
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS
Numer. Linear Algebra Appl. (2014)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/nla.1934

Embedded techniques for choosing the parameter in
Tikhonov regularization

S. Gazzola, P. Novati*,† and M. R. Russo

Departments of Mathematics University of Padua Padua Italy

SUMMARY

This paper introduces a new strategy for setting the regularization parameter when solving large-scale dis-
crete ill-posed linear problems by means of the Arnoldi–Tikhonov method. This new rule is essentially based
on the discrepancy principle, although no initial knowledge of the norm of the error that affects the right-
hand side is assumed; an increasingly more accurate approximation of this quantity is recovered during the
Arnoldi algorithm. Some theoretical estimates are derived in order to motivate our approach. Many numer-
ical experiments performed on classical test problems as well as image deblurring problems are presented.
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1. INTRODUCTION

Let us consider a linear discrete ill-posed problem of the form

Ax D b; (1)

where A 2 RN�N is severely ill-conditioned and may be of huge size. These sort of systems
typically arise from the discretization of Fredholm integral equations of the first kind with compact
kernel (for an exhaustive background on these class of problems, cf. [1, Chapter 1] ). The right-hand
side b is assumed to be affected by an unknown additive error e coming from the discretization
process or measurements inaccuracies, that is,

b D bex C e; (2)

where bex denotes the unknown exact right-hand side. We assume that the unperturbed systemAx D
bex is consistent and we denote by xex a desired solution (e.g., the solution of minimal Euclidean
norm); the system (1) is not guaranteed to be consistent. Referring to the SVD of the matrix A,

A D U†V T ; (3)

we furthermore assume that the singular values �i quickly decay toward zero with no evident gap
between two consecutive ones.

Because of the ill-conditioning of A and the presence of noise in b, in order to find a meaningful
approximation of xex, we have to substitute the available system (1) with a nearby problem having
better numerical properties: this process is called regularization. One of the most well-known and
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well-established regularization technique is Tikhonov method that, in its most general form, can be
written as

min
x2RN

®
kAx � bk2 C �kL.x � x0/k

2
¯
; (4)

where L 2 RP�N is the regularization matrix, � > 0 is the regularization parameter and x0 2 RN

is an initial guess for the solution. We denote the solution of the problem (4) by x�. When L D IN
(the identity matrix of orderN ) and x0 D 0, the problem is said to be in standard form. In this paper,
the norm k � k is always the Euclidean one. The use of a regularization matrix different from the
identity may improve the quality of the reconstruction obtained by (4), especially when one wants
to enhance some known features of the solution. In many situations, L is taken as a scaled finite
differences approximation of a derivative operator (cf. Section 5).

A proper choice of the regularization parameter is crucial, because it specifies the amount of
regularization to be imposed. Many techniques have been developed in order to set the regularization
parameter in (4 ); we cite [2, 3] for a review of the classical ones along with some more recent ones.
Here, we are concerned with the discrepancy principle, which suggests to set the parameter � such
that the nonlinear equation

kb � Ax�k D �kek; � & 1;
is satisfied. Of course, this strategy can be applied only if a fairly accurate approximation of the
quantity kek is known.

Denoting by xm;�, the approximation of x� computed at them-th step of a certain iterative method
applied to (4), and by �m.�/ D kb � Axm;�k the corresponding discrepancy, each nonlinear solver
for the equation

�m.�/ D �kek; (5)

leads to a parameter choice rule associated with the iterative process. The basic idea of this paper, in
which we assume kek to be unknown, is to consider (if possible) the approximation �k.0/ � kek,
where k < m, and then to solve

�m.�/ D ��k.0/; (6)

with respect to �. The use of (6) as a parameter choice rule is motivated by the fact that many
iterative solvers for Ax D b produce approximations xm D xm;0 whose corresponding residual
kb � Axmk tends to stagnate around kek. In other words, the information about the noise level can
be recovered during the iterative process. Moreover, in many situations, the computational effort of
the algorithm that delivers xm;� can be exploited for forming xm;0 (or vice versa). For this reason,
we may refer to any iterative process, which simultaneously uses xm to approximate kek and solves
(6) to compute xm;� as an embedded approach.

In this paper, we are mainly interested in solving (4) by means of the so-called Arnoldi–Tikhonov
(AT) methods (originally introduced in [4] for the standard form regularization), which are based on
the orthogonal projection of (4) onto the Krylov subspaces Km.A; b/ D span¹b;Ab; : : : ; Am�1bº of
increasing dimensions. As well known, these methods typically show a fast superlinear convergence
when applied to discrete ill-posed problems, and hence they are particularly attractive for large-scale
problems. Dealing with this kind of methods, efficient algorithms based on the solution of (5) have
been considered in [5] and [6]. More recently, in [7] a very simple strategy for solving (5), based
on the linearization of �m.�/, has been presented. In this paper, we extend the latter approach by
considering the approximation �m�1.0/ � kek where, in this setting, �m�1.0/ is just the norm of
the generalized minimal residual method (GMRES) residual computed at the previous iteration.

The paper is organized as follows. In Section 2, we survey the basic features of the AT methods.
In Section 3, we review the linearization technique described in [7], and in Section 4, we explain the
parameter choice rule based on an embedded approach, giving also a theoretical justification in the
AT case. In the first part of Section 5, we write down the algorithm, in order to summarize the new
method and to better describe some practical details; the remaining parts are devoted to display the
results of some of the performed numerical tests.
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2. THE ARNOLDI–TIKHONOV METHOD

The AT method was first proposed in [4] with the basic aims of reducing the problem (4) (in the
particular case L D IN and x0 D 0) to a problem of much smaller dimension and to avoid the
use of AT as in the Lanczos-type methods (see e.g., [8]). Then, in [7, 9, 10], the method has been
extended to work with a general L 2 RP�N and x0. Assuming x0 D 0 (this assumption will hold
throughout the paper), we consider the Krylov subspaces

Km.A; b/ D span¹b;Ab; : : : ; Am�1bº; m > 1: (7)

In order to construct an orthonormal basis for this Krylov subspace, we can use the Arnoldi
algorithm [11, Chapter 6], which leads to the associated decomposition

AWm D WmHm C hmC1;mwmC1e
T
m (8)

D WmC1 NHm; (9)

where WmC1 D Œw1; : : : ; wmC1� 2 RN�.mC1/ has orthonormal columns that span the Krylov
subspace KmC1.A; b/, and w1 D b= kbk. The matrices Hm 2 Rm�m and NHm 2 R.mC1/�m are
upper Hessenberg.

The AT method searches for approximations xm;� of the solution of problem (4) belong-
ing to Km.A; b/. Therefore, replacing x D Wmy, y 2 Rm, into (4), yields the reduced
minimization problem

ym;� D arg min
y2Rm

°�� NHmy � c��2 C � kLWmyk2
±
; (10)

where c D kbke1, being e1 the first vector of the canonical basis of RmC1. The aforementioned
problem is equivalent to

ym;� D arg min
y2Rm

����
�

NHmp
�LWm

�
y �

�
c

0

�����
2

: (11)

Obviously, ym;� is also the solution of the normal equation

�
NHT
m
NHm C �W

T
m L

TLWm
�
ym;� D NH

T
m c: (12)

We remark that, when dealing with standard form problems (L D IN and x0 D 0), the Arnoldi–
Tikhonov formulation considerably simplifies thanks again to the orthogonality of the columns of
Wm and, instead of (11), we can consider

ym;� D arg min
y2Rm

����
�
NHmp
�Im

�
y �

�
c

0

�����
2

: (13)

In (13), the dimension of the problem is fully reduced because at each iteration we deal with a
.2mC1/�mmatrix. On the other side, considering (11), there is still track of the original dimensions
of the problem. Anyway, because the AT method can typically recover a meaningful approximation
of the exact solution after just a few iterations of the Arnoldi algorithm have been performed, the
computational cost is still low. Assuming thatP 6 N in (4) and defining a new matrixL obtained by
appendingN �P zero rows to the original one, we can also consider the following new formulation:

ym D arg min
y2Rm

����
�
NHmp
�Lm

�
y �

�
c

0

�����
2

; where Lm D W
T
m LWm: (14)
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The aforementioned problem is not equivalent to (11) anymore but can be justified by the fact that
Lm is the orthogonal projection of L onto Km.A; b/, and hence, in some sense, Lm inherits the
properties ofL (see [12] for a discussion). Alternatively, one can obtain a full dimensional reduction
by considering the QR factorization of LWm (see [9]). Some preliminary numerical experiments
have revealed that this two approaches yield very similar results.

3. THE PARAMETER CHOICE STRATEGY

As said in the Introduction, the discrepancy principle is a well-known and quite successful parameter
selection strategy that, when applied to Tikhonov regularization method (4), prescribes to choose
the regularization parameter � > 0 such that kAx� � bk D �kek, where the parameter � is greater
than 1, although very close to it.

An algorithm exploiting the discrepancy principle has been first considered for the Arnoldi–
Tikhonov method in [5], where the authors suggest to solve, at each iteration m, the
nonlinear equation

�m.�/ WD
�� NHmym;� � c�� D �kek; (15)

employing a special zero-finder described in [6]. In order to decide when to stop the iterations, a
preliminary condition should be satisfied and then some adjustments should be made.

Considering the normal equations associated to (14), we write

�m.�/ D
���c � NHm � NHT

m
NHm C �L

T
mLm

��1 NHT
m c
��� : (16)

Denoting by rm D b � Axm the GMRES residual, we have that �m.0/ D krmk. In this setting, in
[7], the authors solve (15) after considering the linear approximation

�m.�/ � �m.0/C �ˇm; (17)

where, at each iteration, the scalar ˇm is defined by the ratio

ˇm D
�m.�m�1/ � �m.0/

�m�1
: (18)

In (18), �m.�m�1/ is obtained by solving the m-dimensional problem (14) using the parameter
� D �m�1, which is computed at the previous step.

Therefore, to select � D �m for the next step of the AT algorithm, we can approximate �m.�m/
by (17) and impose

�m.�m/ D �kek: (19)

Substituting in the linear approximation of �m.�m/, the expression derived in (18), and using the
condition (19), we obtain

�m D
�kek � �m.0/

�m.�m�1/ � �m.0/
�m�1 : (20)

When �m.0/ > �kek, formula (20) produces a negative value for �m. Thus, in order to keep �m > 0,
we consider the relation

�m D

ˇ̌̌
ˇ �kek � �m.0/

�m.�m�1/ � �m.0/

ˇ̌̌
ˇ�m�1: (21)

In this procedure, �0 must be set to an initial value by the user, but the numerical experiments show
that this strategy is very robust with respect to this choice (typically one may set �0 D 1).
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Remark 1
We remark that the use of the absolute value in (21) can be avoided by forcing initially � D 0, that
is, working with the GMRES, and then switching to the AT method equipped with (20) as soon as
�m.0/ < �kek.

In [7], this scheme has been called secant update method, because at each iteration of the Arnoldi
algorithm, it basically performs just one step of a secant-like zero-finder applied to the equation
�m.�/ D �kek. Numerically, formula (21) is very stable, in the sense that after the discrepancy
principle is satisfied, �m is almost constant for growing values of m.

4. EXPLOITING THE GMRES RESIDUAL

We now try to generalize the secant update approach, dropping the hypothesis that the quantity kek
is available. In this situation, one typically employs other well-known techniques, such as the L-
curve criterion or the generalized cross validation (GCV); both have already been used in connection
with the AT or Lanczos-hybrid methods [4, 12–14]. The strategy we are going to describe is to
be considered different because we still want to apply the discrepancy principle, starting with no
information on kek and trying to recover an estimate of it during the iterative process.

Our basic assumption is that, after just a few iterations of the Arnoldi algorithm, the norm of the
residual associated to the GMRES method lies around the threshold kek and, despite being slightly
decreasing, stabilizes during the following iterations (cf. Figure 5). This motivates the use of the
following strategy to choose the regularization parameter at the m-th iteration

�m D
��m�1.0/ � �m.0/

�m.�m�1/ � �m.0/
�m�1; � > 1; (22)

where we have replaced the quantity kek in (21) by �m�1.0/ D krm�1k. We remark that, from a
theoretical point of view, formula (22) cannot produce negative values because �m.0/ D krmk 6
krm�1k D �m�1.0/ and �m.�/ is an increasing function with respect to �. In what follows, we
provide a theoretical justification for this approach, giving also some numerical experiments using
test problems taken from [15]; in the first subsection, we focus on the case b D bex, while in the
second subsection, we treat the case b D bex C e.

4.1. The unperturbed problem

Thanks to a number of results in literature (see, e.g., [16]), we know that the GMRES exhibits
superlinear convergence when solving problems in which the singular values rapidly decay to 0.
Indeed, in this situation, the Krylov subspaces tend to become A-invariant after few iterations. In
general, the fast convergence of a Krylov subspace method applied to an ill-posed system (1) can be
explained by monitoring the behavior of the sequence ¹hmC1;mºm. The following theorem (proved
in [12, Proposition 3.3]) gives us an estimate for the quantities ¹hmC1;mºm whenever we work with
the exact right-hand side bex, and A is assumed to be severely ill-conditioned, that is, with singular
values that decay exponentially (cf. [17]).

Theorem 2
Assume that A has full rank with singular values of the type �j D O.e� j̨ /, ˛ > 0, and that bex

satisfies the discrete Picard condition [18], that is,
ˇ̌̌
uTj b

ex
ˇ̌̌
� �j , where uj is the j -column of the

matrix U in (3). Then, if bex is the starting vector of the Arnoldi process, we have

hmC1;m D O
�
m3=2�m

�
: (23)

In order to assess the estimate (23), in Figure 1, we report a couple of numerical experiments.

Copyright © 2014 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2014)
DOI: 10.1002/nla



S. GAZZOLA, P. NOVATI AND M. R. RUSSO

0 5 10 15 20 25 3010−15

10−10

10−5

100

105

10−15

10−20

10−10

10−5

100

105

hm+1,m

σm

0 5 10 15 20 25 30

hm+1,m

σm

Figure 1. Behavior of the sequences ¹hmC1;mºm and ¹�mºm for the test problems baart (left) and shaw
(right) from [15].

Remark 3
The hypothesis �j D O.e� j̨ /; ˛ > 0, apparently limits the aforementioned results to severely ill-
conditioned problems. Actually, in [12, Remark 3.1], it is explained that this assumption is just used
to have

X
j>mC1

�j D O.e
�˛m/ D O.�m/:

In this sense, the results can be extended to mildly ill-conditioned problems, in which �j D
O.j�˛/; ˛ > 1. In this situation, we would have

X
j>mC1

�j D O.m
1�˛/;

so that, for ˛ sufficiently large, the results of Theorem 2 and Corollary 5, can be extended to mildly
ill-conditioned problems by replacing �m with O.m1�˛/.

Relation (23) can be exploited to estimate the decay of the GMRES residual when dealing with
the unperturbed problem. Indeed, it is well known that the GMRES residual is related to the full
orthogonalization method (FOM) residual �m as follows [11, Chapter 6]:

krmk 6 k�mk D hmC1;m
ˇ̌
eTmH

�1
m c

ˇ̌
; (24)

whereHm is as in (8) and c D kbexke1 2 Rm. Assuming that the FOM solutions ym D H�1m c;m D
1; : : : ; N do not ‘explode’, that is,

9M > 0 such that
ˇ̌
eTmH

�1
m c

ˇ̌
6M; 8 1 6 m 6 N; (25)

and recalling the relation

krmk
2 D

1
1

k�mk2
C 1
krm�1k2

;

which expresses the well-known peak–plateau phenomenon (see [19]), we can conclude that the
GMRES residuals decay as the quantities hmC1;m. In Figure 2, we report the FOM residual history
for some test problems in order to show the behavior described by (24).

Remark 4
Employing the SVD of the matrix Hm, that is,

Hm D U
.m/
m †.m/m

�
V .m/m

�T
;

Copyright © 2014 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2014)
DOI: 10.1002/nla



EMBEDDED TECHNIQUES FOR TIKHONOV REGULARIZATION

0 5 10 15 20 25 30

baart
foxgood
i_laplace
shaw

10−15

10−20

10−10

10−5

100

105

Figure 2. FOM residual history for some common test problems taken from [15].

where †.m/m D diag
�
�
.m/
1 ; : : : ; �

.m/
m

�
, we have

H�1m c D V .m/m .†.m/m /�1U .m/Tm c;

so that assuming condition (25) is equivalent to requiring the discrete Picard condition to hold for the
projected problem. It is known that, if N� .m/j ; j D 1; : : : ; m, are the singular values approximations

arising from the SVD of NHm, then N� .m/m > N� .mC1/mC1 > �N > 0 (cf. [4]). Because hmC1;m goes
rapidly to 0, we also have that after a few iterations � .m/j � N�

.m/
j , j D 1; : : : ; m so that we can

expect that � .m/m > �N . In general, however, we do not have guarantees that the constant M in (25)
is small, so that (26) may be quantitatively not much useful. Everything is closely related to the
SVD approximation that we can achieve with the Arnoldi algorithm (see [12] for some theoretical
results). It is known that, if the matrix A is highly nonsymmetric, then the SVD approximation may
be poor so that the discrete Picard condition may be badly inherited by the projected problem. In
Figure 3, we show the values of the quantities

ˇ̌
eTmH

�1
m c

ˇ̌
for increasing values ofm and some Picard

plots (cf. [20, Chapter 3]) relative to the projected quantitiesHm and c for a couple of test problems
taken from [15].

Thanks to the aforementioned derivations and to Theorem 2, we can immediately state the
following:

Corollary 5
Under the hypothesis of Theorem 2 and assuming that (25) is satisfied, the GMRES residuals are of
the type

krmk D O
�
m3=2�m

�
: (26)

4.2. The perturbed problem

When the right-hand side of (1) is affected by noise, we can give the following preliminary estimate
for the norm of the GMRES residual.

Proposition 6
Let b D bex C e and let rex

m D pex
m.A/b

ex be the residual of the GMRES applied to the system
Ax D bex. Assume that for m > m�; kpex

m.A/k 6 �� (cf. [21]). Then the m-th residual of the
GMRES applied to Ax D b satisfies

krmk 6 �kek;

where

� D

��rex
m�

��
kek

C ��:
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Figure 3. Plot of the quantities
ˇ̌
eTmH

�1
m c

ˇ̌
versus the number of iterations m for the problems baart (a)

and shaw (b). Plot of � .m/
i

and the Fourier coefficients

ˇ̌̌
ˇ
�
u
.m/

i

�T
c

ˇ̌̌
ˇ versus the index i for the unperturbed

projected systems of sizem D 6 (problem baart (c) and problem shaw (d)) and of sizem D 20 (problem
baart (e) and problem shaw (f)).

Proof
Thanks to the optimality property of the GMRES residual,

krmk D min
pm.0/D1

kpm.A/bk 6 kpex
m.A/bk :

Because b D bex C e,

krmk 6 kpex
m.A/b

exk C kpex
m.A/ek 6 krex

mk C �
�kek:

The result follows from krex
mk 6

��rex
m�

��, which holds for m > m�. �
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In the remaining part of this section, we try to give some additional information about the value
of the constant � of Proposition 6. Let

QVm D

	
b

kbk
;
Ab

kAbk
; : : : ;

Am�1b

kAm�1bk



; QV ex

m D

	
bex

kbexk
;
Abex

kAbexk
; : : : ;

Am�1bex

kAm�1bexk



:

With these notations, we can write

krmk D min
s2RmC1;s1D0

��b � QVmC1s�� ;
where s1 is the first component of vector s.

Proposition 7
For the GMRES residual, we have

krmk 6 �.m/kek;

where

�.m/ D 1C
krex
mk C

��� QVmC1 � QV ex
mC1

�
sex
��

kek

and sex
�
sex
1 D 0

�
is such that krex

mk D
��b � QV ex

mC1s
ex
��.

Proof
We have

krmk D min
s2Rm

��b � QVmC1s�� 6 ��b � QVmC1sex
��

D
��bex C e � QVmC1s

ex C QV ex
mC1s

ex � QV ex
mC1s

ex
��

6 krex
mk C kek C

��� QVmC1 � QV ex
mC1

�
sex
�� :

�
The fast decay of the singular values of A ensures that, for k > 1 (note that sex

1 D 0)

1

kek

�����
Akb

kAkbk
�

Akbex

kAkbexk

������ 1; (27)

so that, whenever krex
mk � 0, we have �.m/ � 1. Condition (27) is also at the basis of the so-

called range-restricted approach for Krylov type methods (see [5]). Moreover, we remark that the
relation (27) can be interpreted as the discrete analogous of the Riemann–Lebesgue Lemma (see e.g.

0 5 10 15
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foxgood
i_laplace
shaw

10−20

10−15

10−10

10−5

100

Figure 4. Decay of the quantities 1
kek

��� Akb

kAkbk
� Akbex

kAkbexk

��� versus the value of k > 0. The right-hand side is
affected by 1% Gaussian noise.
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Figure 5. GMRES residual history when the right-hand side is affected by 1% noise. In clockwise order, the
problem considered are baart, foxgood, shaw, and i_laplace.

[1, p.6]), whenever we assume that the noise e does not involve low frequencies. We give some
examples of this behavior in Figure 4.

Finally, in Figure 5, we prove experimentally our main assumption, that is, krmk � kek for m
sufficiently large, which justifies the use of formula (22).

5. ALGORITHM AND NUMERICAL EXPERIMENTS

Comparing the parameter selection strategies (21) and (22), we can state that (22) generalizes the
approach described in Section 3, because no knowledge of kek is assumed. However, on the down-
side, scheme (21) can simultaneously determine the value of the regularization parameter at each
iteration and the number of iterations to be performed, while this is no more possible considering
the rule (22). In order to determine when to stop the iterations of the Arnoldi algorithm, we have to
consider a separate stopping criterion. Because both �m.�m�1/ and krmk exhibit a stable behavior
going on with the iterations, a way to setm is to monitor when such stability occurs, that is, to eval-
uate the relative difference between the norm of the residuals and the relative difference between
the discrepancy functions. Therefore, once two thresholds �res and �discr have been set, we decide to
stop the iterations as soon as

krmk � krm�1k

krm�1k
< �res; (28)

and

�m.�m�1/ � �m�1.�m�2/

�m�1.�m�2/
< �discr: (29)

This approach is very similar to the one adopted in [13] for the GCV method in a hybrid setting.
Also, in [4], the authors decide to terminate the Arnoldi process when the corners of two consecutive
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projected L-curves are pretty close. Moreover, we can expect the value of �m obtained at the end of
the iterations to be suitable for the original problem (4).

The method so far described can be summarized in Algorithm 1.

To illustrate the behavior of this algorithm, we treat three different kinds of test problems. All
the experiments have been carried out using Matlab 7.10 with 16 significant digits on a single
processor computer (Intel Core i7). The algorithm is implemented with �0 D 1, � D 1:02, and
�res D �discr D 5 � 10

�2.

5.1. Test problems from regularization tools

We consider again some classical test problems taken from Hansen’s Regularization
Tools [15]. In particular, in Figure 6, we report the results for the problems baart, shaw,
foxgood , i_laplace; the right-hand side b is affected by additive 0.1% Gaussian noise e, such
that the noise level " D kek=kbexk is equal to 10�3. The dimension of each problem is N D 120.
The regularization operator used is the discrete first derivative L1 for shaw and i_laplace, and
the discrete second derivative L2 for baart and foxgood, augmented with one or two zero rows,
respectively, in order to make it square, that is,

L1 WD

0
BBB@
1 �1
: : :

: : :

1 �1
0 : : : : : : 0

1
CCCA ; L2 WD

0
BBBB@

1 �2 1
: : :

: : :
: : :

1 �2 1
0 : : : : : : : : : 0

0 : : : : : : : : : 0

1
CCCCA : (30)

For each experiment, we show the following: (i) the approximate solution; (ii) the relative residual
and error history; and (iii) the value of the regularization parameter computed at each iteration by the
secant update method (�sec) given by formula (21), the embedded method (�emb) computed by (22),
the ones arising from the L-curve criterion [4] (�L-curve), and the optimal one (�opt) for the original,
full dimensional regularized problem (4) obtained by the minimization of the distance between the
regularized and the exact solution [22]

min
�
kx� � x

exk2 D min
�

�����
PX
iD1

�2�
	2i C �

2
� NuTi b
�i

xi C

NX
iDPC1

�
uTi b

�
xi �

NX
iD1

uTi b
ex

�i
vi

����� ;
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Figure 6. From top to bottom: results for baart, foxgood, i_laplace, and shaw. On the left column,
we display the computed approximate solution. In the middle column, we show the convergence behavior
of the new method (error, discrepancy, and GMRES residual) with the noise level highlighted by a dashed
lines. On the right, we compare different parameter choice strategies. The thick circle displayed in all the
frame of the middle and the rightmost columns marks the iteration at which we would stop, according to the

rule (28) and (29 ). The approximate solutions refer to this iteration.

where 	i ; Nui ; i D 1; : : : ; P are, respectively, the generalized singular values and left generalized
singular vectors of .A;L/, and xi ; i D 1; : : : ; N are the right generalized singular vectors of .A;L/.
Finally, in Figure 7, we more carefully compare the behavior of the AT method coupled with the
embedded, the GCV [12], and the L-curve [4] parameter choice rules. The graphs are obtained
running 50 times each test problem (the noise level is " D 10�2, and for each test, a different noise
realization is considered); the values of the relative errors and the number of iterations resulting
from the stopping rules (28) and (29) are displayed. We underline the mean values using a thick
square for each rule. The results show our method to produce meaningful approximate solutions
whose quality is comparable with the other existing approaches employed when no information
about the norm of the noise is available.
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Figure 7. Arnoldi–Tikhonov method coupled with different parameter choice rules for the test problems
baart, i_laplace and shaw (from top to bottom), and different regularization matrices. Relative errors
versus the number of iterations obtained running 50 times each test (one marker is displayed for each of
them). In each test, the number of iterations is the one resulting from the stopping criterion. The thick squares

display the mean values.

5.2. Results for image restoration

To test the performance of our algorithm in the image restoration context, a number of experiments
were carried out, some of which are presented here.
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LetX be a n�n two dimensional image. The vector xex of dimensionN D n2 obtained by stack-
ing the columns of the image X and the associated blurred and noise-free image bex is generated
by multiplying xex by a blurring matrix A 2 RN�N . The matrix A is block Toeplitz with Toeplitz
blocks and is implemented in the function blur from [15], which has two parameters, band and
sigma; the former specifies the half-bandwidth of the Toeplitz blocks, and the latter the variance
of the Gaussian point spread function. We generate a blurred and noisy image b 2 RN by adding a
noise-vector e 2 RN , so that b D Axex C e. We assume the blurring operator A and the corrupted
image b to be available while no information is given on the error e.

In the example, the original image is the cameraman.tif test image from Matlab, a 256�256,
8-bit gray-scale image, commonly used in image deblurring experiments. The image is blurred
with parameters band D 7 and sigma D 2. We further corrupt the blurred images with 0.1%
additive Gaussian noise. The blurred and noisy image is shown in the center column of Figure 8, the
regularization operator is defined as

L D In ˝ L1 C L1 ˝ In 2 RN�N ; (31)

(cf. [23, §5]). The restored image is shown in the right column of Figure 8 . The result has been
obtained inm D 8 iterations of the Arnoldi algorithm; the CPU-time required for this experiment is
around 1:2 s. Many other experiments on image restoration have shown similar performances.

Figure 8. Restoration of cameraman.tif. From left to right: original image; blurred and noisy image
with blur parameters band D 7;sigma D 2, and noise level " D 10�3; and restored image. From top to

bottom: original size image and two zooms.
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Figure 9. Restoration of the test image mri.png. From left to right: original image; blurred and noisy
image with noise level " D 10�1 and blur parameters band D 9;sigma D 2:5; restored image. From top

to bottom: original size image and two zooms.

5.3. Results for MRI reconstruction

The treatment of different kinds of medical images such as MRI, computed tomography, positron
emission tomography often requires the usage of image processing techniques to remove various
types of degradations such as noise, blur, and contrast imperfections. Our experiments focus on MRI
medical images affected by Gaussian blur and noise. Typically, when blur and noise affect the MRI
images, the visibility of small components in the image decreases, and therefore, image deblurring
techniques are extensively employed to grant the image a sharper appearance.

In our test, we blur a synthetic MRI 256� 256 image, with Gaussian blur (band D 9;sigma D
2:5), and we add 10% Gaussian white noise, because the noise level of a real problem may be
expected to be quite high.

Figure 9 displays the performance of the algorithm. On the left column, we show the blur-free
and noise-free image; on the middle column, we show the corrupted image; on the right column,
we show the restored image.The regularization operator employed is again (31). The result has been
obtained in m D 5 iterations of the algorithm, in around 0.7 s.

6. CONCLUSIONS

In this paper, we have proposed a very simple method to define the sequence of regularization
parameters for the AT method, in absence of information on the percentage of error that affects the
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right-hand side vector. The numerical results have shown that this technique is rather stable and the
results are comparable with other existing approaches (e.g., GCV and L-curve). To describe this pro-
cedure, we have used the term ‘embedded’ because the construction of the Krylov subspaces is used,
at the same time, both as an error estimator by means of the GMRES residual and for solving (4) by
the AT method. We remark that, in principle, the idea can be extended to any basic iterative method
that is able to simultaneously approximate kek and the Tikhonov regularized solution. Therefore,
the proposed approach could be potentially employed in connection with Lanczos bidiagonalization
and the range-restricted Arnoldi algorithm [5, 24, 25]: these extensions deserve a further investiga-
tion. In particular, adopting methods based on the range-restricted Arnoldi algorithm could improve
the performance of the method here presented, especially for problems whose unknown solution is
expected to be smooth. Of course, in the range-restricted framework, the analysis of Section 4 is
no longer valid and should be modified accordingly. However, some preliminary experiments have
shown that the embedded approach can be fruitfully coupled with the range-restricted approach, and
this topic is currently under study.
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