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Abstract The numerical approximation of nonlinear partial differential equa-
tions requires the computation of large nonlinear systems, that are typically
solved by iterative schemes. At each step of the iterative process, a large and
sparse linear system has to be solved, and the amount of time elapsed per step
grows with the dimensions of the problem. As a consequence, the convergence
rate may become very slow, requiring massive cpu-time to compute the solu-
tion. In all such cases, it is important to improve the rate of convergence of the
iterative scheme. This can be achieved, for instance, by vector extrapolation
methods. In this work, we apply some vector extrapolation methods to the
electronic device simulation to improve the rate of convergence of the family
of Gummel decoupling algorithms. Furthermore, a different approach to the
topological ε-algorithm is proposed and preliminary results are presented.

Keywords Gummel map · Semiconductor device simulation ·
Vector extrapolation methods · ε-algorithm

1 Introduction

In the last 20 years microprocessors spread over all fields of everyday life.
Nowadays each microprocessor, even if it is made by millions of few basic
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components, such as MOSFET (Metal-Oxide-Semiconductor Field-Effect-
Transistor), is built in some square centimeters. This is due, mainly, to the fast
improvements of the physical technologies, which allows a progressive dimen-
sions reduction of the basic components. This is according to the Moore’s law,
an empirical observation that the transistor density doubles every couple of
years [18]. Numerical simulation plays a role, sometimes fundamental, in this
fast and continuous development process.

In this paper, we deal with one step of numerical device simulation which
refers to the single, basic, component. This requires the physical model of the
component to be based on a system of Partial Differential Equations (PDE).
The PDE system is solved via the Gummel map using a nonlinear iterative
method [11]. Some acceleration techniques have been applied to the generated
vector sequence [8, 10, 20]. An overview of some vector extrapolation methods
is given in [5, 23], while a more recent numerical comparison is given in [14].

The paper is organized as follows. In Section 2, we recall some vector
extrapolation methods belonging to two different families: the polynomial
methods and the ε-algorithms; then we see how these methods could be
applied to solve a linear system, and we give some numerical comparisons. In
Section 3, we explain the basic concepts for the Gummel map, and propose a
way to apply extrapolation algorithms in order to accelerate the corresponding
rate of convergence. In the last part of this section we present some numeri-
cal experiments for two particular devices, the MOS capacitor and the p–n
junction diode.

In conclusion, this work presents a new algorithm for the extrapolation of
the Gummel map, based on a restarting approach. Preliminary numerical tests
are shown and further investigations and theoretical results will follow.

2 Vector extrapolation methods

In this Section, we present the essential background on extrapolation methods.
For a deeper understanding of applications and numerical examples, the
interested reader should consult [3, 23] for more details.

Many iterative processes used in numerical analysis lead to vector sequence.
If such a sequence converges too slowly, then it may be transformed, by vector
extrapolation methods, into another sequence converging to the same limit,
but faster than the initial one. An important property of these methods is that
they do not require an explicit knowledge of the sequence generator, so they
could be applied directly to the solution of linear and nonlinear systems. In
particular, for nonlinear problems these methods do not need the use of the
Jacobian of the function, and they have a quadratic rate of convergence, under
some assumptions [13]. In this paper, we will consider four vector extrapolation
methods which can be classified in two categories: the polynomial methods and
the ε-algorithms.
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2.1 Polynomial methods

Let (xn) be a given sequence of vectors of IRN or C| N and denote its limit
or antilimit by s. Using the vectors xn, the polynomial methods produce an
approximation of s as follows. If we define

ui = �xi = xi+1 − xi,

wi = �ui = �2xi, i = 0, 1, 2, . . . ,

and k is an integer less than N, then the approximation s(n)

k of s is given by
solving the linear system

�ζ = α

where � is an (N × k) matrix, α is an N-dimensional column vector, and ζ =
(ζ0, ζ1, . . . , ζk−1)

T is the vector of the coefficients. This is an overdetermined
system which has to be solved by using linear least squares. The choice of
the matrix � and of the vector α depend on the particular extrapolation
method used.

For the Minimal Polynomial Extrapolation (MPE) method [7], � =
[un, un+1, · · · , un+k−1] and α = −un+k. After solving the system and setting
ζk = 1, we compute

γ j = ζ j
∑k

i=0 ζi

, j = 0, 1, . . . , k

and the desiderated approximation of s is

s(n)

k =
k∑

j=0

γ jxn+ j. (1)

For the Reduced Rank Extrapolation (RRE) method [9, 17], � and α

are, respectively, � = [wn, wn+1, · · · , wn+k−1] and α = −un. The least squares
approximation of the system leads to

s(n)

k = xn +
k−1∑

j=0

ζ jun+ j. (2)

From the previous formulae we could assert that a polynomial algorithm
finds the approximation of s as a weighted average of k + 1 terms, related with
the given sequence, where the k independent weights are found by solving a
linear system of dimension (N × k).
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2.2 The ε-algorithms

Let (xn) be a scalar sequence which converges to s. A simple recursive
formula to implement the Shanks transformation [21], is the scalar ε-algorithm
proposed by [26], defined as

ε
(n)
−1 = 0, ε

(n)
0 = xn, n = 0, 1, . . . (3)

ε
(n)

k+1 = ε
(n+1)

k−1 +
[
ε

(n+1)

k − ε
(n)

k

]−1
k, n = 0, 1, . . . . (4)

In order to generalize the scalar ε-algorithm to the vector case, Wynn
[27] suggested the interpretation of the ’inverse’ of a column vector z as the
Samelson inverse

z−1 = z/‖z‖2,

and the vector version of (3–4) is called the Vector Epsilon Algorithm (VEA).
This algorithm suffers the theoretical defect that it is difficult to find its kernel,
that is the set of sequences for which the exact limit is obtained. Due to
this drawback, another generalization of ε-algorithm for vector sequences, the
Topological Epsilon Algorithm (TEA), has been proposed later [4]. It can be
expressed as a ratio of determinants, and computed by the following recursive
algorithm:

ε
(n)
−1 = 0, ε

(n)
0 = xn, n = 0, 1, . . .

ε
(n)

2k+1 = ε
(n+1)

2k−1 + y/
(

y, �ε
(n)

2k

)

ε
(n)

2k+2 = ε
(n+1)

2k + �ε
(n)

2k /
(
�ε

(n)

2k+1, �ε
(n)

2k

)

where y is a chosen fixed vector, (·, ·) is the Euclidian inner product, and �

is the usual forward difference operator which, in our case, acts on the upper
indexes.

2.3 Applications to linear systems

It will be of interest, before to enter into the main subject of this paper (the
acceleration of the Gummel map), to present some practical examples of the
use of extrapolation methods for solving linear systems. We consider a system
Ax = b , and an iterative method for solving it. That is, the solution x is written
as the limit of a sequence xn+1 = Mxn + q, where M and q depend on the
chosen iterative method. The starting point x0 is always set as the zero vector.

For a faster convergence, the sequence (xn) is accelerated using the extrap-
olation techniques presented in the previous section. We decide to apply the
extrapolation algorithm by using the so called ‘restarting technique.’ First, a
fixed number of successive vectors of the sequence (xn) are collected. Then, an
extrapolation step is performed and the obtained extrapolated vector is used
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as a new starting point. These two steps are repeated until a stopping criteria
based on the residual rn = b − Axn is satisfied, i.e. ||rn||∞ ≤ ε, where ε is some
prescribed tolerance.

The effectiveness of each extrapolation technique depends on the number
of collected vectors Na used in the extrapolation step. When the sequence
(xn) is linearly generated, the theory provides an exact value for Na. For the
polynomial methods, for example MPE, the approximation of x, is obtained
by (1) where the γ j are the coefficients of the minimal polynomial P(λ), of
the matrix M with respect to the vector x − x0, and k its degree. Furthermore,
if VEA or TEA is applied to the sequence (xn) then, thanks to the theory
[3], ε

(n)

2k = x = A−1b , where k is, in the most simple case, the degree of the
characteristic polynomial of M. So, for both cases, the theoretical value of Na

is equal to k. The exact value of Na is sometimes difficult to know and, in our
examples, an approximate value is based on an experimental tuning.

The previous extrapolation methods are applied for solving two different
kind of linear systems. The first is a tridiagonal system of dimension N = 500
with A = tridiag([−1, 2.1, −1]), and b is chosen so that the solution has all its
components equal to 1. Similar results are obtained with a random choice of
the vector b . The Gauss–Seidel iterative method is used with ε = 10−8. The
tridiagonal matrix is chosen, for, at least, two reasons. First, it allows an easy
control of the rate of convergence, changing the main diagonal value. Latter, a
matrix as the one used, should come out from the finite element discretization
of a one-dimensional elliptic differential equation, for example the Poisson
equation used in the Gummel map. Some numerical results, which refer to
Na = 20, are presented in Fig. 1.

The second example refers to the finite element solution of the following
partial differential equation

⎧
⎨

⎩

�u = −10, (x, y) ∈ 
 = [0, 1] × [0, 1]
u(x, 0) = 0
u(x, 1) = 10,
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Fig. 1 Behaviour of error and residual for different acceleration methods applied to the solution
of a tridiagonal linear system
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and with homogeneous Neumann conditions on the rest of the boundary.
The discretization gives a sparse stiffness matrix of dimension N = 19, 201
with 133, 377 non zero elements. The Gauss–Seidel iterative method is used
again with ε = 10−8 to solve the corresponding linear system. Some numerical
results, which refer to Na = 50, are presented in Fig. 2. For both examples the
TEA algorithm uses a new vector y at each restarting, where y is randomly
generated using a normal distribution function with a zero mean value and
a unitary variance. The corresponding plot is obtained using the best among
several plots. Since the solution is known, we plot both the residual and the
error behaviour, and we note that they are in good agreement each other.
The polynomial methods perform quite well and, from our tests, which are
not reported here, this still remains the case for different values of Na. The
ε-algorithms seem to be worse and also more sensitive to the choice of Na.

As an experimental result, the performance of TEA is closely related to the
choice of the auxiliary vector y. By now, little is known about the appropriate
selection of y. Here, a modified version of the topological ε-algorithm of
Brezinski is introduced; that is, the vector y is changed at each extrapolation
step, instead of being a fixed one during the whole convergence process. The
change of the vector y is done according to one of the following ways: (a) y is
randomly generated once, at the beginning of the algorithm and remains the
same at each restarting (y fix); (b) y is randomly generated at each restarting
(y rand); (c) y is set equal to the residual at each restarting, y = b − Axn

(y res); (d) y = xn+1 − xn (y diff) [6]. Some results are shown in Fig. 3. As a
result, TEA performs pretty well if the vector y is chosen as the residual at
each restarting; also, a randomly chosen vector gives a good algorithm. With
a fixed y, the algorithm could perform well but this happens with a very small
probability. The results presented still exhibit this behaviour in all own tests.
The work is still in progress, and theoretical results will follow.

We can assert that, to own knowledge, no known extrapolation methods
are equivalent to TEA when the vector y is chosen as the preceding residual
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Fig. 2 Behaviour of error and residual for different acceleration methods applied to the solution
of a linear system coming from the finite element discretization of a Poisson equation
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Fig. 3 Behaviour of error and residual for different choices of the vector y used in the TEA
acceleration technique (with reference to the tridiagonal matrix)

at each restart. However, when the vector sequence is generated by a linear
iteration, the methods MPE, RRE and TEA are mathematically related to
some known Krylov methods, as first stated and proved by Sidi [22], and later
by [12].

3 Extrapolation algorithms for the Gummel map

Within certain range of applications, the steady-state semiconductor simula-
tion is based on the drift–diffusion equations, first derived by Van Roosbroeck
[25], which are presented here in the scaled version due to Markowich [16]

⎧
⎨

⎩

−λ2�ψ = nieφp−ψ − nieψ−φn + C
∇ · Jn = R
∇ · Jp = −R,

(5)

where the unknowns are the electrostatic potential ψ and the electron and
hole quasi–Fermi potentials, φn and φp, respectively. The first equation of
(5) is the Poisson equation; here, λ is a constant and C is the doping profile,
which is a given function. The right hand side of the Poisson equation is the
charge density: n = ni exp(ψ − φn) is the free electron concentration (negative
charge), p = ni exp(φp − ψ) is the hole concentration (positive charge) and C is
the concentration of fixed ions, which may be positive or negative. The second
and third equations are the continuity equations for electrons and holes,
respectively. In these equations, R is the Shockley–Read–Hall generation–
recombination function, which is a nonlinear function of ψ , φn and φp

R = ni
eφp−φn − 1

τp(eψ−φn + 1) + τn(eφp−ψ + 1)

where τn and τp are characteristic lifetimes for holes and electrons, respec-
tively, and ni is the intrinsic free carrier concentration, which may be taken as a
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constant for any given device temperature [24]. We do not consider Auger nor
impact ionization mechanisms in this work. Defining the Slotboom variables
u = exp(−φn) and v = exp(φp), the electron and hole current densities, Jn and
Jp are, respectively

Jn = niμneψ∇u

Jp = −niμpe−ψ∇v, (6)

where μn and μp are the electron and hole mobilities. Substituting (6) into
(5) yields to a system of three, generally strongly coupled, equations in the
variables ψ , φn and φp. A decoupling procedure may be used to numerically
solve this system [11]. That is, the Poisson and the two continuity equations
are solved sequentially in an iterative fashion. The Scharfetter–Gummel sta-
bilization technique is used to avoid numerical oscillations in the solution of
each current continuity equation [19]. Boundary conditions are chosen to make
the device self-consistent. That is, Jn and Jp have a zero outward component
in the Neumann part of the boundary. Furthermore, ψ has a value on each
Dirichlet part of the frontier, whereas, in the remaining parts, an homogeneous
Neumann condition is used.

The algorithm we proposed in this paper is a modified version of the classical
Gummel map [11, 15], where the novelty resides in the possibilities of applying
the extrapolation steps. Each variable (ψ , φn or φp) may be, on demand,
separately extrapolated, but using the same kind of extrapolation method. This
allows a better control on the convergence of the Gummel map. Consider, for
example, ψ . During the k-th iteration, ψ(k+1) is stored in the vector unψ

, where
nψ is a counter from 1 to Nψ (the maximum desired number of vectors to
be used for extrapolation). When the number of the stored vectors reaches
Nψ , then an extrapolation step is performed by an auxiliary routine which
returns the new value for ψ(k+1). This routine has, among other inputs, the
extrapolation technique that has to be used. The extrapolated vector is then
used instead of the last computed one, thus leading to a kind of restarting.
The same procedure is used for φn and φp collecting Nφn and Nφp vectors,
respectively, where Nφn and Nφp are fixed, positive, integers. Denoting by || · ||
the infinity norm of a vector, setting

εψ = ||ψ(k+1) − ψ(k)||
||ψ(k)|| εφn = ||φ(k+1)

n − φ(k)
n ||

||φ(k)
n || εφp = ||φ(k+1)

p − φ(k)
p ||

||φ(k)
p || ,

and given a small tolerance ε, the stopping criteria, usually adopted in devices
simulations, will be

max{εψ, εφn, εφp} < ε. (7)
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Algorithm

Initializations
guess ψ(0), φ(0)

n , φ(0)
p

set Nψ, Nφn, Nφp

k ← 0
nψ ← 0, nφn ← 0, nφp ← 0

repeat
1. solve −λ2�ψ(k+1) = −nieψ(k+1)−φ

(k)
n + nieφ

(k)
p −ψ(k+1) + C

if acceleration for ψ is asked
nψ ← nψ + 1
unψ

← ψ(k+1)

if nψ = Nψ

extrapolate z by using u1, . . . , uNψ

ψ(k+1) ← z
nψ ← 1, unψ

← z
endif

endif
εψ ← ‖ψ(k+1) − ψ(k)‖/‖ψ(k)‖

2. solve ∇ · [niμneψ(k+1)∇u(k+1)] = R(ψ(k+1), φ(k)
n , φ(k)

p )

if acceleration for φn is asked
nφn ← nφn + 1
vnφn

← φ(k+1)
n

if nφn = Nφn

extrapolate z by using v1, . . . , vNφn

φ(k+1)
n ← z

nφn ← 1, vnφn
← z

endif
endif
εφn ← ‖φ(k+1)

n − φ(k)
n ‖/‖φ(k)

n ‖
3. solve ∇ · [niμpe−ψ(k+1)∇v(k+1)] = R(ψ(k+1), φ(k)

n , φ(k)
p )

if acceleration for φp is asked
nφp ← nφp + 1
wnφp

← φ(k+1)
p

if nφp = Nφp

extrapolate z by using w1, . . . , wNφp

φ(k+1)
p ← z

nφp ← 1, wnφp
← z

endif
endif
εφp ← ‖φ(k+1)

p − φ(k)
p ‖/‖φ(k)

p ‖
4. k = k + 1
until max

{
εψ, εφn , εφp

}
< ε
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3.1 Examples

This section shows some applications of the previous algorithm. The examples
presented here are chosen to cover some of the more basic electronic devices,
namely the p–n junction diode and the MOS capacitor. Some short comments
on the electronic devices are given at the beginning of each example. For
a more deeper understanding on the device physics, the interested reader
is referred to [16, 24]. Let us remark some numerical considerations. The
choice of the variables to accelerate is a difficult task. As an experimental
result, coming out from our examples, ψ seems to be the most effective one.
That is, the acceleration works well if ψ is used, whereas no, or very small,
improvements are gained using φn or φp or any combination of variables
involving the quasi-Fermi potentials. This question is under a theoretical
investigation and is delayed to future works.

Referring to an acceleration of ψ , another not easy question is how to select,
a priori, an appropriate value for Nψ . For all our examples, this value turns
out from an experimental tuning. The extrapolation is performed storing, as a
first guess, a small number of vectors, say Nψ = 5. If the number of Gummel
iterations needed to fulfill the stopping criteria is considerable smaller than
for a reference solution, well-known for these basic devices, then the current
value of Nψ is chosen, a reduction of 30% of iterations can be considered
acceptable. Otherwise, Nψ is increased, say to Nψ + 5. This procedure may
be time consuming, since every different choice of Nψ needs a new run of the
algorithm.

3.1.1 The MOS capacitor

A MOS capacitor is a thin layer of insulator between two, distinct, (semi–)
conductor materials. One contact is a conductor sheet made on one face

Fig. 4 A typical
MOS capacitor conver-
gence progress
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Fig. 5 Convergence
progress for an abrupt p–n
junction diode

0 2 4 6 8 10 12 14 16

10
–6

10
–5

10
–4

10
–3

10
–2

10
–1

10
0

number of Gummel iterations

NO ACCELERATION 

VEA 

MPE 

RRE 

TEA 

of the insulator. The other contact, made on the opposite face, is a thick
semiconductor layer. In this example, the insulator has a thickness ti = 0.1 μm
and a relative dielectric constant κi = 3.9. The semiconductor has a constant
doping C = −1022 m−3, a relative dielectric constant κs = 11.7 and is ts = 1 μm
thick. Two external voltages Vi and Vs are applied to the capacitor throughout
the two contacts, one on the insulator and another one on the semiconductor.
The total voltage applied V is defined as V = Vi − Vs. For a steady-state
solution, the insulator insures Jn = Jp = 0 and R = 0. So, (5) reduces to the
Poisson equation only. This equation is discretized using the Finite Element
Method with linear elements and leads to a non-linear system of equations
which is solved via the pure Newton iterative method. The stopping criteria
is based on the relative norm of the difference between two consecutive
iterations, i.e. the algorithm stops if εψ < ε where ε = 10−4. ψ(0) = Vs inside
the semiconductor and is linearly varying inside the insulator between Vi and
Vs. The mesh has 200 points and is finely tuned to the problem to get a better
solution. The first 50 points are equally spaced in the insulator domain. The
second 100 points are equally spaced in the first 0.2 μm of the silicon domain.
Finally, the last 50 points are equally spaced in the remaining part of the silicon
domain.

A typical convergence progress is shown in Fig. 4, which refers to an applied
voltage V = 2 Volt, the x-axis refers to the Gummel iterations, whereas the
y-axis reports εψ The stopping criteria is fulfilled with more than 60 iterations
without any acceleration technique. Using RRE and VEA to accelerate ψ ,

Table 1 Comparison
of the CPU time for
different extrapolation
methods

Nψ RRE MPE VEA TEA

CPU time [s] 5 20.5 20.8 81.5 94.6
CPU time [s] 10 17.3 17.2 22.7 59.7
CPU time [s] 20 36.2 37.1 36.1 56.0
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with Nψ = 10, the convergence progress is greatly improved. Similar results
are obtained changing the mesh size, Nψ and V. Furthermore, RRE and TEA
lead to similar results as MPE and VEA, respectively. Depending on the
mesh and on the specific acceleration technique used, the CPU time using the
acceleration is reduced by a factor of three to four.

3.1.2 The p–n junction diode

We consider a one-dimensional, abrupt, p–n junction diode, that is a domain
[−L, L] where the doping function has a negative, constant value for x < 0 and
a positive, constant value for x ≥ 0. Say, C(x) = C0sign(x), where C0 is a given
positive value. Two Ohmic contacts, located at x = ±L, provide an external
bias V = V(−L) − V(L) to the device. V(−L) and V(L) are, respectively,
the external potentials applied to the left and right Ohmic contacts. R is
neglected but similar results are obtained considering it. For this example,
the non-linear Poisson equation is solved via a damped-Newton method [1],
where the pure Jacobian is replaced by its lumped version. ψ(0), φ(0)

n and
φ(0)

p are chosen according to [2]. A characteristic convergence behaviour is
shown in Fig. 5, which refers to L = 1 μm, C0 = 1022 m−3, V = −0.5 Volt (the
p–n junction is reverse biased) and an acceleration of ψ with Nψ = 10. The
x-axis refers to the Gummel iterations, the y-axis reports εψ . The mesh uses
50 points equally spaced in the domain. The stopping criteria refers to (7) with
ε = 10−4. This figure still preserves, for reverse bias, its qualitative behaviour
against variations of V and the number of mesh points. For a direct bias the
number of iterations without acceleration is about four to seven and so the
acceleration tecniques are less interesting. The Table 1 shows the CPU time
for three different values of Nψ . The same simulation without any acceleration
technique requires 46.7 s. From this table, it is interesting to argue the existence
of a value for Nψ which minimizes the CPU time.

4 Conclusions

From our experimental results, the extrapolation techniques seem to be
successfully applicable to the acceleration of the convergence process of the
Gummel map. These preliminary results are stimulating but obviously need
further investigations and theoretical work, which are both in progress.
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