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In this paper, the numerical solution of the Navier–Stokes equations by the Characteristic-
Based-Split (CBS) scheme is accelerated with the Minimum Polynomial Extrapolation
(MPE) method to obtain the steady state solution for evolution incompressible and com-
pressible problems.

The CBS is essentially a fractional time-stepping algorithm based on an original finite dif-
ference velocity-projection scheme where the convective terms are treated using the idea
of the Characteristic-Galerkin method. In this work, the semi-implicit version of the CBS
with global time-stepping is used for incompressible problems whereas the fully-explicit
version is used for compressible flows.

At the other end, the MPE is a vector extrapolation method that transforms the original
sequence into another sequence converging to the same limit faster then the original one
without the explicit knowledge of the sequence generator.

The developed algorithm, tested on two-dimensional benchmark problems, demon-
strates the new computational features arising from the introduction of the extrapolation
procedure to the CBS scheme. In particular, the results show a remarkable reduction of the
computational cost of the simulation.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

The numerical approximation of the steady-state Navier–Stokes equations by fractional step methods typically requires a
large amount of computational time which is related to the total number of iterations, the size of the problem and the used
algorithm. As a consequence, the convergence rate may become slow and it is interesting to apply acceleration techniques to
improve the overall iterative scheme. In this work, the Characteristic-Based-Split (CBS) scheme is combined with the
Minimum Polynomial Extrapolation (MPE) method to solve Navier–Stokes problems.

The CBS is an iterative scheme based on a fractional time-stepping algorithm with a finite difference velocity-projection
scheme where the convective terms are treated using the idea of the Characteristic-Galerkin method (for details see [1–4]).
In particular, in the splitting part, the pressure gradient is omitted from the momentum equations and an intermediate
velocity field is estimated by the Characteristic-Galerkin method. Then, the continuity equation is solved using the interme-
diate vector field values of the previous step obtaining the new pressure or density values. Finally, the velocity field is cor-
rected with the new computed pressure or density term. Then, any advection–diffusion scalar equation, such as those for
energy or temperature, is solved using the Characteristic-Galerkin method. In particular, the Characteristic-Galerkin method
stabilize advective terms using a Taylor series expansion of the temporal derivative along the characteristic leading to the
introduction of consistent stabilization artificial diffusion terms.
. All rights reserved.
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The CBS scheme has been employed for several compressible and incompressible flow problems [3,4] and it has been ex-
tended to several other applications including shallow water flows [5,6], solid dynamics [7,8], thermal and porous medium
flow problems [9–13], turbulent-incompressible flows [14] and viscous-elastic flows [15]. Recently, an efficient and accurate
explicit free matrix procedure combined with the standard Artificial Compressibility method has been presented in [9,10] for
incompressible fluid flow computation. Moreover, an improved version of the CBS code using a local element-size calculation
procedure in the streamline direction and a local variable smoothing approach are reported in [16] for the solution of inviscid
compressible flow problems.

The MPE method is a vector extrapolation technique used to accelerate the convergence of sequences. An important fea-
ture of this method is that it does not require an explicit knowledge of the sequence generator so the acceleration procedure
can be directly apply to the solution of linear and nonlinear systems as a black-box routine. The algorithm is based on a
weight sum of the sequence generated (by the CBS) where the weights are related to the coefficients of the minimal poly-
nomial of the operator involved.

The MPE method has a wide range of applications in different fields, as [17–19]. In particular, in the PDE context we cite
[20–22]. For a deeper understanding and further applications and numerical examples, the interested reader should refer to
[23–25] and references therein.

The performance of the developed algorithm that combine the Characteristic-Based-Split scheme with the Minimum
Polynomial Extrapolation method has been investigated for solving steady state incompressible and compressible Navier–
Stokes equations. The incompressible examples consider both an isothermal forced convection problem and a non-isother-
mal natural convection problem. The compressible example solves the inviscid Navier–Stokes equations for the NACA0012
airfoil problem. Moreover, the incompressible examples are solved with a semi-implicit version of the CBS scheme with glo-
bal time-stepping while the compressible problem is solved with a fully-explicit version of the code.

The paper is organized as follows. The first two sections briefly review the CBS and MPE methods providing some imple-
mentation details. Then, in the next section, we provide some preliminary comparisons results of the developed algorithm.
Finally, some concluding remarks are given.

2. The Characteristic-Based-Split (CBS) scheme

In this work three benchmark problems are considered in order to investigate the performance of the developed algo-
rithm. The first two examples refer to the incompressible Navier–Stokes equations (natural and forced convection problems)
while the last one refers to a compressible case (NACA0012 airfoil problem). Moreover, isothermal (forced convection) and
non-isothermal (natural convection) incompressible Navier–Stokes equations are considered in the first two examples.
Hence, we recall the governing equations for the incompressible and compressible examples and then we briefly review
the numerical solution strategy used by the CBS scheme. We wish to remark that the objective of this work is not to review
the CBS scheme in detail nor to give a complete treatment of the Navier–Stokes equations but, to analyze the behaviour of
the CBS accelerated version of the algorithm provided in the following sections.

2.1. Governing equations for the incompressible examples

The governing equations for the incompressible Navier–Stokes problems may be written in conservation form as [4,26]

Continuity equation
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where Einstein’s summation convention is used. The unknown variables are the velocity field ui, the pressure p and the tem-
perature T. Here, l is the kinematic viscosity term of the fluid, gi takes into account gravitational forces of the system and
a ¼ k=ðqcpÞ is the thermal diffusion term which depends on the fluid density q, on the thermal conductivity k and on the
specific heat cp. The previous system is completed with appropriate initial and boundary conditions. For the forced convec-
tion problem the gravitational forces are neglected, and the temperature equation is not considered.

In the application of the CBS scheme it is necessary to use the dimensionless form of the equations. For the incompressible
examples we can use two non-dimensional scaling strategies depending on the nature of the considered problem (natural or
forced convection). For natural convection problems the following scales are employed
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where the superscript H indicates a non-dimensional quantity. Here, Pr and Ra are the Prandtl and Rayleigh numbers, L is the
characteristic length, TH and TL are, respectively, the higher and the lower temperatures, g is the gravity acceleration and c is
the coefficient of thermal expansion. For forced convection problems the following scales are used
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where Re is the Reynolds number and u1 is the reference velocity.

2.2. Governing equations for the compressible example

The governing equations, in the Einstein’s notation, for the inviscid compressible Navier–Stokes problem are [4,26]

Continuity equation
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where the unknowns are the fluid density q, the fluid velocity field ui, the total energy E and the pressure p. To close the
system the following constitutive laws are used
p ¼ qRT; e ¼ cvT; E ¼ eþ uiui

2
; c2 ¼ cRT; c ¼ cp

cv
where R is a constant, T is the temperature, e is the internal energy per unit mass, c is the speed of sound and c is the ratio of
specific heats at constant pressure cp and constant volume cv . The problem is completed by the specification of initial and
boundary conditions.

The main scaling factors used in the compressible example are
xH
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xi

L
; uH

i ¼
ui

u1
; qH ¼ q

q1

where the subscript 1 represents a reference free stream value and L is a reference length.

2.3. Solution procedure

The CBS scheme is a well known time iterative procedure for the solution of the Navier–Stokes equations and it has been
discussed in many earlier publications. In particular, the CBS algorithm used in our simulations is the same reported in [1–3]
and consists of a fractional procedure for the solution of the momentum and the continuity equations followed by a proce-
dure based on the Characteristic-Galerkin method for the solution of any advection equation such as those for energy or
temperature.

The basic temporal steps of the CBS scheme can be summarized as follows:

� solve the intermediate momentum equation obtained from the momentum equation without the pressure gradient term;
� solve the modified continuity equation for the pressure or density variable;
� correct the intermediate velocity field using the new values of the pressure or density;
� solve any advection equation such as those for temperature or energy.
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By removing the pressure term from the momentum equation the fractional step method introduces a first-order error
into the momentum equation [27]. This allows to circumvent the Ladyshenskaya–Bubuska–Brezzi (LBB) condition when
incompressibility, or near incompressibility, is encountered, allowing equal order interpolations for both velocity and pres-
sure fields and enhancing pressure stability of the CBS scheme. As an alternative, it is possible to consider pressure gradient
into the momentum equations as a source term, but as discussed in [27] this approach is not recommended.

The main advantage of this scheme is the equal order interpolation for pressure or density and velocity which reduces the
complexity of the program and the CPU time. Moreover, we use linear elements with direct integration in order to further
reduce the computational requirement.

In the CBS scheme, the semi-implicit version with global time-stepping is used for incompressible problems where the
pressure is treated implicitly. Instead, the fully-explicit version is used for the compressible flow example. For the simulation
details we refer to [12,28] for the incompressible Navier–Stokes equations while to [16] for the compressible case.

3. The extrapolation algorithm

The CBS is an iterative algorithm which provides an approximation of the solution throughout the construction of a vector
sequence which, under suitable hypothesis, converges to the true solution. In some real applications cases, the complexity of
the problem needs a long number of iteration steps before arising to an acceptable approximation of the solution. As a con-
sequence, waste computational time is needed, and this may not be acceptable in the development of engineering projects
where a low time to market of new products is one of the most important targets to be satisfied. Hence, in all such cases it is
of strong interest to investigate the behaviour of an acceleration technique in order to speed up the rate of convergence and,
thus, allowing lower simulation times.

3.1. The MPE method

For the purpose of this work, although for a more mathematical reviews we refer to [23], an acceleration technique is a
map T that transforms a given convergent sequence fxng into another sequence fyng ¼TðfxngÞ which converges to the
same limit of the input sequence. Clearly, the interest relies on those maps T which accelerate as much as possible the rate
of convergence of fyng. The choice of one of such map is a difficult task. Moreover it is not clear, a priori, if the application of a
specific map to a given problem provides reliable results. As consequence, besides the theoretical study of new acceleration
maps [29], it is also of interest to investigate the behaviour of some well known acceleration techniques applied to a specific
problem. In this work, the effectiveness of the acceleration technique known as Minimal Polynomial Extrapolation (MPE) is
investigated when applied to the fluid simulation environment. For some other applications, see [17,20,30].

To introduce the MPE, let fxng;n 2 N, be a sequence of vectors in RN with limit x and k some positive, fixed, integer. Set-
ting un ¼ xnþ1 � xn; n 2 N, the sequence fyng is obtained as a weight sum of the form
yn ¼
Xk

j¼0

cjxnþj; with cj ¼
fjPk
i¼0fi

; j ¼ 0;1; . . . ; k
and f ¼ ½f0; f1; . . . ; fk�1� solution of the linear system
½ununþ1; . . . ;unþk�1�f ¼ �unþk;
and nk ¼ 1.
The matrix of this linear system is N � k where, in this work, N is the number of mesh nodes and k is the number of col-

lected vectors that are used to extrapolate a new value for yn, and as a consequence we have N � k. The system is solved in
the sense of the minimum least squares.

3.2. The extrapolation technique

In this section we show how the acceleration technique has been implemented in the CBS algorithm. We start by recalling
that the Navier–Stokes equations is a system of partial differential equations expressed using a set of independent variables
denoted by U. For example for problem P1 and P2, see Section 4, we have, respectively, U ¼ fT;u1;u2; pg and U ¼ fu1;u2; pg.
The discretization of this continuous problem using the CBS scheme produces a sequence of sets UðnÞ;n ¼ 0;1;2; . . . of
approximations of the variables in U. Referring again to the problem P1, we have UðnÞ ¼ fTðnÞ;uðnÞ1 ;uðnÞ2 ;pðnÞgwhere, for exam-
ple, TðnÞ is the vector of the temperature nodal values at the step n computed by the CBS algorithm. Moreover, we assume
that the sequence of sets UðnÞ converges, in some norm, to the stationary solution U, i.e.,
lim
n!þ1

UðnÞ ¼ U ¼ fT;u1;u2;pg:
The purpose of this work is to accelerate the previous sequence UðnÞ with n 2 N. Since, we have introduced only the accel-
eration of a vector sequence, we define an extrapolation of a set sequence as the one obtained applying the extrapolation
procedure to each component sequence of the set. That is, we have to collect an appropriate number Ne of sets from the se-
quence, denoted by UðnÞ with n ¼ �nþ 1; . . . ; �nþ Ne, and then to perform the extrapolation step using the MPE method on each
sequence (variable).
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There are two main problems in this operation. First, to pick a correct value for Ne and, second, when to start to collect
these Ne consecutive sets, i.e., how to choose �n. Since there are no general guidelines for evolution problems that converge to
stationary solution, we adopt the following strategies.

1. We select an appropriate subset eU of U which represents the variables used to check where extrapolation procedure
should be done. We remark that, regardless the choice of eU, all the solution variables are extrapolated.

2. We skip the first Ns sets of the sequence, that is UðnÞ;n ¼ 1; . . . ;Ns, since they are, reasonable, the most far away from
the stationary solution and, hence, it make not sense to perform some extrapolation step.

3. We collect Ne consecutive sets characterized by the fact that the maximum error for each variables in eU between two
consecutive iterations occurs at the same mesh nodes. This heuristic like to mimic the behaviour of iterative solutions
near stationary points where the shape of the solutions change small between two consecutive iterations. As a con-
sequence the error between consecutive iterations are proportional and hence it is reasonably that it appears at the
same nodes of the mesh. This way to check the extrapolation point is very less, memory and time, consuming.

4. From the previous collected sets we perform extrapolation only on the last Nef sets of Ne. This has two reasons. First,
we need to maintain the number of extrapolation vectors and thus the CPU time low in solving of the MPE algorithm.
Second, we need to check assessment of the extrapolation criteria inside a more long sequence in order to avoid to
collect less significant vectors for the extrapolation.

5. Finally, since the extrapolated solution, typically, is not a feasible solution for the evolution problem (i.e. it does not
satisfy the equations), we give some iterations, say Nr , to relax towards a feasible one before looking back again to the
sequence UðnÞ for finding another starting point �n before collecting further Ne sets. To avoid breakdown of the overall
accelerated algorithm, it is necessary that the underlying CBS scheme is robust and stable.

It follows that there are four extrapolation parameters ðNef ;Ns;Nr ;NebÞ, where Neb ¼ Ne � Nef , to set up which give much
flexibility to the algorithm but, as a drawback, require a training session in order to find a good choice. This time is not taken
into account.

For all the simulations we have adopted the stopping criteria based on the maximum absolute error [4,31],
e ¼ kU
ðiÞ � UðjÞk1

Dt
;

where Dt is the time step of the CBS algorithm. The error is computed between the iterations i and j, for all the scaled solution
variables in U, i.e. maxv2Ukvk1. In this work the convergence criteria is checked every 10 iterations.

All these ideas are shown in the algorithm reported in Fig. 1. In this code we denoted by � the stopping tolerance, Nmaxiter

the maximum number of iterations. Looking closer to the code, nr is a local variables that are used to perform the previous
step 5. Furthermore, in this implementation we restart the extrapolation procedure if the extrapolation criteria breakdown
before Ne sets are collected.
4. Numerical results

The performance of the algorithm is investigated using the following benchmark problems

� incompressible Navier–Stokes equations:

(P1): non-isothermal incompressible problem (natural convection);
(P2): isothermal incompressible problem (forced convection);
� compressible inviscid Navier–Stokes equations:
(P3): NACA0012 airfoil problem.
All simulations have been run on a Linux system with an Intel Pentium 4 CPU 2.00 GHz with a Cache size of 512 KB and

with 1 GB of RAM. We have used optimized ATLAS library and the GFortran compiler. The post-processing has been done in
Matlab. The CPU times are measured in seconds.

The simulation parameters are reported in Tables 1, 3 and 5 and have the following structure. The first row of each table
refers to the results of the simulation obtained without acceleration, i.e., with a standard implementation of the CBS scheme.
We refer to this simulation as sim0. The next six rows of each table contain the results of the simulations where an accel-
eration procedure is applied. The corresponding variables eU used to verify the collecting check are reported in the second
column and the extrapolation parameters ðNef ;Ns;Nr ;NebÞ are given in the third column. The six rows contain two groups
of simulations which have the same extrapolation criteria but different extrapolation parameters. In the first group belong
the simulations sim1, sim2 and sim3 while in the second group belong the simulations sim4, sim5, and sim6. Moreover,
each simulation in the first group have the same counterpart in the second group (in the same order) which differs from the
extrapolation criteria but has the same extrapolation parameters. For example, simulations sim1 and sim4 differ only from
the extrapolation criteria but have the same extrapolation parameters. The variables that appear in the extrapolation criteria
column of Tables 1, 3 and 5 and that refer to the first simulation group are also the independent solution variables U com-
puted by the CBS scheme for the considered problem.



Fig. 1. The acceleraed CBS algorithm.

Table 1
Extrapolation parameters used in the natural convection problem.

Simulation Description

Extrap. criteria Parameters

sim0 No extrapolation
sim1 ðT; u1; u2; pÞ (100, 0, 100, 100)

sim2 ðT; u1; u2; pÞ ( 50, 0, 100, 150)

sim3 ðT; u1; u2; pÞ (100, 0, 200, 100)

sim4 ðT; u1; u2Þ (100, 0, 100, 100)

sim5 ðT; u1; u2Þ ( 50, 0, 100, 150)

sim6 ðT; u1; u2Þ (100, 0, 200, 100)
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The total computational times are reported in Tables 2, Table 4 and 6 at the different stopping tolerances � equal to
10�6;10�7 and 10�8. Near each simulation time we have reported a normalization time in percent rounded at the unit which
is refered to the time of the simulation without extrapolation sim0 at the same stopping tolerance.

Figs. 4, 7 and 9 provide the relative error which is computed by the formula
ev ¼
1
Dt
kv ðnÞ � v�k2

kv�k2
where v ðnÞ is the solution at the n-th iterations and v� is a reference solution computed with a high accuracy tolerance (10�10)
using the standard CBS code without acceleration. We use this formula since the algorithm procedure is time dependent, and



Table 2
Simulation times obtained from the natural convection problem.

Simulation Stopping tolerance

1e�06 1e�07 1e�08

sim0 4061 (100%) 4199 (100%) 4358 (100%)

sim1 2025 (50%) 2112 (50%) 2244 (51%)

sim2 1728 (43%) 1817 (43%) 1859 (43%)

sim3 1708 (42%) 1780 (42%) 1861 (43%)

sim4 1758 (43%) 1836 (44%) 1897 (44%)

sim5 1786 (44%) 1888 (45%) 2089 (48%)

sim6 2266 (56%) 2343 (56%) 2572 (59%)

Table 3
Extrapolation parameters used in the forced convection problem.

Simulation Description

Extrap. criteria Parameters

sim0 No extrapolation
sim1 ðu1; u2; pÞ (100, 10000, 1000, 100)

sim2 ðu1; u2; pÞ ( 50, 10000, 500, 50)

sim3 ðu1; u2; pÞ ( 25, 5000, 250, 25)

sim4 ðu1; u2Þ (100, 10000, 1000, 100)

sim5 ðu1; u2Þ ( 50, 10000, 500, 50)

sim6 ðu1; u2Þ ( 25, 5000, 250, 25)

Table 4
Simulation times obtained from the forced convection problem.

Simulation Stopping tolerance

1e�06 1e�07 1e�08

sim0 1302 (100%) 1785 (100%) 2189 (100%)

sim1 842 (65%) 1051 (59%) 1329 (61%)

sim2 853 (66%) 1061 (59%) 1312 (60%)

sim3 633 (49%) 1076 (60%) 1478 (68%)

sim4 837 (64%) 904 (51%) 1117 (51%)

sim5 839 (65%) 1188 (67%) 1227 (56%)

sim6 675 (52%) 741 (42%) 1587 (73%)

Table 5
Extrapolation parameters used in the NACA0012 problem.

Simulation Description

Extrap. criteria Parameters

sim0 No extrapolation
sim1 ðE; u1; u2; qÞ (100, 20000, 15000, 0)

sim2 ðE; u1; u2; qÞ ( 50, 20000, 15000, 50)

sim3 ðE; u1; u2; qÞ (100, 10000, 15000,0)

sim4 ðE; u1; u2Þ (100, 20000, 15000,0)

sim5 ðE; u1; u2Þ ( 50, 20000, 15000, 50)

sim6 ðE; u1; u2Þ (100, 10000, 15000, 0)
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the difference of two solutions is proportional to the time step Dt and to the residual of the solution itself. In particular, in the
figures we compare the relative error results for the solution obtained without extrapolation and the best extrapolated solu-
tion obtained from the simulations at each ten iterations. Moreover, in Figs. 4, 7 and 9 we have enhanced with vertical
dashed lines where the extrapolation is performed.

The optimal choice of the extrapolation vectors is still an open question since depends on both the type and the param-
eters of the considered problem. Hence, there are no general rules to perform this choice and, as a consequence, the exper-
iments are done using different values for the extrapolation parameters.

As a general remark, we can observe from the computation results that it is more difficult to extrapolate pressure or den-
sity instead of the velocity field or temperature. Indeed, for example in Fig. 4 we can note that the third extrapolation step
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performs well for all the variables except the pressure, i.e. the solution for the pressure after the extrapolation is worst than
the corresponding one before the extrapolation. This phenomenon still remains in the other Figs. 7 and 9.
4.1. Buoyancy-driven convection problem (P1 problem)

This benchmark problem shows the case of natural convection where the Navier–Stokes equations are coupled with the
temperature equation. In this problem a local temperature difference induces a local density difference within the fluid and
this produce the fluid motion.

A schematic diagram of the geometry of the problem, as well as the applied boundary conditions, are shown in the
left of Fig. 2. The two vertical walls of the square domain X ¼ ð0;1Þ � ð0;1Þ are kept at the constant temperatures T ¼ 1
and T ¼ 0, respectively for the left and the right one; the other two horizontal walls are adiabatic, i.e., @T=@n ¼ 0 where
n denotes the outward normal unit vector. Moreover, no-slip velocity conditions are applied on all the walls and the
pressure in the left bottom corner is fixed at zero for each time t. The Rayleigh and the Prandtl numbers are, respec-
tively, Ra ¼ 104 and Pr ¼ 0:71.
Fig. 2. Natural convection problem: problem definition (left); mesh (right).
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Fig. 3. Natural convection problem: streamline (left); temperature (right).
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The domain is discretized using an unstructured mesh, shown on the right of Fig. 2, with 2375 nodes and 4584 triangles.
The CBS code is used in its semi-implicit form with a global time-stepping Dt ¼ 10�5 and zero initial conditions for all the
variables.
Fig. 5. Forced convection problem: problem definition (left); mesh (right).
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For example in Fig. 3 we show the streamline and temperature solution of the problem. For further details, see [12,28,31]
and the references therein.

The extrapolation parameters are shown in Table 1 and the corresponding CPU times in Table 2. For both Tables 2 and
Fig. 4 appear that the extrapolation procedure allows a reduction of 55% of the original CPU time.
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Fig. 7. Errors from sim4 for the forced convection problem using � ¼ 10�8: x-velocity (top left); y-velocity (top right); pressure (bottom).
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4.2. Lid-driven cavity problem (P2 problem)

This problem considers a square cavity domain X ¼ ð0;1Þ � ð0;1Þ with no-slip velocity conditions on the bottom and on
the side walls, and with the top-lid moving at a given horizontal velocity ux ¼ 1;uy ¼ 0 as shown on the left of Fig. 5.

Fig. 6 shows the pressure, horizontal and vertical velocity contours (streamline) at the Reynolds number of 100.
The computational domain has been discretized using a structured triangular mesh with 2601 nodes and 5000 elements

refined near the walls of the geometry as reported on the right of Fig. 5. The global time stepping of the semi-implicit version
of the CBS scheme is equal to 10�4.

In this case the extrapolation procedure performs less good with respect to the previous example since we have a reduc-
tion of the computational time of 40%. This is probably due to the difficult in the extrapolation of the pressure as shown in
Fig. 7.

4.3. NACA0012 airfoil problem (P3 problem)

In this section the performance of the CBS algorithm with the MPE extrapolation technique has been investigated on an
inviscid compressible flow over a NACA0012 airfoil test problem at Mach number 0.25.

The used algorithm is the same reported in [1] in its fully-explicit version with time step Dt ¼ 10�4.
The computational domain is circular with a diameter of 25L centered in (0,0), where L is the chord length of the

NACA0012 airfoil. The leading edge of the airfoil is located at (0,0).
The left part of the circle is used to impose inlet boundary conditions while the right part of the circle is used to impose

exit boundary conditions. The mesh shown in the left of Fig. 8 is a close detail of the unstructured mesh with 7351 elements
and 3753 nodes. Furthermore, on the right of Fig. 8 we have reported only the density contours as the solution variable.

The results presented in Table 6 and Fig. 8 show that the extrapolation procedure allows a reduction of 45% of the original
CPU time. For these simulations we observed that the two extrapolation criteria produce the same results.
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Fig. 9. Errors from sim6 for the NACA0012 problem using � ¼ 10�8: density (top left); energy (top right); x-velocity (bottom left); y-velocity (bottom right).

Table 6
Simulation times obtained from the NACA0012 problem.

Simulation Stopping tolerance

1e�06 1e�07 1e�08

sim0 282 (100%) 872 (100%) 1530 (100%)

sim1 280 (99%) 903 (104%) 971 (63%)

sim2 280 (99%) 902 (103%) 970 (63%)

sim3 284 (100%) 711 (81%) 808 (53%)

sim4 280 (99%) 913 (105%) 983 (64%)

sim5 280 (99%) 912 (105%) 981 (64%)

sim6 283 (100%) 716 (82%) 816 (53%)
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5. Conclusions

In this paper we have applied the MPE extrapolation method to the CBS algorithm obtaining a new algorithm. The result-
ing algorithm is tested on three benchmark problems coming from Navier–Stokes equations. The preliminary numerical re-
sults demonstrate that the new approach is an attractive field of interest for the applications of the extrapolation techniques
since the presented results show a remarkable reduction of the computational cost of the simulations.
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