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Abstract In the framework of the numerical solution of linear systems arising from
image restoration, in this paper we present an adaptive approach based on the reorder-
ing of the image approximations obtained with the Arnoldi-Tikhonov method. The
reordering results in a modified regularization operator, so that the corresponding
regularization can be interpreted as problem dependent. Numerical experiments are
presented.

Keywords Linear discrete ill-posed problem · Image restoration · Tikhonov
regularization · Arnoldi algorithm · Krylov methods

1 Introduction

Given a vector b ∈ R
N representing a blurred and noisy observed image, rearranged

columnwise, the problem of restoring the original image can often be modeled by
means of a linear system of equations

Ax = b, (1)

in which A ∈ R
N×N models the blurring operator and x is an approximation of the

unknown original image x̂, solution of Ax̂ = ̂b, where ̂b is the noise-free right-hand
side. In this sense, we assume b = ̂b+ eb, where eb is the noise vector.
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For this kind of problem, the matrix A is typically very large (N is at least the num-
ber of pixels of the image) and ill-conditioned, so that some regularization technique
is generally employed for solving (1). In this paper we use the popular Tikhonov
regularization method, based on the minimization

min
x∈RN

‖Ax − b‖2
2 + λ ‖Lx‖2

2 , (2)

where λ > 0 is a given parameter and L is a regularization matrix (see, e.g., [6] and
[8] for a background). The solution xλ of the minimization problem is, hopefully, a
meaningful approximation of the exact solution x̂ of the error-free problem. For what
concerns the choice of L, which plays the role of a penalizing filter, it should be made
exploiting (when it is possible) information on the solution x̂, keeping in mind that
the ideal situation would be to have x̂ ∈ ker(L), that is, Lx̂ = 0.

Generally, the most popular choices for L are the identity matrix IN (hence
looking for the solution of minimum norm) or L representing a discretization of a
differential operator such as the first or the second derivative, eventually rearranged
in order to take into account that an image is a two-dimensional object (see, e.g., [11]
for a discussion). Whenever the image to restore does not involve high frequencies,
as for instance in a jpeg image, in which high frequencies are already filtered out via
the Discrete Cosine Transform (DCT), taking L as a derivative operator generally
produces good results. On the other side, since a derivative operator is a high-pass
filter, if the image has well marked edges (high-frequencies involved) the use of such
regularization operators typically smooths the edges and the quality of the restoration
is extremely sensitive to the choice of the parameter λ.

These considerations hold in particular with operators related to the second
derivative. Indeed, the discrete first order derivative operator (variation) is generally
considered rather good to filter out noise, preserving edges at the same time. A num-
ber of methods for noise removal of 1D or 2D signals, based on the minimization of
functionals involving the total variation (TV) have been presented (see the original
paper [12]). For 1D signals the total variation is defined as ‖L1x‖1 where

L1 =
⎛

⎜

⎝

1 −1
. . .

. . .

1 −1

⎞

⎟

⎠ ∈ R
(N−1)×N. (3)

Notwithstanding its one-dimensional nature, the operator L1 is widely used also
for 2D signals, inside Tikhonov regularization (2), (see, e.g., [9]), since the image is
reshaped as a vector and hence treated as a 1D signal. The results are generally rather
good but typically with visible horizontal discontinuities.

The aim of this paper is to show that it is possible to improve the quality of the
restoration obtained with L1 in Tikhonov regularization (2), using information about
the order of the pixel values of the image to restore. We show that if we know the
permutation matrix Popt such that Popt x̂ is sorted (an ideal situation because x̂ is
not known), then it is possible to restore x̂ with high quality using just the product
L1Popt as regularization operator. The reason is that the high frequencies components
of x̂ are damped in Popt x̂, so that an high-pass filter L does not heavily reduce these
components anymore. Note that using permutations, we actually forget the original
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nature of the problem. From a practical point of view, since x̂ is unknown, what we
can do is to restart a reliable method for (2) and use the arising approximations to
approximate Popt by means of a sequence of permutation matrices {Pk}k≥0, starting
from P0 = IN . If the method is iterative, we can even try to update the approxima-
tions of Popt step by step. In this paper we consider these two approaches, that is,
restarted and update, working with a generalized version of the Arnoldi-Tikhonov
(AT) method introduced in [3], that can be regarded to as a regularization version of
the GMRES which provides Krylov subspace approximations to the solution working
in small dimensions.

We need to mention that a similar idea has been studied in [1], where the authors
try to approximate Popt using an undersampling approach in the framework of image
reconstruction of MRI data.

The paper is organized as follows. In Section 2 we explain the idea of using per-
mutation matrices to construct more reliable regularization operators. In Section 3
we outline the basic features of the AT method and we introduce a generalized ver-
sion able to work with an arbitrary regularization operator. In Section 4 we present
a restarted and an adaptive version of the method. Finally, in Section 5 we show the
behavior of the methods on two classical test problems.

2 Image dependent regularization

Give a permutation matrix P ∈ R
N×N , let y = Px. With respect to y, the Tikhonov

regularization (2) for solving (1) leads to

min
y

∥

∥

∥AP
T y − b

∥

∥

∥

2

2
+ λ ‖Ly‖2

2 . (4)

The problem (4) is equivalent to the linear systems

(

PATAPT + λLT L
)

y = PAT b,
(

ATA+ λPT LT LP
)

x = AT b,

that is, to the minimization problem

min
x

‖Ax − b‖2
2 + λ ‖LPx‖2

2 . (5)

Let P be the set of the N ×N permutation matrices. In light of (5), the basic idea is
to define P such that for a given L and x

‖LPx‖2 = min
Q∈P

‖LQx‖2 . (6)

While the idea can be applied independently of the choice of L, in this paper we are
mainly interested in the case of L1 defined by (3), for which the solution of (6) is
clearly the permutation matrix P which sorts the vector x in increasing or decreasing
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order. As already mentioned, the ideal situation would be to know the permutation
matrix Popt of (6) corresponding to the exact solution x̂ of the problem. This ideal sit-
uation is represented in Figs. 1 and 2, where we consider the restoration of a 35× 35
subimage of mri.tif from Matlab’s Image Processing Toolbox. The
matrix A, representing the blurring operator, comes from the discretization of the
Gaussian Point Spread Function (PSF) with half-bandwidth q = 7 and variance
σ = 2. Additional details about this kind of matrix are given Section 5. In both exper-
iments, in which we change the noise level in the observed image b, we consider the
restoration obtained with L1Popt ∈ R

N−1×N and the matrix

L1,2D :=
(

In ⊗ L1
L1 ⊗ In

)

∈ R
2n(n−1)×N, n2 = N,

(here L1 ∈ R
n−1×n) introduced in [9] in order to extend the use of L1 to the 2D

case. In each experiment, the value of the regularization parameter λ is set using the
L-curve criterion.

Original Image Blurred and Noisy Image

Restoration with L
1,2D

Restoration with L
1
P

opt

Fig. 1 Restoration of a 35x35 subimage of mri.tif, with blurring parameters q = 7 and σ = 2, and 1 %
Gaussian noise
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Original Image Blurred and Noisy Image

Restoration with L
1,2D

Restoration with L
1
P

opt

Fig. 2 Restoration of a 35x35 subimage of mri.tif, with blurring parameters q = 7 and σ = 2, and 10 %
Gaussian noise

The results do not need many comments. Of course we are in an ideal situation
but the results lead us to consider the possibility of applying the Tikhonov regular-
ization iteratively using at each step the approximate solution to define a permutation
hopefully close to the ideal one.

It is important to remark that reducing ‖Lx‖2 in Tikhonov regularization has also
the important effect of reducing the dependence on the choice of λ for having a good
reconstruction. In both experiments, denoting by xλ the solution with L1,2D , and with
xλ the solution with L1Popt , we have obtained

∥

∥L1Poptxλ
∥

∥

2 ≈ 0.1 · ∥∥L1,2Dxλ
∥

∥

2.
This consideration is particularly important for large scale problems, where the exist-
ing parameter choice techniques may be expensive and sometimes not much reliable.

3 The extension of the Arnoldi-Tikhonov method

Image deblurring has of course to be regarded to as a large scale problem so that
suitable methods need to be used to solve the Tikhonov minimization (2). In this
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framework, the Arnoldi-Tikhonov (AT) method has been introduced in [3] with the
aim of reducing the problem

min
x∈RN

‖Ax − b‖2
2 + λ ‖Lx‖2

2 , (7)

in the case of L = IN , to a problem of much smaller dimension. The idea is to
project the matrix A onto the Krylov subspaces generated by A and the vector b,
that is, Km(A, b) = span{b, Ab, ..., Am−1b}, with m � N . The method was basi-
cally introduced to avoid the matrix-vector multiplication with AT used by Lanczos
type schemes (see e.g. [2], [5]). For the construction of the Krylov subspaces the AT
method uses the Arnoldi algorithm, that leads to the decomposition

AVm = Vm+1Hm+1, (8)

where Vm+1 = [v1, ..., vm+1] ∈ R
N×(m+1) has orthonormal columns which span the

Krylov subspace Km(A, b) defining v1 = b/ ‖b‖. The matrix Hm+1 ∈ R
(m+1)×m is

an upper Hessenberg matrix. Substituting x = Vmym, ym ∈ R
m, into (7) and using

(8) yields the reduced minimization

min
ym∈Rm

∥

∥

∥Hm+1ym − V T
m+1b

∥

∥

∥

2

2
+ λ ‖ym‖2

2 . (9)

Since the method starts with v1 = b/ ‖b‖, we have

V T
m+1b = ‖b‖2 e1, e1 = (1, 0, ..., 0)T ∈ R

m+1.

In this sense, the AT method can be interpreted as a regularized GMRES with start-
ing approximation x0 = 0, that is, with an initial residual r0 = b. Besides, in 2009,
Lewis and Reichel [10] introduced and studied the ’range-restricted’ variant to this
method, RRAT (Range Restricted Arnoldi Tikhonov) which assumes to start the
Arnoldi process with v1 = Ab/ ‖Ab‖, that is, to work with the Krylov subspaces
Km(A,Ab) = span{Ab,A2b, ..., Amb}. This approach leads again to (9) but with a
different Hm+1 and Vm+1. For both methods the solution of (7) with L = IN , is then
approximated by xm = Vmym.

The method considered in this paper is an extension of the Arnoldi-Tikhonov
method, able to work with a general regularization operator L �= IN and an arbitrary
starting vector x0. We consider the minimization problem

min
x∈RN

‖Ax − b‖2
2 + λ ‖L(x − x0)‖2

2 , (10)

where x0 is an approximate solution (eventually 0 if not available). We seek for
approximations of the type

xm = x0 + Vmym, (11)

where Vm spans the Krylov subspace Km(A, r0), and r0 = b−Ax0. Substituting (11)
into (10) yields the reduced minimization

min
ym∈Rm

‖Hm+1ym − ‖r0‖2 e1‖2
2 + λ ‖LVmym‖2

2 ,
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that is,

min
ym∈Rm

∥

∥

∥

∥

(

Hm+1√
λLVm

)

ym −
( ‖r0‖ e1

0

)∥

∥

∥

∥

2

2
. (12)

With respect to the AT method as introduced in [3], the least squares problem (12)
has a matrix coefficient of dimension (m + 1 + P) × m, if L ∈ R

P×N , instead of
(2m+ 1)×m as in the AT method, where in (12) LVm is replaced by Im (cf. (9)). Of
course this is a computational disadvantage, but it is absolutely balanced by the effect
that L may have on noisy problems. To avoid confusion with the standard AT method,
and for simplicity, we denote by GAT (Generalized Arnoldi Tikhonov) the reduced
minimization (12). Whenever ym has been computed, the norm of the residual rm of
the corresponding approximation (11) is given by

‖rm‖2 = ‖Hm+1ym − ‖r0‖2 e1‖2 . (13)

For what follows in this paper, it is very important to observe that the GAT method
(but in general each iterative method for solving (10)), may be very fast if x0 is close
to the solution. Of course, with the word ’fast’ we just mean that the approxima-
tions rapidly achieve best attainable approximation, since for this kind of problem an
iterative method typically shows semiconvergence, or, in the best case, it stagnates.

4 The restarted and the adaptive regularization

As already observed, since is not possible to compute the ideal permutation matrix
Popt , we can try to approximate this matrix by solving more than once the problem
(5) with a certain method, adapting at each step the matrix Popt to the new approxi-
mation. Since in principle, this restarted approach could be quite expansive, the basic
idea is to find the minimum of (6) iterating the GAT method. Basically, starting from
x
(0)
0 = 0, we define initially P (0) = IN and solve (12) with L(0) = L1, so that

(

Hm+1√
λL(0)Vm

)

∈ R
(m+N)×m.

Then sort the approximate solution x(1) (= x
(0)
m for a certain m) in increasing or

decreasing order by means of the permutation matrix P (1). Restart the GAT method
with x

(1)
0 = x(1) and L(1) = L1P

(1), and so on.
Assuming to know the relative noise level ε = ∥

∥b −̂b
∥

∥

2 /
∥

∥̂b
∥

∥

2, where ̂b denotes
the noise-free blurred image, we stop the GAT method using the discrepancy
principle. With this criterion, (12) is solved until the residual (13) fulfils

‖rm‖2 ≤ ηε ‖b‖2 , (14)

where η ≥ 1 is a given parameter. Actually, whenever (14) is satisfied, we let the
method run for a couple of further iterations (see e.g. [10] for a discussion). For what
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concerns the number of restarts, denoting by x(j) the final approximation arising from
the j -th application of the GAT method, and with r(j) the corresponding residual, the
whole procedure ends when

∣

∣

∣

∣

∣

∥

∥r(j)
∥

∥

2 −
∥

∥r(j−1)
∥

∥

2
∥

∥r(j−1)
∥

∥

2

∣

∣

∣

∣

∣

< ε, or

∥

∥

∥r
(j)

∥

∥

∥

2
>

∥

∥

∥r
(j−1)

∥

∥

∥

2
, (15)

for a given ε.
For the definition of the parameter λ, we employ the procedure described in [4].

Since the residual (discrepancy) depends on λ, i.e., rm = rm(λ), at each step we
approximate the solution (with respect to λ) of the equation

‖rm(λ)‖2 = ηε ‖b‖2 ,

using a zero finder based on the secant method. In particular, we consider the linear
function

y(λ) = ‖rm(0)‖2 + λ

(‖rm(λm−1)‖2 − ‖rm(0)‖2

λm−1

)

, (16)

where λm−1 is the parameter coming from the previous step and ‖rm(0)‖2 is just the
GMRES residual. The function y(λ) interpolates ‖rm(λ)‖2 at 0 and λm−1, and the
new parameter λm is obtained by solving y(λ) = ηε, which leads to

λm =
∣

∣

∣

∣

ηε − ‖rm(0)‖2

‖rm(λm−1)‖2 − ‖rm(0)‖2

∣

∣

∣

∣

λm−1. (17)

We again refer to [4] for details.
In summary, the algorithm can be written as follows.

Algorithm 1 Restarted GAT (RGAT)

1. define x(0) = 0 and P (0) = IN
2. set η, ε, λ(0)0 , mmax and jmax
3. while (15) does not hold and j ≤ jmax

(a) while (14) does not hold and m ≤ mmax

(i) solve (12) with r0 = r(j) = b − Ax(j), L = L(j) = L1P
(j)

and λ = λ
(j+1)
m−1 to define y(j+1)

m

(ii) compute
∥

∥

∥r
(j+1)
m (λ

(j+1)
m−1 )

∥

∥

∥

2
=

∥

∥

∥Hm+1y
(j+1)
m − ∥

∥r(j)
∥

∥

2 e1

∥

∥

∥

2

and
∥

∥

∥r
(j+1)
m (0)

∥

∥

∥

2

(iii) compute the new parameter λ(j+1)
m by (17)

(b) define x(j+1) = x(j) + Vmy
(j+1)
m

(c) define P (j+1) reordering x(j+1)

Alternatively, it is even possible to modify the GAT method, updating the regu-
larization matrix L inside the Arnoldi iteration, that is, using the (m− 1)-th Arnoldi
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approximation to define L(m−1) = L1P
(m−1) and then solve (12) with L = L(m−1).

The algorithm can be written as follows.

Algorithm 2 Adaptive GAT (AGAT)

1. define x0 = 0 and P (0) = IN
2. set η, mmax and λ0
3. while (14) does not hold and m ≤ mmax

(a) solve (12) with r0 = b, L = L(m−1) = L1P
(m−1) and λ = λm−1 to

define ym
(b) compute the corresponding residual ‖rm(λm−1)‖2 =

‖Hm+1ym − ‖b‖2 e1‖2 and ‖rm(0)‖2
(c) compute the new parameter λm by (17)
(d) define xm = Vmym
(e) define P (m) reordering xm

5 Numerical experiments

In this section we compare the behavior of the GAT method implemented with
L = L1,2D , and the methods RGAT and AGAT described by Algorithms 1 and 2, on
two classical deblurring problems. For what concerns the undefined parameters of
Algorithms 1 and 2, in all experiments we set η = 1.01 (cf. (14)), mmax = 100 for
GAT and AGAT. For the RGAT we set mmax = 40 since it is a restarted method, and
jmax = 6 as the maximum number of restarts. For each method we set λ0 = 1 as the
initial value of the regularization parameter. The experiments have been made using
Matlab on a single processor computer (Intel Core i5). Regarding the computation
of the permutation matrices corresponding to an approximate solution, we have used
the instructions

[unused,pos] = sort(x);
P = sparse([1:Nˆ2]’, pos, ones(Nˆ2,1));

Example 1 We consider the matrix A ∈ R
N×N representing the blurring operator

arising from the discretization of the Gaussian Point Spread Function (PSF). For a
given image x̂, the vector ̂b = Ax̂ represents the associated blurred and noise-free
image. We generate a blurred and noisy image b = ̂b+ eb, where eb is a noise vector
defined by

eb = ε ‖b‖√
N

c, (18)

where ε is the relative noise level, and c = randn(N, 1), that in Matlab notation is a
vector of N random components with normal distribution with mean 0 and standard
deviation 1 . The matrix A is a symmetric Toeplitz matrix given by

A = (2πσ 2)−1T ⊗ T ,
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where T is a n × n symmetric banded Toeplitz matrix whose first row is a vector v
whose elements are

vj :=
{

e−(j−1)2

2σ 2 , for j = 1, ..., q
0, for j = q + 1, ..., n

.

The parameter q is the half-bandwidth of the matrix T , and the parameter σ controls
the width of the underlying Gaussian Point Spread function

h(x, y) = 1

2πσ 2
exp

(

−x2 + y2

2σ 2

)

,

which models the degradation of the image. We define q = 7 and σ = 2, so that the
condition number of A is around 1010.

We consider the deblurring of testpat2.tif, which is a 256 × 256 image
taken from the Image Processing Toolbox. In Table 1, for the noise levels
ε = 10−1, 10−2, 10−3, we report the results. In particular, we have considered the
relative error of the final approximation (ERR), the number of iterations (IT), the
final value of the regularization parameter (λf inal) and the elapsed time in seconds
(SEC).

For a better view of the behavior of the methods, in Fig. 3 we show the recon-
struction of testpat2.tif obtained with the GAT and the RGAT methods, with
blurring parameters q = 12 and σ = 4, and noise level ε = 10−3. The reconstruction
attained with the AGAT method is similar to the one of the GAT method, and hence
not reported.

Example 2 We consider the block Toeplitz matrix A ∈ R
N×N , N = n2, representing

motion blur along the x-axis. Given a positive integer q ,

A = In ⊗ S,

where S ∈ R
n×n is a symmetric banded matrix of half-bandwidth q , in which the

non-zero entries are 1/(2q − 1), that is,

Sij =
{

1/(2q − 1) |i − j | ≤ q

0 elsewhere

Table 1 Result of the
restoration of Example 1 ε ERR IT λf inal SEC

GAT 3.90e-1 6 7.44e-3 0.7

10−1 RGAT 3.65e-1 17 3.65e-1 1.4

AGAT 3.94e-1 6 4.97e-2 0.6

GAT 3.39e-1 8 1.06e-4 0.8

10−2 RGAT 3.09e-1 35 5.31e-2 2.2

AGAT 3.40e-1 8 3.14e-4 0.7

GAT 2.92e-1 20 1.97e-6 1.6

10−3 RGAT 2.42e-1 65 1.22e-3 3.5

AGAT 2.90e-1 20 1.72e-5 1.4
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Original Image Blurred and Noisy Image

Restoration with L
1,2D

 − GAT Restoration with L
1
P − RGAT

Fig. 3 Reconstruction of testpat2.tif obtained with the GAT and the RGAT methods, with q = 12,
σ = 4, and ε = 10−3

see [7]. The test image is mri.tif, a 128 × 128 image taken from the Image
Processing Toolbox. The results are reported in Table 2, and refer to the choice
of q = 15. Moreover in Fig. 4 an example reconstruction is reported.

Table 2 Result of the
restoration of Example 2 ε ERR IT λf inal SEC

GAT 3.52e-1 6 6.02e-2 0.3

10−1 RGAT 3.32e-1 16 3.52e-0 0.8

AGAT 3.50e-1 7 5.80e-2 0.3

GAT 1.90e-1 15 1.01e-3 0.6

10−2 RGAT 1.61e-1 44 4.29e-1 2.3

AGAT 1.86e-1 15 2.94e-3 0.5

GAT 9.41e-2 32 8.34e-7 1.3

10−3 RGAT 5.35e-2 96 1.54e-2 3.8

AGAT 9.20e-2 32 1.62e-5 1.1
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Original Image Blurred and Noisy Image

Restoration with L
1,2D

 − GAT Restoration with L
1
P − RGAT

Fig. 4 Reconstruction of mri.tif affected by motion blur, obtained with the GAT and the RGAT
methods, with q = 15 and ε = 10−3
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−5
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−4
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−3
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−0.54

10
−0.52
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−0.5
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−0.48
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−0.46

10
−0.44

λ

GAT
RGAT
AGAT

10
−5

10
−4

10
−3

10
−2

10
−0.8

10
−0.7

10
−0.6

λ

GAT
RGAT
AGAT

Fig. 5 Relative errors for the restoration with a fixed value of the parameter lambda. On the left: results
for Example 1 with q = 7 σ = 2. On the right: results for Example 2 with q = 15. In both cases ε = 10−2
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Finally, for both examples, we want to show that the two algorithm are less sen-
sitive with respect to the choice of the regularization parameter. While the choice
of this parameter depends on the algorithm used to define it, and the choice of the
regularization operator, we consider the situation in which this parameter is a-priori
fixed and not updated during the Arnoldi algorithm. The results are reported in Fig. 5,
where the minimum attainable error versus λ is plotted.

6 Conclusions

After generalizing the Arnoldi-Tikhonov method as presented in [3], in this paper we
have exposed two algorithms based on the reordering of the approximate solution in
a restarted and an adaptive way. In both cases the methods seem able to detect a more
effective regularization operator, as confirmed by the selection of the regularization
parameters during the algorithms (cf. Tables 1 and 2). This makes both methods less
sensitive to the choice of these parameters as showed in Fig. 5. The restarted method,
RGAT, typically shows a substantial improvement in the quality of restoration, with
a computational cost which remains comparable with the one of the standard proce-
dure. On the other side, the quality of the reconstruction attainable with the AGAT
method is generally quite close to the one of the GAT method. Some advantage
can be observed in terms of the computational cost, since L1P ∈ R

(N−1)×N while
L1,2D ∈ R

2n(n−1)×n2
where n2 = N .
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