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Caputo’s fractional derivative

We consider Fractional Differential Equations (FDEs) of the
type

t0D
α
t y(t) = g(t, y(t)), t0 < t ≤ T, 0 < α < 1, (1)

where t0D
α
t denotes the Caputo’s fractional derivative opera-

tor defined as

t0D
α
t y(t) =

1

Γ(1− α)

∫ t

t0

y′(u)

(t− u)α
du,

and Γ is the Gamma function.

Setting the initial condition y(t0) = y0 , the solution of (1) ex-
ists and is unique under the hypothesis that g is continuous
and fulfils a Lipschitz condition with respect to the second
variable.

Fractional BDF formulas

Similarly to the integer order case α = 1, a classical approach
for solving (1) is based on the discretization of the fractional
derivative, which generalizes the well known Grünwald-
Letnikov discretization [2, sec.2.2]. This kind of discretization
leads to the so-called Fractional Backward Differentiation
Formulas (FBDFs) introduced in [2].

Taking a uniform mesh t0, t1, . . . , tN = T of the time domain
with stepsize h = (T − t0)/N, FBDFs are full-term recursion
formulas of the type

∑n

j=0
ω
(p)
n−jyj = hαg(tn, yn), p ≤ n ≤ N, (2)

where yj ≈ y(tj). The coefficients ω
(p)
n−j are the Taylor coeffi-

cients of the generating function

ω(α)
p (ζ) = (a0 + a1ζ + ...+ apζ

p)α (3)

=
∑∞

i=0
ω
(p)
i ζ i, for 1 ≤ p ≤ 6, (4)

being {a0, a1, . . . , ap} the coefficients of the underlying BDF.
In [2] it is shown that the order p of the BDF is preserved.

Because of the typical lack of regularity of the solution in a
neighborhood of the starting point, formula (3) is generally
corrected as

∑M

j=0
wn,jyj +

∑n

j=0
ω
(p)
n−jyj = hαg(tn, yn), (5)

where the sum
∑M

j=0wn,jyj is the so-called starting term, in
which M and the weights wn,j depend on α and p.

Short Memory Approach

In order to reduce the computational cost of a method based
on a full recursion like (2), one typically considers a truncated
Taylor expansion of the generating function (4), which leads
to ∑n

j=n−m
ω
(p)
n−jyj = hαg(tn, yn), n ≥ m. (6)

While the above formula is very easy to implement and little
expensive the simple truncation of the Taylor series may yield
poor results if α is not closed to 1. For this reason here we
consider a more accurate approach [1, 3].

Denoting by Πm the set of polynomials of degree not exceed-
ing m, the idea is to construct methods based on the rational
approximations of the generating function, i.e.,

Rm(ζ) ≈ ω(α)
p (ζ), Rm(ζ) =

pm(ζ)

qm(ζ)
, pm, qm ∈ Πm. (7)

Writing pm(ζ) =
∑m

j=0 αjζ
j and qm(ζ) =

∑m
j=0 βjζ

j, the above
approximation naturally leads to implicit short memory re-
cursions of the type

∑n

j=n−m
αn−jyj = hα

∑n

j=n−m
βn−jg(tj, yj), n ≥ m. (8)

Matrix Formulation

Starting from a BDF formula of order p, which discretizes
the derivative operator, we consider lower triangular banded
Toeplitz matrices of the type

Ap =




a0 0 0
... a0 0

ap
...

. . . 0

0
. . . . . . 0
0 ap · · · a0




∈ R
(N+1)×(N+1). (9)

In this setting, Aα
pe1, e1 = (1, 0, . . . , 0)T , contains the whole set

of coefficients of the corresponding FBDF for approximating
the solution of (1) in t0, t1, . . . , tN , that is

eTj+1A
α
p e1 = ω

(p)
j , 0 ≤ j ≤ N, (10)

(cf. (4)). From the theory of matrix functions, we know that
the fractional power of matrix can be written as a contour in-
tegral

Aα =
A

2πi

∫

Γ

zα−1(zI − A)−1dz,

where Γ is a suitable closed contour enclosing the spectrum
of A, σ(A), in its interior. Since in our case σ(Ap) = {a0} and
a0 > 0 we can also write

Aα =
A sin(απ)

απ

∫
∞

0

(ρ1/αI + A)−1dρ. (11)

At this point, for each suitable change of variable for ρ, a k-
point quadrature rule for the computation of the integral in
(11) yields a rational approximation of the type

Aα
p ≈ ApR̃k(Ap) := Ap

∑k

j=1
γj(ηjI + Ap)

−1, (12)

where the coefficients γj and ηj depend on the substitution
and the quadrature formula.
In order to remove the dependence of α inside the integral we
consider the change of variable [1]

ρ1/α = τ
1− t

1 + t
, τ > 0, (13)

Aα
p =

2 sin(απ)τα

π
Ap

∫ 1

−1

(1− t)α−1

(1 + t)α
(τ (1− t) I +(1 + t)Ap)

−1dt.

(14)
The above formula naturally leads to the use of a k-point
Gauss-Jacobi rule for the approximation of Aα

p e1 and hence
to a rational approximation (12).
Using any algorithm which transforms partial fractions to
polynomial quotient we finally arrive to an approximation of
type (7), and therefore to a short-memory method (8).

Identification through approximation

Let ȳi ∈ R
M , n = 0, . . . , N be an observed discrete solution at

equally spaced points t0, . . . , tN , which is assumed to satisfies
an FDE model (1) in which α is unknown. Assuming that the
function g depends on a certain number of unknown param-
eters c1, . . . , ck, the identification problem can be formulated
as

min
α,c1,...,ck

N∑

n=0

‖rn(ȳ)‖
2, (15)

where rn(ȳ) is the residual at time tn of a given integration
scheme for FDEs applied to ȳ. This problem is generally
solved by some optimization routine, such as particle swarm
optimization (PSO) technique [5]. Working with the short
memory recursion (8) the minimization problem (15) takes the
form

min
α,c1,...,ck

N∑

n=m

∥∥
n∑

j=n−m

αn−j ȳj − hα

n∑

j=n−m

βn−jf(tj, ȳj)
∥∥2
. (16)
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A diffusion model

Given a polynomial p(x) = c1+c2x+ckx
k−1, consider the time

fractional diffusion equation




∂αu

∂tα
=

∂

∂x
(p(x)

∂u

∂x
), 0 < x < 1, 0 < t < T

u(0, t) = u(1, t) = 0
u(x, 0) = u0(x)

(17)

which is assumed to be the model fulfilled by a discrete ob-
served solution, representing the problem data. In order to
test the minimization (16) we generate an observed solution
the following way. After a semi-discretization with respect
to the space variable, we take the exact solution of the semi
discretized problem at randomly generated points t

′

1, . . . , t
′

q.
Then the discrete exact solution is perturbed with gaussian
white noise. An example is given in the figure below.
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In order to deal with an uniform temporal mesh we interpo-
late the observed discrete solution to generate the data ȳi of
the formula (16).

Numerical results

We consider two experiments with p(x) = c, q = 200 random
points, N = 150 equidistant points.

Example 1

The exact solution is generated by α = 0.5, c = 0.5 and
u0(x) = sin(πx). The noise level is 1% of the exact data. The
approximated solution is generated by the estimated param-
eters αest = 0.517, cest = 0.528
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Example 2

The exact solution is generated by α = 0.8, c = 1 and
u0(x) = x3(1 − x). The noise level is 1% of the exact data.
The approximated solution is generated by the estimated pa-
rameters αest = 0.801, cest = 1.034
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