k be the k-th column of the matrices

U(m) ∈ R
(m+1)×m, V (m) ∈ R

m×m and X(m) ∈ R
m×m respectively. Then defining

uk = Wm+1u
(m)
k , vk = Wmv

(m)
k and xk = Wmx

(m)
k , we have

Axk − s
(m)
k uk = 0, (4.7)

WT
m

(
Lxk − c

(m)
k vk

) = 0. (4.8)

Proof Similarly to Proposition 4.2, (4.7) and (4.8) follows immediately from the ba-
sic relation (2.2). �

As before the proposition ensures that if the matrix A has full rank, than the
Arnoldi algorithm allows to construct the GSVD of (A,L). Step by step, the qual-
ity of the approximation depends on the distance between span{Lw1, . . . ,Lwm} and
Km(A,b). Similarly to (4.4) and (4.6), since vk = Wmv

(m)
k ∈ Km(A,b), we have

∥∥Lxk − c
(m)
k vk

∥∥≤ ∥∥(I − WmWT
m

)
LWmWT

m

∥∥.
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Fig. 3 Plots of the singular values (circle) of the matrix Hm (left) and the generalized singular values of
the matrix pair (Hm,Lm) (right) versus the iteration number k, for the problem BAART and SHAW with
N = 32. The solid lines represent the singular values of the matrix A (left) and the generalized singular
values of the matrix pair (A,L) (right)

and
∥∥Lxk − σ

(m)
k vk

∥∥≤ ∥∥(W⊥
m

)T
LWm

∥∥.

In Fig. 3 we show the convergence of the singular values of Hm, and the general-
ized singular values of the matrix pair (Hm,Lm), with

L =

⎛

⎜⎜⎜
⎝

1 −1
. . .

. . .

1 −1
0 · · · · · · 0

⎞

⎟⎟⎟
⎠

, (4.9)

working with the test problems SHAW and BAART. The results show that the ap-
proximations are quite accurate. It is interesting to observe that, in both cases, after
8–9 iterations the algorithm starts to generate spurious approximations. This is due
to the loss of orthogonality of the Krylov vectors, since in these experiments (and
in what follows) we have used the Gram-Schmidt implementation. Working with the
Householder version of the algorithm the problem is fixed. Anyway in the framework
of the regularization, a more accurate approximation of the smallest singular values
is useless because of the error in b.
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5 Generalized cross-validation

A popular method for choosing the regularization parameter, which does not require
the knowledge of the noise properties nor its norm ‖e‖, is the Generalized Cross-
Validation (GCV) [9, 37]. The major idea of the GCV is that a good choice of λ

should predict missing values, so that the model is not sensitive to the elimination of
one data point. This means that the regularized solution should predict a datum fairly
well, even if that datum is not used in the model. This viewpoint leads to minimization
with respect to λ of the GCV function

G(λ) = ‖b − Axλ‖2

[trace(I − AAλ)]2
,

where Aλ = (AT A + λ2LT L)−1AT is the matrix that gives the regularized solutions
of (1.2) from the normal equations

(
AT A + λ2LT L

)
xλ = AT b.

Using the GSVD of the matrix pair (A,L), with a general A ∈ R
M×N,L ∈

R
P×N , let A = USX−1 and L = V CX−1, where S = diag(s1, . . . , sP ) and C =

diag(c1, . . . , cP ), the generalized singular values γi of (A,L) are defined by the ratios

γi = si

ci

, i = 1, . . . ,P .

Therefore, one can show that the expression of the GCV function is given by

G(λ) =
∑N

i=1(
λ2

γ 2
i +λ2 uT

i b)2

(M − (N − P) −∑P
i=1

γ 2
i

γ 2
i +λ2 )2

. (5.1)

For the square case M = N , and P ≤ N , rearranging the sum at the denominator we
obtain

G(λ) =
∑N

i=1(
λ2

γ 2
i +λ2 uT

i b)2

(
∑P

i=1
λ2

γ 2
i +λ2 )2

. (5.2)

The GCV criterion is then based on the choice of λ which minimizes G(λ). It is
well known that this minimization problem is generally ill-conditioned, since the
function G(λ) is typically flat in a relatively wide region around the minimum. As a
consequence, this criterion may even lead to a poor regularization [23, 25, 35].

As already said in the Introduction, for large-scale problems the GCV approach
for (1.2) is too expensive since it requires the SVD (GSVD). In this setting, our idea
is to fully exploit the approximation properties of the Arnoldi algorithm investigated
in Sects. 3 and 4. In particular, our aim is to define a sequence of regularization
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parameters {λm}, i.e., one for each iteration of the Arnoldi algorithm, obtained by the
minimization of the following GCV function approximations

Gm(λ) = ‖Hmym,λ − ‖b‖e1‖2

(N − m +∑m
i=1

λ2

γ
(m)2
i +λ2

)2
, (5.3)

where ym,λ solves the reduced minimization (2.8), and γ
(m)
i , i = 1, . . . ,m, are the

approximations of the generalized singular values, obtained with the Arnoldi process.
Note that

∥∥Hmym,λ − ‖b‖e1
∥∥2 =

m∑

i=1

(
λ2

γ
(m)2
i + λ2

u
(m)T

i c

)2

+ (
u

(m)T

m+1 c
)2

,

where u
(m)
i is defined as in Proposition 4.4 and c = ‖b‖e1, so that the construction of

Gm(λ) can be obtained working in reduced dimension. The basic idea which leads
to the approximation Gm(λ) ≈ G(λ), is to set equal to 0 the generalized singular
values that are not approximated by the Arnoldi algorithm, and that are expected to
be close to 0 after few iterations. This is justified by the analysis and the experiments
of Sects. 3 and 4.

We remark that in a hybrid approach [20], one aims to regularize the projected
problem

min
y∈Rm

{∥∥Hmy − ‖b‖e1
∥∥}. (5.4)

Since no geometrical information on the solution of (5.4) can be inherited from the
solution of the original problem, the choice of Lm = Im as regularization operator is
somehow forced (this is a standard strategy for hybrid methods [15, §6.7]). In this
framework, if the GCV criterion is used to regularize (5.4), the basic difference with
respect to (5.3) is at the denominator, where N − m is replaced by m. We observe
moreover that (5.3) is similar to the GCV approximation commonly used for iterative
methods, in which the denominator is simply N − m [15, §7.4].

In the following we show the algorithm that has been used for the tests of the next
sections.

AT - GCV Algorithm

given A ∈ R
N×N, b ∈ R

N , δ

while |‖rm‖ − ‖rm−1‖|/‖rm‖ ≥ δ

update Hm and Lm from (2.3) and (2.7)
compute GSVD(Hm,Lm)
compute λm = arg minλ Gm(λ)

solve minym∈Rm ‖
(

Hm

λmLm

)
ym −

(‖b‖e1
0

)
‖2

compute the corresponding residual rm
end
compute xm = Wmym
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The stopping rule used in the algorithm is just based on the residual. As an alter-
native, one may even employ the strategy adopted in [4], based on the observation of
the GCV approximations.

6 Numerical results

In order to test the performance of the proposed method, we consider again some clas-
sical test problems taken from the Regularization Tools [16]. In particular in Figs. 4,
5, we consider the problems BAART, SHAW, FOXGOOD, I_LAPLACE, with right-
hand side affected by 0.1 % or 1 % Gaussian noise. The regularization operator is
always the discretized first derivative (4.9), augmented with a zero row at the bottom
to make it square (cf. (2.7)). For each experiment we show: (a) the approximation of
G(λ) obtained with the functions Gm(λ) for some values of m, with a graphical com-
parison of the local minima; (b) the approximate solution; (c) the relative residual and
error history; (d) the sequence of selected parameters {λm}, with respect to the one
obtained with the minimization of G(λ) (denoted by λA in the pictures) and the opti-
mal one (λopt ) obtained by the minimization of the distance between the regularized
and the true solution [29]

min
λ

‖xreg − xtrue‖2 ≡ min
λ

f (λ),

where

f (λ) =
{

p∑

i=1

(
λ2

(γ 2
i + λ2)

uT
i b

σi

xi −
N∑

i=p+1

(
uT

i b
)
xi

)

−
N∑

i=1

uT
i b

σi

vi

}2

.

7 An example of image restoration

We conclude with an illustration of the performance of the GCV-Arnoldi approach
on a 2D image deblurring problem which consists in recovering the original n × n

image from a blurred and noisy observed image.
Let X be a n × n two dimensional image. The vector x of dimension N = n2 ob-

tained by stacking the columns of the image X represents a blur-free and noise-free
image. We generate an associated blurred and noise-free image b by multiplying x by
a block Toeplitz matrix A ∈ R

N×N with Toeplitz blocks, implemented in the function
blur.m from the Regularization Tools [16]. This Matlab function has two parame-
ters, band and sigma; the former specifies the half-bandwidth of the Toeplitz blocks
and the latter the variance of the Gaussian point spread function. The blur and noise
contaminated image b ∈ R

N is obtained by adding a noise-vector e ∈ R
N , so that

b = Ax + e. We assume the blurring operator A and the corrupted image b to be
available while no information is given on the error e, we would like to determine a
restoration which accurately approximates the blur-free and noise-free image x.
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Fig. 4 Results for BAART (top) and SHAW (bottom). The dimension of each problem is N = 120. Noise
level ε = 10−2. In subfigures (a) the tick red line indicates the function G(λ). In both cases the regulariza-
tion operator is (4.9)
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Fig. 5 Results for FOXGOOD (top) and I_LAPLACE (bottom). The dimension of each problem is
N = 120. Noise level ε = 10−3. In subfigures (a) the tick red line indicates the function G(λ). In both
cases the regularization operator is (4.9)
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Fig. 6 Restoration of mri.png. Original image, blurred and noisy image with noise level ε = 10−2 and
blur parameters band=7, sigma=2, restored image. From top to bottom original size and two zoom

We consider the restoration of a corrupted version of the 256 × 256 test image
mri.png. Contamination is by 1 % white Gaussian noise and space-invariant Gaus-
sian blur. The latter is generated as described above with blur parameters band=7,
sigma=2, so that the condition number of A is around 1013. Figure 6 displays the
performance of the AT-GCV. On the left the blur-free and noise-free image, on the
middle the corrupted image, on the right the restored image. From top to bottom the
image in original size and two different zooms. The regularization operator is defined
as (cf. [7])

L = In ⊗ L1 + L1 ⊗ In ∈R
N×N,

where L1 ∈ R
n×n is the discretized first derivative with a zero row at the bottom as in

(4.9) (cf. also [21, §5]). The experiment has been carried out using Matlab 7.10 on a
single processor computer (Intel Core i7). The result has been obtained in 5 iterations
of the Arnoldi algorithm, in around 0.5 seconds.

8 Conclusion

The fast convergence of the Arnoldi algorithm when applied to compact operators
makes the AT method particularly attractive for the regularization of discrete ill-posed
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problems. The projected problems rapidly inherit the basic features of the original
one, so that the rate of convergence is closely related to the decay rate of the singular
values of A.

In this paper, in absence of information on the noise which affects the right-hand
side of the system, we have employed the GCV criterion. Contrary to the hybrid
techniques, the sequence of regularization parameters {λm}m≥1 is defined in order to
regularize the original problem instead of the projected one, leading to GCV approx-
imations which are similar to the ones used for pure iterative methods ([15, §7.4]).
Notwithstanding the intrinsic difficulties concerning the GCV criterion, the arising al-
gorithm has shown to be quite robust. Of course there are cases in which the method
fails, but the numerical experiments presented are rather representative of what hap-
pens in general.

While not considered in the paper, the Range Restricted Arnoldi method [18, 24]
represent a potential improvement of the method here presented, especially for prob-
lems in which the noise level is rather high and if the regularization matrix is little
effective as noise removal (as for instance the identity matrix). Of course the analysis
of Sect. 3 and 4 should be modified accordingly. In particular the Picard condition
should be no longer necessary to prove Proposition 3.2 (suitably modified), since
the starting vector of the Arnoldi process would be Ab. The arising approximation
of the dominating singular values and consequently, the approximation of the GCV
function, should be analyzed.
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