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SEMICONDUCTOR DEVICES 
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Abstract: In this paper we treat problem arasing in semiconductor theory from a 
mathematical and numerical point of view, in particular we consider a 
boundary value problem with unknown interfaces arising by the determination 
of the depletion layer in the most basic semiconductor device namely the  
junction diode. We present the numerical approximation of free boundary 
problem with double obstacle treated with quasi-variational inequalities. We 
deal with the L  convergence of the standard finite element approximation of 
the system of quasi-variational inequalities.   

−p n

∞

1. INTRODUCTION 

Boundary-value problems are problems where the solution of a 
differential equation has to satisfy some conditions on the boundary of a 
prescribed domain.  In many important case, as free boundary problems, the 
boundary of the domain is not known in advance but has to be determinated 
as a part of the solution. Typically, a free boundary problem consist of a 
partial differential equations of elliptic type to be satisfied within a bounded 
domain together with necessary boundary conditions; one section of the 
boundary, the free boundary, is unknown and must be determined as part of 
the solution. These problems have been popular subject for research in 
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recent years, leading to a collection of new mathematical methods. Flow 
through porous media is an important source of free boundary problems [1], 
most frequently in relation to seepage phenomena that occur in nature. 
Examples are seepage throught earth dams; seepage out of open channels 
such as rivers, canals, ponds, and irrigation system. Practical interest in free 
boundary problems, however, is not confined to natural seepage but extends 
for example to topics in plasma physics, semiconductors, and 
electrochemical machinary. This work analyses a free boundary problem in 
semiconductors field, in particular the modelling of reverse-biased devices. 
In fact for the steady-state case of  junction diode under reverse bias, 
after a singular perturbation analysis, the determination of the depletion layer 
leads to a free boundary problem.  

p n−

For the case of  junction diode under strong revers bias, an 
approximating problem which includes the same free-boundary for the 
potential and a mixed elliptic-hyperbolic problem for the analysis of current 
flow, has been derived and analyzed in a series of papers by Schmeiser 
[26],[27].  

p n−

Without being derived as a limit of a singularly perturbed system, the 
double obstacle problem has already been formulated as a model for the 
potential distribution by Hunt and Nassif [16]. The free boundary model 
presented here differs from the previous one, by the definition of the 
obstacles which are equal to the quasi-Fermi level, obtained as a solution to 
the continuity equations; we give here a quasi-variational formulation of the 
model.  

Then we deal with the L  convergence of the finite element 
approximation of the system of quasi-variational inequalities. The L error 
estimate is of particular interest not only for practical reasons but also due to 
its inherent difficulty of convergence in this norm. Moreover, the interest in 
using such a norm for the approximation of obstacle problems is that they 
are types of free boundary problems. This fact was validated by the paper of 
F. Brezzi; L.A. Caffarelli, [8] and later by that of Nochetto [20], on the 
convergence of the discrete free boundary to the continuous one.  

∞

−∞

A lot of results on error estimates for the classical obstacle problems and 
variational inequalities were achieved in this norm, (cf., e.g [2], [19], [12], 
[21]). However, very few works concerning quasi-variational inequalities are 
known on this subject. (cf., [14]), [6]), Under a W regularity of the 
continuous solution, a quasi-optimal L convergence of finite element 
method is established, involving a monotone algorithm of Bensoussan- 
Lions type and standard error estimates known for elliptic variational 
inequalities.  
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2. REVERSE BIASED p  JUNCTION −n

One of the basic properties of semiconductors is the controlled 
implantation of impurity atoms into a semiconductor crystal; this process is 
usually called doping. It is possible to introduce into the crystal dopant 
atoms which can produce one or more excess conduction electrons (called 
donors), or dopant atoms which can accept electrons and thus produce holes 
(called acceptors). This process increases the conductivity significantly, and 
thus the electrical properties of the crystal can be controlled by doping. The 
performance of a semiconductor device is mainly determined by the 
distributions of donors and acceptors.    

 

Figure 1.  junction with Γ−p n 1  and Γ2 the free boundaries of the depletion layer.  

In the p n  junction the side, doped with acceptors, is positively charged 
and the n side, doped with donors, is negatively charged. As a result of the 
tendency of holes to diffuse into the  region and of electrons into the  
region, a nonconducting region is set up along the junction, called a 
depletion layer.  

−
−

−p

n p

When a positive bias is applied to the junction, a large current flows 
through the diode, even if the voltage is small; a negative applied voltage 
widens the depletion layer. The unknown or free boundaries limiting the 
depletion layer are interfaces with another, dielectric region. The interfaces 
are determined by the concentrations of donors and acceptors and the 
potentials applied.  

As in Fig. 1, let  be the open set bounded by the contour OEFG  
 the one bounded by  and D  the triangular domain bounded by 

 consists of the whole rectangular domain OA  while Ω  and 
 are the open sets which define the depletion layer. We also let 

and C = . 

1D ,C

1

y,

2D
HBG

2Ω

,AHFE

2 2 2D \Ω

3

:D

1 1C D=

,BC

 \Ω1

)The model which describes potential distribution u x  in 
semiconductor device is the drift-diffusion one  

(
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2 ( )

(

( )
n n

p p

qu n p C

D n n u R

D p p u R

ε
µ

µ

∇ = − −∇ ⋅ ∇ − ∇ =∇ ⋅ ∇ + ∇ =

) n

p

p

 (1) 

where q  and  are the charge density and the dielectric permittivity, n  and 
 are the concentrations of free carriers of negative and positive charge, 

electrons and holes, C is the predefined doping concentration, µ and 
are the mobility and diffusivity constants, R  and  the 

recombination-generation rate for hole and electron. We suppose 
 We rewrite the model for the two region remembering that 

and  are space charge regions, C and C  are charge neutral regions 

ε

0.

p

D

1Ω

,n µ
p,n D

 

p

n pR R=

n R

=
2Ω 1 2

1Ω1 1C∩Γ =  and 22 C∩Ω 2Γ  are the free boundaries. In  we have:  = 1D

( )

0

0

d

n n n

n

p

qu n N

J D n n

J

J

ε
µ

∆ = − = ∇ − ∇∇ = =

u
 (2) 

while in D   2

( )

0

0

a

p p p

p

n

qu N p

J D p p

J

J

ε
µ

∆ = − = ∇ + ∇∇ = =

u
 (3) 

with the mixed boundary conditions  

1 1 2 2

1 2
1 2

on on

0 on 0 on

D D D

N N

u u u u

u u
n n

                   

= Γ = Γ

∂ ∂= Γ = Γ
∂ ∂

D

 (4) 

where  are the Dirichlet part of boundary,  the 
Neumann ones.  

1 2D
i iΓ , = , 1 2N

i iΓ , = ,

At this point we use the quasi Fermi potentials  
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( )( ) qq
pn KTKT uu

d an N e p N e φφ −−= =  

If ,q
KT k=  inserting the last in (2), (3) we obtain  

11 in( ) ( )( ) ( ) ( )n nk u k u
d d d d

q q qu n N N e N N eφ φ

ε ε ε
− −∆ = − = − = − D  

21 i( ) ( )( ) ( ) ( )p nk u k u
a a a a

q q qu N p N N e N eφ φ

ε ε ε
− −∆ = − = − = − nD

1C

 

To simplify the model we see that D  and in the charge neutral 
region C  n  holds , so:  

1 1= Ω ∪
1, dN=

0u∆ =  

and using the quasi Fermi potential we obtain  

( )nk u
d dn N e Nφ−= =  

from the relation above follows that  

( ) 1nk u
ne uφ φ− = ⇒ =  

On the other hand in the space charge region 1,  0nΩ =  so  

1d
qu N ξ
ε

∆ = − = −  

and using the quasi Fermi potential  

( ) 0nk u
dn N e φ−= =  

therefore  
  ( ) 0nk u

ne uφ φ− = ⇒ <

In the same way for  since  in C  we get  2 2 ,D C= Ω ∪ 2 ap N= 2,

0u∆ =  
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and  

( )pk u
a ap N e Nφ −= =  

therefore  

( ) 1pk u
pe uφ φ− = ⇒ =  

Since in Ω  we have p  then  2 0,=

2a
qu N ξ
ε

∆ = =  

and  

( ) 0pk u
dp N e φ −= =  

As a result we obtain  

( ) 0pk u
pe uφ φ− = ⇒ < .  

Then we have a free boundary problem with double obstacle, with the free 
boundaries  

1 21 1 2C CΓ = ∩ Γ = ∩Ω Ω 2  

and the obstacle are represented by the quasi Fermi levelsφ  and   p .nφ

3. QUASI-VARIATIONAL INEQUALITY 
FORMULATION 

This section is devoted to define the functional spaces and variational 
problems. If O  is an open bounded set of euclidean plane R  we shall 
denote by 

2,
0(O)C  the set of continuous functions on ,O  1 2 )k = , ,( )(OC k  

the set of all function defined on 
…

O  with continuous derivatives until the k  
order.   

We denote by D  the space of the functions of ( )O ( ),∞ OC  which are 
zero in a neighbourhood of  the space  of the distribtions on O  is ,∂O ( )D ′ O
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the dual of D  and we denote by L O  the usual space 
of the real functions, defined a.e. on O , measurable and summable on O  
(or a.e. bounded on O  if );  
denotes the Banach space:  

( ),O

{ ( )p h

( )(1 )p p≤ ≤ +∞
−p

( )( 1 2k pW O k, = ,

er 0 }

p =

( )p

∞

p

1… p, ; ≤ ≤ )∞

hL D;

( )(u u −

+ =

( )( pξ φ

1{ (H∈

D D

1 1onD DΓ

2 1
D Du≤ ≤

inf
2

0
DΓ

≤ ≤

f ∈

1 )=

u u

nξ φ

2 )=

u u= >

pξ φ

) v, =

,D

h l h l k, ≥ , + ≤

1in D

1 1Ω
n C

2in D

2 2Ω
nC

}

R

2
D

)

in

in

D ,

∂ →

Γ

BG

1 1

2 2

on ∂

:

2 onD

(∪

x yf D L∈ O O  

We have the following relations  

0nξ φ∆ +  (5) 

because  

0 e nξ φ∆ <  
e iu u∆ ≥ =  

In equal manner in D  we will write  2

0u u∆ − −  (6) 

since  

0 e pξ φ∆ −  
e iu u∆ ≤ =  

Let now consider the following set:  

U v D g=  

where  e g D  a function with costant value on 
 which satisfies the mathematical expression of the reverse biased 

conditions:  

1 2D= ∪ ∪ 3

D∂

g u g u= =  (7) 

on ( )u g HB  

sup
1
D
g g

Γ
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The potential u  is related to φ  and the relation betweenu  and φ  is 
given by a non linear operator which maps u  in M u  and M . This 
operator is defined by logarithmic transformations of the solutions 

 and  of the following mixed boundary value 
problems in the Slotboom variables:  

,n pφ

2 )u

, nφ p

1( ) 2( )u

1 1( )w w u= 2 (w w=

1

1

1 1 1

0

on 0 on

( )ku

kg D N

e w

w e w n

∇ ⋅ ∇ = , = Γ , ∂ /∂ = Γ 1

2

}

 (8) 

2

2

2 2 2

0

on 0 on

( ) ,ku

kg D N

e w

w e w n

−

−

∇ ⋅ ∇ = = Γ , ∂ /∂ = Γ
 (9) 

where the values  are related with the potential at ohmic 
contacts; we set  

1 2D
iig g iΓ= | , = ,

1{ ( ) onkgV v H D v e D−= ∈ , = ∂ .  

We may write the quasi Fermi potentials as:  

1 1 2 2
1 1ln ( ) ( ) ln ( ) ( )n pw u M u w u M u
k k

φ φ= − = = =  

In order to give the classical formulation of the problem, we set 
3 2 1

1 ( ) ( )iii H D C D== ∪⊗F ,

) 2

u M u

1 u=

u M u

2 u=

3D

 and we have:  
 
Problem 1. Find  such that u u  
monotone nondecreasing functions (representing  e ) satisfyng  

1 2(u ϕ ϕ, , 1 2 3 1( ) ,   u u eϕ ϕ= , , ∈ F
1Γ 2Γ

in where1 1 1 1( )u ξ∆ = Ω <  (10) 

1 10 in where ( )u C u M∆ =  (11) 

in where2 2 2 2( )u ξ∆ = Ω >  (12) 

2 20 in where ( )u C u M∆ =  (13) 

3 0 inu∆ =  (14) 



Numerical Approximation of Free Boundary Problem by Variational 
Inequalities 

9

 
with the free interface conditions  

0 on 1i
i

u i
n

∂ = Γ , =
∂

2,  (15) 

as well as interface conditions  

on1 2
1 2 (u uu u EF

n n
∂ ∂= =
∂ ∂

),  (16) 

on1 3
1 3 (u uu u FG

n n
∂ ∂= =
∂ ∂

),  (17) 

on2 3
2 3 (u uu u HF

n n
∂ ∂= =
∂ ∂

),

)

 (18) 

and boundary conditions  

on on1 1 2 2( ) (D D D Du u OC u u AH= Γ , = Γ .  (19) 

on on10 0Nu u
n n

∂ ∂= Γ = Γ
∂ ∂ 2

N

2

)ϕ

C 2

 (20) 

Let the convex set  

1 1 2( ) { ( ) in ( ) in }n pK u U M u D M u Dϕ ϕ φ φ ϕ= ∈ , ≤ = , = ≤  (21) 

We have the following  
 
Theorem 3.1 If u  is a solution of  Problem 1 , then u K  must satisfy 
the quasi-variational inequality  

( )u∈

1 2

1 2 0( ) ( ) ( )  (
D D D
u u dx dy u dx dy u dx dy K uϕ ξ ϕ ξ ϕ∇ ∇ − + − − − ≥ , ∀ ∈∫∫ ∫∫ ∫∫

 (22) 

Proof. Let ϕ  being D  with Ω  e 
, we have  

( ),K u∈
2

= Ω∪ 1= Ω ∪Ω
1C C C= ∪
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1 2

1 2

( ) ( ) ( )

( ) ( )

( ) ( )

D C

C C

u u dx dy u u dx dy u u dx dy

u u dx dy u u dx dy

u u dx dy u u dx dy

ϕ ϕ ϕ

ϕ ϕ

ϕ ϕ

Ω

Ω Ω

∆ − = ∆ − + ∆ − =

∆ − + ∆ − +

∆ − + ∆ −

∫∫ ∫∫ ∫∫
∫∫ ∫∫
∫∫ ∫∫
 

but for (11) and (13) we have  

1 2

( ) ( ) ( )
D
u u dx dy u u dx dy u u dx dyϕ ϕ ϕ

Ω Ω
∆ − = ∆ − + ∆ −∫∫ ∫∫ ∫∫

 (23) 

moreover from (10) and (12) it follows  

1 2

1 2( ) ( ) ( )
D
u u dx dy u dx dy u dx dyϕ ξ ϕ ξ ϕ

Ω Ω
∆ − = − − + −∫∫ ∫∫ ∫∫

 (24) 

being  will be ϕ φ  and  therefore 
again thanks (11) and (13) u M  in C  and u M  in C  then 

 in C  and 

( )K uϕ ∈

1

1( )n M u≤ =
1( )u=

2( )p M uϕ φ≥ =
2( )u=1 2

uϕ ≤ uϕ ≥  in C ; this gives  2

1 1 20 in 0 in( ) ( )u C u Cξ ϕ ξ ϕ− ≤ − ≥ 2  

therefore in C  will be  1

1 1 1 2

1 1 1 1( ) ( ) ( ) ( )
D C

u dx dy u dx dy u dx dy u dx dyξ ϕ ξ ϕ ξ ϕ ξ ϕ
Ω Ω

− = − + − ≤ −∫∫ ∫∫ ∫∫ ∫∫
 

in equal manner for C   2

2 2 2 2

2 2 2 2( ) ( ) ( ) ( )
D C

u dx dy u dx dy u dx dy u dx dyξ ϕ ξ ϕ ξ ϕ ξ ϕ
Ω Ω

− = − + − ≥ −∫∫ ∫∫ ∫∫ ∫∫
 

From (24) we obtain  
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1 2

1 2

1 2

1 2

1 2

( ) ( ) ( )

                                      ( ) ( )

                                         ( ) ( )

D D D

D D

u u dx dy u u dx dy u u dx dy

u dx dy u dx dy

u dx dy u dx dy

ϕ ϕ

ξ ϕ ξ ϕ

ξ ϕ ξ ϕ

Ω Ω

− ∆ − = − ∆ − − ∆ −

− − −

− − −

∫∫ ∫∫ ∫∫
∫∫ ∫∫
∫∫ ∫∫

ϕ

≥

 

For Green’s theorem we have  

                                                             ( )

( ) ( ) ( )

D

D D D

u u dx dy

uu u dx dy u ds u u dx
n

ϕ

ϕ ϕ ϕ
∂

∆ − =

∂− ∇ ∇ − + − = − ∇ ∇ −
∂

dy

∫∫
∫∫ ∫ ∫∫

 

for the boundary conditions because ϕ .  ( )K u∈
Therefore  

1 2

1 2

( ) ( )

( ) ( )       
D D

D D

u u dx dy u u dx dy

u dx dy u dx dy

ϕ ϕ

ξ ϕ ξ ϕ

∇ ∇ − = − ∆ − ≥

− − −

∫∫ ∫∫
∫∫ ∫∫

 

then  the quasi-variational inequality is satisfied 

1 2

1 2( ) ( ) ( )
D D D
u u dx dy u dx dy u dx dyϕ ξ ϕ ξ ϕ∇ ∇ − + − − − ≥ ,∫∫ ∫∫ ∫∫
( )K uϕ∀ ∈ ◊

0

  

Let now  

( )
D

a u v u v dx dy u v U, = ∇ ∇ , ∈∫∫  

we can rewrite the problem as:  
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Problem 2.   

Find such that

with in in in1 1 2 2

( )

( ) ( ) ( )

0

u K u

a u u u K u

D D

ϕ ζ ϕ ϕ

ζ ξ ζ ξ ζ

 ∈ , − ≥ , − , ∀ ∈ = − = = 3D

( )

0

0γ

 (25) 

We can say that the (25) in general is not a variational inequality; it is a 
variational inequality only when , with K being a non-
empty closed convex set of H D  In fact it is a new type of entity, we will 
call it, according with Bensoussan-Goursat-Lions [3], a quasi-variational 
inequality. To the quasi-variational inequality (25) we can associate in a 
natural way a family of variational inequalities: for z  fixed in U  we will 
call variational section of the quasi-variational inequality (25) along  the 
variational inequality  

( ) ,U K Kϕ ϕ∀ ∈ , =
).1(

,z

( ) ( )a w w w K zϕ ζ ϕ ϕ, − ≥ , − , ∀ ∈  (26) 

under the hypothesis (which is standard in the variational case, and which we 
will make here too) of the coerciveness of the form a  

2
0 1 0( ) Da v v vγ γ,, ≥ >& &  (27) 

1 1 1 1( ) ,   D Da u v u v u v Uγ , ,| , |≤ , ∈ >& & & &  (28) 

we can say that (26) has one and only one solution. 
Therefore if z  the application S U  such that u  is 

a solution of (26),  
,U∈ ,U: → ( )z S z=

( ) ( ) ( ) ( )z z z zu K z a u u u K zϕ ζ ϕ ϕ∈ : , − ≥ , − , ∀ ∈  

We will call this application the variational selection associated with the 
quasi-variational inequality (25); under the hypothesis (27), (28), this 
selection is well defined.  

It follows immediately that a solution of (25) is a fixed point for S  
Therefore the basic idea to solve the Problem 2 is to consider the variational 
selection of (25) and to find its fixed points; an inportant question is what 
type of fixed point theorem we can use. We do not expect a Lipschitz 
continuos or a monotonic situation, and thus the classical theorems are 

.
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useless, more usefull is Schauder’s theorem or the results of Joly and Mosco 
[22].  

4. NUMERICAL APPROXIMATIONS 

We have seen like some free boundary problem very complex in their 
structure can be solved through opportune modifications tied to the physical 
characteristics of the problem by means of variational and quasi-variational 
inequalities. From a numerical point of view the quasi-variational 
inequalities can be solved with the Bensoussan-Lions iterative scheme, 
which is a sequence of iterative variational inequalities, for a fixed obstacle. 
Quasi-variational inequalities and their applications in different areas have 
been investigated since the early eighties notably by Bensoussan, Lions, 
Mosco and Baiocchi. However, very little was known about the numerical 
methods for such problems till recently [10]. We show a technique for the 
approximation of quasi-variational inequalities.   

To determinate the depletion region in a p  junction we have to solve 
the following model  

n−

Find such that

with in in in1 1 2 2

( )

( ) ( ) ( )

0

u K u

a u u u K u

D D

ϕ ζ ϕ ϕ

ζ ξ ζ ξ ζ

 ∈ , − ≥ , − , ∀ ∈ = − , = , = 3D

2

 (29) 

with  

1 1 2( ) { ( ) in ( ) in }n pK u U M u D M u Dϕ ϕ φ φ ϕ= ∈ , ≤ = , = ≤  

Where the obstacles 1( )M u  e 2 ( )M u  are defined solving the two mixed 
boundary value problems  

1

1

1 1 1

0

on 0 on

( )ku

kg D N

e w

w e w n−

∇ ⋅ ∇ = , = Γ , ∂ /∂ = Γ 1

2

 (30) 

2

2

2 2 2

0

on 0 on

( )ku

kg D N

e w

w e w n

−∇ ⋅ ∇ = , = Γ , ∂ /∂ = Γ
 (31) 
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by a maximum principle we obtain w w , thus we can compute the 
obstacles as follow  

1 2 0, >

1 1 2
1 1( ) ln ( ) ( ) ln ( )M u w u M u w u
k k

= − = 2  

Consider a regular triangulation T  established over the open polygonal 
 such that  

,h
2D ⊂ R

hT

D T
∈

=∪
T

 

Let T  a triangle in T  and  the space of all polynomials of degree 
 restricted to the set T . We associate with  the usual finite element 

spaces:  

,h 1( )TP
1≥ hT

0
1 0 0 on{ ( ) ( ) } {h h h T h h h h hX v C D v T T V v X v D= ∈ , | ∈ , ∀ ∈ , = ∈ , = ∂ ,P T

on on{ } { hkg
h h h h h h h h hU u X u g D V v X v e D= ∈ , = ∂ , = ∈ , = ∂ .

}

}  

Then we define the obstacles as  

1 1
1 ln( ) ( )h h h h h h hM u U M u r w
k

: ∈ → = − 1  

2 2
1 ln( ) (h h h h h h hM u U M u r w
k

: ∈ → = 2 )

h

h

hV

 

with w w  which satisfy  1 2h h V, ∈

1 0( )hku
h he w u V∇⋅ ∇ = , ∀ ∈  

2( ) 0hku
h he w u−∇ ⋅ ∇ = , ∀ ∈  

We introduce the convex set  

1 2( ) { ( ) ( ) }h h h h h h h hK u U M u M uϕ ϕ ϕ= ∈ , ≤ , ≤ .  

We have the following finite element formulation of the problem  
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Find such that( )

( ) ( )

( )

h h h

h h h h h h h h

u K u

a u u u K u

L D

ϕ ζ ϕ ϕ

ζ ∞

 ∈ , − ≥ , − , ∀ ∈ ∈

( )

)

( )Ω

 (32) 

To update the obstacles the continuity equations can be solved and then we 
have a system of quasi-variational inequality and we use a Bensoussan-Lions 
iterative scheme to solve the problem. We shall recall some results related to 
elliptic variational inequalities that are necessary to prove some useful 
qualititive properties.  

5. ASSUMPTIONS AND NOTATIONS 

In this section we are concerned with the standard finite element 
approximation of the system of quasi-variational inequalities (QVIs): Find a 
vector U u  satisfying  1( Mu= ,...,

1( ) ( )

0

i i i i i

i i i i

a u v u f v u v H

u u u v uψ ψ

 , − ≥ , − ∀ ∈ ≤ ; ≥ ; ≤
 (33) 

where  is a bounded smooth domain of  with boundary ∂Ω  a u  
are bilinear forms defined on  is the inner product in 

  and 

Ω NR
( ),Ω

, (i v, )
1 1( )  H HΩ × (⋅,⋅)

2( )L Ω if  are ψ  regular functions. For sake of simplicity we will treat 
the case of one obstacle, considering the two obstacle problem a 
generalization in which we replace the constraint set of (21) with the 
following: K v   s1{ (H∈ Ω uch that) }v  ψ≤=

We are given functions  

2
0 1 1( ) ( ) ( ) ( )i i i

jk ka x a x a x C x k j N i M, , ∈ Ω , ∈ Ω, ≤ , ≤ , ≤ ≤ ,  

sufficiently smooth such that:  

2

1

0( )  i
jk j k

j k N

a x ξ ξ α ξ ξ α
≤ , ≤

≥ , ∈ ; >∑ & & RN  (34) 

0 0 0( )i
jk kja a a x c= , ≥ > ;  (35) 
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We define the second-order , uniformly elliptic operator of the form  

2

0

1 1

( ) ( ) ( )
N

i i i
jk k

j k kj k N k

a x b x a x
x x x

≤ , ≤ =

∂ ∂=
∂ ∂ ∂∑ ∑A i+  (36) 

and the bilinear forms associated with : for any u v   iA ( )1H, ∈ Ω

0

1 1

( ) ( ) ( ) ( )
N

i i i
jk k

j k kj k N k

u v ua u v a x a x v a x uv dx
x x xΩ ≤ , ≤ =

 ∂ ∂ ∂ , = + +   ∂ ∂ ∂  
∑ ∑∫ i

1

 (37) 

that we assume to be coercive, i.e., there exist  such that  0γ >

1
2

( )( ) ( )i
Ha v v v v Hγ Ω, ≥ ; ∀ ∈ Ω .& &  (38) 

The right hand sides 1 Mf f,...,  are also given such that  

( ) 0i if L f∞∈ Ω ; ≥  (39) 

We shall also need the following norm:  

1

1

( )
M

M

i

W w … w L∞

=

∀ = , , ∈ ,∏ ( )Ω

,

 (40) 

max
1

i
Li M

W w ∞∞ ≤ ≤
=& & & &  (41) 

where & &  denotes the classic L  norm. L∞⋅ ∞

5.1 Elliptic Variational inequalities 

Let  be a function in L  and  an obstacle in W  such that  
on  Let also A  be an elliptic operator and a  its associated coercive 
bilinear form of the same forms as those defined in (36) and (37), 
respectively. We consider the following elliptic variational inequality (VI): 
Find u  such that  

f
.

∈

∞ ψ 2,∞

)
0ψ ≥

∂Ω (⋅,⋅

K

( ) ( )a u v u f v u v K, − ≥ , − ∀ ∈  (42) 
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where K v Thanks to [23,5], the VI (42) 
has one and only one solution. Moreover, u W  and satisfies  

such that a.e.{ 1( )   H v ψ= ∈ Ω ≤
∈
}

)∞

0

2 1p p, , ≤ ≤∞

2 (pWu C f ψ, ∞≤ +& & & & & &A  (43) 

Definition 1. z  is said to be a subsolution for VI (42) if  K∈

( ) ( )a z v f v v K v, ≤ , ∀ ∈ , ≥  (44) 

Let  denote the set of such subsolutions, then (see [5]) the solution of VI 
(42) is the maximum element of .   
X

X
Consider now the following mapping:  

( ) ( )

( )

L L

u

σ

ψ σ ψ

∞ ∞: Ω → Ω

→ =
 

where u  is the solution to VI (42) .  The mapping  is increasing, concave, 
and Lipschitz continuos with respect to ψ  [7].   

σ

Existence of a unique solution to system (33) can be proved, adapting the 
approach developed in [4].   

Indeed, let  

equipped with the norm: & &  where 

 such that 1( ( )) { ( ) ( )}M M iH L V v v v L+ ∞ ∞
+ += Ω = = ,..., ∈ Ω ,

max ( )1

i
Li M

V v ∞∞ Ω≤ ≤
= & & ( )L∞

+ Ω  is the 

positive cone of We consider the mapping  ( )L∞ Ω .

1

    

( )M
T H H

W TW ζ ζ ζ

+ +: →

→ = = ,...,
 

where ζ σ  is solution to the following VI:  1( ) (i iw Hψ= ∈ Ω)

( )1( ) ( )i i i i i

i i i

a v f v v H

w v w

ζ ζ ζ

ζ ψ ψ

 , − ≥ , − ∀ ∈ Ω ≤ ; ≤
 (45) 

Problem (45) being a coercive VI, thanks to [23], [5] has one and only one 
solution.  

Consider now 0 1 0 0( )Mu u,= ,..., ,U  where , 0iu ,  is the solution to the 
following variational equation:  



18 Variational Analysis and Appls.
 

10( ) ( ) (i iia v f v v Hu , , = , ∀ ∈ Ω)  (46) 

Due to (39), problem (46) has a unique solution. Moreover, 
20 ( )  2pi W pu ,, ∈ Ω ; ≤ <∞    

 
Proposition 5.1 Let such that 0{   0W H W U+= ∈ ≤ ,C

1 M

}≤

)

 then T  maps 
 into itself. Moreover is T increasing, concave and Lipschitz continuous 

on H   
C

.+

We notice that the solutions U u  of system (33) correspond 
to fixed points of mapping T  that is U T  In this view it is natural to 
consider the following iterative scheme.  

( … u= , ,
.U=,

5.2 A Continuous Iterative Scheme of Bensoussan-Lions Type 

An iterative scheme for the solution of system of QVIs is given as 
follows.   

Starting from 0U  defined in (46) (resp. 0 (0 0)= ,...,U ), we define the 
sequences  

1 0 1n nT nU U+ = ; = , ,...  (47) 

respectively  

1 0 1n nU UT n+ = ; = , ,....  (48) 

Making use of properties of mapping T  we have the following convergence 
result.  
 
Theorem 5.2 The sequences ( nU )  and (  are monotone and well defined 
in  Moreover, they converge respectively from above and below to the 
unique solution of system (33), (cf. [4] p.453).  

)nU
.C

 
The following estimations provide a rate of convergence for sequences.  
 

Lemma 5.3 There exist a constant  independent of n  such that for any 
 [15]  

C
1 2 ,i M= , ,...,

max 2 2( ) ( )0
( )p p

i ni n
W Wn

u C pu , ,
,,

Ω Ω≥
, ≤ ; ≤ <∞& & & & 2  
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Theorem 5.4 Assume  in ( )i

jka x
1 ( )α, Ω ,C    and ( ),ia x 0( )ia x if  in C  

Then ( )  ∈  ( (    
0 ( ).α, Ω

1 Mu u,..., 2W , Ω)p M) ; 2 p≤ <∞.
 

Proposition 5.5 There exist a positive constant 0  such that  1µ≤ ≤

0nn UU µ∞− ≤& & &U ∞&  (49) 

0nnU U Uµ∞− ≤& & & ∞&

M
), h

)M

h

)i

 (50) 

5.3 The Discrete Problem 

Let Ω  be decomposed into triangles and let  denote the set of all those 
elements;   is the mesh size. We assume the family  is regular and 
quasi-uniform.   

hT
0h > hT

Let V  denote the standard finite element space, A i  be the 
matrices with generic coefficients a  where ϕ  are 
the nodal basis functions. Let also r  be the usual interpolation operator.   

h 1i , ≤ ≤
1 2s s m, = , ,...(i l sϕ ϕ,

h

( )

In the sequel of the paper, we shall use the discrete maximum assumption 
(d.m.p.). Under the d.m.p., we shall achieve a similar study to that devoted to 
the continuos problem, therefore the qualitative properties and results stated 
in the continuous case are conserved in the discrete case.   

The discrete system of QVIs is then defined as follows: Find 
such that  1( ) (M

h h h hU u u V= ,..., ∈

( ) ( )

0

i i i i i
h h h

i i i i
h h h h h h

a u v u f v u v V

u r u u v r uψ ψ



, − ≥ , − ∀ ∈

≤ ; ≥ ; ≤
 (51) 

Existence and uniqueness of a solution of system (51) can be shown 
similarly to that of the continuous case provided the discrete maximum 
principle is satisfied. Indeed, the idea for proving that consists of associating 
with the system (51) the following discrete fixed point mapping: 

1

( )

( )

M
h h

M
h h h h

T H V

W TW ζ ζ ζ

+: →

→ = = ,...,
 

where ζ σ  is the solution of the following discrete VI: (i
h h wψ=
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( ) ( )i i i i i
h h h

i i i
h h h

a v f v v V

r w v r w

ζ ζ ζ

ζ ψ ψ



, − ≥ , − ∀ ∈

≤ , ≤
h

 (52) 

Under the d.m.p the mapping T  possesses analogous properties to that of 
mapping T   

h

.
Let 0 1 0 0( M

h hh u uU ,= ,..., ),  be the discrete analogue to the solution of 
problem (46) :  

0( ) ( ) 1i ii
h ha v f v v V iu , , = , ∀ ∈ ≤ ≤M  (53) 

Proposition 5.6 T  maps  into itself, where  such 
that 

h hC { ( ( ))Mh W L∞= ∈ ΩC
0
h
+.

0 W U≤ ≤ },

h .

  moreover T is increasing, concave and Lipschitz 
continuous on H   

h

It is not hard to see that the solution of system of QVIs (51) is a fixed 
point of T  that is U T  Therefore, as in the continuous problem, one 
can define the following discrete iterative scheme.   

,h h hU=

Starting from 0
hU  solution of (53) (resp. from 0 (0 0)h = ,...,U ), one can 

compute   

1 0 1n n
h hhT nU U+ = = , ,...  (54) 

(resp.)  

1 0 1n n
h hhU UT n+ = = , ,...  (55) 

Theorem 5.7 Under the d.m.p. the sequences ( n
hU )  and (  are monotone 

and well defined in C  Moreover, they converge respectively from above 
and below to the unique solution of system (51)  

)nhU
.h

 
Using the above result, we are able to establish the geometric 

convergence of sequence (  and )nhU ( )  .

1

n
hU

 
Proposition 5.8 There exist a positive constant 0  such that  µ≤ ≤

0nn
h hUU µ∞− ≤& & & hU ∞&  (56) 

0nn
h hU U Uµ∞− ≤& & & h ∞&  (57) 
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5.4 The Finite Element Error Analysis 

We recall some known L -error estimates result and introduce an 
auxiliary problem. From now on C  will denote a constant independent of 
both h  and n  

∞

.
 

Theorem 5.9 Let 0iu ,  (respectively, 0i
h
,u ), be the solution of problem (46), 

(respectively (53)). Then (see [11,19]  

2 3 200 1 2( )  ii
h L Ch log h i … Mu u ∞

/,,
Ω− ≤ | | ∀ = , , ,& &  (58) 

Theorem 5.10 Let the d.m.p. and regularity result (43) hold. Then (see [14])  

2
( )  h Lu u Ch log h∞ Ω− ≤ |& & 2|  (59) 

We introduce the following discrete sequence  

i

i

1

00

0 1

with

nn
h h

h h

T nU U

U U

+ = ; = , , =

...
 (60) 

where 0
hU  is defined in (53) and for any n   is a solution to 

following discrete variational inequality:  
1≥ , i n

hu ,�

1 1 1

1

( ) ( )i ii n i n i n
h h hh h

i n i n i n
h h h

a v f v vu u u

r v ru uu ψ ψ

, + , + , +

, + , ,

 , − ≥ , − ∀ ≤ , ≤

� � �

�

V∈
 (61) 

1(n n Mu uU ,= ,..., )n,  being the sequence defined by (48). Again, thanks to 
[5], (61) has one and only one solution.  

We notice that u  solution of (61) represents the standard finite element 
approximation of 

i n
h
,�
i n, .u  Therefore, using the regularity result provided by 

Lemma 4.2 and next adapting [12], we have the following uniform error 
estimate. 

 
Proposition 5.11  

i 2 |  n n
h Ch log hUU ∞− ≤& & 2|  (62) 

with the use of the result seen above we introduce the following :  
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Lemma 5.12  

i
0

n
n n p p

hh

p

UU U U∞
=

− ≤ −∑& & & ∞&

3|

|

 (63) 

Now guided by Propositions 5, 8, 11, Lemma 12 Theorem 9 we are in a 
position to prove the main result.  

 
Theorem 5.13  

2 |  hU U Ch log h∞− ≤& &  (64) 

3
1 |  hU U Ch log h,∞− ≤& &  (65) 

where: & &  max 11 ( )1

i
Wi M

U u ,∞,∞ Ω≤ ≤
= & &

 
Proof. Using estimations (49), (56) we have: 

n n n n
h hh hU U U UU U U U∞ ∞− ≤ − + − + −& & & & & & & ∞&

0

n
n p p n

h h h

p

U UU U U U∞ ∞
=

≤ − + − + − ≤∑& & & & & &∞

0 0

1

n
n p

h h

p

U U U U U∞ ∞ ∞
=

− + − + − +∑& & & & & & &p
hU UU −nh ∞&

2 3 2 20 0 |  | |n n
h Ch log h nCh logU Uµ µ /

∞ ∞≤ + + +& & & & 2 |h  
 

Finally, letting we get the desired result.  2n hµ =
The -error estimate (65) follows immediately from the standard 

inverse inequality (cf. [11]). It is important to notice that the error estimate 
obtained contains an extra power in (  than expected, due to the 
approach followed.  

1W ,∞

 log h)

6. RESULTS AND CONCLUSIONS 

The variational method presented is an alternative approach to the 
classical drift-diffusion model which can be described by a nonlinear 
Poisson equation for the electrostatic potential coupled with a system of 
convection-diffusion equations for the transport of charge  
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2 ( )

( )

( ) (
n n

p p

q n p C

n D n R n

p D p R n

ψ
ε
µ ψ ψ

µ ψ ψ

∇ = − −∇ ⋅ − ∇ + ∇ = , ,∇ ⋅ ∇ + ∇ = , ,

( )

)

p

p

|

 

In the context of semiconductor device modelling, the presence of strong 
variation of the convection term ∇  is a source of numerical troubles since 
it give rise to sharp internal layers.  

ψ

This equations can be solved with Gummel like process to decouple the 
system and Newton’s method to obtain the resulting sequences of linear 
systems.  

The Poisson problem leads to a symmetric, positive definite system 
which can be solved iteratively using BCG.  

The transport equation leads to nonsymmetric indefinite systems; 
moreover their solutions exibit steep layers and are subject to numerical 
oscillations and instabilities if standard Galerkin-type discretization 
strategies are used.   

We present numerical result for Variational Method and Drift Diffusion 
model for a two dimensional p n  junction with the following parameters: 

 where V  is the applied potential with value 
 

−

a1 2 4, D
au Vξ ξ= = =|

5 4 2, , .V V V− − −

 
Table 1. Numerical results with  h 1/6=

 
Table 2. Numerical results with  h = 1/2
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Figure 2. Varational Method. Numerical solution and depletion layer V  5 4 2, ,a V V V= − − −
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