
International Conference on Fractional Differentiation and Its Applications, ICFDA ’14
Catania, June 23-25, 2014

Identification through approximation
of fractional order models

P. NOVATI AND M. R. RUSSO

Department of Mathematics, University of Padua, Italy

Caputo’s fractional derivative

We consider Fractional Differential Equations (FDEs) of the
type

t0D
α
t y(t) = g(t, y(t)), t0 < t ≤ T, 0 < α < 1, (1)

where t0D
α
t denotes the Caputo’s fractional derivative opera-

tor defined as

t0D
α
t y(t) =

1

Γ(1− α)

∫ t

t0

y′(u)

(t− u)α
du,

and Γ is the Gamma function.

Setting the initial condition y(t0) = y0 , the solution of (1) ex-
ists and is unique under the hypothesis that g is continuous
and fulfils a Lipschitz condition with respect to the second
variable.

Fractional BDF formulas

Similarly to the integer order case α = 1, a classical approach
for solving (1) is based on the discretization of the fractional
derivative, which generalizes the well known Grünwald-
Letnikov discretization [2, sec.2.2]. This kind of discretization
leads to the so-called Fractional Backward Differentiation
Formulas (FBDFs) introduced in [2].

Taking a uniform mesh t0, t1, . . . , tN = T of the time domain
with stepsize h = (T − t0)/N, FBDFs are full-term recursion
formulas of the type

∑n

j=0
ω
(p)
n−jyj = hαg(tn, yn), p ≤ n ≤ N, (2)

where yj ≈ y(tj). The coefficients ω
(p)
n−j are the Taylor coeffi-

cients of the generating function

ω(α)
p (ζ) = (a0 + a1ζ + ...+ apζ

p)α (3)

=
∑∞

i=0
ω
(p)
i ζ i, for 1 ≤ p ≤ 6, (4)

being {a0, a1, . . . , ap} the coefficients of the underlying BDF.
In [2] it is shown that the order p of the BDF is preserved.

Because of the typical lack of regularity of the solution in a
neighborhood of the starting point, formula (3) is generally
corrected as

∑M

j=0
wn,jyj +

∑n

j=0
ω
(p)
n−jyj = hαg(tn, yn), (5)

where the sum
∑M

j=0wn,jyj is the so-called starting term, in
which M and the weights wn,j depend on α and p.

Short Memory Approach

In order to reduce the computational cost of a method based
on a full recursion like (2), one typically considers a truncated
Taylor expansion of the generating function (4), which leads
to ∑n

j=n−m
ω
(p)
n−jyj = hαg(tn, yn), n ≥ m. (6)

While the above formula is very easy to implement and little
expensive the simple truncation of the Taylor series may yield
poor results if α is not closed to 1. For this reason here we
consider a more accurate approach [1, 3].

Denoting by Πm the set of polynomials of degree not exceed-
ing m, the idea is to construct methods based on the rational
approximations of the generating function, i.e.,

Rm(ζ) ≈ ω(α)
p (ζ), Rm(ζ) =

pm(ζ)

qm(ζ)
, pm, qm ∈ Πm. (7)

Writing pm(ζ) =
∑m

j=0 αjζ
j and qm(ζ) =

∑m
j=0 βjζ

j, the above
approximation naturally leads to implicit short memory re-
cursions of the type

∑n

j=n−m
αn−jyj = hα

∑n

j=n−m
βn−jg(tj, yj), n ≥ m. (8)

Matrix Formulation

Starting from a BDF formula of order p, which discretizes
the derivative operator, we consider lower triangular banded
Toeplitz matrices of the type

Ap =




a0 0 0
... a0 0

ap
...

. . . 0

0
. 0
0 ap · · · a0




∈ R
(N+1)×(N+1). (9)

In this setting, Aα
pe1, e1 = (1, 0, . . . , 0)T , contains the whole set

of coefficients of the corresponding FBDF for approximating
the solution of (1) in t0, t1, . . . , tN , that is

eTj+1A
α
p e1 = ω

(p)
j , 0 ≤ j ≤ N, (10)

(cf. (4)). From the theory of matrix functions, we know that
the fractional power of matrix can be written as a contour in-
tegral

Aα =
A

2πi

∫

Γ

zα−1(zI − A)−1dz,

where Γ is a suitable closed contour enclosing the spectrum
of A, σ(A), in its interior. Since in our case σ(Ap) = {a0} and
a0 > 0 we can also write

Aα =
A sin(απ)

απ

∫
∞

0

(ρ1/αI + A)−1dρ. (11)

At this point, for each suitable change of variable for ρ, a k-
point quadrature rule for the computation of the integral in
(11) yields a rational approximation of the type

Aα
p ≈ ApR̃k(Ap) := Ap

∑k

j=1
γj(ηjI + Ap)

−1, (12)

where the coefficients γj and ηj depend on the substitution
and the quadrature formula.
In order to remove the dependence of α inside the integral we
consider the change of variable [1]

ρ1/α = τ
1− t

1 + t
, τ > 0, (13)

Aα
p =

2 sin(απ)τα

π
Ap

∫ 1

−1

(1− t)α−1

(1 + t)α
(τ (1− t) I +(1 + t)Ap)

−1dt.

(14)
The above formula naturally leads to the use of a k-point
Gauss-Jacobi rule for the approximation of Aα

p e1 and hence
to a rational approximation (12).
Using any algorithm which transforms partial fractions to
polynomial quotient we finally arrive to an approximation of
type (7), and therefore to a short-memory method (8).

Identification through approximation

Let ȳi ∈ R
M , n = 0, . . . , N be an observed discrete solution at

equally spaced points t0, . . . , tN , which is assumed to satisfies
an FDE model (1) in which α is unknown. Assuming that the
function g depends on a certain number of unknown param-
eters c1, . . . , ck, the identification problem can be formulated
as

min
α,c1,...,ck

N∑

n=0

‖rn(ȳ)‖
2, (15)

where rn(ȳ) is the residual at time tn of a given integration
scheme for FDEs applied to ȳ. This problem is generally
solved by some optimization routine, such as particle swarm
optimization (PSO) technique [5]. Working with the short
memory recursion (8) the minimization problem (15) takes the
form

min
α,c1,...,ck

N∑

n=m

∥∥
n∑

j=n−m

αn−j ȳj − hα

n∑

j=n−m

βn−jf(tj, ȳj)
∥∥2
. (16)

References

[1] L. Aceto, C. Magherini, P. Novati, On the costruction of M-step methods for FDEs, sub-
mitted 2014, Arxiv: 1405.5011v1.

[2] C. Lubich, Discretized fractional calculus, SlAM J. Math. Anal. 17 (1986), 704–719.

[3] P. Novati, Numerical approximation to the fractional derivative operator, to appear in
Numerische Mathematik, 2013, DOI: 10.1007/s00211-013-0596-7.

[4] I. Podlubny, Fractional differential equations. Mathematics in Science and Engineering,
198. Academic Press, Inc., San Diego, CA, 1999.

[5] J. Kennedy, R. C. Eberhart. Particle swarm optimization. Proc. of the IEEE International
Conference on Neural Networks, pp.1942-1948, 1995.

A diffusion model

Given a polynomial p(x) = c1+c2x+ckx
k−1, consider the time

fractional diffusion equation




∂αu

∂tα
=

∂

∂x
(p(x)

∂u

∂x
), 0 < x < 1, 0 < t < T

u(0, t) = u(1, t) = 0
u(x, 0) = u0(x)

(17)

which is assumed to be the model fulfilled by a discrete ob-
served solution, representing the problem data. In order to
test the minimization (16) we generate an observed solution
the following way. After a semi-discretization with respect
to the space variable, we take the exact solution of the semi
discretized problem at randomly generated points t

′

1, . . . , t
′

q.
Then the discrete exact solution is perturbed with gaussian
white noise. An example is given in the figure below.

0
0.2

0.4
0.6

0.8
1

0

0.02

0.04

0.06

0.08

0.1
0

0.2

0.4

0.6

0.8

1

In order to deal with an uniform temporal mesh we interpo-
late the observed discrete solution to generate the data ȳi of
the formula (16).

Numerical results

We consider two experiments with p(x) = c, q = 200 random
points, N = 150 equidistant points.

Example 1

The exact solution is generated by α = 0.5, c = 0.5 and
u0(x) = sin(πx). The noise level is 1% of the exact data. The
approximated solution is generated by the estimated param-
eters αest = 0.517, cest = 0.528

0
0.2

0.4
0.6

0.8
1

0

0.02

0.04

0.06

0.08

0.1
0

0.2

0.4

0.6

0.8

1

exact solution

0
0.2

0.4
0.6

0.8
1

0

0.02

0.04

0.06

0.08

0.1
0

0.2

0.4

0.6

0.8

1

approximated solution

0
0.2

0.4
0.6

0.8
1

0

0.02

0.04

0.06

0.08

0.1
10

−6

10
−5

10
−4

10
−3

10
−2

Error

Example 2

The exact solution is generated by α = 0.8, c = 1 and
u0(x) = x3(1 − x). The noise level is 1% of the exact data.
The approximated solution is generated by the estimated pa-
rameters αest = 0.801, cest = 1.034

0
0.2

0.4
0.6

0.8
1

0

0.02

0.04

0.06

0.08

0.1
0

0.02

0.04

0.06

0.08

0.1

0.12

exact solution

0
0.2

0.4
0.6

0.8
1

0

0.02

0.04

0.06

0.08

0.1
0

0.02

0.04

0.06

0.08

0.1

0.12

approximated solution

0
0.2

0.4
0.6

0.8
1

0

0.02

0.04

0.06

0.08

0.1
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

Error

