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Introduction

Electronic has a greater and greater role in nowadays life.
New products, with better functionality, appear almost every
day. Moreover, their lifetimes are extremely short. This re-
quires a constant and fast development of the basic electronic
devices, from which the electronic machines are made on.
This low time to market necessarily needs device simulations.
Fluid simulations are one of the most interesting fields since
we live dip into fluids. An aircraft flies into air which may be
seen as an inviscid compressible fluid. A wind power plant
uses wind to produce electricity. Water, an incompressible
fluid, flows inside aqueducts from the spring to our houses.
Also our blood may be modeled as a complicated fluid. All
these aspects may be optimized and understood better via
computer simulations.
The convergence of the simulation algorithms is sometimes
very slow. In such cases is essential to improve the rate of
convergence and this can be done by vector extrapolation me-
thods.

Vector Extrapolation Methods

Vector extrapolation methods accelerate slowly or non con-
vergent vector sequences. We consider here the Poliyno-
mial Methods. Let xj, j = 0, 1, 2 . . . be a sequence of N-
dimensional column vectors with limit s.
A polynomial algorithm finds s as a weighted average of k+1
terms related with the given sequence, where the k indepen-
dent weights are found by solving a linear system of size
(N × k). In detail this means:

uj = xj+1 − xj vj = uj+1 − uj

U = [u0,u1, . . . ,uk−1] V = [v0,v1, . . . ,vk−1]

MPE–Minimal Polynomial Extrapolation:

s =
k∑

j=0

γjxj with γj =
cj∑k

i=0 ci
, j = 0, 1, . . . , k

where the coefficients cj, j = 0, · · · , k are obtained solving
the linear system Uc = −uk.

RRE–Reduced Rank Extrapolation:

s = x0 +
k∑

i=0

ξiui

where the coefficients ξi, i = 0, · · · , k are obtained solving the
linear system V ξ = −u0 .

Remarks:

• The explicit knowledge of the sequence generator is not required.

• s is find solving a relatively small linear system (i.e., k << N ).

Semiconductor devices simulation: MOSFET

One of the most important electronic device is the MOSFET
(Metal Oxide Field Effect Transistor). To understand its
relevance on our life, it suffice to say that a large amount of
the hardware inside a computer is based on it. For example, a
microprocessor contains about 400 million mosfets. In a very
crude way, an n-channel mosfet works as follows. Assume
Vth > 0 be a given threshold voltage.

1. Vg ≤ Vth: the electric field is too low to attract under
the oxide a sufficiently large number of source and drain
electrons to realize the inversion in the p-silicon region
just under the oxide (i.e, the p-silicon becomes an n sili-
con). Thus, the source and the drain are separated and no
current flows throughout the source and drain contacts.

2. Vg > Vth: the electric field is high enought to create an
inversion under the oxide. The drain and the source
are joned by the same n-type of semiconductor material
(thus, the name n-channel mosfet). A current can flow
from source to drain if VD − VS 6= 0.

Semiconductor devices simulation: MOSFET

FIGURE 1. Vg ≤ Vth FIGURE 2. Vg > Vth

Extrapolation of the Gummel map

The model of a semiconductor device is a system of three
strongly coupled differential equations: the Poisson equa-
tion for the potential ψ and the two continuity equations
for hole and electron concentrations, n and p, respectively.
n = nie

ψ−φn and p = nie
φp−ψ where ni is a given reference

concentration and φn and φp are the electron and hole quasi-
Fermi potentials. The Gummel map is the common, iterative,
way used to solve this system. At each step, the Poisson
and the continuity equations are solved and the solutions
updated until some specified stopping criteria is fullfilled.
For the mosfet case, the number of iteration steps is low for
Vg ≈ 0V and rises with Vg. In this latter case, it is interesting
to apply some acceleration technique as we can see in the
modified Gummel map algorithm.

guess ψ(0), φ(0)
n , φ(0)

p

k = 0

while (some stop criterion is not matched)

1. −∇ · (ε∇ψ(k+1)) = q[p(k) − n(k) + C]

2. collect ψ(k+1) and/or extrapolate a new value for ψ(k+1)

3. ∇ · [−qµnn(k+1)∇ψ(k+1) + qDn∇n
(k+1)] = R(ψ(k), n(k), p(k))

4. collect φ(k+1)
n and/or extrapolate a new value for n(k+1)

5. ∇ · [qµpp(k+1)∇ψ(k+1) + qDn∇p
(k+1)] = −R(ψ(k), n(k), p(k))

6. collect φ(k+1)
p and/or extrapolate a new value for p(k+1)

7. k = k + 1

end

Numerical Results (1 µm channel width )
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number Nψ of consecutive collected ψ(k) vectors for RRE extrapolation

Nψ no extrapolation 6 7 8 9 10 11 12

CPU time [ s ] 59 48 37 34 36 41 41 49

Fluid simulations

The mathematical model for both compressible and incom-
pressible fluids contains continuity and momentum equations
and is completed in the compressible fluids by a temperature
equation whereas for the incompressible ones by an energy
equation.
The numerical solution may be carried out using an iterative
procedure, the Characteristic-Based Split (CBS) scheme. It is a
fractional time-stepping algorithm based on an original finite
difference velocity-projection scheme where the convective
terms are treated using the idea of the characteristic-Galerkin
method. The number of iteration may be very high and thus
we propose an accelerated version of the algorithm.

Extrapolation of CBS scheme

There are no general guidelines to accelerate the convergence
of evolutive problems that converge to a stationary solution.
So, we adopt the following strategies:

• We select the variables to check where the extrapolation
procedure should be done. Regardless this choice, all the
solution variables are extrapolated.

• We skip the first iterations of the iterative process since
they are, reasonable, the most far away from the statio-
nary solution

• We collect consecutive iterations characterized by the fact
that the maximum error for each variable between two
consecutive iterations occurs at the same mesh nodes.
The errors between consecutive iterations are proportio-
nal and hence it is reasonably that it appears at the same
nodes of the mesh. This way to check the extrapolation
point is very less, memory and time, consuming.

• We perform extrapolation only on the last part of the col-
lected iterations.

• Finally, since the extrapolated solution, typically, is not a
feasible solution for the evolution problem (i.e., it does
not satisfy the PDE equations), we give some iterations
to relax towards a feasible solution before looking back
again to original sequence for finding another starting
point before collecting further iterations.

Buoyancy–Driven Convection Problem

In this problem the Navier–Stokes equations are coupled with the tempe-
rature equation. The local temperature difference induces a local density
difference within the fluid and this produce the fluid motion.

NACA0012 Airfoil Problem

This problem refers to an inviscid compressible flow over a NACA0012
airfoil test problem at Mach number 0.25.
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